Returned 94 matches (100 formulae, 58 docs)
    Lookup 5.111 ms, Re-ranking 353.883 ms
    Found 40064 tuple postings, 23814 formulae, 7117 documents
[ formulas ] [ documents ] [ documents-by-formula ]

Doc 1
1.0000
0.0000
24.0000
1.0000
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/On_Physical_Lines_of_Force.html
× 𝐁 = μ 0 𝐉 + μ 0 ϵ 0 t 𝐄 Maxwell s term

Doc 2
0.3609
-28.0000
8.0000
1.1443
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Displacement_current.html
s y m b o l × ( s y m b o l × B ) = μ 0 ϵ 0 t s y m b o l × E .
s y m b o l × B = μ 0 s y m b o l J D ,
s y m b o l × B = μ 0 s y m b o l J f ,
s y m b o l J D = ϵ 0 s y m b o l E t

Doc 3
0.3360
-8.0000
8.0000
2.6071
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Lorentz–Heaviside_units.html
× 𝐁 = μ 0 𝐉 + 1 c 2 𝐄 t
× 𝐁 = 1 c 𝐉 + 1 c 𝐄 t
× 𝐁 = 4 π c 𝐉 + 1 c 𝐄 t
× 𝐇 = 1 c 𝐉 f + 1 c 𝐃 t
× 𝐇 = 4 π c 𝐉 f + 1 c 𝐃 t
× 𝐇 = 𝐉 f + 𝐃 t
× 𝐁 = 1 c 𝐄 t + 1 c 𝐉
× 𝐁 = 𝐄 t + 𝐉
𝐁 = μ 0 ( 𝐇 + 𝐌 )
× 𝐄 = - 𝐁 t
× 𝐄 = - 𝐁 t
× 𝐄 = - 1 c 𝐁 t
× 𝐄 = - 1 c 𝐁 t
× 𝐄 = - 1 c 𝐁 t

Doc 4
0.3360
-8.0000
8.0000
1.3712
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Gaussian_units.html
× 𝐁 = μ 0 𝐉 + 1 c 2 𝐄 t
× 𝐇 = 𝐉 f + 𝐃 t
× 𝐁 = 4 π c 𝐉 + 1 c 𝐄 t
× 𝐇 = 4 π c 𝐉 f + 1 c 𝐃 t
𝐁 = μ 0 ( 𝐇 + 𝐌 )
× 𝐄 = - 𝐁 t
× 𝐄 = - 1 c 𝐁 t

Doc 5
0.3360
-8.0000
8.0000
0.6287
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Laws_of_science.html
× 𝐁 = μ 0 𝐉 + 1 c 2 𝐄 t
× 𝐄 = - 𝐁 t
× 𝐠 = - 𝐇 t
Doc 6
0.3182
-7.0000
8.0000
1.4191
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Electromagnetic_radiation.html
× 𝐁 = μ 0 ϵ 0 𝐄 t ( 4 )
2 𝐄 = μ 0 ϵ 0 2 𝐄 t 2
2 𝐁 = μ 0 ϵ 0 2 𝐁 t 2 .
× ( - 𝐁 t ) = - t ( × 𝐁 ) = - μ 0 ϵ 0 2 𝐄 t 2 ( 7 )
× 𝐄 = - 𝐁 t ( 2 )

Doc 7
0.3182
-8.0000
7.0000
2.3736
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Mathematical_descriptions_of_the_electromagnetic_field.html
𝐀 = - μ 0 ε 0 φ t
× 𝐁 = μ 0 𝐉 + μ 0 ε 0 𝐄 t
2 𝐀 - μ 0 ε 0 2 𝐀 t 2 = 2 𝐀 = - μ 0 𝐉
2 φ - μ 0 ε 0 2 φ t 2 = 2 φ = - ρ ε 0
2 λ - μ 0 ε 0 2 λ t 2 = - 𝐀 - μ 0 ε 0 φ t
2 𝐀 - μ 0 ε 0 2 𝐀 t 2 = - μ 0 𝐉 + μ 0 ε 0 ( φ t )
( s y m b o l 𝐄 - ρ ϵ 0 ) - c ( s y m b o l × 𝐁 - μ 0 ϵ 0 𝐄 t - μ 0 𝐉 ) + I ( s y m b o l × 𝐄 + 𝐁 t ) + I c ( s y m b o l 𝐁 ) = 0
× 𝐄 = - 𝐁 t

