Returned 94 matches (100 formulae, 81 docs)
    Lookup 13.759 ms, Re-ranking 0.277 ms
    Found 173014 tuple postings, 81772 formulae, 15774 documents
[ formulas ] [ documents ] [ documents-by-formula ]

L ( λ , α , s ) = n = 0 exp ( 2 π i λ n ) ( n + α ) s .
Doc 1
1.0000, 1.9966
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lerch_zeta_function.html
Φ ( z , s , α ) = n = 0 z n ( n + α ) s .
Doc 1
1.0000, 1.9966
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lerch_zeta_function.html
Doc 2
0.4675, 0.4675
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Catalan's_constant.html
Φ ( exp ( 2 π i λ ) , s , α ) = L ( λ , α , s ) .
Doc 1
1.0000, 1.9966
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lerch_zeta_function.html
L ( s , χ ) = n = 1 χ ( n ) n s .
Doc 3
0.2871, 0.2871
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_L-function.html
Φ ( z , s , q ) = k = 0 z k ( k + q ) s
Doc 4
0.2832, 0.8437
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Riemann_zeta_function.html
Doc 5
0.2832, 0.5413
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Hurwitz_zeta_function.html
ζ ( s , a ) = n = 0 1 ( n + a ) s
Doc 6
0.2830, 0.2830
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Ramanujan's_master_theorem.html
ζ ( s , q ) = n = 0 1 ( q + n ) s .
Doc 5
0.2832, 0.5413
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Hurwitz_zeta_function.html
L ( s , χ ) = n = 1 χ ( n ) n s
Doc 7
0.2549, 0.2549
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Dirichlet_character.html
L ( χ , s ) = n = 1 χ ( n ) n s
Doc 8
0.2549, 0.2549
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Generalized_Riemann_hypothesis.html
L ( E , s ) = n = 1 a n n s .
Doc 10
0.2475, 0.2475
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Modularity_theorem.html
L ( s , E ) = n = 1 a n n s .
Doc 9
0.2475, 0.2475
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Modular_elliptic_curve.html
1 n = r = 1 1 ( n + 1 ) r .
Doc 11
0.2245, 0.2245
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Engel_expansion.html
ζ ( s , t ) = n = 1 H n , t ( n + 1 ) s
Doc 12
0.2232, 0.2232
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Multiple_zeta_function.html
L ( λ , α , s )
Doc 1
1.0000, 1.9966
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lerch_zeta_function.html
ζ ( 2 s ) ζ ( s ) = n = 1 λ ( n ) n s .
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
Doc 14
0.2167, 0.2167
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Liouville_function.html
L ( s , Δ ) = n = 1 a n n s
Doc 15
0.2132, 0.3721
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Selberg_class.html
Z ( P , Q , s ) = n = 1 f n ( P ) f n ( Q ) λ n s
Doc 16
0.2109, 0.3783
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Minakshisundaram–Pleijel_zeta_function.html
n = 0 1 ( n + a )
Doc 17
0.2099, 0.3723
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Functional_determinant.html
e q x = n = 0 x n [ n ] q ! .
Doc 18
0.2073, 0.2073
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Q-analog.html
ζ 4 ( s ) ζ ( 2 s ) = n = 1 d ( n ) 2 n s .
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
ψ 1 ( z ) = n = 0 1 ( z + n ) 2 ,
Doc 19
0.1981, 0.1981
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Trigamma_function.html
ζ ( s , q ) = k = 0 1 ( k + q ) s
Doc 4
0.2832, 0.8437
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Riemann_zeta_function.html
f ( x ) = n = 0 s ( 2 n x ) 2 n
Doc 20
0.1963, 0.1963
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Draft:List_of_shape_topics_in_various_fields.html
β ( s ) = n = 0 ( - 1 ) n ( 2 n + 1 ) s ,
Doc 21
0.1925, 0.1925
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Dirichlet_beta_function.html
blanc ( x ) = n = 0 s ( 2 n x ) 2 n ,
Doc 22
0.1918, 0.1918
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Blancmange_curve.html
x = n = 0 a n 10 n .
Doc 23
0.1878, 0.1878
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Hermite's_problem.html
e x = n = 0 x n n ! .
Doc 24
0.1868, 0.1868
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Factorial.html
Doc 25
0.1868, 0.1868
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Auxiliary_function.html
NPV = n = 0 N C n ( 1 + r ) n = 0
Doc 26
0.1863, 0.1863
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Internal_rate_of_return.html
Z = n = 0 ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1
Doc 27
0.1844, 0.8093
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/List_of_formulae_involving_π.html
exp ( z ) = n = 0 z n n ! .
Doc 28
0.1837, 0.3664
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/P-adic_exponential_function.html
log 2 = n = 1 ζ ( 2 n ) - 1 n .
Doc 4
0.2832, 0.8437
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Riemann_zeta_function.html
exp p ( z ) = n = 0 z n n ! .
