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Abstract

We instrument a system for recognizing handwritten mathematical expressions using the Recognition Strat-

egy Library, a data provenance tool for pattern recognition research, in order to study the behavior of the

recognition system and demonstrate the utility of the library. In this case study, the library was used to

perform comparison tests to quantitatively analyze several modifications to the recognition system. Several

improvements were made to the library as a result of this study, including the ability to obtain the set of

unique interpretations, determine the intersection and difference between two interpretation sets, and adding

a method to dynamically record interpretations within a decision function.

1. Introduction

A common problem in developing and evaluating complex recognition systems is the difficulty of exam-

ining the intermediate results of a particular subsystem. Typically, the only information produced by these

systems is the final result. Producing any other information requires the manual addition of print statements

or other means of output deep within the logic of the code. This method is time consuming, error prone,5

and is rarely done in a standardized fashion. The recognition strategy library allows researchers to obtain

and log intermediate decision outputs and related metrics that will allow them to better understand, debug,

and improve their system in comparison to the traditional, manual means.

The recognition strategy library, or RSLib, is a data provenance tool in the form of a Python library for

pattern recognition researchers. Data provenance tools are designed to help researchers and programmers10

record and analyze data through all transformations, analyses and interpretations. The purpose of the library

is to automate and standardize the process of logging the decision history of a system for evaluation. This

library provides researchers with the ability to easily save intermediate decisions made by recognition systems

for evaluation. These saved interpretations may be reused, either by the same system, saving the time and

effort of rerunning parts of an algorithm, or by a different system, providing a method of interchanging15

algorithms between systems. These facilities can reduce the effort required to create new prototypes, as well

as provide an additional avenue of comparison between different algorithms.
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Another benefit RSLib provides is the means to easily swap decision points in and out of a system. Pattern

recognition systems are often very large and complicated, and may be slow, especially in the development

stage. Often, a researcher is only focused on a particular subsystem within the recognition pipeline at a20

time. In such a case, it would be advantageous to simply reuse other parts from previous systems to create

a full prototype, freeing up development time and resources for the primary area of interest.

RSLib allows for this reuse of previously generated interpretations, which means entire stages of the

recognition process can be used from other systems with very little effort. After instrumentation, the

resulting interpretations at each decision point defined in the system will be recorded. These interpretations25

can be saved as is via serialization. Saved interpretations can then be reloaded into a system, where the data

may be used immediately instead of rerunning the algorithms that produced it.

The current library is the third iteration of the original concept[1][2][3]. The original language, as well

as the more recent SML based version, were both standalone, domain specific languages. Much of the

functionality of RSLib was present in one or both of the two languages that preceded it, but the fact that30

the current version is a Python library rather than a new language with a full compiler to maintain is a

distinct advantage.

Despite the track record of RSLibs predecessors, its current form as a Python library has not been thor-

oughly tested, nor has its utility been demonstrated, in a significant, real world pattern recognition system.

The primary objective of this research is to use RSLib in a modern handwritten mathematical expression35

recognition system in order to test the library’s functionality, to demonstrate its utility in evaluating the

recognition system and providing meaningful insight, and to determine what changes and additional func-

tionality would help the tool to better serve its purpose.

As a result of this case study, several additional features were added to the library. First, a function

was added to dynamically add sub-decision points within a decision function. This addition enables users40

to add additional granularity to the analysis of the instrumented system. Secondly, a function to obtain the

unique set of interpretations was added. Functions to produce the intersection and difference of two sets

of interpretations were also added. Finally, functions to save and load interpretation sets as-is were added,

allowing easier analysis and reuse of interpretations.

With the addition of the dynamic sub-decision point function, the parsing algorithm was instrumented45

to record a detailed history of each decision made by the algorithm. Using this history, a process of creating

a visualization of the parsing algorithm is demonstrated.

Two comparison studies were performed in this study. Both involve using RSLib in comparing a mod-

ified recognition system against a baseline system, in order to quantitatively analyze the benefit of the

modifications.50

In the first study, the goal was to determine the utility of a particular preprocessing step in the segmen-

tation algorithm in which overlapping strokes are automatically merged into the same symbol. The second

study was also intended to analyze the segmentation stage of the system. In this study, a new strategy of
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pairing strokes for the segmentation classifier was tested against the original, time ordered pairing method.

