Thm 7.27 [Cook-Levin]: SAT is in P iff P = NP.
NP-Completeness

Def 7.29: Language A is **polynomial-time reducible** to language B, written $A \leq_p B$, if a polynomial-time computable function $f: \Sigma^* \rightarrow \Sigma^*$ exists such that for every w,

$$w \in A \iff f(w) \in B$$

The function f is called **polynomial-time reduction** of A to B.

Thm 7.31: If $A \leq_p B$ and $B \in P$, then $A \in P$.
Thm 7.32: 3SAT is polynomial-time reducible to CLIQUE, where

\[3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3-cnf formula} \}. \]
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:

- B is in NP, and

- every A in NP is polynomial-time reducible to B.
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:
- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Thm 7.35: If B is NP-complete and $B \in P$, then $P = NP$.

i.e. solving B in poly-time \Rightarrow we can solve every $A \in NP$ in poly-time, i.e. $P = NP$
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:

- B is in NP, and

- every A in NP is polynomial-time reducible to B.

Thm 7.36: If B is NP-complete and $B \leq_p C$ for some $C \in NP$, then C is NP-complete.
Def 7.34: A language B is \textbf{NP-complete} if it satisfies both conditions:
- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Thm 7.37 [Cook-Levin]: SAT is NP-complete.

Note: a long list of known NP-complete problems.