
RECOGNITION STRATEGY LIBRARY (RSL)
Christopher Sasarak (cms5347@rit.edu)

Advisor: Dr. Richard Zanibbi
Computer Science Department, Rochester Institute of Technology

INTRODUCTION

Originally imagined as the Recognition Strategy Language, the
Recognition Strategy Library is a data provenance tool for Python
meant rapidly prototyping new algorithms and storing intermedi-
ate states of program data. These data are stored in a tree repre-
senting the execution of the algorithm and can be queried or stored
to disk for later analysis.
Existing tools VisTrails and Karma Provenance Tool provide data
provenance, but neither are program libraries. VisTrails provides a
graphical tool which is used to build workflows, or procedures for
analysing a data-set[1]. Karma records provenance by managing
and recording communications between different web services[3].
In terms of existing systems, RSL is most similar to the query based
debugging system described in[2]. Queries about a program are
made by specifying a domain of objects to search and a predicate
to filter those objects[2]. RSL is simpler than VisTrails and Karma
in that it is a library rather than a separate provenance system.
This means that a programmer can get started with RSL and pro-
totype algorithms and capture/query provenance data while only
needing to learn RSL’s API.
Originally, RSLib was the Recognition Strategy Language. RSLang
[4] was implemented using Standard ML (SML) as a target lan-
guage. We had hoped to change this to Python. However, after
working with the code-base more my advisor and I decided that
we could simplify RSL by making it a library. An advantage of
this is that RSL programmers could have access to all of their fa-
vorite Python libraries. It also meant that RSL’s maintainers would
not have to manage parsing and code generation themselves. This
poster presents the rethought RSLib.

RSLIB PROGRAM ELEMENTS

There are several basic elements for any RSL strategy.

Strategy A strategy is an object that manages execution in RSL
and also stores provenance information.

Interpretation Type An interpretation type is the type of data
that the algorithm modeled with RSL will work with. Pro-
vided with RSL is a convenient factory function for gener-
ating interpretation types.

Report Function These functions are queued to run to do report-
ing operations at the end of a strategy’s run.

Decision Function A decision function is a function which can
take an interpretation set and returns a new one. The strat-
egy records information coming from decision functions.

Decision Label These are string labels that are associated with
decision functions or reports when queuing. The strat-
egy object also associates them with nodes in the execu-
tion trace graph.

EXAMPLE

This example is meant to show off how to create and use an RSL
strategy with RSL. This program is a solver for a puzzle called
Skyscrapers. Skyscrapers is a grid puzzle, an example board is
shown in Figure 1.

Figure 1: Board
The idea is to fill the board with numbers which satisfy the con-
straints around the grid.

1. The numbers outside the grid say how many skyscrapers
a person can see from that position.

2. Each row and column can only have one skyscraper of a
given height.

I implement the solver as a backtracking algorithm. In backtrack-
ing, we recursively generate successor states to starting from an
initial state. In this case our initial state is an empty board, and
the solution is a full board which satisfies the constraints. RSL will
help capture the intermediates board states as they are generated
by my algorithm. A snippet of the code I use to set up and run the
strategy follows.

i n t e r p _ t = r s l . makeInterpretat ionType (" s t a t e " , " mat ")

s t r a t = r s l . S t r a t e g y (i n t e r p _ t , [i n t e r p _ t (i n i t i a l _ s t a t e)])

G e n e r a t e a t r a m p o l i n e f u n c t i o n t o run our a l g o r i t h m
s o l v e r = solve (c o n s t r a i n t s)
trampolined = s t r a t . mk_trampoline (s o l v e r)

s t r a t . append ((trampolined , " solve_puzzle "))

print "\nGet s o l u t i o n from a zeroed matrix . "
r e p o r t s = s t r a t . run ()

l eaves = s t r a t . c o l l e c t I n t e r p s (" .+ l e a f .+ ")
s o l u t i o n s = s t r a t . c o l l e c t I n t e r p s (" solve_puzzle ")

In order to store the intermediate states of this recursive algorithm,
I use a strategy called “trampolining”. Instead of a recursive call
at the end of the solver function, I return the intermediate states
with the next function to call. The Strategy records interpretations
and then calls the next step of the function. I then append the
trampolined function to the list of decision functions with the
decision label solve_puzzle.
After running the strategy, the strat object contains all the in-
terpretations used by the algorithm. Since trampoline deals with
many intermediate steps, it automatically labels them using an
id number. In the case where a non-solution leaf is found in the
recursion tree, it is labeled as such. Using collectInterps I
query for interpretations that were a full board, but not a solution.
Likewise I query for for the solution node with the decision label
“solve_puzzle”. A snippet of the output from this last query fol-
lows.

. . .
s o l u t i o n s :
{m = [[4 3 2 1]

[1 2 4 3]
[3 4 1 2]
[2 1 3 4]] }

CONCLUSION

While the basic operations of RSL as first envisioned have been
implemented. There are still improvements that we would like to
make in the future. Basic export of for simple strategies to a sqlite3
database works. For more complex interpretation types like the
matrices used in the example, something more complicated code
is needed to generate the interpretation tables. One option might
be to use an object relational mapper (ORM) like SQLAlchemy to
do this.
An additional area of work is testing the library with developers.
I implemented the library in a way that I thought was natural,
but we can probably find better ways to do things with the input
of more developers. One thing that I did notice while working
on the skyscrapers puzzle solver was that it started to become in-
convenient to wrap and unwrap interpretations and interpretation
sets. This ended up making some code difficult to read later on.

REFERENCES

[1] Juliana Freire, ClÃąudio T. Silva, Steven P. Callahan, Emanuele Santos, Carlos E. Schei-
degger, and Huy T. Vo. Managing rapidly-evolving scientific workflows. In Luc Moreau
and Ian Foster, editors, Provenance and Annotation of Data, number 4145 in Lecture Notes
in Computer Science, pages 10–18. Springer Berlin Heidelberg, January 2006.

[2] Raimondas Lencevicius, Urs HÃűlzle, and Ambuj K. Singh. Query-based debugging
of object-oriented programs. In Proceedings of the 12th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’97, page
304âĂŞ317, New York, NY, USA, 1997. ACM.

[3] Y.L. Simmhan, B. Plale, and D. Gannon. A framework for collecting provenance in data-
centric scientific workflows. In International Conference on Web Services, 2006. ICWS ’06,
pages 427–436, September 2006.

[4] Richard Zanibbi. Programmer’s guide to the recognition strategy language (RSL), 2011.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant
No. IIS-1016815. This material is alse based upon work supported by the RIT Center for
Student Innovation’s SURF program. I would also like to thank Dr. Richard Zanibbi for his
guidance in completing this project.

