tangent
Not Supported
p
=
-
x
±
x
x0
-
4
(
x1
)
(
x2
x3
-
y
)
2
(
-
g
x
2
x4
)
Search
Returned 98 matches (100 formulae, 102 docs)
Lookup 57379.100 ms, Re-ranking 1513.087 ms
Found 145895110 tuple postings, 16014869 formulae, 5217387 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5091
-6.0000
9.0000
0.5091
testing/NTCIR/xhtml5/9/1306.5550/1306.5550_1_22.xhtml
μ
1
,
2
=
-
λ
±
λ
2
-
4
(
d
-
1
)
2
,
Doc 2
0.3200
-19.0000
6.0000
0.6021
testing/NTCIR/xhtml5/8/1209.6413/1209.6413_1_43.xhtml
-
4
(
x
-
x
i
△
x
i
+
1
4
)
(
v
-
v
j
△
v
j
-
1
4
)
-
4
(
x
-
x
i
△
x
i
-
1
4
)
(
v
-
v
j
△
v
j
+
1
4
)
Doc 3
0.3200
-21.0000
5.0000
0.3200
testing/NTCIR/xhtml5/8/1110.4570/1110.4570_1_436.xhtml
=
exp
(
-
2
(
a
-
b
2
2
)
(
a
-
b
2
2
-
b
1
-
b
2
2
)
)
Doc 4
0.2821
-4.0000
6.0000
0.2821
testing/NTCIR/xhtml5/8/1111.6930/1111.6930_1_26.xhtml
n
2
x
-
x
±
x
2
-
1
Doc 5
0.2821
-6.0000
4.0000
0.2821
testing/NTCIR/xhtml5/2/math0104233/math0104233_1_155.xhtml
p
=
(
s
2
+
λ
)
(
s
2
-
λ
)
Doc 6
0.2821
-9.0000
4.0000
0.2821
testing/NTCIR/xhtml5/4/math0605143/math0605143_1_44.xhtml
(
1
-
n
2
+
k
)
(
-
1
-
n
2
-
k
)
Doc 7
0.2821
-17.0000
5.0000
0.2821
testing/NTCIR/xhtml5/5/0711.1933/0711.1933_1_32.xhtml
n
-
1
2
(
1
2
-
y
)
<
x
<
(
n
-
1
)
(
1
2
-
y
)
}
Doc 8
0.2595
-17.0000
5.0000
0.2595
testing/NTCIR/xhtml5/8/1111.3894/1111.3894_1_44.xhtml
∫
0
∞
d
t
∂
t
(
(
1
-
cos
t
)
t
2
-
4
sin
2
(
t
2
)
)
Doc 9
0.2595
-23.0000
4.0000
0.2595
testing/NTCIR/xhtml5/6/0912.0232/0912.0232_1_85.xhtml
F
(
z
)
:=
1
z
A
(
1
z
)
=
z
-
z
2
-
4
(
m
-
1
)
2
(
m
-
1
)
.
