tangent
Not Supported
d
f
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
=
p
d
x
+
v
d
y
Search
Returned 91 matches (100 formulae, 101 docs)
Lookup 786.082 ms, Re-ranking 2459.034 ms
Found 7486737 tuple postings, 3464307 formulae, 1828749 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.9403
-6.0000
16.0000
1.8806
testing/NTCIR/xhtml5/10/hep-th9801033/hep-th9801033_1_35.xhtml
d
𝒮
=
∂
𝒮
∂
q
d
q
+
∂
𝒮
∂
t
d
t
=
p
d
q
+
∂
𝒮
∂
t
d
t
,
d
𝒯
=
∂
𝒯
∂
p
d
p
+
∂
𝒯
∂
t
d
t
=
q
d
p
+
∂
𝒯
∂
t
d
t
,
Doc 2
0.8796
-16.0000
15.0000
0.8796
testing/NTCIR/xhtml5/3/hep-th0406203/hep-th0406203_1_16.xhtml
d
S
=
∂
S
∂
E
d
E
+
∂
S
∂
M
p
,
0
d
M
p
,
0
=
1
T
d
E
+
1
T
¯
d
M
p
,
0
Doc 3
0.8402
-12.0000
14.0000
1.5263
testing/NTCIR/xhtml5/3/hep-th0404105/hep-th0404105_1_17.xhtml
d
r
=
∂
r
∂
τ
d
τ
+
∂
r
∂
η
d
η
≡
∂
a
∂
τ
d
τ
+
∂
a
∂
η
d
η
.
d
t
=
∂
t
∂
τ
d
τ
+
∂
t
∂
η
d
η
Doc 4
0.8008
-10.0000
14.0000
0.8008
testing/NTCIR/xhtml5/3/gr-qc0405007/gr-qc0405007_1_722.xhtml
d
E
=
∂
E
∂
S
d
S
+
∂
E
∂
N
d
N
+
∂
E
∂
V
d
V
+
X
i
d
x
i
Doc 5
0.7646
-9.0000
12.0000
0.7646
testing/NTCIR/xhtml5/5/0710.3989/0710.3989_1_89.xhtml
d
S
=
∂
S
∂
u
d
u
+
∂
S
∂
η
d
η
=
α
=
v
d
u
+
ξ
d
η
,
Doc 6
0.7646
-9.0000
12.0000
0.7646
testing/NTCIR/xhtml5/4/math0610064/math0610064_1_344.xhtml
d
S
=
∂
S
∂
u
d
u
+
∂
S
∂
η
d
η
=
α
=
v
d
u
+
ξ
d
η
,
Doc 7
0.7613
-24.0000
14.0000
0.7613
testing/NTCIR/xhtml5/3/math0304116/math0304116_1_101.xhtml
d
y
i
=
∂
2
K
∂
s
i
∂
t
q
d
t
q
+
∂
2
K
∂
s
i
∂
s
j
d
s
j
=
V
i
j
d
s
j
-
f
i
q
d
t
q
Doc 8
0.7253
-1.0000
12.0000
0.7253
testing/NTCIR/xhtml5/3/hep-th0501171/hep-th0501171_1_17.xhtml
d
ψ
=
∂
ψ
∂
E
d
E
+
∂
ψ
∂
a
d
a
=
0
Doc 9
0.7219
-6.0000
20.0000
0.7219
testing/NTCIR/xhtml5/3/hep-th0303216/hep-th0303216_1_60.xhtml
d
=
∂
∂
x
d
x
+
∂
∂
y
d
y
=
∂
x
d
x
+
∂
y
d
y
.
