Measuring Complexity

Def 7.1: Let M be a deterministic TM that always halts. The **running time** (or **time complexity**) of M is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the max number of steps M takes on any input of length n.

Note: we usually use the big-O notation, instead of precisely determining f

\[
\begin{align*}
\text{TIME}(n) & \quad \text{TIME}(n^2) \\
\text{TIME}(n^3) & \quad \text{etc.}
\end{align*}
\]

Def 7.7: The **time complexity class** \(\text{TIME}(t(n)) \) is the collection of languages that have an $O(t(n))$ deterministic decider (TM that always halts).
Measuring Complexity

What about nondeterministic TMs?
What about nondeterministic TMs?

Def 7.9: Let N be a nondeterministic decider. The *running time* of N is the function $f: \mathbb{N} \to \mathbb{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n.

Thm 7.11: Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ nondeterministic single-tape TM has an equivalent exponential-time deterministic single-tape TM.