In both of these studies, the original system was determined to be superior.55

2. Background

2.1. Language Basics

In the Handbook of Programming Languages, Volume III [4], a domain specific language is described as

a tool that allows programmers to develop in a domain more quickly and effectively than with a general

purpose language. In addition, an emphasis is placed on abstraction; making operations that are commonly60

used in the domain, yet complex or time consuming to express in a general purpose programming language,

easy and intuitive to express.

The previous incarnations of RSL were standalone domain specific languages. With the change to a

Python library, RSLib is more an embedded domain specific language. An embedded DSL is written as a

library for a host language and, like a regular DSL, adds domain-specific primitives and functionality that65

allow for better abstraction in the domain. The library has much the same functionality as the previous

versions (and perhaps more), but now it contains all of the power, expressiveness and familiarity of the

Python language.

The primary focus of the original language and, in turn, all other incarnations since, is the interpretation

type. An interpretation type represents a possible interpretation of the data at a particular point in the70

system as it relates to the problem domain. As an example, an interpretation of a math recognition system

might include information about strokes in an expression, which strokes are grouped together as symbols,

the label or classification of those symbols, and the relationship between the symbols in the expression.

Each decision point will modify and/or add information to the current interpretation. Each decision point

may produce multiple interpretations. For the recognition system used in this study, however, only one75

interpretation is produced for each decision.

The language also defines the strategy function, which defines a sequence of decision operations to be

performed. A strategy takes the current set of interpretations and parameters as input, and produces a new

set of interpretations as output. Pattern recognition systems contain segmentation, classification and parsing

stages. These three stages determine where the objects of interest are (segmentation), identify object types80

(classification), and determine the structure of the objects (parsing). A simple strategy may be to run those

stages as a sequence, while a more complicated strategy may involve those stages interacting based on the

current set of interpretations, eg: reclassifying based on uncertainty in the parsing stage.

This design abstracts out the idea of interpretations and decision points, and makes the complex and

time consuming task of adding logging functionality to a recognition system easier and more reliable. The85

researcher only needs to wrap pieces of the recognition system in RSLib’s strategy and interpretation objects,

at which point they can use the library to obtain interpretation and trace graph information, which can be

saved, analyzed and reused as many times as necessary.
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2.2. History of RSL

The predecessor of RSLib, the recognition strategy language, was initially proposed as a standalone,90

domain specific language (DSL) by Zanibbi et al.[1]

The recognition strategy language was later reimplemented as a different domain specific language, which

compiled to Standard ML[2]. Several significant design changes and additions were made between the first

version and this second version.

In the original version of RSL, decision functions were explicitly broken into three distinct categories:95

classification, segmentation and parsing. Similarly, interpretations contained only regions, relations and

parameters. This second version, however, generalized these facilities.

Reporting functionality was also added. The original RSL saved history to text files, which were examined

with other tools. The second version saw the addition of a secondary ’reporting’ entry point, which has access

to the full history information and program trace. These reporting functions could be written by the user,100

and would be called at the end of the execution of a strategy.

Annotations were also added to RSL in this second iteration. An annotation allows the user to record

additional relevant information at each decision point, unrelated to the interpretation.

These changes, and others, have survived in some form in the current iteration of RSL.

B. Holm’s master’s thesis addressed much the same problem as this project when the tool was still a105

language[3]. In his thesis, he demonstrated RSL’s utility in evaluating one of the two primary computer

vision algorithms in a sign language recognition system. The language was found to be valuable for the hand

detection algorithm, which had several distinct steps, providing opportunity for meaningful comparison. It

proved less useful, however, for the dynamic programming algorithm, due to its brute force nature and many

intermediate steps.110

Ultimately, the fact that this second iteration of RSL required learning a new language in addition to

having a working knowledge of SML greatly limited the tool’s potential. It was decided that redesigning the

language as a Python library may significantly benefit its ease of use and allow for a much wider user base.

While the overall design and abstraction mechanisms remain mostly unchanged in RSLib, the fact that

it is fully contained in Python means that it contains all of the power and utility of Python, and only115

requires knowledge of the one language. In addition, Python is also more widely used than SML, and uses

an imperative paradigm that is more familiar to many programmers than the functional paradigm used in

SML. These factors may make RSLib more approachable and perhaps easier to learn for new users than the

previous versions.

