tangent
Not Supported
Z
=
∑
j
g
j
⋅
e
x0
Search
Returned 85 matches (100 formulae, 116 docs)
Lookup 208.606 ms, Re-ranking 150.013 ms
Found 1704045 tuple postings, 331347 formulae, 280067 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.6931
-4.0000
5.0000
0.6931
testing/NTCIR/xhtml5/10/q-alg9506005/q-alg9506005_1_127.xhtml
r
=
∑
j
g
j
+
⊗
g
j
-
Doc 2
0.6931
-5.0000
5.0000
0.6931
testing/NTCIR/xhtml5/5/0805.1305/0805.1305_1_61.xhtml
g
=
∑
j
∈
J
g
j
(
y
)
x
j
Doc 3
0.6931
-6.0000
5.0000
0.6931
testing/NTCIR/xhtml5/2/math0108035/math0108035_1_20.xhtml
g
=
∑
j
=
1
n
g
j
d
z
¯
j
Doc 4
0.6931
-6.0000
5.0000
0.6931
testing/NTCIR/xhtml5/4/math0607048/math0607048_1_65.xhtml
g
=
∑
j
=
1
n
g
j
d
z
¯
j
Doc 5
0.6931
-6.0000
5.0000
0.6931
testing/NTCIR/xhtml5/2/math0108035/math0108035_1_3.xhtml
g
=
∑
j
=
1
n
g
j
d
z
¯
j
Doc 6
0.6931
-8.0000
6.0000
0.6931
testing/NTCIR/xhtml5/7/1006.5298/1006.5298_1_158.xhtml
g
*
=
∑
j
=
1
m
g
j
(
z
)
e
j
*
Doc 7
0.6931
-10.0000
6.0000
0.6931
testing/NTCIR/xhtml5/3/math0405492/math0405492_1_134.xhtml
g
(
z
)
=
∑
j
=
1
n
′
g
j
(
z
)
e
j
′
Doc 8
0.6452
-2.0000
5.0000
1.1715
testing/NTCIR/xhtml5/2/cond-mat0204111/cond-mat0204111_1_11.xhtml
s
i
=
∑
j
g
j
i
r
i
=
∑
j
g
i
j
Doc 9
0.6452
-2.0000
5.0000
1.0519
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_92.xhtml
f
=
∑
j
∈
J
g
j
∑
j
∈
J
g
j
Doc 10
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_35.xhtml
f
=
∑
j
∈
F
g
j
Doc 11
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_13.xhtml
f
=
∑
j
∈
J
g
j
Doc 12
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_16.xhtml
f
=
∑
j
∈
J
g
j
Doc 13
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/7/1107.0175/1107.0175_1_6.xhtml
f
=
∑
j
g
j
h
j
Doc 14
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/9/1301.4514/1301.4514_1_43.xhtml
Z
=
∑
j
y
j
Z
j
Doc 15
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.1433/1203.1433_1_106.xhtml
Z
=
∑
j
n
j
Z
j
Doc 16
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1205.3416/1205.3416_1_12.xhtml
f
=
∑
j
g
j
h
j
Doc 17
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/9/1301.4514/1301.4514_1_42.xhtml
Z
=
∑
j
y
j
Z
j
Doc 18
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/10/math9704219/math9704219_1_51.xhtml
Z
=
∑
j
n
j
Z
j
Doc 19
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/4/math0512379/math0512379_1_70.xhtml
Z
=
∑
j
n
j
Z
j
Doc 20
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/8/1207.5256/1207.5256_1_31.xhtml
m
=
∑
j
e
j
g
j
Doc 21
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/3/math0410220/math0410220_1_42.xhtml
f
=
∑
j
q
j
g
j
Doc 22
0.6452
-3.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_7.xhtml
f
=
∑
j
∈
J
g
j
,
Doc 23
0.6452
-4.0000
5.0000
0.6452
testing/NTCIR/xhtml5/3/math0309405/math0309405_1_39.xhtml
