Returned 92 matches (100 formulae, 62 docs)
    Lookup 12.022 ms, Re-ranking 5761.810 ms
    Found 128928 tuple postings, 66829 formulae, 12859 documents
[ formulas ] [ documents ] [ documents-by-formula ]

0.9365
-6.0000
29.0000
( x + y ) n = k = 0 n ( n k ) x n - k y k = k = 0 n ( n k ) x k y n - k .

0.5554
-2.0000
17.0000
( x + y ) n = k = 0 n ( n k ) x n - k y k

0.5554
-2.0000
13.0000
( y + x ) n = k = 0 n ( n k ) y n - k x k

0.5554
-3.0000
14.0000
( x + y ) n = i = 0 n ( n i ) x n - i y i ,

0.4918
-13.0000
15.0000
( x + y ) n + 1 = k = 0 n + 1 ( n + 1 k ) x n + 1 - k y k ,

0.4600
-8.0000
14.0000
𝐻𝑒 n ( x + y ) = k = 0 n ( n k ) x n - k 𝐻𝑒 k ( y )

0.4364
-13.0000
13.0000
( Δ n c ) 0 = k = 0 n ( n k ) ( - 1 ) n - k z k = ( z - 1 ) n .

0.4364
-60.0000
15.0000
P n ( x ) = 1 2 n k = 0 n ( n k ) 2 ( x - 1 ) n - k ( x + 1 ) k = k = 0 n ( n k ) ( - n - 1 k ) ( 1 - x 2 ) k = 2 n k = 0 n x k ( n k ) ( n + k - 1 2 n ) ,

0.4282
-12.0000
9.0000
1 = 1 n = ( p + q ) n = k = 0 n ( n k ) p k q n - k .

0.4108
-37.0000
11.0000
c n = i = 0 n x i i ! y n - i ( n - i ) ! = 1 n ! i = 0 n ( n i ) x i y n - i = ( x + y ) n n !

0.4039
-11.0000
12.0000
Δ n = ( E - I ) n = k = 0 n ( n k ) ( - 1 ) n - k E k ,

0.3964
-7.0000
9.0000
( x + y ) α = ν α ( α ν ) x ν y α - ν .

0.3964
-8.0000
8.0000
( p + q ) n = k = 0 ( n k ) p k q n - k ,

0.3919
-26.0000
12.0000
T 0 ( x ) = 1 ,   T n ( x ) = k = 1 n S ( n , k ) x k = k = 1 n { n k } x k ,  n > 0 ,

0.3822
-11.0000
14.0000
B n ( x ) = k = 0 n ( n k ) b n - k x k = ( b + x ) n ,

0.3822
-35.0000
14.0000
( 1 + 1 / n ) n = k = 0 n ( n k ) / n k = k = 0 n 1 k ! × n n × n - 1 n × × n - k + 1 n ,

0.3788
-6.0000
7.0000
B n ( x ) = j = 0 n ( n j ) B j x n - j

0.3788
-56.0000
10.0000
k = 0 n ( n k ) B n - k ( y ) x k = k = 0 n ( n k ) L ( ( 2 y ) n - k ) x k = L ( k = 0 n ( n k ) ( 2 y ) n - k x k ) = L ( ( 2 y + x ) n ) = B n ( x + y ) .

0.3714
-33.0000
9.0000
j = k n ( n j ) ( - 1 ) n - j = - j = 0 k - 1 ( n j ) ( - 1 ) n - j = ( - 1 ) n - k ( n - 1 k - 1 ) .

0.3646
-8.0000
9.0000
( x 1 + + x m ) n = | α | = n ( n α ) x α

0.3646
-12.0000
11.0000
s n ( x + y ) = k = 0 n ( n k ) x k s n - k ( y ) .

0.3646
-19.0000
9.0000
1 e k = x k n ( k - x ) ! = k = 0 n ( n k ) B k x n - k

0.3646
-61.0000
9.0000
B n ( x ) = k = 0 n ( n k ) B n - k x k applying the definition of Bernoulli polynomials = k = 0 n ( n k ) L ( y n - k ) x k applying the above definition = L ( k = 0 n ( n k ) y n - k x k ) since L is linear = L ( ( y + x ) n ) .

0.3596
-5.0000
10.0000
( 1 + x ) n = k = 0 n ( n k ) x k .

0.3596
-13.0000
11.0000
Δ n [ f ] ( x ) = k = 0 n ( n k ) ( - 1 ) n - k f ( x + k )

0.3468
-9.0000
9.0000
u n = k = 0 n ( n k ) a k ( - c ) n - k b k

0.3468
-10.0000
10.0000
( x y ) n = j = 1 n - 1 ( n j ) x j y n - j

0.3468
-11.0000
7.0000
( f g ) ( n ) = k = 0 n ( n k ) f ( k ) g ( n - k )

0.3468
-44.0000
11.0000
H n ( x + y ) = k = 0 n ( n k ) H k ( x ) ( 2 y ) ( n - k ) = 2 - n 2 k = 0 n ( n k ) H n - k ( x 2 ) H k ( y 2 ) .

