Closure properties of RE, Rec

Recall that a language L is
- **recursively enumerable** (RE) if there exists a TM for L,
- **recursive** (Rec) if there exists a TM for L which halts on every input (i.e. also on strings not from L).

Is the class RE closed under union? And intersection? **YES**

Is the class Rec closed under union? And intersection? **YES**

What can we say about complement? **we'll see**
Closure properties of RE, Rec

Lemma: RE languages are closed under union.

I.e. given two TMs M_1, M_2, describe a TM M_3 s.t. $L(M_3) = L(M_1) \cup L(M_2)$

Idea: M_3 runs both M_1, M_2 simultaneously.

- we can assume that M_3 has 2 tapes
- on the 1st tape it simulates M_2
- on the 2nd tape it simulates M_2
- the first step is M_1, the second M_2, the third M_1, the forth M_2, etc. ← alternates M_1, M_2
- if either M_1 or M_2 accepts, M_3 accepts

Lemma: RE languages are closed under intersection.

Idea: same as above, except that M_3 must wait until both M_1, M_2 accept

Note: for intersection we can also do this:

1) copy input to store it
2) run M_1
3) if accepts, copy input back and clear the rest of the tape
4) run M_2
5) if accepts, accept
Lemma: Recursive languages are closed under union.

Same idea as for RE works here as well.

Now we have to say that M_3 never gets to an infinite loop.

\Rightarrow This follows from M_1, M_2 never getting to an infinite loop.

Lemma: Recursive languages are closed under intersection.

Similar as above and on the previous page.
Closure properties of RE, Rec

Lemma: Recursive languages are closed under complement.

Lemma: RE languages are not closed under complement.
Closure properties of RE, Rec

Thm : L and L' are RE iff L is recursive.
Noam Chomsky studied grammars as potential models for natural languages. He classified grammars according to these four types:

- **Type 0 Grammars**: Unrestricted Grammars (generate RE languages)
- **Type 1 Grammars**: Context-sensitive (monotone) Grammars (generate context-sensitive languages)
- **Type 2 Grammars**: Context-free Grammars (generate context-free languages)
- **Type 3 Grammars**: Regular Grammars (generate regular languages)
Def: An *unrestricted grammar* is a 4-tuple \(G=(V,\Sigma,S,P) \) where

- \(V \) is a finite set of variables
- \(\Sigma \) is a finite set of terminal symbols
- \(S \in \Sigma \) is the start symbol
- \(P \) is a finite set of productions of the form \(\alpha \rightarrow \beta \) where
 \(\alpha \in (V \cup \Sigma)^+ \) and \(\beta \in (V \cup \Sigma)^* \)

\((V \text{ and } \Sigma \text{ are assumed to be disjoint}) \)
Unrestricted Grammars (Type 0)

Example: Give an unrestricted grammar for \(\{ a^k b^k c^k \mid k \geq 0 \} \)
Example: Give an unrestricted grammar for \(\{ a^j \mid j = 2^k, k \geq 0 \} \)
Context-sensitive Gram. (Type 1)

Def: A type 0 grammar $G=(V, \Sigma, S, P)$ is context-sensitive if for every production rule $\alpha \rightarrow \beta$ in P, $|\alpha| \leq |\beta|$.

Which of our examples of type 0 grammars are context-sensitive?
Context-sensitive Gram. (Type 1)

Def: A type 0 grammar $G=(V, \Sigma, S, P)$ is **context-sensitive** if for every production rule $\alpha \rightarrow \beta$ in P, $|\alpha| \leq |\beta|$.

Lemma: Every context-free language which does not contain Λ is context-sensitive.
Context-sensitive Gram. (Type 1)

Def: A type 0 grammar $G=(V,\Sigma,S,P)$ is **context-sensitive** if for every production rule $\alpha \rightarrow \beta$ in P, $|\alpha| \leq |\beta|$.

Lemma: Every context-free language which does not contain Λ is context-sensitive.

Def: A linear-bounded automaton A is a TM which never rewrites a blank to a non-blank symbol.

Lemma: A language L is context-sensitive iff there exists a linear-bounded automaton accepting L.

[Section 10.3]
Regular Grammars (Type 3)

Def: A type 0 grammar $G=(V,\Sigma,S,P)$ is **regular** if every production rule in P is of the form $A \rightarrow \sigma B$ or $A \rightarrow \sigma$, where $A,B \in V$ and $\sigma \in \Sigma$.

Lemma: A language L is regular iff there exists a regular grammar for $L-\{\Lambda\}$.