Data Structures for Problem Solving: Overview

VCSS-242, Winter 2009-2010

Professors
Ivona Bezakova
James Heliotis
Sean Strout
Richard Zanibbi
Course Objectives

What this Course is About

The representation and properties of some important data structures that maintain data in programs

- Including: arrays, lists, stacks, queues, hash tables (maps/dictionaries), heaps, and balanced trees

We will create and use our own implementations of these data structures. We will not focus on data structure libraries this quarter (covered in VCSS-243)
Approach: Problem-Based

Problem Solving

We will continue to introduce and study concepts in relation to solving computational problems

Problem Solving Steps:

• Problem definition (abstraction)
• Solution design (design description, pseudo code)
• Solution implementation (programming, for this course in Python)
• Testing (pseudo code and implementations)
Lecture, Lab and Review Each Week

First Class Each Week: Lecture

The Class will be Split into Two Lab Groups

Group 1 will meet in class the first “lab day,” and have a review (supplemental instruction) session with a student leader for one hour on the second “lab day.” Lab and review sessions are required.

Group 2 will do the opposite.

Groups 1 & 2 will switch days after the midterm.
Grading and Evaluation

20% Labs (best 4 of 5)
30% Course Group Project (3 graded deliverables, 10% each)
20% Midterm Examination (written (13%), lab (7%)) - Week 5
30% Final Examination (2 hrs) - Week 11

Late Policy: If a submission is late, it will receive a grade of 0.

Academic Dishonesty: Students may discuss assignments and projects with others, but submitted work (written and code) must be created independently by each student/group, and not copied from another student/group, or from another source (e.g. from web pages). For suspected cheating or copying, the instructor will act in accordance with the Department of CS Policy on Academic Inegrity. Penalties: 1st offense: 0 on submission; 2nd offense: 0 in course; 3rd offense: suspension, and referral to judicial affairs.

Course withdrawals must be made by Friday of Week 8.
A-maze-ing Labyrinth
Help is Available From:

Your instructor (during office hours, or by appointment)

In your weekly Supplemental Instruction Session, you will review lab/project and lecture material with a student instructor

Student Lab Instructors (available during lab sessions) will assist with solution formulating and Python in-lab

The Computer Science Tutoring Center (schedule to be posted on ‘Schedule’ link on course web page) will have student lab assistants available to provide help with Python/programming language issues (Note: they will not help you write programs)
Final Administrative Details

There is no required text this quarter; we will be providing readings through MyCourses as needed. In some cases we will refer you to the textbook for PSI: Downey, Allen B. Python for Software Design: How to Think Like a Computer Scientist, Cambridge University Press, 2009

Assigned readings: see course schedule, on the course web page.

Disability Services: http://www.rit.edu/dso

If you make special arrangements through disability services, please inform your instructor ASAP.