Def 7.1: Let M be a deterministic TM that always halts. The **running time** (or **time complexity**) of M is the function $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the max number of steps M takes on any input of length n.

Note: we usually use the big-O notation, instead of precisely determining f

![Diagram](image)

Def 7.7: The **time complexity class** TIME(t(n)) is the collection of languages that have an $O(t(n))$ deterministic decider (TM that always halts).
What about nondeterministic TMs?

Running time for a specific input is the max # steps the nondet. TM takes on any of its computation paths for this input.
What about nondeterministic TMs?

Def 7.9: Let N be a nondeterministic decider. The **running time** of N is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n.

Thm 7.11: Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ nondeterministic single-tape TM has an equivalent **exponential**-time deterministic single-tape TM.