Doc 8
0.3182
-9.0000
8.0000
0.4645
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Maxwell_stress_tensor.html
× 𝐁 = μ 0 𝐉 + μ 0 ϵ 0 𝐄 t
× 𝐄 = - 𝐁 t

Doc 9
0.3182
-9.0000
8.0000
0.4645
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Electromagnetic_field.html
× 𝐁 = μ 0 𝐉 + μ 0 ε 0 𝐄 t
× 𝐄 = - 𝐁 t

Doc 10
0.3182
-9.0000
8.0000
0.3182
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Vector_Laplacian.html
2 𝐄 - μ 0 ϵ 0 2 𝐄 t 2 = 0.

Doc 11
0.3182
-9.0000
7.0000
0.9545
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Slowly_varying_envelope_approximation.html
2 E - μ 0 ε 0 2 E t 2 = 0.
𝐤 0 E 0 + ω 0 μ 0 ε 0 E 0 t = 0.
k 0 E 0 z + ω 0 μ 0 ε 0 E 0 t - 1 2 i Δ E 0 = 0.
Doc 12
0.3182
-10.0000
8.0000
1.0330
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Magnetic_field.html
× 𝐁 = μ 0 𝐉 + μ 0 ε 0 𝐄 t ,
s y m b o l τ = 𝐦 × 𝐁 = μ 0 𝐦 × 𝐇 ,
× 𝐇 = 𝐉 f + 𝐃 t ,
× 𝐄 = - 𝐁 t ,
× 𝐄 = - 𝐁 t .

Doc 13
0.3182
-15.0000
7.0000
0.4645
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Time_in_physics.html
× 𝐁 = μ 0 ε 0 𝐄 t = 1 c 2 𝐄 t
× 𝐄 = - 𝐁 t

Doc 14
0.3182
-42.0000
8.0000
0.3182
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Vector_spherical_harmonics.html
× 𝐁 ^ = μ 0 𝐉 ^ + i μ 0 ε 0 ω 𝐄 ^ - B r r + d B ( 1 ) d r + B ( 1 ) r = μ 0 J + i ω μ 0 ε 0 E

Doc 15
0.2927
-31.0000
7.0000
0.2927
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/TITAN2D.html
h t Change in mass over time + h u ¯ x + h v ¯ y Total spatial variation of x,y mass fluxes = 0

Doc 16
0.2754
0.0000
7.0000
1.7920
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Ampère's_circuital_law.html
× 𝐁 = μ 0 𝐉
× 𝐁 / μ 0 = 𝐉 + ε 0 𝐄 t
× 𝐁 / μ 0 = 𝐉 f + 𝐉 bound + ε 0 𝐄 t
× 𝐇 = 𝐉 f + t 𝐃 .
𝐁 = μ 0 𝐇
× 𝐇 = 𝐉 f + 𝐃 t
× 𝐁 / μ 0 = × ( 𝐇 + 𝐌 )
× 𝐁 = 1 c ( 4 π 𝐉 + 𝐄 t ) .
× B = 1 c 2 E t .
Doc 17
0.2754
0.0000
7.0000
0.6364
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Magnetic_potential.html
× 𝐁 = μ 0 𝐉
E t 0 × 𝐀 = 𝐁 ,
𝐁 = μ 0 ( 𝐇 + 𝐌 ) = 0 ,
Doc 18
0.2754
0.0000
7.0000
0.2754
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Biot–Savart_law.html
× 𝐁 = μ 0 𝐉

Doc 19
0.2754
0.0000
6.0000
1.1509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Force-free_magnetic_field.html
× 𝐁 = μ 0 𝐣
× 𝐁 = α 𝐁
× 𝐁 = α 𝐁
× 𝐁 = α 𝐁
× ( α 𝐁 ) = α ( × 𝐁 ) + α × 𝐁 = α 2 𝐁 + α × 𝐁
× 𝐁 = 0
Doc 20
0.2754
0.0000
6.0000
0.2754
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/Toroidal_inductors_and_transformers.html
× 𝐁 = μ 0 𝐣