An additional benefit of moving to Python is that the implementation of the library is now significantly120

simpler. Instead of requiring an entire compiler, it is now several hundred lines of Python code. With this

change, there are now fewer opportunities for bugs, and maintenance and enhancement of the tool will be

much simpler.

The Python library was written by Chris Sasarak as part of his Masters project[5]. This research is an
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extension of his work.125

2.3. The Handwritten Mathematical Expression Recognition System

RSLib will be used to evaluate the latest entry to the CROHME competition by the Document and

Pattern Recognition Laboratory (DPRL) at the Rochester Institute of Technology in Rochester, New York,

USA.

The Competition on Recognition of Online Handwritten Mathematical Expressions, or CROHME, is an130

annual competition for pattern recognition researchers working in this area of research[6, 7, 8]. The online

part of the title refers to the fact that the stroke information is known. The input data originates from a

tablet or other digital input device (as opposed to a scanned image) and is in the form of discrete, digital

samples, separated into strokes by pen-up/pen-down events.

Consider these stages in the context of a system recognizing handwritten mathematical expressions. The135

segmentation stage will determine which strokes comprise each individual symbol in the expression. The

classification stage will consider each symbol as determined by the segmentation stage, and will decide what

each symbol is. Finally, the parsing stage will determine how the expression is formatted and how the

symbols are positioned relative to one another (eg. superscript, subscript, etc.)

In RSLib, all of this information would make up a final interpretation. Each stage will receive an140

interpretation from previous computation and will use that interpretation to make a decision, the results of

which will be used to update the interpretation. The final result of a math recognition system - the final

interpretation - will contain all of the information about which strokes comprise which symbols, what the

symbols are, and how they relate. From start to finish, the system works with interpretations, starting with

unlabeled strokes and ending with labeled groups of strokes with defined relationships.145

Segmentation, classification and parsing need not be (and often aren’t) strictly sequential. Analysis from

the parsing stage, for example, may constrain symbol classification based on the structure of the expression,

or the segmentation stage may make use of the classifier to validate segmentation candidates. The trace graph

produced by RSLib will show which decisions were made and in what order, which is useful in systems where

the decision points are not necessarily fixed. In this system, however, the three stages will be sequential.150

2.4. Changes to RSLib

Several changes were made to the library based on our experience as end users.

2.4.1. Saving and Loading Interpretation Sets

Because of the way the interpretations are implemented, interpretation objects are not directly serializ-

able, which means they cannot be saved using a serializing method such as the one employed by Python’s155

Pickle library. To work around this limitation while maintaining the simplicity of the serialization process,

two functions were added: saveInterp and loadInterp. The saveInterp function deconstructs the interpreta-

tion object into its vital (and serializable) information and uses pickle to save it. The loadInterp function
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does the opposite; it loads the information from the pickle file and recreates the interpretation object. These

functions allow for interpretations to be stored and re-loaded as-is. An example of this functionality can be160

seen in Figure 5, which demontrates the process of reusing interpretations via RSLib. This functionality can

also be used for loading saved interpretations for use in separate scripts for analysis.

2.4.2. Creating Sub-decision Points

An additional function was added to the Strategy class. The rsl post function allows for the dynamic

addition of sub-decision points, and their interpretation data, within a decision function.165

Systems generally have several discrete, overarching stages. These can be instrumented and enqueued

in the strategy object, as has been demonstrated. A user of RSLib, however, may want to dynamically log

decision points within these stages, in order to record more detailed intermediate information.

The usage of the post function is very similar to the process of enqueueing a decision function in the

strategy object. The function takes a label string, which is associated with the decision point, as well as170

a function and argument list. The function follows the same format as the main decision point wrapper

functions, and is similarly called with the given argument list as well as the current set of interpretations

and the strategy object. The resulting interpretation set is recorded with the decision point.

The label argument need not be unique for each call to the post function. Labels will be appended with

a numerical index corresponding to the number of times the label has been used previously, automatically175

imposing a chronological ordering on the decision points.

This function was added to facilitate a more natural method of recording the intermediate interpretations

within the parsing algorithm of the CROHME system. Each time the relation tree is updated in the parsing

algorithm, the post function is used to create a new decision point with the updated interpretations. This

produces a step-by-step history of the creation of the relation tree, from the first decision to the final result.180

Example usage of the post function as well as the decision function used in the parsing algorithm is shown

in Figure 1.

