Nonregular languages

Which of these languages are regular?

- $B = \{ 0^n1^n \mid n \geq 0 \}$ not regular — we'll see why soon
- $C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \}$ not regular
- $D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \}$

 regular: $0(01)^*0 \cup (01)^*1 \cup \epsilon \cup 01$
Which of these languages are regular?

- B = \{ 0^n1^n | n \geq 0 \}
- C = \{ w \in \{0,1\}^* | w \text{ has equal number of 0's and 1's} \}
- D = \{ w \in \{0,1\}^* | w \text{ has equal number of 01's and 10's as substrings} \}

Proof by closure properties: [not in the book]
Suppose we have a DFA with \(p \) states.

Suppose there is a string of length \(\geq p \) that is accepted. Are there other strings that are accepted?

0) \(s = xyz \)

- \(xy^i z \) also accepted

1) \(xy^i z \) is accepted

- \(\forall i \geq 0 \)

2) \(y \neq \epsilon \) or \(|y| > 0 \)

3) \(|xy| \leq p \)
Thm 1.70 [pumping lemma]:

Let A be a regular language. Then there exists a number p s.t.
for every string $s \in A$ of length $\geq p$ there exist strings $x, y,$
and z s.t.

0. $s = xyz,$

1. For each $i \geq 0$, $xy^iz \in A,$

2. $|y| > 0$, and

3. $|xy| \leq p.$
Example: \(B = \{ 0^n1^n \mid n \geq 0 \} \)

Proof that \(B \) is not regular:

By contradiction, suppose that \(B \) is regular. Then, let \(p \) be the PL number for \(B \).

Consider \(s = 0^p1^p \) must be in \(B \) \(\checkmark \) must be of length \(\geq |p| \) \(\checkmark \)

We want to show that there is a problem w. the PL conditions for \(s \):

We need to say that for no \(x, y, z \) the conditions 0)–3) hold simultaneously.

Suppose we have \(x, y, z \) s.t. 0)–3) all hold:

by 3): \(|xy| \leq p \) i.e. \(xy \) contain only 0's

2): \(y \neq \epsilon \) i.e. \(y \) contains at least one 0

1): consider \(i = 2 \): \(xy'y^2z = xyyz \) contains \(p \) 1's

\(\checkmark \) contradiction, hence \(B \) cannot be regular
Example: \(C = \{ w \mid w \text{ has equal number of 0's and 1's} \} \)

Proof that \(C \) is not regular:

By contradiction, assume \(C \) is regular, let \(p \) be the PL number for \(C \).

Consider \(s = \overbrace{0^p1}^p \in C \)
\(\overbrace{0^p0}^p \in C \) is short
\(\overbrace{0^p1^p}^p \in C \)
\(|s| = 2p \geq p \)

Assume we have \(x^i y z \) for which 0)–3) hold:

\(|x|, |y| \leq p \)
\(x, y \) contain only 0's
\(y \) contains at least 1 zero
\(i = 2 \): \(x y z = x y y z \)
\(|x y z| = p + 1 \geq p \\
|s| = 2p \geq p \)

\(C \) is not regular
Pumping lemma for regular lang.

Example: $F = \{ \text{ww} \mid w \in \{0,1\}^* \}$

Proof that F is not regular:

By contradiction, assume F is regular. Let p be the PL number for F.

Consider $s = 0p1p01p$ too short

$0p1p01p \in F \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1}$

Suppose x,y,z satisfy (0)-(3):

by (3): $|xy| = p \quad \text{i.e. } x,y \text{ contain only 0's}$
by (2): $y \notin F \quad \text{i.e. } y \text{ contains at least one } 0$
by (1): let $i = 0$ then $xy^iz = xz = 0^k1p01p \text{ where } k < p$
$\text{ & } F \not\ni \text{ F is not regular}$
Pumping lemma for regular lang.

Example: $D = \{ 1^k \mid k \geq 0 \text{ is a square} \}$
Pumping lemma for regular lang.

Example: \(E = \{ 0^i 1^j \mid i > j \} \)