0.3468
-55.0000
10.0000
( x 1 + y 1 ) n 1 ( x d + y d ) n d = k 1 = 0 n 1 k d = 0 n d ( n 1 k 1 ) x 1 k 1 y 1 n 1 - k 1 ( n d k d ) x d k d y d n d - k d .

0.3328
-11.0000
8.0000
( s + t ) n = k = 0 n ( n k ) ( s ) k ( t ) n - k

0.3328
-11.0000
8.0000
B n ( x ) = k = 0 n ( n n - k ) b k x n - k ,

0.3328
-12.0000
10.0000
E n ( x + y ) = k = 0 n ( n k ) E k ( x ) y n - k
B n ( x + y ) = k = 0 n ( n k ) B k ( x ) y n - k

0.3328
-12.0000
10.0000
( x + y ) n = k = 0 n ( n k ) ( x ) n - k ( y ) k ,

0.3328
-12.0000
8.0000
B n ( y + x ) = k = 0 n ( n k ) B n - k ( y ) x k

0.3328
-13.0000
10.0000
p n ( x + y ) = k = 0 n ( n k ) p k ( x ) y n - k .

0.3328
-13.0000
8.0000
B n ( y + x ) = k = 0 n ( n k ) B n - k ( y ) x k .

0.3328
-14.0000
10.0000
p n ( x + y ) = k = 0 n ( n k ) p k ( x ) p n - k ( y )

0.3328
-15.0000
10.0000
p n ( x + y ) = k = 0 n ( n k ) p k ( x ) p n - k ( y ) .
s n ( x + y ) = k = 0 n ( n k ) p k ( x ) s n - k ( y ) .

0.3328
-15.0000
8.0000
T n ( λ + μ ) = k = 0 n ( n k ) T k ( λ ) T n - k ( μ ) .

0.3328
-23.0000
10.0000
𝐻𝑒 n [ α + β ] ( x + y ) = k = 0 n ( n k ) 𝐻𝑒 k [ α ] ( x ) 𝐻𝑒 n - k [ β ] ( y ) .

0.3273
-8.0000
9.0000
p n ( x ) = k = 0 n ( n k ) c k x n - k ;

0.3273
-28.0000
10.0000
ν = 0 n b ν , n ( x ) = ν = 0 n ( n ν ) x ν ( 1 - x ) n - ν = ( x + ( 1 - x ) ) n = 1.

0.3148
-5.0000
10.0000
( 1 + x ) n = k = 0 n ( n k ) x k

0.3148
-6.0000
10.0000
( 1 + x ) n = k = 0 n ( n k ) x k .

0.3148
-11.0000
10.0000
( 1 + x + 1 / x ) n = k = - n n ( n k ) 2 x k

0.3148
-15.0000
9.0000
( x 1 ) n = k 1 = n ( n k 1 ) x 1 k 1 ;  k 1 , n 0

0.3148
-15.0000
8.0000
μ n ( t + s ) = k = 0 n ( n k ) μ k ( t ) μ n - k ( s ) .

0.3148
-24.0000
7.0000
d n f = k = 0 n ( n k ) n f x k y n - k ( d x ) k ( d y ) n - k ,

0.3010
-11.0000
7.0000
Δ ( X n ) = k = 0 n ( n k ) X k X n - k ,

0.3010
-20.0000
6.0000
cos n θ = k = 0 n ( n k ) cos k θ sin n - k θ cos ( 1 2 ( n - k ) π )
sin n θ = k = 0 n ( n k ) cos k θ sin n - k θ sin ( 1 2 ( n - k ) π )
sin n x = k = 0 n ( n k ) cos k x sin n - k x sin ( 1 2 ( n - k ) π )
0.3010
-21.0000
6.0000
cos n x = k = 0 n ( n k ) cos k x sin n - k x cos ( 1 2 ( n - k ) π ) .

0.2948
-27.0000
8.0000
( 1 + x + x 2 ) n = j = 0 2 n ( n j - n ) 2 x j = k = - n n ( n k ) 2 x n + k

0.2948
-33.0000
6.0000
d n d x n [ f ( x ) g ( x ) ] = k = 0 n ( n k ) d n - k d x n - k f ( x ) d k d x k g ( x )

0.2827
-7.0000
8.0000
( 1 + x ) n = r = 0 ( n r ) x r .

0.2827
-10.0000
9.0000
( 1 + x ) n = k = 0 ( n k ) x k | x | < 1

0.2827
-10.0000
9.0000
B n ( x ) = k = 0 n ( n k ) b n - k x k ,

0.2827
-13.0000
9.0000
L n ( x ) = k = 0 n ( n k ) ( - 1 ) k k ! x k .

