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Butler for both serving on my thesis committee and their memorable contributions to my

studies at Rochester Institute of Technology.

I would also like to thank Dr. Suzuki and the Infty research team for making their

datasets available to me, answering my questions, and allowing for the free release of the

modified dataset.

I wish to also thank all the members of the Document and Pattern Recognition Lab

at Rochester Institute of Technology. First Chinmay Jain and Lakshmi Ravi with whom I

built the Pythagorm system and without whom I could not have completed my research.

Lakshmi deserves additional thanks for the shared ideas and advice, in particular using

shape of symbols in relationship classification. Next is Kenny Davila for his substantial

contributions to the Pythagorm system and added guidance during my time in the lab.

For others at Rochester Institute of Technology I would like to thank my fellow

teaching assistants and our ring leader Prof. Sean Strout for their support and friendship.

Finally I would like to thank my parents, my brother, and the rest of my family for

all the years of love and support.

iii



Abstract

Applying Hierarchical Contextual Parsing

with Visual Density and Geometric Features

to Typeset Formula Recognition

Michael Patrick Erickson Condon, M.S.

Rochester Institute of Technology, 2017

Supervisor: Dr. Richard Zanibbi

We demonstrate that recognition of scanned typeset mathematical expression images

can be done by extracting maximum spanning trees from line of sight graphs weighted using

geometric and visual density features. The approach used is hierarchical contextual parsing

(HCP): Hierarchical in terms of starting with connected components and building to the

symbol level using visual, spatial, and contextual features of connected components. Once

connected components have been segmented into symbols, a new set of spatial, visual, and

contextual features are extracted. One set of visual features is used for symbol classifi-

cation, and another for parsing. The features are used in parsing to assign classifications

and confidences to edges in a line of sight symbol graph. Layout trees describe expression

structure in terms of spatial relations between symbols, such as horizontal, subscript, and

superscript. From the weighted graph Edmonds’ algorithm is used to extract a maximum
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spanning tree. Segmentation and parsing are done without using symbol classification infor-

mation, and symbol classification is done independently of expression structure recognition.

The commonality between the recognition processes is the type of features they use, the

visual densities. These visual densities are used for shape, spatial, and contextual informa-

tion. The contextual information is shown to help in segmentation, parsing, and symbol

recognition.

The hierarchical contextual parsing has been implemented in the Python and Graph-

based Online/Offline Recognizer for Math (Pythagorm) system and tested on the InftyMCCDB-

2 dataset. We created InftyMCCDB-2 from InftyCDB-2 as a open source dataset for scanned

typeset math expression recognition. In building InftyMCCDB-2 modified formula structure

representations were used to better capture the spatial positioning of symbols in the ex-

pression structures. Namely, baseline punctuation and symbol accents were moved out of

horizontal baselines as their positions are not horizontally aligned with symbols on a writing

line. With the transformed spatial layouts and HCP, 95.97% of expressions were parsed cor-

rectly when given symbols and 93.95% correctly parsed when requiring symbol segmentation

from connected components. Overall HCP reached 90.83% expression recognition rate from

connected components.
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Chapter 1

Introduction

There is a growing interest in the problem of math expression recognition. Math

recognition is a language problem with a high level of difficulty. Standard written language

has a very regular structure, linear lines arranged in parallel. In addition written language has

a more restricted set of symbols. Math expressions possess complex two dimensional symbol

arrangements with recursive or hierarchical structures. Examination of the mathematical

expression problem naturally leads to approaches with application for similar complex or

simple language problems, like written language and structure formulae in chemistry.

This problem looks at detecting symbols, classifying individual symbols, and deter-

mining the structure of the expression containing the symbols. detecting symbols includes

segmenting the primitive structures, often strokes or connected components, into the sym-

bols of the expression. Symbols in the expression need to be labeled with their symbol class,

which in some cases might actually depend on more than just the shape of that individual

symbol. The parsing of the expression includes looking at pairs of symbols and determines

what their relationship to each other is within the expression. With these identified rela-

tionships a subset is chosen to represent the entire structure of the expression. All math

expression recognition systems have to be able to perform all three of these tasks.

There are currently a number of commercial products which include math expression
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recognition either as a primary or secondary function. Some examples of products which

focus on math expression recognition are InftyReader, PhotoMath, and MyScript Math.

These products use the recognition of math expressions in several ways. A common use is

for user input into an application, either for display or as type of data to operate on. These

applications allow users to input math expressions with mouse, pen, or fingers as a way

of dealing with inputting the complex structures of math expressions. On the other side of

applications for math expression recognition is extracting expressions from some source. The

expressions being extracted can come from written or printed documents that have either

been scanned or photographed. The extracted expressions can be used for queries or cross

referencing sources.

