Regular expressions

- used for describing string patterns, e.g.

 \((0 \cup 1)0^*\) - a zero or one, followed by any sequence of zeros

 \((0 \cup 1)^*\) - any string over \([0,1]\)
Regular expressions

Formal definition:

R is a **regular expression** if R is one of the following:

1. a for some $a \in \Sigma$,
2. ε
3. \emptyset
4. $(R_1 \cup R_2)$, where R_1, R_2 are regular expressions
5. $(R_1 \cdot R_2)$, where R_1, R_2 are regular expressions
6. $(R_1)^*$, where R_1 is a regular expression.

Note: this type of definition is called a **recursive/inductive definition** (i.e. the definition is a recursive algorithm).
Regular expressions

For convenience: $R^+ = RR^*$

Examples: give regular expressions for the following languages:

- $\{ w \in \{0,1\}^* \mid w \text{ contains the substring 001} \}$

 $$(01^*)001(01^*)$$

- $\{ w \in \{0,1\}^* \mid w \text{ does not contain two consecutive 0's} \}$

 $1^* \cup 1^*0(1^0)^*1^*$

- $\{ w \in \{0,1\}^* \mid |w| \text{ is divisible by 2 or 3} \}$

 $$((01)(01))^* \cup ((01)(01)(01))^*$$

 $$\cup \ldots$$

- $\{ w \in \{0,1\}^* \mid |w| < 4 \}$

 $$\cup (01)^* \cup (01)^4 \cup (01)^5 \cup (01)^6 \cup (01)^7 \cup (01)^8 \cup (01)^9 = (01^*01^5)^3$$
Examples: let R be any regular expression

- $R \cdot \emptyset = \emptyset$

- $R \cdot \epsilon = R$

- $\emptyset^* = \epsilon$

- $\epsilon^* = \epsilon$

The language defined by R is denoted $L(R)$. We’ll often abuse notation and use R to denote the language $L(R)$.

- see the reasoning from a couple of weeks ago where we said that for any language L, $L^0 = \{\epsilon\}$
Equivalence of reg. expr. and FA’s

Kleene

Thm 1.54: A language is regular iff some regular expression describes it.

Lemma 1.55: Given a regular expression R, there exists a FA M such that $L(M) = L(R)$.

Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.
Lemma 1.55: Given a regular expression \(R \), there exists a FA \(M \) such that \(L(M) = L(R) \).

- **BASE CASE:**
 1. If \(R = a \) for some \(a \in \Sigma \), then NFA: \(\rightarrow a \rightarrow \) (Example: \(0 \cup (1 \cdot (100)^* \))
 2. If \(R = \varepsilon \), then NFA: \(\rightarrow 0 \)
 3. If \(R = \emptyset \), then NFA: \(\rightarrow 0 \)

- **INDUCTIVE CASE:**
 4. If \(R = (R_1 \cup R_2) \) for some reg. expr. \(R_1, R_2 \), then by IH (inductive hypothesis), assume we have NFAs \(N_1, N_2 \) for \(R_1, R_2 \).
 5. Analogous inductive cases for concat. and star.

We can create an NFA \(N \) for \(R \) by these steps.
Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

Generalized NFA (GNFA)
- transitions may be marked by reg.expr. (not just $\Sigma \cup \{\epsilon\}$)
- single accept state that a) has arrows coming in from every other state, b) does not have any outgoing arrows
- start state that a) has arrows to every other state, b) does not have any incoming arrows
- all other states have arrows to all other states (including self-loops)
Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

Generalized NFA (GNFA) $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ where all as usual except $\delta : (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \rightarrow \mathcal{R}$ where \mathcal{R} is the set of all regular expressions over Σ.

Idea: start with a GNFA, remove states one by one and redraw arrows as necessary.

How to get a GNFA:

Example:

\begin{align*}
\text{NFA, convert to NFA:} & \quad \text{start state with} \quad \\
& \quad \text{a) all outgoing,} \quad \\
& \quad \text{b) none incoming.} \quad \text{NFA + arrows with } \varnothing
\end{align*}
Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

How to construct an equivalent GNFA with one fewer state?

Example:

\[\emptyset \cup (100)^* \epsilon = 0(100)^* \]

We are going to remove one of the inner states, e.g., the top one.

Simplifying:

Need to update all non-eliminated transitions.

Eliminate the bottom state.

Then eliminate the top state:

\[\emptyset \cup (101^*(01)^* \epsilon \cdot 1^* \epsilon \cdot \emptyset = \emptyset \]

& had reg. expr.
Equivalence of reg. expr. and FA's

Lemma 1.60: Given a FA M, there exists a regular expression R such that L(R) = L(M).

Proof idea:

How to construct an equivalent GNFA with one fewer state?

Example:

we are going to remove one of the inner states, e.g. the top one

simplifying

need to update all non-eliminated transitions

Algo/construction:

1. for every internal state q in the GNFA (we’ll eliminate q):
2. for every pair of states r, s from the remaining states of the GNFA, r, s ≠ q:
3. update the transition from r to s to:
4. (when left with only 2 states)
 return δ(q_{start}, q_{accept})