Doc 10
0.7219
-6.0000
20.0000
0.7219
testing/NTCIR/xhtml5/3/hep-th0303216/hep-th0303216_1_151.xhtml
d
=
∂
∂
x
d
x
+
∂
∂
y
d
y
=
∂
x
d
x
+
∂
y
d
y
,
Doc 11
0.7045
-7.0000
12.0000
0.7045
testing/NTCIR/xhtml5/4/math-ph0503035/math-ph0503035_1_59.xhtml
d
H
=
∂
H
∂
p
d
p
+
∂
H
∂
q
d
q
+
∂
H
∂
t
d
t
Doc 12
0.7045
-8.0000
12.0000
0.7045
testing/NTCIR/xhtml5/7/1101.0431/1101.0431_1_64.xhtml
d
S
=
∂
S
∂
T
d
T
+
∂
S
∂
V
d
V
+
∂
S
∂
ξ
d
ξ
.
Doc 13
0.7045
-11.0000
16.0000
0.7045
testing/NTCIR/xhtml5/1/math-ph0001004/math-ph0001004_1_15.xhtml
d
I
=
∂
I
∂
x
d
x
+
∂
I
∂
y
d
y
+
∂
I
∂
y
′
d
y
′
=
0.
Doc 14
0.7045
-11.0000
16.0000
0.7045
testing/NTCIR/xhtml5/7/1102.2522/1102.2522_1_41.xhtml
d
H
z
=
∂
H
z
∂
x
d
x
+
∂
H
z
∂
y
d
y
+
∂
H
z
∂
z
d
z
Doc 15
0.7045
-15.0000
16.0000
0.7045
testing/NTCIR/xhtml5/2/math-ph0212036/math-ph0212036_1_15.xhtml
d
H
=
∂
H
∂
x
μ
d
x
μ
+
∂
H
∂
y
i
d
y
i
+
∂
H
∂
p
i
μ
d
p
i
μ
Doc 16
0.7045
-15.0000
15.0000
0.7045
testing/NTCIR/xhtml5/6/0903.0222/0903.0222_1_11.xhtml
d
f
=
∂
f
∂
t
d
t
+
∂
f
∂
z
0
i
d
z
0
i
+
∂
f
∂
z
¯
0
i
d
z
¯
0
i
Doc 17
0.7045
-15.0000
15.0000
0.7045
testing/NTCIR/xhtml5/6/0903.0059/0903.0059_1_30.xhtml
d
f
=
∂
f
∂
t
d
t
+
∂
f
∂
z
0
i
d
z
0
i
+
∂
f
∂
z
¯
0
i
d
z
¯
0
i
Doc 18
0.7045
-15.0000
14.0000
0.7045
testing/NTCIR/xhtml5/2/math-ph0010040/math-ph0010040_1_13.xhtml
d
q
1
=
∂
H
′
0
∂
∂
1
d
t
+
∂
H
′
2
∂
p
1
d
q
2
=
p
1
d
t
,
Doc 19
0.7045
-15.0000
14.0000
0.7045
testing/NTCIR/xhtml5/2/math-ph0010040/math-ph0010040_1_8.xhtml
d
q
1
=
∂
H
′
0
∂
∂
1
d
t
+
∂
H
′
2
∂
p
1
d
q
2
=
p
1
d
t
,
Doc 20
0.7045
-17.0000
14.0000
0.7045
testing/NTCIR/xhtml5/8/1201.3768/1201.3768_1_109.xhtml
d
S
=
∂
S
∂
x
d
x
+
∂
S
∂
λ
d
λ
+
∂
S
∂
t
d
t
,
λ
=
∂
L
∂
x
˙
,
Doc 21
0.7045
-19.0000
15.0000
0.7045
testing/NTCIR/xhtml5/6/0903.0059/0903.0059_1_33.xhtml
d
f
~
=
∂
f
~
∂
t
d
t
+
∂
f
~
∂
z
r
i
d
z
r
i
+
∂
f
~
∂
z
¯
r
i
d
z
¯
r
i
Doc 22
0.6861
0.0000
11.0000
0.6861
testing/NTCIR/xhtml5/5/0809.0375/0809.0375_1_46.xhtml
d
p
=
∂
p
∂
X
d
X
+
∂
p
∂
φ
d
φ
Doc 23
0.6861
0.0000
11.0000
0.6861
testing/NTCIR/xhtml5/1/cond-mat0011151/cond-mat0011151_1_37.xhtml
d
η
=
∂
η
∂
t
d
t
+
∂
η
∂
x
d
x
Doc 24
0.6861
0.0000
11.0000
0.6861
testing/NTCIR/xhtml5/1/cond-mat0011151/cond-mat0011151_1_42.xhtml
d
Ψ
=
∂
Ψ
∂
y
d
y
+
∂
Ψ
∂
x
d
x
Doc 25
0.6861
-1.0000
18.0000
1.2331
testing/NTCIR/xhtml5/10/math9602211/math9602211_1_133.xhtml
d
f
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
,
d
c
f
=
∂
f
∂
x
d
y
-
∂
f
∂
y
d
x
,
Doc 26
0.6861
-1.0000
15.0000
0.6861
testing/NTCIR/xhtml5/6/0903.4562/0903.4562_1_42.xhtml
d
H
=
∂
H
∂
x
d
x
+
∂
H
∂
y
d
y
.