A problem is not made interesting solely by what it can be used for, but also for

the challenge it presents. In general math expression recognition is a hard problem with

numerous obstacles. Typeset math recognition shares these problems, along with some

problem that are particular to typeset. As discussed above math has a lot of different

symbols and a recursive/hierarchical structure. Besides the complication of having a high

number of classes the set of math symbols brings several other considerations: number of

primitives (strokes or connected components), high intraclass variance, and low interclass

variance. The number of primitives will have a large impact on how hard is it to segment

symbols in the expression. Luckily many typeset symbols are a single connected component

making them easy to segment, but only if they don’t contain any noise which might break up

the symbol or cause merged components. Depending on how the typeset symbols are created

there is the chance that what should be a single connected component is fractured into many.

These cases are often hard because the appearance of the fracture might be unique or seen
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very rarely. Both handwritten and typeset symbols suffer from high intraclass variance.

There are uncountable many variations on how to draw a symbol. With typeset a symbol

will be very regular within one font, but add in multiple fonts and different styles, including

bold and italic, and you start to see a large amount of variance within classes. similarly

there is low interclass variance when two different classes closely match. A common example

seen all the time is 0 and O. Within symbol classification another set of common mistakes

are between capital and lower case letters that have the same shape. The worst instances of

this are symbol classes that are exactly the same and are only differentiated by context in

the expression. In isolation it would be impossible to distinguish them. An example of this

is the horizontal line. A very simple shape which is used all over the place in math: minus,

fraction line, hyphen, and overline (bar).

Additional problems which seem particularly evident in typeset mathematical expres-

sions include complexity of expressions, crowding of baselines, and larger sub-baselines. The

complexity of expressions for typeset math occurs in two common ways, the number of sym-

bols and the number of levels in the hierarchical structure. These problems naturally lead

to the next two. Often typeset math expression are embedded into documents, maybe even

inline. To try and cut down on the space taken up by the expressions they are compacted.

subscripts and superscripts will often be within the space of their parent baseline instead

of offset from it. The increased complexity and higher number of symbols also means more

symbols are placed in these sub and super scripts. This means there is more space and other

symbols between adjacent symbols on the main baseline.

In trying to classify spatial relations between symbol it is important for the spatial

relations between symbols to have high inter-variance and low intra-variance. Unfortunately

3



Figure 1.1: A large typeset expression with 83 symbols. The blue boxes show lower case L
symbols which have subscript relations to their parent symbols, but are more horizontally
adjacent. The Red box shows a superscript baseline for the e symbols to its left. This
superscript baseline overlaps its parent baseline.

this is not always the case and one of the reasons parsing mathematical expressions is hard.

Common confusions are between right subscript/superscript and horizontal. The main cause

of this is low inter variance between the relation classes. A second issue found within the

original representation of expressions and the relations between symbols is higher intra-

variance within relation classes. There are cases within classes, namely horizontal, which act

as outliers in terms of their spatial and visual representation in comparison to the majority

of cases for that class.

The cumulative effect of all these challenges makes the problem of typeset mathe-

matical expression recognition hard. The variance approaches taken to tackle this problem

have made great attempts to overcome the problems faced. My work aims to show that

these problems can be addressed using a combination of simple approaches tailored through

careful observation of the problem.

1.1 Approaches to Math Recognition

Mathematical expression recognition is not a new problem and each task required

for the recognition has had many approaches tried for solving them. Over the years new

approaches and iterations of old approaches as they are revisited have be done. Looking

4



Figure 1.2: (Top) Example expression 1: Notable features are the overline symbols, one of
the accent symbol classes. (Middle) Example expression 2: Notable features are the alpha
subscript symbols, which are in a more horizontal position, and the fractured symbols, x,
y, and comma. (Bottom) Example expression 3: Notable features are subscript i to alpha
symbol blocks line of sight to comma and a symbol. There are also a number of baseline
punctuation symbols.

at resent work there is still a great deal of variety in the types of approaches. Some of

these approaches look at a task or tasks for expression recognition in isolation, such that

no information is used from one task for another. Other approaches consider all tasks as a

single operation. Another major difference in approaches is the starting data representation

used. For handwritten expressions it is common to use strokes, sequences of points recorded

in temporal order from pen down to pen up. For typeset the equivalent structure would

be connected components. Alternatively the individual points outside of any ordering or

grouping could be considered in the same way individual pixels could be considered for

typeset images.

A common approach is to use online or offline features with either single classifiers

or cascading classifiers for symbol classification. For both segmentation and parsing there

needs to be a method by which pairs of components are selected for examination in the

algorithm. Frequently used for this operation are time order, linear spatial ordering, or

5



distance measures. The purpose of these is to generate a pool of possible relations from

which final relations will be selected by an algorithm to form the recognized expression.

The algorithms which are used to select the correct relations, for either segmentation or

parsing, have often included grammars or feature based classification. When all tasks for

expression recognition are considered at the same time a recent approach is to use neural

networks, though they can be used for individual tasks as well. Modern computing has been

applying neural networks to more and more problem and recently convolution networks have

been applied to typeset mathematical expression recognition [7]. The different approaches

to mathematical expression recognition are discussed further in chapter 2.

1.2 Thesis

Our core hypothesis is that a simple recognition system, with basic features and classi-

fiers, can give strong expression recognition rates for typeset mathematical expressions. The

basis for this idea comes from previous work [11][6][15] in using the visual density features,

geometric features, and contextual features for all parts in math expression recognition,

both handwritten and typeset, as discussed in the background chapter. Building on these

approaches I have achieved high expression rates for typeset mathematical expressions. Par-

ticularly I adapted visual features to improve structural analysis while continuing to use the

Hierarchical Contextual Parsing strategy as used by Hu [11]. This is talked about in Section

3.6. The inclusion of contextual features in the system has been shown to be beneficial for

all parts [11][15], and I explore better ways to use relevant contextual information. These

are the Hypotheses tested:

Hypothesis 1: Parsing can be done effectively using Hierarchical Contextual
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Parsing(HCP), with edges weighted by simple classifiers with visual and geomet-

ric features that include contextual information from the expression.

Hypothesis 2: The extraction of maximum spanning tree for parsing can be

improved by separating the weighting of edges into smaller problems by using

multiple classifiers, one binary classifier for horizontal relation classification and

another classifier for all other relations.

Hypothesis 3: Contextual features can improve relation classification by identi-

fying baselines of the expression and using them to limit the scope of the context

information.

The first hypothesis deals with replicating and adapting the approaches previously

used in symbol recognition[6], symbol segmentation, and expression parsing [11] for hand-

written mathematical expressions to be used for typeset expressions. My work has shown

the approaches to be effective for the typeset expressions. Using the adaptations and exten-

sions for symbol classification, segmentation, and expression parsing I saw recognition rates

increase. Symbol classification was able to achieve 99.3% accuracy with correctly segmented

symbols. Segmentation gave a symbol recall rate of 99.47%. Parsing detected and correctly

classified >99% of relations in expressions. When using all three classifiers within the HCP

framework for expression recognition 90.83% of expressions are recognized without error.

Additional contributions include approaches used to alter the representation of math

expressions in graphs to better reflect the spatial relations between symbols. These new

representations allow relations between the symbols to be more uniform within class, and

more distinct between class. Modifications were made to line of sight graph generation to
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overcome obstacles in typeset expressions and math expressions in general. Finally, I looked

at how context information was captured for symbol pair relation classification are tried new

methods with a focus on context around baselines.

There are still limitations within the approach used. One is that segmentation of

merged connected components is not handled, as these are manually split in the data gen-

eration (see Section 3.1). Within the entire data set, 326 cases were found of merged com-

ponents, out of over 150000 connected components in the dataset, see Section 4.1. In the

opposite case, there are connected components which are fractured due to noise in the

scanned images. While our system does the segmentation for these cases, it fails for many

of them. This is a major source of the remaining errors.
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Chapter 2

Background

Mathematical expression recognition is an old problem, typeset expressions were first

studied in 1968 by Anderson, R. H. [4], with ongoing and recent attention. Much research has

been done to look at the three problems for mathematical expression recognition, symbol

segmentation, symbol classification, and expression parsing [21]. Each of these problems

hold challenges. In more recent work there have been examples of using a single algorithm,

such as neural networks, to do the complete recognition. These systems combine all three

parts of the expression recognition into a single operation. Many other systems look at each

problem individually, with possibly some information being passed between them. There are

a number of ways to approach the task of expression recognition and its sub problems.

The approach examined in this work, as described in Chapter 1, performs the set

of tasks for recognition a hierarchical fashion, with segmentation being completed before

doing parsing. The symbol classification is done independently from the segmentation and

parsing with no information shared between them. This makes the approach less dependent

on knowledge of the language itself and instead relies on the visual data being given.

The recognition system implemented and used for this thesis, Pythagorm, was an

adaptation and expansion of two prior systems [6][11]. One system was originally for the

recognition of symbols in handwritten math expressions [6]. This system was extended to be
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used with typeset symbol images by using the symbol’s contours to represent the symbol with

a sequence of points. Additional work was done to extend the symbol recognizer system to

include shape context features [15]. The shape context features were used both for symbol

features and context features. The shape context features were adapted from the second

prior system [11][13][14], designed for symbol segmentation and parsing handwritten math

expressions. The two systems had been used in loose cohesion before to do full recognition of

handwritten math expressions [11]. The Pythagorm system used here will be made available

as open source.