Doc 28
0.1837, 0.3664
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/P-adic_exponential_function.html
1 ζ ( s ) = n = 1 μ ( n ) n s
Doc 4
0.2832, 0.8437
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Riemann_zeta_function.html
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
Doc 29
0.1789, 0.1789
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Riemann_hypothesis.html
σ 1 - s ( m ) ζ ( s ) = n = 1 c n ( m ) n s .
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
n = 0 2 n + 3 ( n + 1 ) ( n + 2 )
Doc 30
0.1771, 0.1771
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Telescoping_series.html
t n = m = 0 G m n ( m + 1 ) ( m + 2 ) .
Doc 31
0.1762, 0.1762
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Gauss–Kuzmin–Wirsing_operator.html
1 ζ ( s ) = n = 1 μ ( n ) n s ,
Doc 32
0.1753, 0.1753
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Mertens_conjecture.html
ζ 3 ( s ) ζ ( 2 s ) = n = 1 d ( n 2 ) n s
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
cosh x = n = 0 x 2 n ( 2 n ) !
Doc 33
0.1722, 0.3286
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Hyperbolic_angle.html
F ( s ) = n = 1 f ( n ) n s
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
Doc 35
0.1717, 0.1717
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Von_Mangoldt_function.html
g ( s ) = n = 1 a ( n ) n s
Doc 34
0.1717, 0.1717
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Perron's_formula.html
ζ 2 ( s ) = n = 1 d ( n ) n s
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
S ρ ( z ) = n = 0 m n z n + 1 .
Doc 36
0.1698, 0.1698
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Stieltjes_transformation.html
ζ ( s ) = n = 1 1 n s .
Doc 37
0.1684, 0.3239
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Series_(mathematics).html
Doc 38
0.1684, 0.1684
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/List_of_zeta_functions.html
Doc 39
0.1684, 0.1684
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Basel_problem.html
Z ( s ) = n 0 1 ( n 2 ) s = 2 ζ ( 2 s )
Doc 16
0.2109, 0.3783
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Minakshisundaram–Pleijel_zeta_function.html
ζ ( s - 1 ) ζ ( s ) = n = 1 φ ( n ) n s
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
n = 0 u n = n = 0 p ( n ) q ( n ) ,
Doc 40
0.1659, 0.1659
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Digamma_function.html
1 L ( χ , s ) = n = 1 μ ( n ) χ ( n ) n s
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
e x f ( t ) = n = 0 p n ( x ) n ! t n
Doc 41
0.1643, 0.3196
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Generating_function.html
1 ( x ; q ) = n = 0 x n ( q ; q ) n
Doc 42
0.1635, 0.1635
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Q-Pochhammer_symbol.html
e 1 - e x = n = 0 A n ( x ) n ! ( 1 - x ) n + 1 .
Doc 43
0.1634, 0.1634
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Eulerian_number.html
φ ( s ) = n = 1 a n n s .
Doc 44
0.1633, 0.1633
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Ramanujan–Petersson_conjecture.html
1 2 = k = 0 ( - 1 ) k ( π 4 ) 2 k ( 2 k ) ! .
Doc 45
0.1633, 0.1633
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Square_root_of_2.html
Z = n = 0 ( - 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 n 882 2 n
Doc 27
0.1844, 0.8093
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/List_of_formulae_involving_π.html
Z = n = 0 ( - 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 n 18 2 n
Doc 27
0.1844, 0.8093
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/List_of_formulae_involving_π.html
e = n = 0 1 n !
Doc 46
0.1628, 0.1628
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/E_(mathematical_constant).html
ζ ( s - k ) ζ ( s ) = n = 1 J k ( n ) n s
Doc 13
0.2167, 1.7825
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_series.html
ζ S ( s ) = n = 1 1 λ n s .
Doc 17
0.2099, 0.3723
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Functional_determinant.html
G ( a , 0 , c ) = n = 0 c - 1 ( n c ) e 2 π i a n / c .
Doc 47
0.1614, 0.1614
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Quadratic_Gauss_sum.html
1 1 - w = n = 0 w n .
Doc 48
0.1609, 0.1609
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Asymptotic_expansion.html
F ( w ) = n = 0 f n Ψ n w n + 1 .
Doc 49
0.1593, 0.3097
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Nachbin's_theorem.html
( 1 - X ) - 1 = n = 0 X n .
Doc 51
0.1591, 0.1591
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Formal_power_series.html
e = n = 0 1 n !
Doc 50
0.1591, 0.1591
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Proof_that_e_is_irrational.html
N P V = n = 0 N C n ( 1 + r ) n = 0
Doc 52
0.1590, 0.1590
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Portal:Infrastructure::Economic_analysis.html
F χ ( s ) = n = 1 χ ( n ) a n n s
Doc 15
0.2132, 0.3721
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Selberg_class.html
R = exp ( A ) = n = 0 A n n ! .
Doc 53
0.1586, 0.1586
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Skew-symmetric_matrix.html
Z ( λ , ν ) = j = 0 λ j ( j ! ) ν .
Doc 54
0.1581, 0.1581
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Conway–Maxwell–Poisson_distribution.html
e x = n = 0 x n n !