Doc 21
0.2754
-2.0000
5.0000
0.8262
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Pinch_(plasma_physics).html
× B = μ 0 J
× B = μ 0 J
× B = μ 0 J
Doc 22
0.2754
-4.0000
5.0000
0.4218
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Induction_equation.html
× B = μ 0 J ,
× E = - B t ,

Doc 23
0.2754
-8.0000
7.0000
0.2754
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Magnetic_reconnection.html
× 𝐁 = μ 𝐉 + μ ϵ 𝐄 t .

Doc 24
0.2754
-11.0000
7.0000
0.2754
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/Weibel_instability.html
× 𝐁 𝟏 = μ 0 𝐉 𝟏 - i ω ϵ 0 μ 0 𝐄 𝟏

Doc 25
0.2754
-21.0000
6.0000
0.2754
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Ginzburg–Landau_theory.html
× 𝐁 = μ 0 𝐣 ; 𝐣 = 2 e m Re { ψ * ( - i - 2 e 𝐀 ) ψ }

Doc 26
0.2326
-3.0000
4.0000
0.2326
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Kepler_orbit.html
r ˙ × H = μ u + c

Doc 27
0.2326
-4.0000
6.0000
0.6547
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Defining_equation_(physics).html
𝐉 d = ϵ 0 𝐄 t
S 𝐁 d 𝐥 = μ 0 S ( 𝐉 + ϵ 0 𝐄 t ) d 𝐀
𝐁 = μ 0 𝐇 ,
Doc 28
0.2326
-10.0000
6.0000
1.5322
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Maxwell's_equations.html
× 𝐁 = μ 0 ( 𝐉 + ε 0 𝐄 t )
× 𝐇 = 𝐉 f + 𝐃 t
𝐀 = μ 0 𝐉
× 𝐁 = 1 c ( 4 π 𝐉 + 𝐄 t )
× 𝐄 = - 𝐁 t
× 𝐄 = - 𝐁 t
× 𝐄 = - 1 c 𝐁 t
× 𝐁 - 1 c 2 𝐄 t = μ 0 𝐉
𝐀 + ( 𝐀 + 1 c 2 φ t ) = μ 0 𝐉
Doc 29
0.2326
-10.0000
6.0000
0.8320
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Inhomogeneous_electromagnetic_wave_equation.html
× 𝐁 = μ 0 ( 𝐉 + ε 0 𝐄 t )
× 𝐁 = 1 c ( 4 π 𝐉 + 𝐄 t )
× 𝐄 = - 𝐁 t
× 𝐄 = - 1 c 𝐁 t
1 c 2 2 𝐁 t 2 - 2 𝐁 = μ 0 × 𝐉 .

Doc 30
0.2326
-22.0000
5.0000
0.2326
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Transmission-line_matrix_method.html
2 H z x 2 + 2 H z y 2 = μ ε 2 H z t 2

Doc 31
0.2179
-14.0000
6.0000
0.3642
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Gravitoelectromagnetism.html
× 𝐁 = 1 ϵ 0 c 2 𝐉 + 1 c 2 𝐄 t
× 𝐄 = - 𝐁 t

Doc 32
0.2051
-2.0000
5.0000
0.2051
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Gauss's_law_for_magnetism.html
𝐁 = μ 0 ρ m

Doc 33
0.2051
-8.0000
4.0000
0.2051
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lorenz_gauge_condition.html
× ( E + A t ) = 0

Doc 34
0.1896
-1.0000
4.0000
0.3359
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Magnetism.html
𝐁 = μ 0 𝐇 ,
𝐁 = μ 0 ( 𝐇 + 𝐌 ) .