s
k
=
∑
j
=
1
k
g
j
Doc 24
0.6452
-4.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.5722/1203.5722_1_144.xhtml
p
=
∑
j
=
1
t
g
j
2
Doc 25
0.6452
-4.0000
5.0000
0.6452
testing/NTCIR/xhtml5/10/q-alg9508014/q-alg9508014_1_132.xhtml
x
i
¯
=
∑
j
g
j
i
x
j
Doc 26
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/10/alg-geom9712016/alg-geom9712016_1_17.xhtml
f
=
∑
j
=
1
p
g
j
h
j
Doc 27
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1209.3530/1209.3530_1_128.xhtml
f
=
∑
j
=
1
n
g
j
f
j
Doc 28
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/7/1106.2384/1106.2384_1_37.xhtml
φ
=
∑
j
=
0
m
g
j
σ
j
Doc 29
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/9/1307.2171/1307.2171_1_5.xhtml
e
i
′
=
∑
j
g
j
i
e
j
Doc 30
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1207.0235/1207.0235_1_41.xhtml
𝐆
=
∑
j
=
1
N
g
j
𝐱
j
Doc 31
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/5/0706.4113/0706.4113_1_52.xhtml
F
=
∑
j
=
1
m
g
j
f
j
Doc 32
0.6452
-6.0000
5.0000
0.6452
testing/NTCIR/xhtml5/6/1003.0870/1003.0870_1_121.xhtml
f
i
=
∑
j
=
1
l
i
g
j
i
Doc 33
0.6452
-6.0000
5.0000
0.6452
testing/NTCIR/xhtml5/6/1003.0870/1003.0870_1_124.xhtml
f
i
=
∑
j
=
1
l
i
g
j
i
Doc 34
0.6452
-6.0000
5.0000
0.6452
testing/NTCIR/xhtml5/5/0807.1294/0807.1294_1_10.xhtml
G
=
∑
j
=
0
∞
g
j
λ
j
.
Doc 35
0.6452
-7.0000
5.0000
0.6452
testing/NTCIR/xhtml5/6/1002.3923/1002.3923_1_3.xhtml
δ
g
=
∑
j
=
1
k
g
j
e
j
*
Doc 36
0.6452
-7.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1109.1753/1109.1753_1_4.xhtml
f
′
=
∑
j
=
1
4
g
j
h
j
′
Doc 37
0.5714
-4.0000
5.0000
1.0977
testing/NTCIR/xhtml5/9/1303.2951/1303.2951_1_118.xhtml
g
o
p
=
∑
j
g
j
o
p
g
=
∑
j
g
j
Doc 38
0.5714
-5.0000
5.0000
0.5714
testing/NTCIR/xhtml5/5/0712.3656/0712.3656_1_49.xhtml
g
=
∑
j
=
1
N
g
j
/
N
Doc 39
0.5714
-6.0000
6.0000
0.5714
testing/NTCIR/xhtml5/5/0709.2308/0709.2308_1_63.xhtml
1
J
=
∑
j
=
1
r
g
j
+
e
Doc 40
0.5714
-7.0000
5.0000
0.5714
testing/NTCIR/xhtml5/3/math0309203/math0309203_1_145.xhtml
ad
x
r
b
=
∑
j
g
j
(
x
)
b
j
Doc 41
0.5263
0.0000
4.0000
0.5263
testing/NTCIR/xhtml5/2/math0011042/math0011042_1_91.xhtml
γ
=
∑
g
j
Doc 42
0.5263
-1.0000
5.0000
0.5263
testing/NTCIR/xhtml5/7/1009.5187/1009.5187_1_45.xhtml
g
=
∑
j
g
j
Doc 43
0.5263
-1.0000
3.0000
0.5263
testing/NTCIR/xhtml5/10/dg-ga9711018/dg-ga9711018_1_65.xhtml
g
s
⋅
e
t
h
Doc 44
0.5263
-1.0000
3.0000
0.5263
testing/NTCIR/xhtml5/4/hep-th0503184/hep-th0503184_1_23.xhtml
g
s
⋅
e
q
t
Doc 45
0.5263
-2.0000
5.0000
0.9331
testing/NTCIR/xhtml5/5/0809.4940/0809.4940_1_29.xhtml
=
∑
j
∈
κ
g
j
∑
j
g
j
≡
1
Doc 46
0.5263
-2.0000
5.0000
0.5263
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_56.xhtml
g
=
∑
j
∈
g
j
Doc 47
0.5263
-2.0000
5.0000
0.5263
testing/NTCIR/xhtml5/5/0807.2193/0807.2193_1_51.xhtml
g
=
∑
j
g
j
.