Doc 10
0.2442
-11.0000
3.0000
0.2442
testing/NTCIR/xhtml5/6/0906.0240/0906.0240_1_25.xhtml
(
1
2
)
k
i
≤
2
(
1
2
)
k
(
1
2
)
i
Doc 11
0.2442
-12.0000
4.0000
0.2442
testing/NTCIR/xhtml5/6/0812.3356/0812.3356_1_54.xhtml
(
a
)
2
n
=
4
n
(
a
2
)
n
(
a
+
1
2
)
n
Doc 12
0.2442
-16.0000
4.0000
0.2442
testing/NTCIR/xhtml5/6/0906.2948/0906.2948_1_52.xhtml
g
(
F
)
=
1
2
(
q
+
1
3
-
1
)
(
q
+
1
3
-
2
)
Doc 13
0.2442
-19.0000
5.0000
0.2442
testing/NTCIR/xhtml5/10/math9508203/math9508203_1_33.xhtml
B
r
a
d
(
σ
)
=
-
(
d
d
a
-
x
σ
¯
)
(
d
d
a
-
y
σ
¯
)
Doc 14
0.2442
-19.0000
4.0000
0.2442
testing/NTCIR/xhtml5/6/1003.1021/1003.1021_1_56.xhtml
ℑ
x
(
1
-
r
-
x
2
)
(
r
+
x
2
-
1
)
π
(
1
-
x
2
)
Doc 15
0.2442
-20.0000
6.0000
0.2442
testing/NTCIR/xhtml5/7/1004.3623/1004.3623_1_72.xhtml
u
±
=
x
±
x
2
-
4
y
2
cosh
3
β
(
1
+
cosh
β
)
2
2
cosh
4
β
Doc 16
0.2442
-21.0000
4.0000
0.2442
testing/NTCIR/xhtml5/5/0803.0289/0803.0289_1_14.xhtml
(
1
Y
(
y
)
-
1
X
(
x
)
)
(
d
x
2
X
(
x
)
-
d
y
2
Y
(
y
)
)
Doc 17
0.2442
-26.0000
3.0000
0.2442
testing/NTCIR/xhtml5/5/0802.3455/0802.3455_1_32.xhtml
ℳ
(
z
,
μ
)
=
(
μ
-
z
)
2
2
(
2
μ
3
+
z
3
)
(
2
μ
3
+
z
3
-
1
)
Doc 18
0.2442
-32.0000
4.0000
0.2442
testing/NTCIR/xhtml5/6/0912.0232/0912.0232_1_80.xhtml
G
(
z
)
:=
1
z
B
(
1
z
)
=
-
(
m
-
2
)
z
+
m
z
2
-
4
(
m
-
1
)
2
(
z
2
-
m
2
)
.
Doc 19
0.2439
-24.0000
7.0000
0.2439
testing/NTCIR/xhtml5/6/0902.3039/0902.3039_1_22.xhtml
1
arccos
x
0
=
x
0
+
x
0
2
+
4
(
a
-
b
)
(
1
-
x
0
2
)
2
1
-
x
0
2
Doc 20
0.2439
-24.0000
7.0000
0.2439
testing/NTCIR/xhtml5/6/0902.3039/0902.3039_1_33.xhtml
1
arccos
x
0
=
x
0
+
x
0
2
+
4
(
a
-
b
)
(
1
-
x
0
2
)
2
1
-
x
0
2
Doc 21
0.2332
-7.0000
7.0000
0.2332
testing/NTCIR/xhtml5/9/1304.2141/1304.2141_1_74.xhtml
p
(
x
)
=
-
x
-
12
-
3
x
2
2
Doc 22
0.2208
-10.0000
4.0000
0.4416
testing/NTCIR/xhtml5/10/hep-th9712197/hep-th9712197_1_7.xhtml
R
(
3
)
=
-
(
1
2
)
(
2
2
)
(
3
2
)
R
(
1
)
=
(
1
2
)
(
3
2
)
(
4
2
)
-
1
Doc 23
0.2208
-12.0000
5.0000
0.2208
testing/NTCIR/xhtml5/7/1103.6256/1103.6256_1_61.xhtml
(
e
-
1
)
!
!
=
e
!
2
e
2
(
e
2
)
!