Doc 55
0.1573, 0.1573
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Exponentiation.html
Doc 56
0.1573, 0.1573
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Real_number.html
Doc 57
0.1573, 0.1573
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Frequency_mixer.html
e z = n = 0 z n n !
Doc 58
0.1573, 0.1573
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Exponential_function.html
n = 0 ( - 1 ) n ( n + 1 ) ( n + 2 ) = 2 ln 2 - 1.
Doc 59
0.1567, 0.1567
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Natural_logarithm_of_2.html
cos ( φ ) = n = 0 ( - φ 2 ) n ( 2 n ) ! ,
Doc 60
0.1565, 0.1565
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Sine-Gordon_equation.html
g ( x ) = n = 1 f ( n ) exp ( 2 π i n x )
Doc 61
0.1564, 0.1564
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Multiplication_theorem.html
sinh x = n = 0 x 2 n + 1 ( 2 n + 1 ) !
Doc 33
0.1722, 0.3286
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Hyperbolic_angle.html
H N , q , s = i = 1 N 1 ( i + q ) s
Doc 62
0.1561, 0.1561
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Zipf–Mandelbrot_law.html
n = 0 a σ ( n ) = n = 0 a n .
Doc 37
0.1684, 0.3239
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Series_(mathematics).html
ζ ( s ) ζ ( 2 s ) = n = 1 | μ ( n ) | n s
Doc 63
0.1553, 0.1553
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Square-free_integer.html
DG ( a n ; s ) = n = 1 a n n s .
Doc 41
0.1643, 0.3196
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Generating_function.html
e = n = 0 1 n ! 2.71828
Doc 64
0.1547, 0.1547
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Dimensionless_quantity.html
Ξ ( μ , V , β ) = n = 0 e β μ n Z ( n , V , β ) ,
Doc 65
0.1538, 0.1538
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Polymer_field_theory.html
L χ ( s ) = χ ( n ) a n n s
Doc 66
0.1538, 0.1538
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Converse_theorem.html
1 ( 1 - z ) α + 1 = n = 0 ( n + α n ) z n
Doc 67
0.1538, 0.1538
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Binomial_coefficient.html
D G ( f ; s ) = n = 1 f ( n ) n s
Doc 68
0.1532, 0.1532
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Dirichlet_convolution.html
L ( s , a ) = n = 1 a ( n ) n s = p ( 1 - a ( p ) p s ) - 1 ,
Doc 69
0.1529, 0.1529
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Completely_multiplicative_function.html
x x = exp ( x log x ) = n = 0 x n ( log x ) n n ! .
Doc 70
0.1527, 0.1527
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Sophomore's_dream.html
Z = n = 0 ( 8 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 n
Doc 27
0.1844, 0.8093
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/List_of_formulae_involving_π.html
L ( M , V , s ) = μ { M - 0 } / V sign N ( μ ) | N ( μ ) | s
Doc 71
0.1522, 0.1522
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Shimizu_L-function.html
π 2 sin 2 π z = n = - 1 ( z - n ) 2 .
Doc 72
0.1517, 0.1517
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Sine.html
exp ( ν ) = n = 0 ν * n n !
Doc 73
0.1515, 0.1515
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Compound_Poisson_process.html
𝐀 - 1 = n = 0 ( 𝐈 - 𝐀 ) n .
Doc 74
0.1514, 0.1514
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Invertible_matrix.html
NPV ( i ) = t = 0 N R t ( 1 + i ) t
Doc 75
0.1509, 0.2977
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Net_present_value.html
f ( t ) = n = 0 a n M ( n + 1 ) x n
Doc 76
0.1504, 0.1504
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Integral_equation.html
f ( x ) = n = 0 a n M ( n + 1 ) x n
Doc 49
0.1593, 0.3097
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Nachbin's_theorem.html
exp X = e X = n = 0 X n n ! .
Doc 77
0.1498, 0.1498
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Baker–Campbell–Hausdorff_formula.html
Mortgage Yield: ri such that P = n = 1 N C ( t ) ( 1 + r i / 1200 ) t - 1
Doc 78
0.1494, 0.1494
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/Mortgage_yield.html
D e D - 1 = log ( Δ + 1 ) Δ = n = 0 ( - Δ ) n n + 1 .
Doc 79
0.1493, 0.2971
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Bernoulli_polynomials.html
E = n = 1 σ 0 ( n ) 2 n
Doc 80
0.1489, 0.1489
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Erdős–Borwein_constant.html
S ν ( x ) = k = 0 sin ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) ν
Doc 79
0.1493, 0.2971
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Bernoulli_polynomials.html
NPV = t = 0 n C t ( 1 + r ) t = 0
Doc 81
0.1471, 0.1471
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Rate_of_return.html
NPV ( i , N ) = t = 0 N R t ( 1 + i ) t
Doc 75
0.1509, 0.2977
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Net_present_value.html
Z = n = 0 ( 6 n + 1 ) ( 1 2 ) n 3 4 n ( n ! ) 3
Doc 27
0.1844, 0.8093
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/List_of_formulae_involving_π.html