Doc 48
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/6/0911.2275/0911.2275_1_51.xhtml
f
=
∑
g
j
f
j
Doc 49
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/7/1108.0962/1108.0962_1_165.xhtml
β
=
∑
g
j
χ
j
Doc 50
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/6/0902.2495/0902.2495_1_202.xhtml
Z
=
∑
j
𝐑
γ
j
Doc 51
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/3/math0306163/math0306163_1_15.xhtml
p
=
∑
j
g
k
2
Doc 52
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/8/1210.6635/1210.6635_1_73.xhtml
Z
=
∑
λ
g
(
λ
)
Doc 53
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/10/hep-ph9504294/hep-ph9504294_1_23.xhtml
S
=
∑
g
j
I
j
Doc 54
0.5263
-2.0000
3.0000
0.5263
testing/NTCIR/xhtml5/5/0710.0800/0710.0800_1_84.xhtml
Z
=
∑
σ
e
-
H
Doc 55
0.5263
-3.0000
5.0000
0.5263
testing/NTCIR/xhtml5/4/math0508210/math0508210_1_89.xhtml
g
=
∑
j
2
g
j
2
Doc 56
0.5263
-3.0000
5.0000
0.5263
testing/NTCIR/xhtml5/5/0811.0104/0811.0104_1_64.xhtml
g
^
=
∑
j
g
^
j
Doc 57
0.5263
-3.0000
5.0000
0.5263
testing/NTCIR/xhtml5/9/1303.1427/1303.1427_1_103.xhtml
g
=
∑
j
∈
n
g
j
Doc 58
0.5263
-3.0000
5.0000
0.5263
testing/NTCIR/xhtml5/4/math0612457/math0612457_1_104.xhtml
g
=
∑
j
∈
ℤ
g
j
Doc 59
0.5263
-3.0000
4.0000
0.5263
testing/NTCIR/xhtml5/3/math-ph0306066/math-ph0306066_1_79.xhtml
λ
=
∑
j
λ
j
e
j
Doc 60
0.5263
-3.0000
3.0000
0.5263
testing/NTCIR/xhtml5/7/1105.0208/1105.0208_1_18.xhtml
Z
=
∑
k
e
λ
ℓ
k
Doc 61
0.5263
-4.0000
5.0000
0.5263
testing/NTCIR/xhtml5/4/math0609429/math0609429_1_39.xhtml
g
=
∑
j
=
1
ℓ
g
j
Doc 62
0.5263
-4.0000
5.0000
0.5263
testing/NTCIR/xhtml5/4/math0605210/math0605210_1_39.xhtml
g
=
∑
j
=
0
∞
g
j
Doc 63
0.5263
-5.0000
5.0000
1.0526
testing/NTCIR/xhtml5/8/1210.5565/1210.5565_1_287.xhtml
V
(
q
)
=
∑
j
g
j
G
j
V
(
q
′
)
=
∑
j
g
j
′
G
j
Doc 64
0.5263
-5.0000
5.0000
1.0526
testing/NTCIR/xhtml5/8/1210.5565/1210.5565_1_280.xhtml
V
(
q
)
=
∑
j
g
j
G
j
V
(
q
′
)
=
∑
j
g
j
′
G
j
Doc 65
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/8/1210.1973/1210.1973_1_158.xhtml
g
=
∑
j
=
-
∞
∞
g
j
Doc 66
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/3/math0310182/math0310182_1_84.xhtml
g
(
x
)
=
∑
j
g
j
x
j
Doc 67
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/8/1108.6108/1108.6108_1_40.xhtml
g
=
∑
j
∈
α
ℤ
d
g
j
Doc 68
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/2/nlin0107067/nlin0107067_1_15.xhtml
g
(
z
)
=
∑
j
g
j
z
j
Doc 69
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/9/1306.0781/1306.0781_1_37.xhtml
g
=
∑
j
g
j
x
j
∈
𝒜
Doc 70
0.5263
-5.0000
4.0000
0.5263
testing/NTCIR/xhtml5/1/quant-ph0004090/quant-ph0004090_1_90.xhtml
Z
=
∑
j
e
-
β
E
j
,
Doc 71
0.5263
-6.0000
5.0000
0.5263
testing/NTCIR/xhtml5/7/1101.5381/1101.5381_1_304.xhtml
g
(
x
)
=
∑
j
g
j
(
x
)
,
Doc 72
0.5263
-7.0000
5.0000
0.5263