0.2827
-21.0000
8.0000
( u v ) ( n ) ( x ) = k = 0 n ( n k ) u ( n - k ) ( x ) v ( k ) ( x ) .

0.2827
-36.0000
6.0000
𝐁 ( t ) = i = 0 n ( n i ) t i ( 1 - t ) n - i 𝐏 i w i i = 0 n ( n i ) t i ( 1 - t ) n - i w i .

0.2692
-8.0000
6.0000
c n = k = 0 n ( n k ) a k b n - k

0.2692
-12.0000
7.0000
n , k ( n k ) x k y n = 1 1 - y - x y .

0.2692
-13.0000
7.0000
n , k ( n + k k ) x k y n = 1 1 - x - y .

0.2692
-15.0000
4.0000
Δ n x m = k = 0 n ( - 1 ) n - k ( n k ) ( x + k ) m

0.2692
-22.0000
7.0000
n , k ( n k ) x k y n = 1 1 - ( 1 + x ) y = 1 1 - y - x y .

0.2622
-29.0000
6.0000
P n ( α , β ) ( x ) = s ( n + α s ) ( n + β n - s ) ( x - 1 2 ) n - s ( x + 1 2 ) s

0.2505
-3.0000
8.0000
k = 0 n ( n k ) k n - k

0.2505
-7.0000
8.0000
( x + 1 ) n = i = 0 n a i x i .

0.2505
-10.0000
6.0000
b n = k = 0 n ( n k ) 2 ( n + k k ) 2 .

0.2505
-30.0000
5.0000
k = 0 n ( n k ) 𝐻𝑒 k [ α ] ( x ) 𝐻𝑒 n - k [ - α ] ( y ) = 𝐻𝑒 n [ 0 ] ( x + y ) = ( x + y ) n .

0.2373
-10.0000
7.0000
D ( n ) = k = 0 n ( n k ) ( n + k k ) .

0.2373
-14.0000
7.0000
H n ( x ) = k = 0 n ( n + k n - k ) ( - x ) k .

0.2182
-24.0000
6.0000
( x + Δ x ) n = x n + n x n - 1 Δ x + ( n 2 ) x n - 2 ( Δ x ) 2 + .

0.2054
-17.0000
5.0000
( x ) n = k = 1 n ( - 1 ) n - k L ( n , k ) x ( k ) .

0.2054
-19.0000
6.0000
n , k 1 ( n + k ) ! ( n + k k ) x k y n = e x + y .

0.2054
-49.0000
6.0000
( x + y ) n = ( n 0 ) x n y 0 + ( n 1 ) x n - 1 y 1 + ( n 2 ) x n - 2 y 2 + + ( n n - 1 ) x 1 y n - 1 + ( n n ) x 0 y n ,

0.1961
-28.0000
7.0000
( 1 + x ) k = 0 n ( α k ) x k = k = 0 n ( α + 1 k ) x k + ( α n ) x n + 1 ,

0.1857
-8.0000
6.0000
Q ( x ) = i = 0 n - 2 b i x i
e ( x ) = i = 0 n - 1 e i x i
R ( x ) = i = 0 n - 4 f i x i
P ( x ) = j = 0 n - 1 u j x j
s ( x ) = i = 0 n - 1 c i x i

0.1857
-21.0000
6.0000
P n ~ ( x ) = ( - 1 ) n k = 0 n ( n k ) ( n + k k ) ( - x ) k .

0.1734
-7.0000
5.0000
M ( x ) = i = 0 n - 1 x i

0.1734
-8.0000
5.0000
Tr ( x ) = i = 0 n - 1 x q i

0.1734
-8.0000
5.0000
k ( n k ) x k = ( 1 + x ) n .

0.1734
-13.0000
5.0000
k = 0 n ( n k ) ( n n - k ) = ( 2 n n ) .

0.1734
-13.0000
3.0000
t n = k = 0 n ( - 1 ) n - k ( n k ) a k

0.1529
-33.0000
4.0000
f X ( x ; n ) = 1 2 ( n - 1 ) ! k = 0 n ( - 1 ) k ( n k ) ( x - k ) n - 1 sgn ( x - k )

0.1529
-34.0000
4.0000
θ n ( x ) = x n y n ( 1 / x ) = k = 0 n ( 2 n - k ) ! ( n - k ) ! k ! x k 2 n - k

0.1413
-8.0000
5.0000
( x 2 + y 2 ) 2 = a x 2 y .

0.1413
-9.0000
5.0000
( x 2 + y 2 ) 3 = 4 x 2 y 2 .

0.1413
-9.0000
5.0000
w 2 + y ( x 2 + y n - 2 ) = 0

0.1413
-24.0000
3.0000
Φ n ( x ) = 1 + x + x 2 + + x n - 1 = i = 0 n - 1 x i .

0.1195
-4.0000
5.0000
( x y ) n = x n y n

0.1195
-12.0000
5.0000
( x y ) n = x n y n [ y , x ] ( n 2 ) .