Doc 24
0.2208
-14.0000
4.0000
0.2208
testing/NTCIR/xhtml5/5/0810.1202/0810.1202_1_44.xhtml
L
=
-
(
x
1
-
x
2
)
(
∂
∂
x
1
-
∂
∂
x
2
)
Doc 25
0.2208
-25.0000
3.0000
0.2208
testing/NTCIR/xhtml5/8/1112.3027/1112.3027_1_76.xhtml
=
k
2
(
1
γ
-
γ
+
γ
2
-
1
)
2
-
4
(
k
2
-
1
2
)
(
1
-
1
γ
2
)
Doc 26
0.2208
-27.0000
3.0000
0.2208
testing/NTCIR/xhtml5/7/1101.4371/1101.4371_1_9.xhtml
π
n
(
x
)
∼
(
x
+
x
2
-
1
2
)
n
(
x
+
x
2
-
1
2
x
2
-
1
)
1
/
2
Doc 27
0.2062
-3.0000
3.0000
0.2062
testing/NTCIR/xhtml5/9/1401.5345/1401.5345_1_38.xhtml
(
-
1
p
)
(
23
p
)
Doc 28
0.2062
-4.0000
3.0000
0.2062
testing/NTCIR/xhtml5/4/math0506461/math0506461_1_15.xhtml
(
c
2
p
)
(
x
y
p
)
Doc 29
0.2062
-6.0000
4.0000
0.2062
testing/NTCIR/xhtml5/10/cs9812008/cs9812008_1_69.xhtml
ϕ
(
x
)
(
1
x
-
1
x
3
)
Doc 30
0.2062
-9.0000
3.0000
0.2062
testing/NTCIR/xhtml5/7/1008.3401/1008.3401_1_107.xhtml
(
-
3
q
)
=
(
-
1
q
)
(
3
q
)
Doc 31
0.2062
-9.0000
3.0000
0.2062
testing/NTCIR/xhtml5/3/math0412242/math0412242_1_58.xhtml
(
-
p
q
)
=
(
-
1
q
)
(
p
q
)
Doc 32
0.2062
-10.0000
3.0000
0.2062
testing/NTCIR/xhtml5/7/1103.0444/1103.0444_1_44.xhtml
sin
(
(
j
2
-
d
)
θ
)
sin
(
j
θ
2
)
Doc 33
0.2062
-10.0000
3.0000
0.2062
testing/NTCIR/xhtml5/7/1005.4073/1005.4073_1_77.xhtml
(
1
+
x
1
2
)
α
(
1
+
x
2
2
)
α
Doc 34
0.2062
-10.0000
3.0000
0.2062
testing/NTCIR/xhtml5/5/math0703324/math0703324_1_85.xhtml
(
v
l
)
=
(
π
l
)
(
1
+
2
l
)
Doc 35
0.2062
-11.0000
3.0000
0.2062
testing/NTCIR/xhtml5/3/math0304317/math0304317_1_10.xhtml
1
2
(
ψ
(
3
2
-
x
)
-
ψ
(
1
2
)
)
Doc 36
0.2062
-11.0000
3.0000
0.2062
testing/NTCIR/xhtml5/9/1312.1237/1312.1237_1_47.xhtml
(
-
4
p
)
4
=
(
-
1
p
)
4
(
2
p
)
Doc 37
0.2062
-15.0000
4.0000
0.2062
testing/NTCIR/xhtml5/1/1108.4544/1108.4544_1_19.xhtml
=
1
2
(
1
-
|
x
|
2
)
(
1
|
x
-
y
|
k
-
1
)
.
Doc 38
0.2062
-15.0000
3.0000
0.2062
testing/NTCIR/xhtml5/3/math0407337/math0407337_1_358.xhtml
±
(
1
X
-
1
Y
)
(
d
x
2
X
+
d
y
2
Y
)
Doc 39
0.2062
-17.0000
3.0000
0.2062
testing/NTCIR/xhtml5/2/hep-th0012091/hep-th0012091_1_37.xhtml
H
y
=
∓
2
(
ϕ
′
2
2
-
V
)
(
D
-
1
)
(
D
-
2
)
Doc 40
0.2062
-18.0000
3.0000
0.2062
testing/NTCIR/xhtml5/6/0912.1831/0912.1831_1_99.xhtml
=
(
2
ζ
ψ
E
(
𝔭
)
)
3
(
2
ζ
-
1
(
1
-
ψ
E
(
𝔭
)
)
)
3
Doc 41
0.2062
-20.0000
3.0000
0.2062
testing/NTCIR/xhtml5/9/hep-th9112021/hep-th9112021_1_12.xhtml
Γ
(
1
-
2
(
1
2
-
ϵ
)
)
Γ
(
2
(
1
2
-
ϵ
)
)
=
1
2
ϵ
Doc 42
0.2062
-21.0000
3.0000
0.2062
testing/NTCIR/xhtml5/5/0712.1013/0712.1013_1_35.xhtml
(
∂
∂
x
-
∂
∂
y
)
(
b
(
x
)
-
b
(
y
)
g
(
x
-
y
)
)
=
0
,
Doc 43
0.2062
-21.0000
3.0000
0.2062
testing/NTCIR/xhtml5/4/math0506461/math0506461_1_40.xhtml
∑
t
=
1
p
-
1
∑
x
(
p
)
(
t
2
p
)
(
t
(
x
3
-
x
)
+
1
p
)
Doc 44
0.2062
-26.0000
3.0000
0.2062
testing/NTCIR/xhtml5/9/1212.1392/1212.1392_1_75.xhtml
(
p
)
n
=
(
x
1
+
x
1
2
-
4
p
n
2
)
(
x
1
-
x
1
2
-
4
p
n
2
)
Doc 45
0.2062
-27.0000
3.0000
0.3880
testing/NTCIR/xhtml5/8/1111.1350/1111.1350_1_22.xhtml
+
(
1
β
-
1
2
)
(
1
2
log
|
1
-
x
2
|
-
log
(
1
2
(
x
+
x
2
-
1
)
)
)
M
(
x
2
-
x
x
2
-
1
-
log
(
2
(
x
-
x
2
-
1
)
)
-
1
2
)
Doc 46
0.2025
-24.0000
6.0000
0.2025
testing/NTCIR/xhtml5/1/quant-ph0003086/quant-ph0003086_1_23.xhtml
r
0
=
1
2
[
-
(
α
1
α
2
)
±
(
α
1
α
2
)
2
-
4
(
α
0
α
2
)
]
.