With each step of the parsing algorithm recorded, a step-by-step visualization of the production of the

final relation tree can be produced automatically by iterating over the sub-decision points and creating a

graph for each intermediate relation tree. Such a visualization may allow researchers to determine precisely185

where errors occur, and observe how those errors cascade through the rest of the algorithm. An example of

this visualization can be seen in the case study.

2.4.3. Obtaining the Set of Unique Interpretations

Another addition to the library is the ability to the determine the unique set of interpretations within

an interpretation set.190

The getUniqueInterps method, part of the strategy object, takes a regular expression string specifying

which decision point(s) are desired. The method returns a dictionary from interpretation objects to the

list of decision point labels associated with them. This dictionary allows for the determination of which
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def parse_postFn(relation_tree, interps, strategy):

# Get the current interpretation.

interp = interps[0]

# Update the interpretation with the new relation tree.

interp.relation_tree = copy.deepcopy(relation_tree)

# Return the updated interpretation.

return [interp]

# Create a subdecision point with the given label using postFn.

strategy.rsl_post(label, parse_postFn, relation_tree))

Figure 1: The rsl post Function

interpretations are duplicates, but perhaps of more use is the ability to take an interpretation object and

easily determine which decision point or points produced it.195

This process requires the ability to produce a hash value of an interpretation, so the interpretation

object itself can be used to index into a dictionary. This is done by hashing the string representation of

the interpretation. The default string method of the interpretation object will produce a string containing

a thorough, recursive string representation of all of the interpretation’s attributes in alphabetical order.

In order for this to work properly, all objects contained within an interpretation must have a defined200

repr() function, preferrably with descriptive content. Without the repr() function defined, an object’s

string representation will contain memory address information, which is not consistent between objects. This

assures that the string is descriptive enough to differentiate between different interpretations, and consistent

enough to produce the same hash value between different interpretation objects with the same values.

2.4.4. Intersection and Difference of Interpretation Sets205

Two operations that prove very useful in performing comparisons between interpretation sets are inter-

section and difference. These two operations, which are also methods of the strategy class, can be used to

easily determine which interpretations are the same and which interpretations differ between two strategies.

Both operations take as arguments the strategy object to compare against, and a regular expression

string to specify the decision points of interest. They both return a dictionary mapping decision labels to210

the single, matching interpretation in the case of intersection, or to the pair of differing interpretations in

the case of difference.

These functions can make comparisons between the results of two different strategies easier. By using

the difference function, the mismatches between the two strategies are immediately available for analysis;

no additional work is needed. Similarly, the intersect function can produce the similarities between the215
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strategies for analysis.

3. Case Study: Analyzing the Math Recognition System

3.1. Instrumentation of the CROHME System with RSLib

No changes were made to the functionality of the CROHME system1, but minor modifications were made

to the structure of the program in order to make the decision points contained and easily instrumentable.220

Two stages, the classification stage and label graph output code, were moved from their original positions

to their own separate functions. These changes facilitated the creation of the necessary wrapper functions

for RSLib while preserving the function of the system.

The process of instrumenting the decision algorithms is generally straightforward. For each algorithm,

a wrapper function is created to handle the utilization and updating of the interpretation object. These225

functions each take as arguments whatever information is necessary for the decision function, as well as

the current set of interpretations and the strategy object. At the most basic level, these wrapper functions

consist of two or three steps. First, if necessary, data needed for the decision algorithm is retrieved from

the interpretation object. Next, the decision function is called with the appropriate arguments. Finally, the

interpretation set is updated with the desired information created by the decision function. As an example,230

Figure 3 shows the wrapper function for the segmentation algorithm. Three of these decision point wrappers

were created for the CROHME system; one each for the segmentation, classification and parsing stages.

In addition to the decision functions, the strategy also contains a reporting function. The purpose of

this reporting function is to save out the label graph file for the current equation, as well as to pickle the

final interpretation for later use and analysis. The use of this reporting function can be seen near the end of235

the code in Figure 2. The function reportFn is a closure, created by the writeLgFn function. Because the

reportInterps function of the strategy object only passes the interpretation to the given function, the other

necessary arguments must be specified beforehand, which makes the closure method a natural choice.