testing/NTCIR/xhtml5/8/1210.5565/1210.5565_1_138.xhtml
V
(
q
)
=
∑
j
∈
J
g
j
ν
j
Doc 73
0.5263
-7.0000
5.0000
0.5263
testing/NTCIR/xhtml5/6/0902.4843/0902.4843_1_33.xhtml
g
(
X
)
=
∑
j
≥
0
g
j
X
j
Doc 74
0.5263
-7.0000
5.0000
0.5263
testing/NTCIR/xhtml5/9/hep-th9302014/hep-th9302014_1_21.xhtml
V
(
ω
)
=
∑
j
g
j
ω
j
/
j
Doc 75
0.5263
-7.0000
4.0000
0.5263
testing/NTCIR/xhtml5/7/1107.2839/1107.2839_1_7.xhtml
Z
=
∑
j
e
-
β
E
R
,
j
,
Doc 76
0.5263
-8.0000
5.0000
0.5263
testing/NTCIR/xhtml5/5/0708.1789/0708.1789_1_52.xhtml
G
(
y
)
=
∑
j
=
0
q
g
j
y
j
Doc 77
0.4478
-1.0000
5.0000
0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_51.xhtml
Z
=
∑
j
Z
j
Doc 78
0.4478
-1.0000
5.0000
0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_65.xhtml
Z
=
∑
j
Z
j
Doc 79
0.4478
-1.0000
5.0000
0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_29.xhtml
Z
=
∑
j
Z
j
Doc 80
0.4478
-1.0000
4.0000
0.4478
testing/NTCIR/xhtml5/7/1009.0684/1009.0684_1_29.xhtml
∑
j
g
j
=
p
Doc 81
0.4478
-1.0000
4.0000
0.4478
testing/NTCIR/xhtml5/7/1009.0684/1009.0684_1_27.xhtml
∑
j
g
j
=
p
Doc 82
0.4478
-2.0000
4.0000
0.4478
testing/NTCIR/xhtml5/1/math0002158/math0002158_1_106.xhtml
∑
j
g
j
⊗
f
j
Doc 83
0.4478
-3.0000
5.0000
0.4478
testing/NTCIR/xhtml5/5/0705.1587/0705.1587_1_88.xhtml
N
≤
Z
=
∑
j
Z
j
Doc 84
0.4478
-3.0000
5.0000
0.4478
testing/NTCIR/xhtml5/5/0705.1587/0705.1587_1_11.xhtml
N
≫
Z
=
∑
j
Z
j
Doc 85
0.4478
-3.0000
4.0000
0.4478
testing/NTCIR/xhtml5/4/math0606277/math0606277_1_45.xhtml
∑
j
=
1
g
j
=
i
Doc 86
0.4478
-3.0000
4.0000
0.4478
testing/NTCIR/xhtml5/10/hep-th9810147/hep-th9810147_1_83.xhtml
∑
j
g
j
×
𝒜
θ
^
Doc 87
0.4068
0.0000
4.0000
0.4068
testing/NTCIR/xhtml5/10/alg-geom9606014/alg-geom9606014_1_29.xhtml
∑
j
g
j
Doc 88
0.4068
-2.0000
4.0000
0.4068
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_44.xhtml
∑
j
∈
J
g
j
Doc 89
0.4068
-2.0000
4.0000
0.4068
testing/NTCIR/xhtml5/4/math0510492/math0510492_1_154.xhtml
g
∼
∑
j
g
j
Doc 90
0.4068
-2.0000
4.0000
0.4068
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_29.xhtml
∑
j
∈
J
g
j
Doc 91
0.4068
-2.0000
4.0000
0.4068
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_31.xhtml
∑
j
∈
J
g
j
Doc 92
0.4068
-2.0000
4.0000
0.4068
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_61.xhtml
∑
j
∈
J
g
j
Doc 93
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/1/math0005013/math0005013_1_47.xhtml
∑
j
=
1
∞
g
j
Doc 94
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/9/1303.1972/1303.1972_1_30.xhtml
∑
j
≥
1
g
j
2
Doc 95
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/3/math0405309/math0405309_1_61.xhtml
=
∑
j
≥
i
g
i
Doc 96
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/6/0906.2989/0906.2989_1_141.xhtml
∑
j
g
j
′
(
x
)
Doc 97
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/7/1102.0998/1102.0998_1_114.xhtml
∑
j
∈
J
g
j
.
