Consider a DFA accepting \(L \). Suppose that \(x \) and \(y \) end in the same state \(q \). What can we say about \(x, y \)?

We will say that such \(x, y \) are indistinguishable w.r.t. \(L \).

\[\begin{align*}
 x^2 & \text{ have to end up in the same state} \\
 y^2 & \text{ in particular} \\
 x^2 & \text{ is accepted iff} \\
 y^2 & \text{ is accepted} \\
 \forall z \in \Sigma^* : xz \in L \text{ iff } yz \in L
\]
Myhill-Nerode Thm

Def: Let x, y be strings and L be a language. We say that x and y are **indistinguishable by L** if there for every z the following holds: $xz \in L$ iff $yz \in L$. We write $x \equiv_L y$.

Note: this is an **equivalence** relation.

Equivalence classes partition Σ^*

Examples: find the equivalence classes of \equiv_L:

$L_1 = \{ 0w \mid w \in \{0,1\}^* \}$

- $01 \equiv_{L_1} 00011$ indistinguishable bec. $\forall z \in \{0,1\}^*$: $01z \in L_1$ as well as $00011z \in L_1$.
- Observe: all strings starting with a 0 are \equiv_L with one another.
- $[0] = \{0,00,000,\ldots\}$ the set of all strings indisting. from 0, i.e. all strings beg. with 0
- $11 \equiv_{L_1} 1100$ indistinguishable bec. $\forall z \in \{0,1\}^*$: $11z \in L_1$ as well as $1100z \in L_1$.
- $[1] = \{1,11,111,\ldots\}$ the set of all strings starting w. 1
- $[\varepsilon] \equiv_{L_1}$

Diagram:

- $0 \sim [0]$ or $[0] \sim 0$ (equivalence class 0)
- $1 \sim [1]$ or $[1] \sim 1$ (equivalence class 1)
- $\varepsilon \sim [\varepsilon]$ or $[\varepsilon] \sim \varepsilon$ (equivalence class ε)

[Problem 1.52, pages 91, 97-8]
Def: Let x, y be strings and L be a language. We say that x and y are indistinguishable by L if for every z the following holds: $xz \in L$ iff $yz \in L$. We write $x \equiv_L y$.

Note: this is an equivalence relation.

Examples: find the equivalence classes of \equiv_L:

$$L_2 = \{ w \in \{0,1\}^* \mid \text{sum of digits of } w \text{ is divisible by 3} \}$$

Idea: $\mod 3 = 0 \equiv 0$

$$\begin{align*}
\epsilon \in L_2 & \quad \text{all strings with \# of ones } \mod 3 = 0 \\
[1] \in L_2 & \quad = 1 \\
[11] \in L_2 & \quad = 2
\end{align*}$$
Def: Let \(x, y \) be strings and \(L \) be a language. We say that \(x \) and \(y \) are **indistinguishable by** \(L \) if for every \(z \) the following holds: \(xz \in L \) iff \(yz \in L \). We write \(x \equiv_L y \).

Note: this is an equivalence relation.

Examples: find the equivalence classes of \(\equiv_L \):

\[
L_3 = \{ 0^k1^k \mid k > 0 \}
\]

As discussed on the board: \(\forall i \neq j: 0^i \not\in L_3 0^j \) bec. for \(z = 1^i \):

\[
0^i 2 \in L_3 \\
0^i z \notin L_3
\]

So we have equivalence classes:

\[
[0]_{L_3} \\
[00]_{L_3} \\
[000]_{L_3} \\
[0000]_{L_3} \\
\vdots
\]

\(\infty \)-many equiv. classes (plus other equiv. classes) but this suffices to say that a language is not regular.
Claim: If L is accepted by a DFA with $\leq k$ states, then \equiv_L has $\leq k$ equivalence classes.
Claim: If \equiv_L has k equivalence classes, then L can be accepted by a DFA with k states.
Thm [Myhill-Nerode]: L is regular iff the number of equivalence classes of \equiv_L is finite.

Using Myhill-Nerode to prove nonregularity:

$L_3 = \{ 0^k1^k \mid k > 0 \}$

DONE 😊

∞ many equivalence classes
Thm [Myhill-Nerode]: \(L \) is regular iff the number of equivalence classes of \(\equiv_L \) is finite.

Using Myhill-Nerode to prove nonregularity:

\[
L_4 = \{ \text{ww}^R \mid w \in \{0,1\}^* \}
\]
Thm [Myhill-Nerode]: L is regular iff the number of equivalence classes of \equiv_L is finite.

Claim: a DFA is minimal iff its number of states is the same as the number of equivalence classes of its language.
Suppose we have a DFA - how to construct a corresponding minimal DFA?

1. **remove unreachable states**
 - run DFS/BFS from the starting state, remove unvisited states
Suppose we have a DFA - how to construct a corresponding minimal DFA?

1. Remove unreachable states.

Observe:

- E (corresponding eq. class to q_0) and
- a (corresponding to q_1)

are distinguishable.

(Rec. $z = E \in E \cdot z \cdot e \subseteq L$)

More generally:

for any accepting state q

and any non-accepting state p

we know that the corresponding eq. classes

must be different (take $z = E$)
1. Remove unreachable states.
2. Identify equivalent states (and merge them):
 - construct graph with vertices = states
 - place edges between every accept and nonaccept state

for every pair of states that have not been connected yet \((p, q) \)
- if there is a symbol \(\Sigma \) s.t. after taking \(\Sigma \)-transitions from \(p \) and \(q \) we get to two states that are already connected,
 draw an edge between \(p \) and \(q \).
1. Remove unreachable states.
2. Identify equivalent states (and merge them):
 - construct graph with vertices = states
 - place edges between every accept and nonaccept state
 - continue placing edges as follows while can:

 for $q, r \in Q, q \neq r$, place edge (q, r)

 if there exists $a \in \Sigma$ s.t.

 $(\delta(q, a), \delta(r, a))$ is an edge.
1. Remove unreachable states.
2. Identify equivalent states (and merge them):
 - construct graph with vertices = states
 - place edges between every accept and nonaccept state
 - continue placing edges as follows while can:

 for \(q, r \in Q, q \neq r \), place edge \((q, r)\)
 if there exists \(a \in \Sigma \) s.t.
 \((\delta(q, a), \delta(r, a))\) is an edge.

 - merge all states that do not have edges between them into a single state