The process of enqueuing the decision points as a strategy is similarly straightforward. First, the interpre-

tation type and initial interpretation are created. Next, the strategy object is created using the interpretation240

type and initial interpretation, as well as an optional reporting function. The decision functions, their argu-

ments, and a label for the decision point are then queued up in the strategy object using the append function.

Lastly, the strategy is run. At this point, the reports can be printed or saved, and any other output can be

performed, including saving a trace graph of the system or pickling the interpretation. Figure 2 shows this

process in code.245

The interpretation type specifies all of the fields that will be saved in the interpretation. These fields are

later filled with information from the three decision points of the system. Figure 4 explains the information

stored in the final interpretation. Truth data to validate against is saved in a separate interpretation.

1Source code available at https://github.com/DPRL/CROHME 2014
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This figure demonstrates the creation and execution of a strategy using RSLib. First, the interpretation

type for the system is created, specifying a label for the type, as well as a list of attributes an interpretation

will contain. A strategy is then created with the interpretation type, as well as an initial interpretation,

which contains no data in this example. The main decision functions are then added to the strategy in

order of execution using the append function. Each append takes, as an argument, a tuple containing the

label to associate with the decision point, the decision function to run, and the list of arguments to pass to

the decision function. The eq argument in this example is an object used by the CROHME system which

contains all of the information about an equation. After running the strategy, a report function is created

and passed to the strategy for execution. The reportInterps function takes a regular expression argument

specifying which decision point or points upon which to execute the report function.

# Create the interpretation type.

iType = rsl.makeInterpretationType("crohme", ["strokes", "segments", "labeled_segments",

"symbol_candidate_list", "relation_tree"])

# Create initial interpretation.

initial_interp = iType()

# Initialize strategy.

strategy = rsl.Strategy(iType, initial_interp)

# Add segmentation, classification and parsing stages.

strategy.append(("segmentation", segmentFn, [eq]))

strategy.append(("classification", classFn, [eq, O_eq]))

strategy.append(("parsing", parseFn, []))

# Run the strategy.

strategy.run()

# Create the closure for the report function.

reportFn = writeLgFn(eq, filename, output_path, pickle_path + ‘‘results/’’)

# Write LG and pickle final interpretation via a report.

strategy.reportInterps("parsing", reportFn)

Figure 2: Creating, Enqueuing and Running the Strategy
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This figure shows an example of a decision function used by RSLib. The function takes the single argument

eq specified when the function was enqueued in Figure 2. Each decision function is also given the current

interpretation set, as well as the calling strategy object, as additional arguments. This function performs

the intended segmentation, then updates the current interpretation and returns it. This interpretation will

now be stored in the final interpretation set, associated with the given label for this decision point.

def segmentFn(eq, interps, strategy):

# Run the segmenter.

eq.lei_CROHME2013_segment()

# Get the interpretation

interp = list(interps)[0]

# Gather the segmentation results from the equation object.

# Format: [ [0], [1, 2], [3], [4, 5, 6], .... ]

seg_data = []

for seg in eq.segments:

seg_data.append(list(seg.strokes))

# Make sure the strokes are in time order.

interp.segments = sorted(seg_data)

# Return the updated interpretation.

return [interp]

Figure 3: Wrapper Function for Segmentation
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# Reload the interpretation.

oldInterp = rsl.loadInterp(filename)

# Pull out the saved segmentation.

saved_segmentation = oldInterp.segments

# Add the segmentation information to the equation object.

eq.segments = saved_segmentation

# Continue with classification and parsing stages...

Figure 5: Reusing interpretations

strokes

The digital stroke data of the equation. Each stroke is a

list of (X, Y) coordinates.

segments

The symbols (groups of strokes) as produced by the seg-

mentation algorithm.

labeled segments

The segmentation results along with the top three symbol

labels from the classification algorithm.

symbol candidate list

The output of the classification algorithm. Required as in-

put for the parsing algorithm.

relation tree

The results of the parsing algorithm. A tree structure de-

scribing the relationship between symbols in the expression.

Figure 4: Interpretation Fields for Math Recognition System

After saving an interpretation, it can

be reloaded and reused in lieu of re-250

running parts of the system. Figure 5

shows an example of an interpretation

being reused to determine segmentation

instead of segmenting the data again.

