Finite Automata

- basic computational model: limited amount of memory
- example: controller for an automatic door

2 states: closed, opened

input:
- neither sensor
- front but not back
- back but not front
- both

$\Sigma = \{0, 1, 2, 3\}$

in a course of a day, the signals are:
0 1 1 2 3 0 2 0 1 1 0
Finite Automata

Formal definition: A finite automaton (FA) is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

- \(Q\) is a finite set of states
- \(\Sigma\) is a (finite) alphabet
- \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of accept states

Pictorial representation: state diagram
Another (more abstract) example:
- accept all strings over \{0,1\} that start with 1 and end with 0

Meaning:
- \(q_0 \): haven't seen anything (E)
- \(q_1 \): starts with 1 and last symbol 1
- \(q_2 \): starts with 1 and last symbol 0
- \(q_3 \): start with 0
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a FA. The language of M (accepted / recognized by M) is $L(M)$.

Formally: need the definition of computation:

M accepts $w = w_1 w_2 \ldots w_n$ if there exist states r_0, r_1, \ldots, r_n in Q such that

- $r_0 = q_0$
- $\delta(r_k, w_i) = r_{k+1}$ $\forall k \in \{0, \ldots, n-1\}$
- $r_n \in F$

A language is **regular** if there exists a FA that recognizes it.
Designing FAs

Examples - languages over \(\{0,1\} \) consisting of strings:
- with odd number of 1’s \(L_1 \)
- that contain 001 as a substring \(L_2 \)
- that are even length and do not contain 00 as a substring \(L_3 \)

A language that cannot be accepted by a FA?

\[L = \{0^k1^k \mid k \geq 0\} \]
Let A and B be languages. The following three language operations are called the **regular operations**:

- **union**: $A \cup B$
- **concatenation**: $A \cdot B$
- **star**: A^*

The natural numbers are closed under multiplication but not division.

What about the class of regular languages?

Is the class of regular languages closed under \cup?

means: if A, B are regular languages, is $A \cup B$ always regular? **YES**
Thm 1.25: The class of regular languages is closed under the union operation.

Example:

\[A = \{ w \in \{0,1\}^* \mid \text{\#1's in } w \text{ is odd} \} \]

\[B = \{ w \in \{0,1\}^* \mid \text{\#0s in } w \text{ is even} \} \]

Proof: (sketch of construction)

We describe \(M = (Q, \Sigma, \delta, q_0, F) \) for \(A \cup B \):

- \(Q = Q_A \times Q_B \)
- \(q_0 = (q_{A0}, q_{B0}) \)
- \(F = F_A \times Q_B \cup Q_A \times F_B \)
- \(\delta((r_{A}, r_{B}), \sigma) = (\delta_A(r_{A}, \sigma), \delta_B(r_{B}, \sigma)) \) where \(\sigma \in \Sigma \)

\[\forall r_{A} \in Q_A \land \forall \sigma \in \Sigma \land \forall r_{B} \in Q_B \]

Note: if \(F = F_A \times F_B \), then \(M \) accepts \(A \cap B \) ⇒ regular languages are closed under intersection.
Thm: The class of regular languages is closed under the complement operation.

Example: \[L = \{ w \in \{0, 1\}^* \mid |w| \text{ is divisible by 3} \} \]

\[M = (Q, \Sigma, \delta, q_0, F) \]

Want to construct \(M_1 = (Q_1, \Sigma, \delta_1, q_{10}, F_1) \) for \(\overline{L} \)

let
- \(Q_1 = Q \)
- \(\delta_1 = \delta \)
- \(q_{10} = q_0 \)
- \(F_1 = Q - F \)

\(\square \) end of construction
Thm 1.26: The class of regular languages is closed under the concatenation operation.

Suppose we have

\[A = \{ w \in \{0,1\}^* \mid \text{number of 1's in } w \text{ is odd} \} \]

\[B = \{ w \in \{0,1\}^* \mid |w| \text{ is divisible by } 3 \} \]

want to construct an FA for \(A \cdot B \)

idea: run \(M_A \), then, when in an accepting state, magically (on \(a \)) jump to the initial state of \(M_B \) and finish the computation by \(M_B \)