Doc 27
0.6861
-1.0000
15.0000
0.6861
testing/NTCIR/xhtml5/6/0902.4522/0902.4522_1_34.xhtml
d
H
=
∂
H
∂
x
d
x
+
∂
H
∂
y
d
y
.
Doc 28
0.6861
-1.0000
11.0000
1.3722
testing/NTCIR/xhtml5/9/1312.6380/1312.6380_1_38.xhtml
d
s
=
∂
s
∂
m
d
m
+
∂
s
∂
q
d
q
.
d
ϕ
H
=
∂
ϕ
H
∂
m
d
m
+
∂
ϕ
H
∂
q
d
q
,
Doc 29
0.6861
-1.0000
11.0000
0.6861
testing/NTCIR/xhtml5/8/1202.4995/1202.4995_1_67.xhtml
d
E
=
∂
E
∂
m
d
m
+
∂
E
∂
J
d
J
.
Doc 30
0.6861
-1.0000
11.0000
0.6861
testing/NTCIR/xhtml5/9/1312.7478/1312.7478_1_94.xhtml
d
E
=
∂
E
∂
M
d
M
+
∂
E
∂
Q
d
Q
,
Doc 31
0.6861
-2.0000
11.0000
0.6861
testing/NTCIR/xhtml5/2/hep-th0106195/hep-th0106195_1_49.xhtml
d
I
=
∂
I
∂
a
d
a
+
∂
I
∂
u
i
d
u
i
Doc 32
0.6861
-5.0000
15.0000
0.6861
testing/NTCIR/xhtml5/6/0902.3569/0902.3569_1_34.xhtml
d
H
=
∂
H
∂
x
i
d
x
i
+
∂
H
∂
y
i
d
y
i
.
Doc 33
0.6861
-5.0000
13.0000
0.6861
testing/NTCIR/xhtml5/2/hep-th0106136/hep-th0106136_1_47.xhtml
d
x
i
=
∂
x
i
∂
t
d
t
+
∂
x
i
∂
y
j
d
y
j
Doc 34
0.6651
-9.0000
18.0000
0.6651
testing/NTCIR/xhtml5/5/0810.3434/0810.3434_1_11.xhtml
d
f
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
+
∂
f
∂
z
d
z
.