This method can save a lot of time if255

only the later stages of the system need

to be rerun.

3.2. Studies

3.2.1. Step-by-Step Recording and Visu-

alization of the Parsing Algorithm260

With the addition of the rsl post

function, decision points and their inter-

pretations can be recorded dynamically.

With this functionality, it is possible to

instrument the parsing algorithm to save265

a step-by-step record of the relation tree

as it is built.

Instrumentation of the algorithm required the modification of the parsing function itself, rather than

simply wrapping the function. The process, however, remained fairly straightforward.

First, the decision function to be called on each update was created. This function simply saved a copy270

of the relation tree in the current interpretation.
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With the decision function created, a call to the rsl post function was added immediately after each

modification to the relation tree within the parsing algorithm. In total, seven positions in the code required

the function call.

Figure 6: Test Equation for Parsing Visualization

The result of the instrumentation is the addition of a number of sub-decision points within the inter-275

pretation set, each corresponding to a single update of the relation tree. Each of these decision points are

associated with a given label, as specified in the calls to rsl post. The set of decisions can be selected using a

regular expression, and due to the automatically appended numbering, can be sorted in chronological order.

The parsing stage of the math recognition system was instrumented using this technique. At each update

to the relation tree in the parsing algorithm, a post was performed to save the interpretation with the new280

tree. As a result, the final interpretation produced by the system contains an ordered history of each step

in the parsing algorithm.

Using this history, a reporting function was created to step through the parsing history and create a

visualization of the relation tree. These visualizations, as well as visualization of the input equation, are

then saved as a PDF. The result of this visualization process can be seen in Table 1, which displays the285

stages of the parsing algorithm as it operated on the equation in Figure 6

A visualization process like this can help researchers see precisely where an algorithm makes errors, and

how those errors cascade through the rest of the process.

3.2.2. Analysis of Segmentation Preprocessing Feature via Comparison

One of the benefits of RSLib is the ability to repeatedly produce uniform, well-structured interpretation290

results after instrumenting a system. This makes the process of performing side-by-side comparisons of

resulting interpretations easier. By comparing the results of a modified system against a baseline, quantitative

data about the real utility of those modifications can be obtained.

Within the segmentation stage, there is a small preprocessing step in which all touching or overlapping

strokes are automatically merged. A comparison can be performed between the results of the original system295

against those of the system with this feature disabled in order to quantitatively determine the benefit of this

feature.

With the CROHME system instrumented with RSLib, the system can produce interpretations from the

segmentation stage both with and without this stage. The two resulting interpretations can then be analyzed
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Step 1 Step 2 Step 3

Step 4 Step 5 Final Parse

Table 1: Step-by-Step Parsing Visualization of the Equation in Figure 6

against the ground truth, and the results can be compared to determine not only whether the merge step is300

beneficial, but precisely to what extent.

This process was accomplished using RSLib’s facilities. Two separate strategies were created and run:

one performing the merge preprocessing step, and the other forgoing it.

With the final interpretations from each strategy, as well as the ground truth, a reporting function was

used to calculate segmentation rates for the two interpretations and compare the results.305

The results in Figure 8 show a clear, albeit slight, benefit in performing the merge preprocessing. With

the addition of ground truth data for symbol labels, a more detailed symbol level analysis of the results can

be performed. Looking at the specific types of symbols the segmentation stage has issues with, as well as

considering the differences between the merge and no merge systems, may provide useful insight about the

segmentation algorithm.310

Figure 7 shows a comparison of missegmentations of the top ten most missegmented symbols between

the merge and no merge systems. The graph shows the number of missegmentations for each symbol for
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each method, in red and blue, and the total number of correct segmentations for comparison, in green. This

graph shows that, in terms of raw numbers, the two systems are nearly identical in performance, as was

shown in the statistics in Figure 8.315

Figure 7: Merge vs. No Merge - Missegmentation Rates by Symbol

For the most part, the sys-

tems perform very similarly.

The differences, however, are

apparent in a few symbols.