Doc 47
0.1931
-21.0000
5.0000
0.1931
testing/NTCIR/xhtml5/10/cond-mat9610196/cond-mat9610196_1_403.xhtml
(
J
2
J
1
)
c
=
1
2
[
a
b
±
(
a
b
)
2
-
4
(
c
b
)
]
Doc 48
0.1818
-10.0000
4.0000
0.1818
testing/NTCIR/xhtml5/4/math-ph0510043/math-ph0510043_1_117.xhtml
(
x
-
x
2
-
1
)
2
(
x
2
-
1
)
.
Doc 49
0.1818
-13.0000
3.0000
0.1818
testing/NTCIR/xhtml5/8/1207.5270/1207.5270_1_52.xhtml
ζ
(
1
2
)
+
(
1
-
ζ
)
(
1
2
)
=
1
2
,
Doc 50
0.1818
-16.0000
3.0000
0.1818
testing/NTCIR/xhtml5/5/0705.2294/0705.2294_1_64.xhtml
ψ
(
0
)
(
x
)
=
ϕ
(
x
2
)
-
ϕ
(
x
2
-
1
2
)
.
Doc 51
0.1818
-20.0000
4.0000
0.1818
testing/NTCIR/xhtml5/3/hep-th0412148/hep-th0412148_1_7.xhtml
-
s
1
(
∂
2
∂
x
2
-
x
2
)
-
s
2
(
∂
2
∂
y
2
-
y
2
)
Doc 52
0.1818
-31.0000
4.0000
0.1818
testing/NTCIR/xhtml5/7/1101.4371/1101.4371_1_15.xhtml
w
k
(
x
n
)
=
x
n
+
x
n
2
-
2
k
2
[
1
+
1
2
(
x
n
2
-
2
k
)
+
O
(
n
-
2
)
]
Doc 53
0.1681
-13.0000
3.0000
0.1681
testing/NTCIR/xhtml5/6/1003.3554/1003.3554_1_180.xhtml
s
2
=
(
3
-
4
x
2
)
x
2
-
1
2
x
.
Doc 54
0.1681
-16.0000
4.0000
0.1681
testing/NTCIR/xhtml5/9/1309.5123/1309.5123_1_22.xhtml
P
=
1
2
(
1
-
2
v
)
(
v
′
x
-
v
x
2
)
,
Doc 55
0.1681
-16.0000
3.0000
0.1681
testing/NTCIR/xhtml5/9/1309.4912/1309.4912_1_36.xhtml
1
V
(
x
)
=
1
2
(
1
x
-
1
h
(
x
)
)
2
,
Doc 56
0.1681
-18.0000
3.0000
0.1681
testing/NTCIR/xhtml5/5/math0703686/math0703686_1_76.xhtml
=
1
12
(
p
-
6
-
3
(
-
1
p
)
-
4
(
-
3
p
)
)
;
Doc 57
0.1681
-18.0000
3.0000
0.1681
testing/NTCIR/xhtml5/5/0706.2509/0706.2509_1_9.xhtml
exp
(
-
x
2
2
)
H
exp
(
x
2
2
)
=
p
2
+
x
2
-
1
,
Doc 58
0.1681
-20.0000
3.0000
0.1681
testing/NTCIR/xhtml5/3/math0411411/math0411411_1_51.xhtml
L
=
(
1
-
x
2
-
y
2
)
2
(
∂
2
∂
x
2
+
∂
2
∂
y
2
)
Doc 59
0.1681
-25.0000
3.0000
0.1681
testing/NTCIR/xhtml5/6/1003.4777/1003.4777_1_31.xhtml
a
(
t
)
|
x
→
|
=
m
2
(
r
m
-
1
±
(
r
m
-
1
)
2
-
1
)
-
1
.
