Nonregular languages

Which of these languages are regular?

- $B = \{ 0^n1^n \mid n \geq 0 \}$ not regular
- $C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \}$ not regular
- $D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \}$ is regular. E.g., reg. expr: $0(01)^*0 \cup 1(01)^*1 \cup \varepsilon \cup 01$
Nonregular languages

Which of these languages are regular?

- $B = \{ O^n1^n \mid n \geq 0 \}$
- $C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0’s and 1’s} \}$
- $D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01’s and 10’s as substrings} \}$

Proof by closure properties:

Assume B is not regular.
We will show that C is not regular either.
By contradiction, suppose C is regular. Consider $C \cap 0^*1^* = B$.

Regular because regular languages are closed under intersection.
Assume regular, know regular, contradiction.

Hence C is not regular.
Pumping lemma for regular lang.

Suppose we have a DFA with p states.

Suppose there is a string of length $> p$ that is accepted. Are there other strings that are accepted?

3) $|xy| \leq p$

 Bec. within the first p symbols we go through $p+1$ states and hence have a repeated state

\[S = xy^2 \]

Also accepted:
\[x^2 \]
\[xy^nz \]

1) xy^2z is accepted for $n \geq 0$

2) $y \neq \varepsilon$ or $|y| > 0$
Thm 1.70 [pumping lemma]:

Let A be a regular language. Then there exists a number p s.t. for every string $s \in A$ of length $\geq p$ there exist strings $x, y,$ and z s.t.

0. $s = xyz,$
1. For each $i \geq 0,$ $xy^iz \in A,$
2. $|y| > 0,$ and
3. $|xy| \leq p.$
Example: \(B = \{ 0^n1^n \mid n \geq 0 \} \)

Proof: That \(B \) is not regular.

By contradiction, assume that \(B \) is regular and let \(p \) be the PL number for \(B \).

Goal: find one \(s \in B \), \(|s| \geq p \) for which the PL does not hold (there is a problem w. the 3 conditions).

Consider \(s = 0^p1^p \in B \), \(0^p \times \) not ok, \(1^p \times \) ok, \(s \in B \) but \(|s| \) could be \(\geq p \). \(s = \frac{0}{0} \frac{1}{1} \frac{p}{p} \frac{p}{p} \frac{1}{1} \frac{2}{2} \)

We will find a problem w. condition (1) (the other conditions are easy to satisfy)

pretend that all conditions hold:

by 3') \(xy \) happen within the 0 block, i.e. \(y \) contains only 0's

2'). \(y \neq \epsilon \)

1') consider \(i = 2 \) : \(xy^i2 = xyy2 \) - contains \(\geq p \) 1's

\(\geq p \) 0's (and \(\leq 2p \))

and hence \(B \) is not regular.
Pumping lemma for regular lang.

Example: \(C = \{ w \mid w \text{ has equal number of 0's and 1's} \} \)

Proof that \(C \) is not regular.

By contradiction, assume \(C \) is regular and let \(p \) be the PL number for \(C \).

Consider \(s = \overline{011001} \in C \) \(\forall \) not necessarily long enough

\[
S = O^p 1^p
\]

Suppose \(x, y, z \) satisfy:

1) \(s = xy^2 \)
2) \(y \) contains at least one 0
3) \(|xy| \leq p \), i.e. \(y \) contains only 0's

Consider \(i = 2 \), then \(xy^2z = xyyz \) contains \(\geq p \) 1's

\(C \) \(\notin \) regular.
Pumping lemma for regular lang.

Example: $F = \{ ww \mid w \in \{0,1\}^* \}$

Pf that F is not regular.

By contradiction, suppose F regular, let p be the PL number.

Consider $S = 00$

- 0001: too short
- $(01)^p$: too short & F
- 0^p1: $F \not\subset F$
- 0^p10^p1: too short

Let $S = 0^p10^p1$

Suppose x,y,z satisfy (0)-(3): 0) $S = xyz$
1) consider $i = 2$: $xy^iz = xyyz = 0^k10^p1 \in F$
2) $y \neq \varepsilon$ contains at least one 0
3) $|xy| \leq p$ y contains only 0's

If we chose $S = (01)^p$

then $3x,y,z$ satisfying the condition,

- $x = \varepsilon$
- $y = 0101$
- $z = (01)^p \cdot 2$

$\forall i \geq 0$ $xy^iz \in F$

Not a good choice for S
Example: \(D = \{ 1^k \mid k \geq 0 \text{ is a square} \} \)

Proof that \(D \) is not regular:

By contradiction, assume \(D \) is regular. Let \(p \) be the PL number for \(D \).

Consider \(s = 1^{p^2} \in D \) \(\forall \) \(|s| = p^2 \geq p \)

Suppose \(x, y, z \) satisfy 0)-(3):

by 2) : \(y \) contains at least one 1 \(\quad |y| \geq 1 \)

3) : \(|xy| \leq p \) \(\quad |y| \leq p \)

1) : \(xy^iz = xyy \ldots yz \) \(\underbrace{y}_{i \text{ times}} \)

consider \(i = 2 \) : \(xy^2z = xyyz = 1^{p^2+|y|} \)

\(p^2 + 1 \leq xyyz \leq p^2 + p \)

The next square after \(p^2 \) is \((p+1)^2 = p^2 + 2p + 1 \)

hence no square \((p^2+1, p^2+p] \):

\(xyyz \notin D \) \(\square \)
Example: \(E = \{ 0^i 1^j \mid i > j \} \)

We will show that \(E \) is not regular.

By contradiction, suppose \(E \) is regular. Then let \(p \) be the PL number for \(E \).

Consider \(s = 0^{p+1} 1^p \in E \) \(\Rightarrow |s| = 2p + 1 \geq p \).

Suppose \(x,y,z \) satisfy 0)-(3):

by 3): \(|xy| \leq p \) \(\Rightarrow y \) contains only 0's

2): \(y \) contains at least one 0

1): consider \(i=2 \): \(xy^2z = xyyz = 0^p 1^p \in E \)

\(s = \begin{array}{c}
0 \quad 1 \\
p+1 \\
p \\
\end{array} \)

This i (i.e.) does not produce contradiction.

Consider \(i=0 \): \(xy^0z = xz = 0^{p+1} 1^p \in E \)

i.e. \(xz \) contains \(p+1-1 \) zeros

\(= p \) ones

\(\Rightarrow xz \in E \).