The merge system performs320

better on symbols with mul-

tiple strokes, such as pi and

lim, symbols where the strokes

are likely to be touching. On

the other hand, the merge sys-325

tem performs worse on several

single stroke symbols, where

errant strokes may have over-

lapped other unrelated sym-

bols.330

This comparison clearly

and quantitatively demonstrates

the benefit of the merge touch-

ing preprocessing step, affirming its inclusion in the algorithm. It also demonstrates the benefit of RSLib

in making the process of performing this sort of side by side comparison, and producing useful, quantitative335

analysis on features straightforward.

3.2.3. Comparison of Different Stroke Pairing Methods in Segmentation Algorithm

The previous study has demonstrated the utility of RSLib in performing side by side comparisons of

different methods. In this study, a more significant modification will be evaluated using the library.

The math recognition system uses a segmentation algorithm proposed by Lei Hu et al.[9] This algorithm340

works by stepping through the strokes in time order, evaluating the current stroke and the next stroke in

the sequence, and deciding, using an AdaBoost classifier, whether the next stroke should be merged with

System Recall Precision F-Measure

Original (Merge) 85.53% 86.06% 85.79%

Modified (No Merge) 85.64% 85.24% 85.44%

Figure 8: Merge vs. No Merge Segmentation Comparison
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System Recall Precision F-Measure

Sequential 85.53% 86.06% 85.79%

1NN 81.90% 74.34% 77.94%

2NN 81.18% 77.95% 79.53%

Figure 9: Segmentation using Different Pairing Strategies

the current stroke and incorporated within the current symbol, or split from the current symbol to form the

next.

This algorithm, though effective, may benefit from the use of a different pairing scheme. Because the345

algorithm only pairs strokes in sequential order, it is inherently ineffective when considering expressions

where strokes within a symbol are not in sequential order; for example, a tittle over an i or j, or the cross

on a t added after the rest of the expression has been finished. Another potential shortcoming is the fact

that only one stroke, the last stroke in the current symbol, is considered when evaluating the next stroke.

Considering additional strokes may be beneficial.350

The altered algorithm, which will be compared against the original, will choose stroke pairings based

upon bounding box center distances, rather than time sequential ordering. In addition, two variations will

be tested. The first will pair each stroke with its nearest neighbor, and the second will pair strokes with their

two nearest neighbors. The 1NN variation will allow for a reasonable comparison between the two pairing

strategies, while the 2NN variation will explore the benefit of adding additional pairings.355

The expectation is that the nearest neighbor strategy should result in improvements in cases where

sequential ordering is not appropriate. Additionally, the 2NN variation will provide extra opportunities

for mistakenly split strokes to be merged with the correct symbol. It may, however, result in a significant

increase in incorrectly merged strokes, as it places more emphasis on the merge operation by providing more

opportunities to merge for each stroke.360

The segmentation results in Figure 9 clearly show that the original time sequential pairing strategy

performs significantly better than both nearest neighbor strategies. Of the two nearest neighbor strategies,

considering additional neighbors provided a significant boost in performance, though not nearly enough to

compete with the sequential system.

Figure 10 shows the comparison in the same format as Figure 7 in the previous study. Here, the top ten365

missegmented symbols (sorted by rate) of the original sequential algorithm are compared against the 1NN

and 2NN pairing strategies. The total number of segmentations is also displayed for comparison. This graph

shows a clear pattern of better performance by the original algorithm as compared to the nearest neighbor

variants. In general, the two nearest neighbor algorithms display similar performance, but the 1NN variant

performs better on these particular symbols.370

One confounding issue in this comparison that may have affected the performance of the nearest neigh-
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bor strategies is that the AdaBoost classifier used in the merge/split decision was not retrained for these

strategies. The classifier was trained using the original sequential pairing, which gives an advantage to that

strategy over the nearest neighbor strategies. The classifier was not retrained due to time constraints.

4. Conclusion375

Figure 10: Missegmentations in Different Stroke Pairing Methods

While no potential im-

provements were discovered

for the CROHME system, the

library proved useful in evalu-

ating alternate strategies and380

producing quantitative data

demonstrating the superiority

of the original methods. The

straightforward and repeat-

able process of side-by-side385

comparisons demonstrated in

this case study can be per-

formed again and again for

each addition or modification

to the system, providing ob-390

jective feedback about the

benefits.

Based upon the history of

success of RSLib’s predeces-

sors, in addition to the utility demonstrated in this case study, it is safe to say that RSLib may prove395

to be a valuable tool to pattern recognition researchers.
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