Search

Input: a set A (array, list, ...) of elements and an element x

Output: YES if x is in A, NO otherwise

possibly + position of x
Linear Search

Input: an array A and an element x

Output: position of x if it is in A, or -1 otherwise

Pseudocode:

```plaintext
i = 0
while ((i < n) & (A[i] != x)) {
    i++
}
if (i == n) then output -1
else output i
```

Running time: $O(n)$ in the worst case (e.g. if x is not in the array)
Binary Search

Input: a sorted array A and an element x

Output: position of x if it is in A, or -1 otherwise

High-level pseudocode:

1. look at the middle element, let it be y
2. if $x < y$, continue with the same algorithm in the left "half" $A[0...posy-1]$
3. if $x > y$, continue with the same algorithm in the right "half" $A[posy+1...n-1]$
4. if $x = y$, output the position of y

Note: this means $k = \log_2 n$ every iteration is a constant number of steps.

Run-time/ time complexity:
$O(\log n)$

Some remarks:
- Can't copy the array content into smaller arrays, but can keep the beginning and end index of the part of the (original) array currently under consideration.

Suggested algorithm:
- Stop if x is the element in the array, then output the position of x.
- Else output -1.

Examples:
- $A = [1, 3, 7, 10, 11, 12]$
- $x = 11$
- $y = \frac{n}{2^k}$ elements to look at
- Stop if x found or if $\frac{n}{2^k} = 1$

Some additional notes:
- As $n = 2^k$, then $\frac{n}{2^k} = 1$.
Binary Search

Input: a sorted array A and an element x

Output: position of x if it is in A, or -1 otherwise

Detailed pseudocode - attempt 1:

1. $left = 0$;
2. $right = n-1$;
3. while ($left < right$) do {
4. $middle = \text{roundDown}((left+right)/2)$;
5. if ($x \geq A[middle]$) $left = middle$;
6. else $right = middle$;
7. }
8. if ($A[left] == x$) output $left$;
9. else output -1
Binary Search

Input: a sorted array A and an element x

Output: position of x if it is in A, or -1 otherwise

Detailed pseudocode - attempt 2:

1. $left = 0$;
2. $right = n-1$;
3. while ($left < right$) do {
4. $middle = \text{roundDown}((left+right)/2)$;
5. if ($x > A[middle]$) $left = middle$;
6. else $right = middle$;
7. }
8. if ($A[left] == x$) output $left$;
9. else output -1
Binary Search

Input: a **sorted** array A and an element x

Output: position of x if it is in A, or -1 otherwise

Detailed pseudocode - attempt 3:

1. left = 0;
2. right = n-1;
3. while (left < right) do {
4. middle = roundDown((left+right)/2);
5. if ($x \geq A[middle]$) left = middle+1;
6. else right = middle;
7. }
8. if ($A[left] == x$) output left;
9. else output -1
Binary Search

Input: a sorted array A and an element x

Output: position of x if it is in A, or -1 otherwise

Detailed pseudocode - attempt 4:

1. $left = 0$;
2. $right = n-1$;
3. while ($left < right$) do {
4. $middle = \text{roundDown}((left+right)/2)$;
5. if ($x > A[middle]$) $left = middle + 1$;
6. else $right = middle$;
7. }
8. if ($A[left] == x$) output $left$;
9. else output -1
Binary Search

Moral of the story:

(I.e., how to test a code and how to prove its correctness)

TEST WITH ALL SPECIAL CASES

IN BIN.SEARCH:

- small size array 0, 1, 2, 3
- A FEW RANDOM CASES, SOME LARGE
 - e.g. an array of size 1000
 - with x in the array
 - any position
 - first/last/middle
 - with x not in the array
 - x is smaller than the smallest
 - x is larger than the largest
 - x somewhere in between but not in A

Checking that no infinite loops occur
(typically through finding a “shrinking” quantity)

- checking that the program behaves according to the specifications/expectations

 e.g. for the bin.search, we verified that

 "if x is in A, then in every iteration, x is between left and right"
Introduction to Recursion

Implementing linear search recursively

Pseudocode:

Input: array A, element x
Output: YES/NO depending on if x ∈ A

1. if the size of A is 0 then return NO
2. if A[0] == x then return YES
3. solve the same problem with A[1...n-1]

A

Disclaimer: 1) most people would use for implementation of linear search, this is just a toy example (although it's very natural for functional languages)
2) if x ∈ A then we need n recursive calls and in the i-th call we use O(n-i) steps

Running time:

Attempt 1 at detailed implementation:

```
linSearchRec (array A, element x) {
    1. if size of A == 0 then return NO
    2. if A[0] == x then return YES
    4. return linSearchRec (B, x)
}
```

example: A = 5 7 3 8 4 x = 3

B = 7 3 8 4 returns YES (first)
newA = 7 3 8 4 x = 3
newB = 3 8 4 returns YES (second)
newA = 3 8 4 x = 3
newB = 8 4 returns YES (fourth)
newA = 8 4 if x = 6 we continue until size of newA is 0, return NO
Introduction to Recursion

Implementing binary search recursively

Running time: