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Abstract—To fill a gap in online educational tools, we are
working to support search in lecture videos using formulas
from lecture notes and vice versa. We use an existing system to
convert single-shot lecture videos to keyframe images that capture
whiteboard contents along with the times they appear. We train
classifiers for handwritten symbols using the CROHME dataset,
and for LATEX symbols using generated images. Symbols detected
in video keyframes and LATEX formula images are indexed using
Line-of-Sight graphs. For search, we lookup pairs of symbols that
can ‘see’ each other, and connected pairs are merged to identify
the largest match within each indexed image. We rank matches
using symbol class probabilities and angles between symbol pairs.
We demonstrate how our method effectively locates formulas
between typeset and handwritten images using a set of linear
algebra lectures. By combining our search engine (Tangent-V)
with temporal keyframe metadata, we are able to navigate to
where a query formula in LATEX is first handwritten in a lecture
video. Our system is available as open-source. For other domains,
only the OCR modules require updating.

I. INTRODUCTION

Despite the continuous growth in production of lecture
videos, there has been limited attention to the problem of
effective indexing and retrieval for graphics such as math in
videos. Standard video search engines rely mostly upon text-
based search of manual annotations, which are rare because
of the effort needed to produce them.

To address this situation, we have created the visual search
engine illustrated in Figure 1. Here we use a LATEX formula im-
age to locate where the formula first appears on the whiteboard
in a matrix algebra lecture. Notice that this is a cross-modal
search: a typeset image is used to query images of handwritten
whiteboard contents. The system we use to extract keyframes
from video records metadata indicating when each connected
component on a keyframe appears [1], allowing us to navigate
to where the formula starts to be written using a single click.
Our search engine also supports the reverse search, from
handwritten query images selected from whiteboard keyframes
to LATEX formula images from course notes (see Figure 2).

We avoid indexing recognized formulas, as recognition
rates for isolated handwritten formulas are relatively low
[2]. Instead, we support image-based search of graphics in
typeset notes and handwriting within lecture videos using a
new retrieval model. This model is a generalization of our
previous method for math formula retrieval [3] in three key

ways: 1) math is represented in images rather than symbolic
representations such as LATEX code, and these images may
contain other content (e.g., text and diagrams), 2) we use a
non-hierarchical structure representation (Line-of-Sight (LOS)
graphs), and 3) we use no language models apart from that
represented in symbol recognizers, allowing extension to other
graphic types.

Our search engine is described in Sections III-V. Given a
binary image, handwritten or typeset symbol recognition is
applied. Detected symbols are then used to construct a Line-
of-Sight graph, with edges between pairs of symbols that ‘see’
one another along a straight line. Candidate symbol labels
and angles between LOS symbol pairs (edges) are used to
construct an inverted index from symbol pairs to formula
images. Formula image search is performed using a two-
layer model. In the first layer, candidate images are identified
using the LOS inverted index. In the second layer, matched
symbol pairs are aggregated to identify the largest matching
sub-graphs in each image. We present different metrics for
ranking matching sub-graphs using symbol class confidences
and the angles between matched symbol pairs in Section V.

In our experiments (Sections VI-VII), we use LATEX for-
mula images and handwritten formulas in video keyframes
to demonstrate that the proposed model is effective for both
within-modal and cross-modal search. A summary and op-
portunities for future work are provided in Section VIII.
Source code for our system (Tangent-V) and data used in our
experiments are available.1

II. RELATED WORK

Our search engine is similar in spirit to word-spotting
techniques, which avoid recognizing individual handwritten
characters to improve recall (e.g., [4]). We avoid direct recog-
nition of math because it is another hard problem: state-of-
the-art methods have achieved somewhat low recognition rates
(67.65%) for handwritten math with stroke data available [2].

More broadly, our approach is related to Content-Based
Image Retrieval (CBIR). Many CBIR approaches are derived
from the Bags-of-Visual Words (BoVW) model [5], with
candidates selected by matching shared local descriptors like

1https://www.cs.rit.edu/∼dprl/Software.html



Fig. 1. Finding a LATEX Formula within a Lecture Video. When the user clicks on the first hit in the search interface at left, the lecture video navigates to
where the leftmost ‘A’ is first drawn (we have advanced the video). Extracted whiteboard keyframes [1] that we use for video indexing are shown at right.

SIFT [6]. It is possible to learn local features or fixed-
length vector representations for retrieval of images using
different techniques including Deep Learning [7]. In math,
the spatial position of a symbol affects its meaning, and there
are multiple CBIR techniques that consider spatial constraints.
Spectral matching can be used at first, and spatial verifica-
tion techniques like RANSAC [8] can be applied later. It
is also possible to identify affine transformations that align
multiple images of a single object, and then select the most
likely transformation as the match [9], [10], [11]. Additional
robustness to elastic deformation can be achieved by applying
topological verifications [12]. The final number of candidates
to verify spatially is reduced if the index encodes some spatial
information to ensure that initial candidates have some spatial
consistency with the query [13].

Our work also falls within the field of Mathematical In-
formation Retrieval (MIR) [14]. Math expressions are hier-
archical, and thus hard to represent or match using text-
based representations. We distinguish two MIR modalities:
Symbolic and Image-based. Symbols and structure are known
in symbolic formula representations (e.g., LATEX, MathML),
while they are initially unknown for formula images. Math
retrieval tasks held at conferences have supported the im-
provement of symbolic MIR systems (e.g., [15]). However,
few approaches have been proposed for image-based MIR,
and none have used standard benchmarks for evaluation. In
the work of Marinai et al.[16], isolated mathematical symbol
images are indexed and retrieved using a BoVW approach.
Zanibbi and Yu [17] used dynamic time warping over pixels
projections to search for typeset formula images in rendered
PDF documents using handwritten queries. Chatbri et al. [18]
use connected component matching to cast votes for query
matches in images.

In our work, we apply an open-source math symbol recog-
nition system [19] to obtain candidate labels for Handwritten
and LATEX-rendered math symbols, and use angles between
matched symbol pairs to match visual structure. An initial
topology encoding is stored in the index, and an additional

spatial verification step is applied during retrieval.

III. CHARACTER RECOGNITION

Our visual search engine retrieves formulas based on pairs
of symbols and their identities, as detected within binary
images. In this Section we describe how we train our clas-
sifiers, and construct symbol class probability vectors for use
in indexing and retrieval.

Classifiers. We have adapted our open-source handwritten
math symbol classifier [19] to work with binary images. The
classifiers are constructed using Random Forests that return
probabilities sorted in decreasing order of class likelihood.
Classes are selected from the top of each list using a min-
imum cumulative probability (80%), taking at most n class
labels (n = 10). The classifier is shape descriptor-based,
including line crossings, 2D fuzzy histograms, 2D orientation
histograms, and more general trace features [19]. We adapted

(a) Whiteboard LOS Graph (b) Pruned LOS Graph

(c) LATEX Image (d) LATEX → Whiteboard

(e) Handwritten Formula (f) Whiteboard → LATEX

Fig. 2. Visual Formula Search using Line-of-Sight (LOS) Graphs. A typeset
query and a handwritten query cropped from a whiteboard image are shown.



Line of Sight (LOS) Graphs
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Fig. 3. 3D Symbol Displacement Vectors. Bottom: overlapping symbols have
the child’s center projected onto a sphere around the parent symbol.

this method for off-line data by using connected component
contours as the input traces.

Symbol Classes. Our lecture videos have associated
LATEX notes; the LATEX formulas define the symbol classes
expected in the corresponding video. We train a specialized
symbol classifier with no more than 50 classes per lecture.
Remaining symbols are added to a rejection class (“Junk”) for
shapes unlikely to belong to math expressions in that lecture.

Training. We train one handwritten and one typeset clas-
sifier per video. To train handwritten symbol classifiers, we
use expressions from the CROHME 2016 handwritten formula
dataset [2]. To improve recognition results for matrices, we
expand the dataset by adding the matrix recognition subtask
test set. To reduce the index size and improve retrieval
performance, we group classes with similar shapes (e.g., ‘x’
and ‘X’), reducing the original 101 classes in CROHME to at
most 91 classes.

We train one typeset symbol classifier per video (up to 50
classes, without a reject class). For each of our 91 CROHME
symbol classes, we generate 1000 LATEX images, using small
random aspect ratio distortions (±10%) for characters drawn
in different fonts, for a total of 91,000 training symbols.

Segmentation. For our first prototype, we used a simple
segmentation technique. Initially all connected component are
classified. We then try to join pairs of components into single
symbols (e.g., ‘=’, ‘i’). We use a k-nearest neighbour graph
(k = 2) to identify candidate merges. Two components are
joined if their combined classification confidence is higher
than that for each individual component.

IV. VISUAL CONTENT EXTRACTION AND INDEXING

In this work we assume that lecture videos are recorded
from a single, stationary camera (single-shot). These videos
are preprocessed to extract handwritten whiteboard contents.
We have used our open-source lecture summarization system
[1] to create binary image keyframes containing the extracted
whiteboard contents in a video. Formulas are extracted from
LATEX course notes using LaTeXML2 and rendered as binary
images.

Displacement Vectors. We define the relative position of
two symbol centers using a 3D unit vector 〈dx, dy, dz〉. Most
displacements can be modeled by just 〈dx, dy〉. However, this
does not represent when one symbol partially or completely

2https://dlmf.nist.gov/LaTeXML

contains the other (see Figure 3). We add a third dimension dz
to capture overlap. dz is non-zero when the symbol centers are
at a distance smaller than that from the center of parent symbol
u to its enscribing circle. We normalize all displacement
vectors to make them unit vectors.

Graph Construction and Indexing. We construct a Line-
of-Sight (LOS) graph over symbols (see Figure 2a), and then
prune edges between symbols more than twice the median
distance apart (see Figure 2b). This pruning reduces both
the index size and retrieval times. Displacement vectors for
edges (see Figure 3) are indexed by their lexicographically
sorted symbols. For example, the symbol displacement vectors
for b → a and a → b are both stored at (a, b), reversing
the vector for b → a. Each edge has a unique identifie to
allow aggregating matches for symbols with multiple OCR
hypotheses. Each symbol pair for an edge is stored using
all possible class combinations. For example, displacement
vectors and class confidences for two symbols with hypothesis
lists 〈b, 6〉 and 〈w〉 are stored in postings for (b, w) and (6, w).

V. VISUAL RETRIEVAL MODEL

Our system uses a two-stage retrieval model. The first stage
quickly finds candidate matches in the inverted index, and the
second stage finds the largest query subgraphs in candidates,
ranking hits based on symbol confidences and angles between
symbol pairs.

Stage 1: Lookup. Query LOS edges are retrieved by
lexicographically sorted symbol pairs (e.g., (a, b), (0, a)). For
binary image queries, OCR results are converted to a set
of (parent, child) symbol alternatives. Symbol pairs with
matching labels, consistent spatial alignment, and similar rel-
ative sizes are returned. Different symbol hypotheses for each
candidate edge are aggregated using the unique edge identifiers
stored in the posting lists. For example, after applying OCR
to ‘x2’ we obtain one LOS edge with parent and child symbol
hypotheses 〈x,X〉 and 〈2〉. We retrieve postings for both (2, x)
and (2, X) in the index with similar size ratios and spatial
arrangement. We aggregate matches for candidate edges with
an entry in both posting lists.

Stage 2: Structural Alignment. Next we combine indi-
vidual LOS edge matches on a candidate into a subgraph
aligned with the query (see Figure 2). First, connected LOS
subgraphs are computed and then joined if they are spatially
consistent with the query. Finally, a greedy selection for the
highest scoring alignment is produced (scoring functions are
defined below). Due to space restrictions, we provide just a
brief summary here (see [20] for details).

The initial connected subgraph matches are obtained by iter-
atively merging edge sets sharing at least one symbol that also
preserve a one-to-one query/candidate symbol mapping. Then,
connected subgraph matches on the candidate are merged if
they do not share symbols and there is a path of length ≤ 4
connecting them.

A drawback of using paths to connect matches is that the
compound match may be spatially inconsistent with the query
layout. We restrict match growing using a spatial distortion



cost. This cost is based on an estimated translation and
scale ratio between aligned query and candidate nodes. After
projecting the candidate into the query space, we compute the
average displacement for corresponding query and candidate
nodes (symbols). If this cost exceeds a threshold, matched
nodes sharing a path will not be joined. Next, subgraph
matches on a candidate are pruned by greedily keeping at
most the best scoring match per candidate symbol.

The LOS-graph refining step described in Section IV some-
times eliminates relevant connections from the graph. This
might lead to queries matching disjoint subgraphs from a can-
didate. In order to recover from such errors, we greedily merge
disconnected matches which might not have a path connecting
them, but that preserve a strict one-to-one query/candidate
symbol mapping as well as a low spatial distortion cost.

Note that in the case of lecture videos, it is possible to
find identical matches for the same query across contiguous
keyframes representing the same content from the whiteboard.
In such cases, the last step is to group matches across
contiguous keyframes of the same video that have an area
overlap above 50%. For rendered LATEX, matches should be
grouped for images associated with the same LATEX string.

Ranking. A candidate subgraph match is scored based
on corresponding symbol pairs from the query and a can-
didate formula (M ). A matched symbol pair is represented
by (Q,C), where Q = ((Ωq1 , q1), (Ωq2 , q2)) and C =
((Ωc1 , c1), (Ωc2 , c2)). Ωq1 is a set of possible symbol identities
for q1. The corresponding three-dimensional displacement
vectors between query and candidate symbol pairs are the
unit vectors ~q and ~c. The conditional probability of symbol
class ω given visual features for query symbol q1 is denoted
by p(ω|q1). We consider two ways to combine conditional
probabilities for matching labels, using their minimum m = ∧
or their product m =

∏
, as defined by f :

f(ω, q, c) =

{
p(ω|q) p(ω|c) if m =

∏
min ( p(ω|q), p(ω|c) ) otherwise

(1)

Optionally, a pair of elements will only be matched if their
size ratio is similar as defined by sr(Q,C) ≥ 0.5:

sp(u, v) =
diagonal (u)

diagonal (v)
(2)

sr(Q,C) =
min (sp (q1, q2) , sp (c1, c2))

max (sp (q1, q2) , sp (c1, c2))
(3)

We consider two match scoring functions. First, function
α(M) simply adds the product of symbol confidences and
angular differences, summing over symbol classes shared
between matched query and candidate symbols. We restrict
angular differences between ±45◦.

αΩ(Q,C) =
∑

ωi ∈ Ωq1 ∩ Ωc1
ωj ∈ Ωq2 ∩ Ωc2

f(ωi, q1, c1) f(ωj , q2, c2)

(4)

s∠(Q,C) =

{
~q·~c−cos(45◦)
1−cos(45◦) , if ~q · ~c ≥ cos(45◦)

0 otherwise
(5)

α(M) =
∑

(Q,C)∈M

αΩ(Q,C) s∠(Q,C) (6)

Our second scoring function h(M) generalizes the Max-
imum Subtree Similarity (MSS [21]). MSS is the harmonic
mean of symbol and relationship recall in expression trees. The
harmonic mean prefers joint optimization of the two quantities:
for a given sum of symbol and relationship recall scores, the
highest value is obtained when the scores are equal. Here,
we are using undirected graphs rather than trees, and need to
account for symbol probabilities and angles.

Let M contain the corresponding query and candidate
symbol pairs in match, and |NQ| and |EQ| represent the
number of nodes and edges in the query Line-of-Sight graph.
Now we can define the Line-of-Sight Similarity (h) by:

RΩ(M) =
1

|NQ|
∑

(q,c)∈M

∑
ω∈Ωq∩Ωc

f(ω, q, c) (7)

R∠(M) =
1

|EQ|
∑

(Q,C)∈M

s∠(Q,C) (8)

h(M) = 2
RΩ(M) ·R∠(M)

RΩ(M) +R∠(M)
(9)

where RΩ is probabilistically-weighted symbol recall, and R∠

is the cosine similarity-weighted edge recall (with a tolerance
of ±45◦).

VI. EXPERIMENTAL DESIGN

To test the effectiveness of the proposed method, we
used selected queries to evaluate retrieval within the set of
LATEX formulas in the course notes, within the extracted
keyframes of the videos, and between these two collections. In
our experiments, the goal was to recover the query formula ex-
actly within an image, possibly with additional elements (e.g.,
additional symbols in a larger LATEX formula, or additional
elements in a video keyframe image).

Data. We use the publicly available AccessMath dataset.3

AccessMath contains 20 lecture videos recorded using a still
camera in the classroom. The resolution of each lecture
video is 1080p. A total of 13 out of 20 lecture videos are
accompanied by lecture notes in LATEX format. We experiment
on this subset of videos with notes describing most expressions
found in each video.

Test Queries. We pseudo-randomly choose 20 unique
queries for evaluation based on the following criteria. First,
each query is randomly selected from the rendered LATEX ex-
pressions from the lecture notes. Second, the query must
also appear on at least one key-frame of the corresponding
lecture video with no more than 1 symbol of difference.

3https://www.cs.rit.edu/∼dprl/Software.html#accessmath
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Fig. 4. Twenty Test Queries used in our Experiment. For space, only LATEX versions are shown.

Third, the query must have at least 3 symbols. Fourth, the
query is not a sub-expression of any other query previously
selected. Finally, the sampled query does not completely
contain any other query previously selected. The 20 rendered
LATEX expressions selected are used as typeset LATEX queries
and their corresponding handwritten versions extracted from
the binary key-frame images. The final typeset queries from
rendered LATEX expressions are shown in Figure 4.

Indexing. After lecture video preprocessing, a total of 219
binary image keyframes binary are indexed from 13 videos,
producing 2185 symbol pair index entries, and 788,780 pair
instances in total. A total of 1471 rendered LATEX formulas
from 937 unique LATEX strings are indexed on a parallel index
for the lecture notes, which has 2,058 symbol pairs index
entries, with 152,712 pair instances in total. The lecture video
index takes 146 MB on disk while the lecture notes index
requires 28.8 MB.

Retrieval Metrics. We evaluate retrieval performance using
Recall@10 and Mean Reciprocal Rank (MRR). In this exper-
iment, a target match is an identical match of the the query,
possibly with additional unmatched elements. For query q in
the evaluation set Q, we define r as the position in the ranked
results where the query is found. The Reciprocal Rank (RR)
of q is defined as follows:

RR =

{
1
r if 1 ≤ r ≤ rmax
0 otherwise

where rmax = 10 as we only consider the top-10 matches for
each query. The Mean Reciprocal Rank (MRR) as the mean
of RR for all queries in the evaluation set Q. Recall@10 is
the percentage of evaluation queries where the target match is
found within the top-10 results.

VII. RESULTS AND DISCUSSION

Search Modalities. Evaluation results are shown in Table
I. Typeset images are very regular and both classification of
symbols and LOS-graph structures are consistent for identical
sub-expressions. On the other hand, handwritten images have
a higher number of classification errors and inconsistency in
graph structures. However, it was noticed that despite the
existing errors, the system was able to find most targets as
long as at least one small portion of the query was matched
within the target image.

The highest Recall and MRR metrics are obtained by the
same-modality search (see Table I), and as expected cross-
modality search results is less accurate. Again, this is mostly

due to the differences in representation consistency across
modalities. In particular, the hardest modality is using hand-
written content to match rendered LATEX, as confirmed by this
modality having the lowest MRR values in Table I. Hand-
written queries have more irregularities and lower top label
confidences, and they are used to match very regular images
where such errors are rare, and despite these difficulties, our
model is capable of finding most targets within the top-10
results for all conditions of this modality.

Symbol Recognition. All the handwritten content in the
lecture videos used comes from a single writer. However,
the math symbol classifier training set comes from a set of
different writers, achieving a recognition rate of 88.85% in
the Isolated Symbol Recognition task from the CROHME
2016 competition [2]. In a practical setting, we would expect
that collections of lecture videos for a single course will have
handwritten content produced by a single writer most of the
time. The symbol classifier is expected to make some mistakes,
however, we would expect such mistakes to be consistent for
similar shapes given a single handwriting style, making it
possible to match queries within writer even in the presence
of multiple classification errors.

Ranking Metrics. On average, the proposed h(M) con-
sistently finds the targets at better ranks than α(M). We
observe that a common mistake made by the α(M) metric is
overweighting partial matches with very consistent pairs (high
confidence labels and cosine similarities) over larger exact
matches containing more inconsistent pairs (lower confidence
labels and cosine similarities). This behavior can have a
strong effect, especially for cross-modal search. On the other
hand, h(M) can be more balanced by preferring matches
maximizing both node recall (based on label confidence) and
edge recall (based on cosine similarity). This metric tends to
prefer more spatially consistent matches than α(M).

In most cases, using the minimum of paired label confi-
dences provided better MRR results than using the product.
The only exception is found for h vs h∧ in LATEX to White-
board matching, where the difference can be explained by two
queries having bad matches with good spatial alignment being
ranked higher than targets having lower spatial consistency.

Using the size ratio filter sr (Q,C) also seems to help in
most cases as long as a tolerant threshold is used. Extremely
bad matches can be filtered very early in the processing when
this filter is applied. However, cross-modality search is badly
hurt if the selected threshold is too strict since size ratios



TABLE I
FORMULA IMAGE SEARCH RESULTS. RANKING METRIC α USES THE PRODUCT OF SYMBOL AND ANGULAR CONFIDENCES, WHILE h USES THE
HARMONIC MEAN. ∧ AND s REPRESENT USING MINIMUM SYMBOL CONFIDENCES RATHER THAN PRODUCTS, AND USING A SIZE DIFFERENCE

THRESHOLD, RESPECTIVELY. MRR@10 IS THE MEAN RECIPROCAL RANK WITH QUERIES APPEARING AT RANK 11 OR LOWER SCORED AS 0.

Recall@10 MRR@10

α α∧ α∧s h h∧ h∧s α α∧ α∧s h h∧ h∧s

LATEX 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00
Whiteboard 0.95 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00
LATEX → Wtbd 0.95 0.95 0.90 0.95 1.00 0.95 0.66 0.69 0.71 0.89 0.84 0.86
Wtbd → LATEX 0.80 0.85 0.85 0.90 0.90 0.90 0.63 0.71 0.74 0.74 0.78 0.84

for LATEX are very consistent, but handwriting has more size
variations (even for a single writer).

Execution Times. Tangent-V is implemented in Python,
and evaluates queries using a single thread. Using a laptop
with an Intel core i7-4710 HQ processor and 16 GB of RAM,
it takes average times of 1.0s and 1.3s to process same-
modality LATEX queries using α (M) and h (M) respectively.
For within-modality whiteboard queries, it takes average times
of 34.1s and 41.5 s α (M) and h (M) respectively. Using a
faster programming language (e.g., C/C++) and early pruning
for bad candidates could be used to speed up our approach.

VIII. CONCLUSION

We have presented a new search engine to bridge between
formulas in whiteboard images extracted from lecture videos
and formula images from typeset course notes (see Figure 1).
Not unlike how word spotting techniques avoid challenges in
recognizing handwritten text, we avoid recognizing structure
in handwritten formulas to obtain strong search results using
multiple symbol class hypotheses and angles between symbol
pairs. Our system is available as open source, and could be
adapted to other graphic types simply by retraining the symbol
recognizers.

There are a number of directions for future work. Currently
we do not index individual symbols. Can unsupervised symbol
feature similarities rather than known a priori symbol classes
be used? How can we accelerate search? How should we
use vector-format images such as PDF, when exact symbol
identities and classes are known, but are unknown in binary
images? Finally, we might provide the math-aware operations
such as variable unification, wildcard matching, and symmetry
for commutative operators (e.g., ‘a+b’ matching ‘b+a’) found
in symbolic math search engines [14].
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