Doc 35
0.6651
-16.0000
14.0000
0.6651
testing/NTCIR/xhtml5/2/math-ph0011004/math-ph0011004_1_26.xhtml
d
q
=
∂
H
′
∂
p
q
(
τ
)
d
τ
+
∂
H
′
t
∂
p
q
(
τ
)
d
t
=
p
q
d
t
,
Doc 36
0.6429
-29.0000
16.0000
0.6429
testing/NTCIR/xhtml5/10/math9904173/math9904173_1_21.xhtml
d
f
=
∂
(
r
)
f
∂
z
d
z
+
∂
(
r
)
f
∂
z
*
d
z
*
=
d
z
∂
(
l
)
f
∂
z
+
d
z
*
∂
(
l
)
f
∂
z
*
,
Doc 37
0.6258
-2.0000
11.0000
0.6258
testing/NTCIR/xhtml5/1/math0005147/math0005147_1_19.xhtml
d
v
=
∂
u
∂
t
d
t
+
∂
u
∂
η
d
η
.
Doc 38
0.6258
-2.0000
11.0000
0.6258
testing/NTCIR/xhtml5/1/math0005147/math0005147_1_12.xhtml
d
v
=
∂
u
∂
t
d
t
+
∂
u
∂
η
d
η
.
Doc 39
0.6258
-12.0000
12.0000
0.6258
testing/NTCIR/xhtml5/1/hep-th0003242/hep-th0003242_1_65.xhtml
d
F
a
=
∂
F
a
∂
ϕ
i
d
ϕ
i
+
∂
F
a
∂
ϕ
¯
i
d
ϕ
¯
i
=
0
Doc 40
0.6258
-17.0000
13.0000
0.6258
testing/NTCIR/xhtml5/7/1012.0411/1012.0411_1_10.xhtml
d
f
(
r
,
M
,
q
)
=
∂
f
∂
r
d
r
+
∂
f
∂
M
d
M
+
∂
f
∂
q
d
q
=
0
Doc 41
0.6076
-1.0000
16.0000
1.0974
testing/NTCIR/xhtml5/3/math0401039/math0401039_1_48.xhtml
θ
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
θ
*
=
-
∂
f
∂
y
d
x
+
∂
f
∂
x
d
y
Doc 42
0.6076
-1.0000
16.0000
1.0974
testing/NTCIR/xhtml5/6/0901.1741/0901.1741_1_35.xhtml
θ
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
θ
*
=
-
∂
f
∂
y
d
x
+
∂
f
∂
x
d
y
Doc 43
0.6076
-15.0000
13.0000
0.6076
testing/NTCIR/xhtml5/4/math-ph0509052/math-ph0509052_1_16.xhtml
ω
g
r
a
d
(
p
)
=
d
p
=
∂
p
∂
x
1
d
x
1
+
∂
p
∂
x
3
d
x
3
.
Doc 44
0.6033
-17.0000
15.0000
0.6033
testing/NTCIR/xhtml5/3/math0401039/math0401039_1_19.xhtml
d
θ
0
=
∂
a
∂
x
1
d
x
1
+
∂
a
∂
x
2
d
x
2
+
∂
a
∂
x
3
d
x
3
,
Doc 45
0.5864
-5.0000
11.0000
0.5864
testing/NTCIR/xhtml5/8/1110.0851/1110.0851_1_37.xhtml
d
θ
1
=
∂
θ
1
∂
θ
d
θ
+
∂
θ
1
∂
r
d
r
Doc 46
0.5864
-6.0000
13.0000
0.5864
testing/NTCIR/xhtml5/6/0911.1138/0911.1138_1_4.xhtml
δ
f
=
∂
f
∂
y
δ
y
+
∂
f
∂
y
′
δ
y
′
Doc 47
0.5864
-7.0000
11.0000
0.5864
testing/NTCIR/xhtml5/6/0912.4972/0912.4972_1_66.xhtml
d
x
k
=
∂
x
k
∂
w
d
w
+
∂
x
k
∂
w
¯
d
w
¯
Doc 48
0.5864
-8.0000
12.0000
0.5864
testing/NTCIR/xhtml5/8/1201.3768/1201.3768_1_123.xhtml
λ
d
x
=
μ
d
y
+
∂
Q
∂
x
d
x
+
∂
Q
∂
λ
d
λ
,
Doc 49
0.5864
-16.0000
12.0000
0.5864
testing/NTCIR/xhtml5/4/hep-th0507169/hep-th0507169_1_13.xhtml
-
H
-
2
(
∂
H
∂
R
d
R
+
∂
H
∂
x
d
x
+
∂
H
∂
θ
d
θ
)
∧
d
4
x
Doc 50
0.5864
-26.0000
14.0000
0.5864
testing/NTCIR/xhtml5/6/1003.4999/1003.4999_1_59.xhtml
α
=
1
2
∂
P
∂
x
d
x
+
1
2
∂
P
∂
y
d
y
+
∂
H
ℂ
∂
x
d
x
+
∂
H
ℂ
∂
y
d
y
.