Doc 60
0.1681
-27.0000
3.0000
0.1681
testing/NTCIR/xhtml5/8/1109.1806/1109.1806_1_55.xhtml
A
M
(
x
,
y
)
=
(
2
-
x
1
-
x
-
(
1
1
-
x
y
)
(
1
1
-
y
)
)
-
1
.
Doc 61
0.1597
-10.0000
4.0000
0.1597
testing/NTCIR/xhtml5/3/hep-th0502041/hep-th0502041_1_131.xhtml
S
=
1
2
(
x
1
-
x
2
)
(
y
1
-
y
2
)
Doc 62
0.1597
-15.0000
3.0000
0.1597
testing/NTCIR/xhtml5/9/1302.2853/1302.2853_1_5.xhtml
L
=
1
2
(
m
1
+
λ
x
2
)
(
x
˙
2
-
ω
2
x
2
)
.
Doc 63
0.1597
-15.0000
3.0000
0.1597
testing/NTCIR/xhtml5/3/hep-th0501106/hep-th0501106_1_1.xhtml
L
=
1
2
(
1
1
+
λ
x
2
)
(
x
˙
2
-
α
2
x
2
)
,
Doc 64
0.1597
-18.0000
5.0000
0.1597
testing/NTCIR/xhtml5/4/math0506249/math0506249_1_54.xhtml
ξ
±
=
1
2
(
x
0
±
(
x
0
)
2
-
4
[
2
]
2
(
x
2
)
)
.
Doc 65
0.1519
-14.0000
4.0000
0.1519
testing/NTCIR/xhtml5/4/hep-th0504029/hep-th0504029_1_90.xhtml
C
I
d
(
2
)
=
1
(
x
2
-
x
1
)
(
y
2
-
y
1
)
Doc 66
0.1519
-15.0000
4.0000
0.1519
testing/NTCIR/xhtml5/3/hep-th0407138/hep-th0407138_1_36.xhtml
(
x
i
-
x
¯
i
)
2
(
y
r
-
y
¯
r
)
2
4
(
t
-
t
¯
)
Doc 67
0.1519
-15.0000
4.0000
0.1519
testing/NTCIR/xhtml5/3/hep-th0403204/hep-th0403204_1_31.xhtml
(
x
i
-
x
¯
i
)
2
(
y
r
-
y
¯
r
)
2
4
(
t
-
t
¯
)
Doc 68
0.1422
-12.0000
2.0000
0.1422
testing/NTCIR/xhtml5/4/math0505437/math0505437_1_61.xhtml
W
(
z
)
=
z
cos
(
z
2
)
2
sin
(
z
2
)
Doc 69
0.1422
-13.0000
2.0000
0.1422
testing/NTCIR/xhtml5/9/1401.2127/1401.2127_1_80.xhtml
cos
(
θ
4
)
cos
(
θ
2
)
-
sin
(
3
θ
4
)
Doc 70
0.1422
-14.0000
4.0000
0.1422
testing/NTCIR/xhtml5/6/0911.1564/0911.1564_1_69.xhtml
f
′
(
x
)
=
9
x
-
4
8
(
x
-
x
2
)
3
2
Doc 71
0.1422
-15.0000
2.0000
0.1422
testing/NTCIR/xhtml5/7/1104.5700/1104.5700_1_103.xhtml
(
x
+
1
2
)
x
+
1
2
≤
(
x
+
1
2
)
Doc 72
0.1422
-15.0000
2.0000
0.1422
testing/NTCIR/xhtml5/9/1305.3186/1305.3186_1_38.xhtml
μ
2
(
x
-
y
)
(
t
0
2
)
∧
μ
2
y
(
t
0
2
)
Doc 73
0.1422
-16.0000
4.0000
0.1422
testing/NTCIR/xhtml5/6/0902.2588/0902.2588_1_28.xhtml
=
1
-
x
2
4
(
1
-
x
2
)
(
1
-
1
-
x
2
)
Doc 74
0.1422
-16.0000
2.0000
0.1422
