Topics for this week

- Graphs
 - a generalization of trees (another useful datastructure)
 - adjacency lists representation
 - depth-first-search traversal (DFS)
 - path reconstruction
 - time complexity of DFS

- Python
 - scope of variables
 - lists vs non-lists as parameters
Let’s go back to our old problem:
- How do we search for a path in a maze?
 - How do we represent the problem?
Problem: Return of the MAZE

Let’s go back to our old problem:

- How do we search for a path in a maze?
- How do we represent the problem?

etc. O - nodes, if R rows and C columns then we have RxC nodes.

an edge: a connection between two nodes
Every **graph** contains **nodes** and **edges**, each edge connects two nodes (directed or undirected connection).

Adjacency lists representation:

- For every node we describe a list of its neighbors.
 - 0: [4]
 - 1: [2, 5]
 - 2: [1, 6, 3]
 - 3: [2, 7]
 - ...

- We will use a big list containing these as elements, i.e.,

 \[
 [[4], [2, 5], [1, 6, 3], [2, 7], \ldots]
 \]

 total RxC elements (adjacency lists) in the big list
Graphs: **Depth-first-search (DFS)**

How do we find all possible nodes that are reachable from the start? (I.e., how do we traverse the graph from the start?)

Pseudo code (the first attempt):

```python
def DFS(adjlists, startnode, endnode):
    for every neigh in adjlists[startnode]:
        call DFS(adjlists, neigh, endnode)
```

Problem: we keep going back and forth between nodes 0 and 4

Solution:
keep track of the nodes that have been already visited and do not go to a node that has been visited before.
Graphs: Depth-first-search (DFS)

How do we find all possible nodes that are reachable from the start? (I.e., how do we traverse the graph from the start?)

Pseudo code:

```python
def DFS(adjlists, startnode, endnode, visited):
    if startnode == endnode:
        print("done")
    for every neighbor of startnode:
        if neighbor has not been visited:
            mark neighbor as visited
            DFS(adjlists, neighbor, endnode, visited)
```


except the start that is `T`
Graphs: Depth-first-search (DFS)

How do we find all possible nodes that are reachable from the start? (I.e., how do we traverse the graph from the start?)

Some Python comments:
Graphs: Depth-first-search (DFS)

We are almost done 😊 The last thing: how do we reconstruct the path from the start to the finish?

Pseudo code:

```
def DFS(adjlists, startnode, endnode, visited):
    if startnode == endnode:
        parent = [0, 2, 6, 2, 0, 1, 10, 3, 4, ...]
    for every neighbor of startnode:
        if neighbor hasn't been visited:
            set the neighbor's parent to startnode
            neighbor as visited
            DFS(adjlists, neighbor, endnode, visited)
```

We start as a list of -1's except the start's position is itself
Graphs: Depth-first-search (DFS)

We are almost done 😊 The last thing: how do we reconstruct the path from the start to the finish?

Pseudo code:

def DFS(adjlists, startnode, endnode, visited):
 if startnode == endnode:
 return
 for every neighbor of startnode:
 if neighbor is -1:
 set the neighbor's parent to startnode
 DFS(adjlists, neighbor, endnode, visited)

def reconstruct_path(startnode, endnode, parent):
 print the end node
 tmpnode = endnode
 while tmpnode != startnode:
 tmpnode = parent of tmpnode
 print tmpnode

parent = [1, 2, 6, 2, 0, 1, 10, 3, 4, ...]
Graphs: Depth-first-search (DFS)

The last bits...

Time complexity:

number of recursive calls = same as number of nodes \((n) \)

in our case: \#neighbors \leq 4

thus each recursive call takes:

\(\leq 4 \) iterations, \(2 \) steps per iteration + recursive calls

\(\Rightarrow \) \(\leq 8n \) steps: \(O(n) \)

if each node has about \(n \) neighbors, then the time complexity is \(O(n \cdot n) = O(n^2) \)

Testing:

Usually we write:

\(O(n+m) \) where \(m = \#edges \)

bec. \(\#recursive \) calls = \(n \)

\# neighbors overall = \# edges