Doc 51
0.5683
-8.0000
14.0000
0.5683
testing/NTCIR/xhtml5/5/0711.1446/0711.1446_1_24.xhtml
𝒅
=
d
+
δ
y
=
∂
∂
x
μ
d
x
μ
+
∂
∂
y
d
y
,
Doc 52
0.5683
-10.0000
13.0000
0.5683
testing/NTCIR/xhtml5/6/1003.4999/1003.4999_1_60.xhtml
θ
=
π
*
(
∂
H
ℂ
∂
x
d
x
+
∂
H
ℂ
∂
y
d
y
)
/
z
k
Doc 53
0.5683
-12.0000
12.0000
0.5683
testing/NTCIR/xhtml5/9/1212.4873/1212.4873_1_172.xhtml
∂
∂
t
ω
~
=
∂
ω
i
∂
t
d
x
i
+
∂
ω
¯
i
∂
t
d
y
i
Doc 54
0.5637
-8.0000
13.0000
0.5637
testing/NTCIR/xhtml5/11/math9910116/math9910116_1_576.xhtml
ϕ
*
(
α
Z
)
=
d
F
-
∂
F
∂
x
d
x
-
∂
F
∂
y
d
y
Doc 55
0.5470
-18.0000
12.0000
0.5470
testing/NTCIR/xhtml5/5/0707.1946/0707.1946_1_88.xhtml
1
-
∥
∇
u
∥
0
2
d
u
*
=
∂
u
∂
x
2
d
x
1
-
∂
u
∂
x
1
d
x
2
,
Doc 56
0.5393
-36.0000
16.0000
0.5393
testing/NTCIR/xhtml5/1/math0511009/math0511009_1_15.xhtml
∂
2
|
x
y
|
∂
x
∂
y
d
x
+
∂
2
|
x
y
|
∂
y
2
d
y
+
∂
2
|
y
z
|
∂
y
2
d
y
+
∂
2
|
y
z
|
∂
y
∂
z
d
z
=
0
,
Doc 57
0.4992
-3.0000
14.0000
0.4992
testing/NTCIR/xhtml5/3/math0502154/math0502154_1_119.xhtml
d
z
=
p
d
x
+
q
d
y
=
p
d
u
+
v
d
y
Doc 58
0.4992
-8.0000
15.0000
0.4992
testing/NTCIR/xhtml5/7/1011.6076/1011.6076_1_11.xhtml
d
f
=
δ
f
δ
x
i
d
x
i
+
∂
f
∂
y
i
δ
y
i
.
Doc 59
0.4992
-9.0000
12.0000
0.4992
testing/NTCIR/xhtml5/6/0901.1179/0901.1179_1_9.xhtml
d
𝐇
=
δ
𝐇
δ
x
i
d
x
i
+
∂
𝐇
∂
y
i
δ
y
i
.
Doc 60
0.4992
-9.0000
12.0000
0.4992
testing/NTCIR/xhtml5/6/0903.0224/0903.0224_1_5.xhtml
d
𝐇
=
δ
𝐇
δ
x
i
d
x
i
+
∂
𝐇
∂
y
i
δ
y
i
.