testing/NTCIR/xhtml5/9/1302.2361/1302.2361_1_68.xhtml
f
(
λ
m
4
)
=
4
(
6
-
π
)
π
(
2
λ
m
4
)
2
Doc 75
0.1422
-16.0000
2.0000
0.1422
testing/NTCIR/xhtml5/8/1209.4110/1209.4110_1_195.xhtml
β
(
x
)
=
1
2
(
ψ
(
x
+
1
2
)
-
ψ
(
x
2
)
)
Doc 76
0.1422
-19.0000
3.0000
0.1422
testing/NTCIR/xhtml5/10/hep-th9707022/hep-th9707022_1_27.xhtml
(
x
2
y
4
(
x
-
1
)
2
)
m
(
1
-
x
)
n
1
+
n
2
+
1
,
Doc 77
0.1422
-20.0000
2.0000
0.1422
testing/NTCIR/xhtml5/7/1004.5062/1004.5062_1_1.xhtml
-
1
2
3
(
1
-
(
-
1
p
)
)
-
1
3
(
1
-
(
-
3
p
)
)
Doc 78
0.1422
-22.0000
2.0000
0.1422
testing/NTCIR/xhtml5/4/math0510156/math0510156_1_34.xhtml
Γ
(
m
-
1
2
)
Γ
(
m
-
1
)
=
π
2
m
-
2
Γ
(
m
2
)
,
Doc 79
0.1297
-9.0000
2.0000
0.1297
testing/NTCIR/xhtml5/10/hep-th9902131/hep-th9902131_1_136.xhtml
d
x
2
4
(
x
2
-
1
)
(
z
is polar radius
)
Doc 80
0.1297
-10.0000
2.0000
0.2595
testing/NTCIR/xhtml5/7/1103.3950/1103.3950_1_81.xhtml
-
y
(
1
2
+
y
2
(
1
-
y
)
)
(
x
2
(
1
-
x
)
+
y
2
(
1
-
y
)
)
-
x
(
x
2
(
1
-
x
)
+
1
2
)
Doc 81
0.1297
-12.0000
3.0000
0.1297
testing/NTCIR/xhtml5/10/hep-th9807062/hep-th9807062_1_54.xhtml
z
=
1
2
-
1
2
(
1
-
x
)
1
2
Doc 82
0.1297
-12.0000
2.0000
0.1297
testing/NTCIR/xhtml5/8/1206.1613/1206.1613_1_22.xhtml
(
2
π
)
2
(
(
j
2
)
2
+
(
k
2
)
2
)
Doc 83
0.1297
-14.0000
3.0000
0.1297
testing/NTCIR/xhtml5/9/1302.6196/1302.6196_1_19.xhtml
λ
=
1
2
[
t
4
±
(
t
4
)
2
-
4
]
Doc 84
0.1297
-15.0000
3.0000
0.1297
testing/NTCIR/xhtml5/5/0810.4659/0810.4659_1_44.xhtml
ξ
^
1
2
=
1
2
(
∂
∂
x
1
-
∂
∂
x
2
)
Doc 85
0.1297
-15.0000
2.0000
0.1297
testing/NTCIR/xhtml5/4/cond-mat0605447/cond-mat0605447_1_31.xhtml
(
x
∗
2
-
x
-
1
x
-
1
(
x
-
1
-
1
)
)
N
Doc 86
0.1297
-16.0000
4.0000
0.1297
testing/NTCIR/xhtml5/9/1304.3739/1304.3739_1_15.xhtml
1
2
(
1
λ
x
2
+
1
)
(
m
x
˙
2
-
g
x
2
)
,
Doc 87
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/6/0905.1539/0905.1539_1_39.xhtml
Γ
(
n
2
)
Γ
(
n
-
1
2
)
>
n
-
2
2
Doc 88
0.1297
-17.0000
2.0000
0.1297
testing/NTCIR/xhtml5/1/0710.4605/0710.4605_1_116.xhtml
(
n
+
1
2
)
2
-
(
1
2
)
2
=
n
2
.
