The Halting Problem

\[A_{TM} = \{ <M,w> \mid M \text{ is a TM that accepts string } w \} \]

- Turing-recognizable?
 YES \quad \text{bec:} \quad \text{"Algo":} \quad 1) \text{ run the TM } M \text{ on } w
 2) \text{ if } M \text{ accepts, return true (accepted)}
 3) \text{ if } M \text{ rejects, return false (not accepted)}

- Turing-decidable?
 NO \quad \text{see the next slide}

in quotes bec. might never finish \(\text{(if M goes through infinite steps on } w) \)
The Halting Problem

Thm 4.11: A_{TM} is not decidable.
Recall: $A_{TM} = \{ <M, w> \mid M \text{ is a TM that accepts string } w \}$

By contradiction, assume A_{TM} is decidable.

Let acceptance $(\text{File } M, \text{File } w)$ be a function that decides A_{TM}.

We will create our own weird func, using the acceptance func.

```plaintext
func weird (File T)
  run acceptance (T, T)
  return the opposite of 5
```

What happens if weird (weird)?

- It returns false if acceptance (weird, weird) = true
- It returns true if weird does not accept weird (i.e., weird(weird) = false)

IMPOSSIBLE!

hence acceptance func cannot exist!
Thm 4.22: A language L is decidable iff L is Turing-recognizable and \overline{L} is Turing-recognizable (we say that L is co-Turing-recognizable).

\Rightarrow if L is decidable is L also T-recognizable? \checkmark

\Rightarrow T-recognizable? \checkmark YES, just switch accept & reject states \checkmark

\Leftarrow have a TM M_1 for L

\Leftarrow have a TM M_2 for \overline{L}

how to create a TM-decider M' for L

sketch (works):

1. alternate running one step of M_1 with one step of M_2
2. if M_1 accepts, M' accepts
3. if M_2 accepts, M' rejects

Note: exactly one of M_1, M_2 will accept bec. recognize L and \overline{L}

Cor 4.23: A_{TM} is not Turing-recognizable.

bec. A_{TM} is T-recognizable & if $\overline{A_{TM}}$ were T-recognizable, A_{TM} would be decidable