Doc 61
0.4992
-18.0000
11.0000
0.4992
testing/NTCIR/xhtml5/8/1111.4962/1111.4962_1_3.xhtml
d
s
2
=
Λ
2
d
x
2
+
R
2
d
Ω
2
=
(
E
φ
)
2
E
x
d
x
2
+
E
x
d
Ω
2
.
Doc 62
0.4898
-7.0000
11.0000
0.4898
testing/NTCIR/xhtml5/5/0707.0771/0707.0771_1_266.xhtml
d
c
λ
=
-
∂
λ
∂
y
d
x
+
∂
λ
∂
x
d
y
Doc 63
0.4898
-7.0000
11.0000
0.4898
testing/NTCIR/xhtml5/3/math0310474/math0310474_1_68.xhtml
d
c
h
=
-
∂
h
∂
y
d
x
+
∂
h
∂
x
d
y
Doc 64
0.4843
-4.0000
14.0000
0.4843
testing/NTCIR/xhtml5/3/math0408397/math0408397_1_46.xhtml
=
∂
f
∂
x
y
′
x
+
∂
f
∂
y
y
′
y
Doc 65
0.4843
-14.0000
12.0000
0.9433
testing/NTCIR/xhtml5/1/0801.0897/0801.0897_1_20.xhtml
d
z
=
p
d
x
+
q
d
y
=
p
d
x
+
A
q
d
x
+
x
q
d
A
+
q
d
C
d
z
=
p
d
x
+
q
d
y
=
B
d
x
+
x
d
B
+
d
D
Doc 66
0.4681
-6.0000
11.0000
0.4681
testing/NTCIR/xhtml5/2/gr-qc0101070/gr-qc0101070_1_20.xhtml
d
F
=
∂
F
l
∂
x
i
d
x
i
⊗
∂
∂
F
l
Doc 67
0.4681
-7.0000
11.0000
0.4681
testing/NTCIR/xhtml5/6/0910.3739/0910.3739_1_19.xhtml
d
i
=
∂
∂
x
i
d
x
i
=
∂
∂
t
i
d
t
i
Doc 68
0.4590
-12.0000
11.0000
0.4590
testing/NTCIR/xhtml5/7/1107.3847/1107.3847_1_71.xhtml
g
=
p
d
x
1
2
+
q
d
y
1
2
+
r
d
x
2
2
+
s
d
y
2
2
.
Doc 69
0.4505
-7.0000
12.0000
0.4505
testing/NTCIR/xhtml5/5/0808.2952/0808.2952_1_359.xhtml
d
=
∂
∂
x
1
d
x
1
+
∂
∂
x
2
d
x
2
Doc 70
0.4315
-23.0000
13.0000
0.4315
testing/NTCIR/xhtml5/4/math-ph0606021/math-ph0606021_1_15.xhtml
d
ξ
=
ξ
x
d
x
+
ξ
y
d
y
=
(
-
2
u
x
u
y
)
d
x
+
[
𝒦
(
x
)
u
x
2
-
u
y
2
]
d
y
.
Doc 71
0.4286
-5.0000
12.0000
0.4286
testing/NTCIR/xhtml5/4/math0606304/math0606304_1_28.xhtml
f
x
=
∂
f
∂
x
,
f
y
=
∂
f
∂
y
Doc 72
0.4286
-7.0000
12.0000
0.4286
testing/NTCIR/xhtml5/5/0804.2208/0804.2208_1_167.xhtml
div
f
=
∂
f
∂
x
1
+
…
+
∂
f
∂
x
n
.
Doc 73
0.4286
-9.0000
10.0000
0.4286
testing/NTCIR/xhtml5/4/math0702720/math0702720_1_43.xhtml
f
,
ϱ
=
∂
f
∂
ϱ
,
f
,
3
=
∂
f
∂
x
3
.