Doc 98
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/1/math0005013/math0005013_1_49.xhtml
∑
j
=
1
n
g
j
Doc 99
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/1/math0005013/math0005013_1_38.xhtml
∑
j
=
1
0
g
j
Doc 100
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/8/1210.2792/1210.2792_1_15.xhtml
g
=
∑
j
g
ϕ
j
Doc 101
0.4068
-3.0000
3.0000
0.4068
testing/NTCIR/xhtml5/5/0712.0689/0712.0689_1_723.xhtml
Z
=
∑
e
-
β
F
Doc 102
0.4068
-3.0000
3.0000
0.4068
testing/NTCIR/xhtml5/7/1006.1641/1006.1641_1_12.xhtml
g
→
3
⋅
e
→
2
Doc 103
0.4068
-4.0000
4.0000
0.4068
testing/NTCIR/xhtml5/9/1303.1810/1303.1810_1_33.xhtml
g
:=
∑
j
∈
ℕ
g
j
Doc 104
0.4068
-4.0000
4.0000
0.4068
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_98.xhtml
∑
j
∈
J
g
j
=
0
Doc 105
0.4068
-4.0000
4.0000
0.4068
testing/NTCIR/xhtml5/4/math0601214/math0601214_1_126.xhtml
Z
s
=
∑
j
Z
s
j
Doc 106
0.4068
-4.0000
4.0000
0.4068
testing/NTCIR/xhtml5/4/math0612457/math0612457_1_110.xhtml
g
:=
∑
j
∈
ℤ
g
j
Doc 107
0.4068
-4.0000
4.0000
0.4068
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_23.xhtml
∑
j
∈
J
g
j
=
0
Doc 108
0.4068
-4.0000
3.0000
0.4068
testing/NTCIR/xhtml5/7/1106.1970/1106.1970_1_230.xhtml
h
↦
f
(
g
⋅
e
h
)
Doc 109
0.4068
-8.0000
4.0000
0.4068
testing/NTCIR/xhtml5/5/0811.1093/0811.1093_1_28.xhtml
∑
j
=
0
∞
g
j
e
-
λ
j
z
Doc 110
0.2857
0.0000
3.0000
0.2857
testing/NTCIR/xhtml5/9/1303.1378/1303.1378_1_184.xhtml
g
⋅
e
Doc 111
0.2857
0.0000
3.0000
0.2857
testing/NTCIR/xhtml5/2/math0201205/math0201205_1_87.xhtml
g
⋅
e
Doc 112
0.2857
0.0000
3.0000
0.2857
testing/NTCIR/xhtml5/4/math0701544/math0701544_1_76.xhtml
g
⋅
e
Doc 113
0.2857
-3.0000
3.0000
0.2857
testing/NTCIR/xhtml5/3/math-ph0310010/math-ph0310010_1_2.xhtml
e
′
=
g
⋅
e
Doc 114
0.2857
-3.0000
3.0000
0.2857
testing/NTCIR/xhtml5/7/1005.5002/1005.5002_1_15.xhtml
g
⋅
e
≠
e
¯
Doc 115
0.2857
-5.0000
3.0000
0.2857
testing/NTCIR/xhtml5/9/1306.5956/1306.5956_1_30.xhtml
g
=
∑
g
j
e
j
*
Doc 116
0.2857
-5.0000
3.0000
0.2857
testing/NTCIR/xhtml5/4/math-ph0612002/math-ph0612002_1_4.xhtml
e
′
¯
=
g
⋅
e
¯