Doc 35
0.1896
-6.0000
4.0000
0.1896
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/A_Dynamical_Theory_of_the_Electromagnetic_Field.html
× 𝐇 = ε o 𝐄 t

Doc 36
0.1896
-6.0000
3.0000
0.6537
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Stokes'_theorem.html
× 𝐇 = 𝐉 + 𝐃 t
× 𝐇 = 1 c 𝐃 t + 4 π c 𝐉 ,
× 𝐄 = - 𝐁 t
× 𝐄 = - 1 c 𝐁 t ,

Doc 37
0.1896
-7.0000
4.0000
0.1896
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Poynting's_theorem.html
𝐃 = ϵ 0 𝐄 , 𝐁 = μ 0 𝐇 .

Doc 38
0.1896
-7.0000
3.0000
0.1896
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Covariant_formulation_of_classical_electromagnetism.html
× H = J free + D t

Doc 39
0.1896
-7.0000
3.0000
0.1896
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Continuity_equation.html
× 𝐇 = 𝐉 + 𝐃 t .

Doc 40
0.1896
-13.0000
4.0000
0.1896
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Mathematics_of_radio_engineering.html
× ( E + i B ) = i t ( E + i B )

Doc 41
0.1896
-14.0000
4.0000
0.1896
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Gauge_fixing.html
1 c 2 2 𝐀 t 2 - 2 𝐀 = μ 0 𝐉

Doc 42
0.1896
-50.0000
5.0000
0.1896
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Pressure-correction_method.html
ρ ( 𝐯 t Unsteady acceleration + ( 𝐯 ) 𝐯 Convective acceleration ) Inertia = - p Pressure gradient + μ 2 𝐯 Viscosity + 𝐟 Other forces

Doc 43
0.1604
-8.0000
4.0000
0.6135
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Planck_units.html
× 𝐁 = 4 π 𝐉 + 𝐄 t
× 𝐁 = 1 c 2 ( 1 ϵ 0 𝐉 + 𝐄 t )
× 𝐄 = - 𝐁 t
× 𝐄 = - 𝐁 t

Doc 44
0.1604
-11.0000
4.0000
0.1604
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Quasiconformal_mapping.html
f z ¯ = μ ( z ) f z ,

Doc 45
0.1604
-11.0000
4.0000
0.1604
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Schwarzian_derivative.html
F z ¯ = μ ( z ) F z ,

Doc 46
0.1463
-4.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Magnetic_moment.html
𝐁 = μ 0 ( 𝐇 + 𝐌 )

Doc 47
0.1463
-4.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Magnetization.html
𝐁 = μ 0 ( 𝐇 + 𝐌 )

Doc 48
0.1463
-5.0000
4.0000
0.2927
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/London_equations.html
× 𝐁 = 4 π 𝐣 c
× 𝐄 = - 1 c 𝐁 t

Doc 49
0.1463
-5.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Momentum.html
𝐁 = μ 0 ( 𝐇 + 𝐌 ) .

Doc 50
0.1463
-6.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Optical_tweezers.html
× 𝐄 = - 𝐁 t

Doc 51
0.1463
-6.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Transcranial_magnetic_stimulation.html
× 𝐄 = - 𝐁 t

Doc 52
0.1463
-7.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Lorentz_force.html
× 𝐄 = - 𝐁 t .

Doc 53
0.1463
-8.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Poisson's_equation.html
× 𝐄 = - 𝐁 t = 0

Doc 54
0.1463
-9.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Moving_magnet_and_conductor_problem.html
× 𝐄 = - 𝐁 t .

Doc 55
0.1463
-9.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Theoretical_and_experimental_justification_for_the_Schrödinger_equation.html
× 𝐄 = - 1 c 𝐁 t

Doc 56
0.1463
-11.0000
4.0000
0.1463
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Voigt_effect.html
× H = 1 c D t

Doc 57
0.1463
-13.0000
4.0000
0.2927
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Electromagnetic_tensor.html
𝐁 = 0 , 𝐁 t + × 𝐄 = 0
𝐄 = ρ ϵ 0 , × 𝐁 - 1 c 2 𝐄 t = μ 0 𝐉

Doc 58
0.1143
-4.0000
4.0000
0.1143
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Magnetic_tension_force.html
𝐒 = 𝐄 × 𝐁 / μ 0