Doc 74
0.4186
-9.0000
10.0000
0.4186
testing/NTCIR/xhtml5/3/math0302011/math0302011_1_90.xhtml
d
z
=
e
d
x
e
+
i
d
x
i
+
j
d
x
j
+
k
d
x
k
Doc 75
0.4112
-14.0000
11.0000
0.4112
testing/NTCIR/xhtml5/5/0712.1682/0712.1682_1_16.xhtml
d
f
=
∂
f
∂
x
1
d
x
1
+
…
+
∂
f
∂
x
n
d
x
n
.
Doc 76
0.4112
-23.0000
11.0000
0.8224
testing/NTCIR/xhtml5/2/math0105242/math0105242_1_56.xhtml
d
f
ε
′
1
=
∂
f
ε
′
1
∂
x
1
d
x
1
+
⋯
+
∂
f
ε
′
1
∂
x
n
d
x
n
,
d
f
ε
′
k
=
∂
f
ε
′
k
∂
x
1
d
x
1
+
⋯
+
∂
f
ε
′
k
∂
x
n
d
x
n
.
Doc 77
0.3890
-6.0000
11.0000
0.3890
testing/NTCIR/xhtml5/7/1008.1565/1008.1565_1_5.xhtml
ω
(
⋅
)
=
∂
∂
y
d
x
-
∂
∂
x
d
y
Doc 78
0.3780
-27.0000
10.0000
0.3780
testing/NTCIR/xhtml5/9/1212.4873/1212.4873_1_95.xhtml
Ω
=
Ω
i
d
x
i
+
Ω
¯
i
d
x
i
=
(
∂
L
∂
y
i
-
ω
i
)
d
x
i
+
∂
L
∂
z
i
d
x
i
=
Doc 79
0.3719
-2.0000
10.0000
0.3719
testing/NTCIR/xhtml5/10/physics9612015/physics9612015_1_87.xhtml
d
f
=
∂
f
∂
x
μ
d
x
μ
Doc 80
0.3719
-3.0000
10.0000
0.7438
testing/NTCIR/xhtml5/1/math0004162/math0004162_1_14.xhtml
d
f
=
∂
f
∂
x
i
d
x
i
,
d
2
f
=
∂
2
f
∂
x
i
∂
x
j
d
x
(
i
d
x
j
)
+
∂
f
∂
x
i
d
2
x
i
,
Doc 81
0.3719
-3.0000
10.0000
0.3719
testing/NTCIR/xhtml5/10/hep-th9604142/hep-th9604142_1_135.xhtml
d
f
=
∂
f
∂
x
i
d
x
i
.
Doc 82
0.3719
-4.0000
10.0000
0.7438
testing/NTCIR/xhtml5/3/math0307303/math0307303_1_10.xhtml
d
a
f
=
∂
f
∂
x
i
d
a
x
i
d
1
d
2
f
=
∂
2
f
∂
x
i
∂
x
j
d
1
x
i
d
2
x
j
+
∂
f
∂
x
i
d
1
d
2
x
i
Doc 83
0.3719
-4.0000
10.0000
0.3719
testing/NTCIR/xhtml5/10/hep-th9402068/hep-th9402068_1_9.xhtml
d
f
=
∂
T
f
∂
x
μ
d
x
μ
,
Doc 84
0.3644
-27.0000
9.0000
0.3644
testing/NTCIR/xhtml5/9/1212.4873/1212.4873_1_99.xhtml
Ω
=
Ω
i
d
x
i
+
Ω
¯
i
d
x
i
=
(
∂
L
∂
y
i
-
ω
i
)
d
x
i
+
∂
L
∂
z
i
d
x
i
Doc 85
0.3493
-23.0000
10.0000
0.3493
testing/NTCIR/xhtml5/4/math0503611/math0503611_1_8.xhtml
d
=
d
x
∂
∂
x
+
∂
∂
x
¯
d
x
¯
=
∂
∂
x
d
x
+
d
x
¯
∂
∂
x
¯
Doc 86
0.3241
-12.0000
9.0000
0.3241
testing/NTCIR/xhtml5/11/math-ph9912004/math-ph9912004_1_126.xhtml
d
x
~
i
=
∂
x
~
i
∂
x
j
d
x
j
=
F
*
d
x
i
F
.
