The Halting Problem

\[A_{TM} = \{ <M,w> \mid M \text{ is a TM that accepts string } w \} \]

- Turing-recognizable? \textbf{Yes} \hspace{1cm} \text{bec:} \hspace{1cm} \text{"Alg": 1. simulate } M \text{ on } w \\

 2. if } M \text{ accepts, accept (return true)} \\
 3. if } M \text{ rejects, reject (return false)} \\
 \text{troubles: infinite computation possible} \\
 \text{i.e. not a decider}

- Turing-decidable? \textbf{NO}
The Halting Problem

Thm 4.11: A_{TM} is not decidable.

Recall: $A_{TM} = \{ <M,w> | M$ is a TM that accepts string w $\}$

By contradiction, assume A_{TM} is decidable.

then, we have a TM-decider Acceptance for A_{TM}.

Acceptance gets on the tape $<M,w>$, accepts if M accepts w.

rejests else.

then, let's create a Weird TM with input $<T>$

1. Run Acceptance on input $<T,T>$
2. if Acceptance accepts $<T,T>$, reject
3. if Acceptance rejects $<T,T>$, accept

then, what happens

pandox

\Rightarrow Acceptance decider can't exist

when Weird is run on input $<\text{Weird}>$

accepts if Acceptance rejects $<\text{Weird},\text{Weird}>$

rejects if Acceptance accepts $<\text{Weird},\text{Weird}>$

i.e. if Weird with input $<\text{Weird}>$ does not accept

return not acceptance $<T,T>$

i.e. if Weird with input $<\text{Weird}>$ accepts

returns true if M accepts w

else returns false
The Halting Problem

Thm 4.22: A language L is decidable iff L is Turing-recognizable and \overline{L} is Turing-recognizable (we say that L is co-Turing-recognizable).

\implies:
- L is decidable (know how to say YES and NO)
- i.e. every string $w \in L$ is accepted by some TM M
- every string $w \notin L$ is rejected
- then \exists TM for L (namely M)
- and \exists TM for \overline{L} (namely, create M' equal to M but switch accept & reject states)

\iff:
- we have a TM M_1 for L and M_2 for \overline{L}
- create M_3, a TM for L that halts on every input (a TM-decider)
 - **sketch:** 1. run M_1, if it accepts w, then accept
 - 2. else, run M_2, if it accepts w, then reject
 - **problem:** infinite computation of M_3
 - **solution:** a solution
 - 1. run M_1, M_2 on w in parallel (alternate one step of M_1, one step of M_2)
 - 2. if M_1 accepts, accept
 - 3. if M_2 accepts, reject

Cor 4.23: $A_{TM}^\#$ is not Turing-recognizable.