Doc 89
0.1297
-17.0000
2.0000
0.1297
testing/NTCIR/xhtml5/5/0807.3506/0807.3506_1_21.xhtml
1
-
Φ
(
μ
σ
)
Φ
(
μ
σ
)
e
-
2
μ
σ
2
x
Doc 90
0.1297
-20.0000
3.0000
0.1297
testing/NTCIR/xhtml5/5/0803.0289/0803.0289_1_63.xhtml
-
1
X
(
x
)
-
Y
(
y
)
(
∂
2
∂
x
2
-
∂
2
∂
y
2
)
Doc 91
0.1297
-21.0000
2.0000
0.1297
testing/NTCIR/xhtml5/8/1209.0390/1209.0390_1_68.xhtml
=
1
2
(
a
-
γ
2
4
)
cot
(
x
2
)
(
1
+
cot
2
(
x
2
)
)
Doc 92
0.1297
-23.0000
2.0000
0.1297
testing/NTCIR/xhtml5/2/hep-th0103252/hep-th0103252_1_13.xhtml
×
sinh
(
t
(
x
-
1
)
2
)
sinh
(
t
x
2
)
sinh
(
t
2
)
sinh
(
t
)
]
.
Doc 93
0.1297
-24.0000
3.0000
0.1297
testing/NTCIR/xhtml5/4/math-ph0511044/math-ph0511044_1_143.xhtml
λ
=
x
11
+
x
22
±
(
x
11
-
x
22
)
2
+
4
x
12
2
-
4
y
12
2
2
Doc 94
0.1297
-27.0000
2.0000
0.1297
testing/NTCIR/xhtml5/3/hep-th0307188/hep-th0307188_1_47.xhtml
×
σ
2
(
x
-
y
)
2
(
d
x
2
x
(
1
-
x
2
)
+
d
y
2
y
(
y
2
-
1
)
)
Doc 95
0.1013
-26.0000
2.0000
0.1013
testing/NTCIR/xhtml5/8/1112.2278/1112.2278_1_75.xhtml
∫
1
2
(
1
-
x
2
-
y
2
)
(
d
x
d
s
)
2
+
(
d
y
d
s
)
2
d
s
Doc 96
0.1013
-32.0000
3.0000
0.1013
testing/NTCIR/xhtml5/10/hep-th9608052/hep-th9608052_1_18.xhtml
p
→
=
∂
L
∂
x
→
˙
=
2
m
(
E
-
V
(
r
)
)
(
d
x
→
d
τ
)
/
(
d
x
→
d
τ
)
2
Doc 97
0.1013
-32.0000
3.0000
0.1013
testing/NTCIR/xhtml5/10/hep-th9602080/hep-th9602080_1_33.xhtml
p
→
=
∂
L
∂
x
→
˙
=
2
m
(
E
-
V
(
r
)
)
(
d
x
→
d
τ
)
/
(
d
x
→
d
τ
)
2
Doc 98
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0311302/math0311302_1_7.xhtml
Δ
=
-
y
2
(
(
∂
∂
x
)
2
+
(
∂
∂
y
)
2
)
Doc 99
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0407288/math0407288_1_23.xhtml
4
(
d
x
2
+
d
y
2
)
(
1
-
x
2
-
y
2
)
2
Doc 100
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/2/math0210337/math0210337_1_3.xhtml
Δ
=
-
y
2
(
(
∂
∂
x
)
2
+
(
∂
∂
y
)
2
)
Doc 101
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0305178/math0305178_1_1.xhtml
Δ
=
-
y
2
(
(
∂
∂
x
)
2
+
(
∂
∂
y
)
2
)
Doc 102
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0408022/math0408022_1_17.xhtml
Δ
=
-
y
2
(
(
∂
∂
x
)
2
+
(
∂
∂
y
)
2
)