Doc 87
0.3241
-13.0000
9.0000
0.3241
testing/NTCIR/xhtml5/3/math0311429/math0311429_1_111.xhtml
d
s
2
=
e
y
d
x
2
+
e
y
y
d
y
2
+
y
d
z
2
.
Doc 88
0.3096
-1.0000
8.0000
0.3096
testing/NTCIR/xhtml5/4/math-ph0702007/math-ph0702007_1_86.xhtml
d
ψ
=
u
d
x
+
v
d
y
Doc 89
0.3096
-1.0000
8.0000
0.3096
testing/NTCIR/xhtml5/3/math0502154/math0502154_1_68.xhtml
d
z
=
p
d
u
+
v
d
y
Doc 90
0.3096
-1.0000
8.0000
0.3096
testing/NTCIR/xhtml5/1/0801.0897/0801.0897_1_17.xhtml
d
z
=
p
d
x
+
q
d
y
Doc 91
0.3096
-1.0000
8.0000
0.3096
testing/NTCIR/xhtml5/1/0801.0897/0801.0897_1_19.xhtml
d
z
=
p
d
x
+
q
d
y
Doc 92
0.3096
-13.0000
7.0000
0.3096
testing/NTCIR/xhtml5/1/0801.0897/0801.0897_1_1.xhtml
d
f
=
α
d
x
+
β
d
y
and
d
g
=
β
d
x
+
γ
d
y
.
Doc 93
0.3096
-15.0000
6.0000
0.3096
testing/NTCIR/xhtml5/1/0710.3956/0710.3956_1_3.xhtml
d
V
=
M
d
x
+
P
d
p
+
p
d
P
=
M
d
x
+
d
⋅
P
p
.
Doc 94
0.2835
-6.0000
8.0000
0.2835
testing/NTCIR/xhtml5/3/math0401039/math0401039_1_50.xhtml
d
π
θ
=
p
x
d
x
+
p
y
d
y
=
0
Doc 95
0.2835
-6.0000
8.0000
0.2835
testing/NTCIR/xhtml5/6/0901.1741/0901.1741_1_37.xhtml
d
π
θ
=
p
x
d
x
+
p
y
d
y
=
0
Doc 96
0.2632
-15.0000
9.0000
0.2632
testing/NTCIR/xhtml5/4/math0702438/math0702438_1_105.xhtml
A
1
d
x
1
+
A
2
d
x
2
=
A
~
1
d
y
1
+
A
~
2
d
y
2
Doc 97
0.2535
-7.0000
8.0000
0.2535
testing/NTCIR/xhtml5/6/0908.4316/0908.4316_1_27.xhtml
ω
=
p
x
d
x
+
p
y
d
y
+
p
z
d
z
Doc 98
0.2535
-13.0000
9.0000
0.2535
testing/NTCIR/xhtml5/6/0910.2933/0910.2933_1_50.xhtml
d
H
d
x
=
d
H
d
y
=
d
V
d
x
=
d
V
d
y
=
0
,
Doc 99
0.2424
-2.0000
8.0000
0.2424
testing/NTCIR/xhtml5/8/1112.3637/1112.3637_1_75.xhtml
d
f
=
x
d
x
+
y
d
y
Doc 100
0.2424
-13.0000
7.0000
0.2424
testing/NTCIR/xhtml5/4/math-ph0506037/math-ph0506037_1_25.xhtml
d
I
=
I
x
d
x
+
I
y
d
y
+
I
y
′
d
y
′
=
0
Doc 101
0.2424
-13.0000
7.0000
0.2424
testing/NTCIR/xhtml5/4/math-ph0508001/math-ph0508001_1_25.xhtml
d
I
=
I
x
d
x
+
I
y
d
y
+
I
y
′
d
y
′
=
0