2.1 Full Recognition Approaches

Algorithms which combine information from each task in their system’s decisions

have started to be developed more as a result of advancements in machines and algorithms

capable of handling complicated tasks. These systems are more often than not built around

neural networks. By representing expressions as an image a convolutional neural network

can be employed. This allows the lowest level of data, pixels, to be used as input data. A

recent implementation of this unified approach was used [7]. This neural network approach

directly feeds the expression image into a convolutional network to extract a feature grid

learned by the network. The feature grid is passed through an encoder to generate tokens

for a markup language. The final step is to give the tokens list to an encoder to build the

expression string from the tokens. Using expression images rendered from latex to images

their results show their system returning exact image matches of 79.88% [7]. Many system

don’t use a single algorithm to go from data to a fully recognized expression, instead they

look at the problems individually and integrate the solutions from each task.
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2.2 Symbol Classification

Symbol classification is an often examined problem in pattern recognition, starting

with symbol letter and number recognition and extending to all symbols used in every

language[19]. Approaches range from symbol template matching through classification al-

gorithms such as hidden markov models. Features used in classifiers fall into the categories

of either on-line or off-line. on-line features are extracted using the knowledge of time order

for a set of points that make up a stroke in a symbol. off-line features on the other hand

deal strictly with unordered data. In typeset images the data is inherently unorder with

respect to time, in both the pixels that make up a symbol and the symbols themselves in the

expression. Though there are approaches to that attempt to impose a spatial ordering on

expression images, either a linear left to right order or a form of two dimensional ordering.

Some of the common classifier algorithms used with these features for symbol clas-

sification are nearest neighbor, support vector machines, random forests, hidden markov

models, convolutional neural networks, and bidirectional long short-term memory networks.

These classifiers can be used as single instances or combinations of many classifiers used

either in parallel or as a cascade[21]. The approaches to symbol classification are many and

varied, but for the task of typeset symbol images my work has shown that simple features

combined with a simple classifier works well. The classifier used in this work for symbol

classification is a random forest. Random forests offer smooth distributions over the feature

space and probability confidences in classifications. In running experiments random forests

have simple parameter sets and allow for fast parallel training and evaluation. Also the

trained random forests are more open to direct examination when trying to understand how

the features and classification results are related.
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2.3 Segmentation

Segmentation, like parsing, deals with the relationship between multiple components

in the expression [5], but has just two cases for classifying the relation between two compo-

nents. Two components, strokes or connected components, in an expression are either part

of the same symbol or they are not. In our system these relations are labeled as Merge and

Split. The Merge relation indicates the two components belong to the same symbol in the

expression.

Segmentation is a case where an imposed order is sometimes used. Each component

checks how well it would merge with the other components next to or near it in the con-

structed order. This can be done with a dynamic programming approach. One goal of this

approach is to reduce the space of possible combinations of components to test for merges.

The downside is that linear ordering often isn’t a good representation of the complex two

dimensional structure of expressions and a good two dimensional ordering is harder to con-

struct. A possible alternative to organizing components into orders it to construct graphs

of the components. The graph nodes are the components and the edges represent pairings

that should be checked for a merge relation. This graph can be constructed with distance

measures, like k-nearest. After determining the space of possible components to merge there

needs to be a method for deciding if two components should be merged or split. Merged

components are a part of the same symbol. Again this comes down to extracting features

and using a classifier. One approach is to use classification scores to see how well the com-

bined components can be classified as a symbol. Alternatively a different set of features can

be used to try and capture features representing the merge and split relationship between

components.
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The segmentation done by this system mirrors [14] and uses a graph based approach,

opposed to a cutting method. The graph based approach aims to use a classifier to combine

nodes of the graph into symbols. The features used by Hu are visual features, geometric

features, and time step features. Similar visual features and geometric features are used with

parsing. It was found that a random forest could accurately classify the relations between

the strokes as merge or split[11]. In the line of sight graph for connected components 99.77%

of edges were correctly classified, see Section 4.3. The initial graph with candidate edges

for classification was a line of sight graph. In the line of sight graph only components

which could draw a line between their centers without hitting another stroke were included.

Symbols were created from the classified graph by combining nodes connected with merge

edges. An attempt was made to combine segmentation and parsing into one task with a

single classifier, which scored edges in a stroke level expression graph and used Edmonds’

algorithm. It was found doing segmentation and parsing separately achieves better results

[11]. In Pythagorm the segmentation is done first to build entire symbols before doing the

symbol recognition and expression parsing, giving a hierarchical approach.

2.4 Parsing

There are many approaches to parsing mathematical expressions. Each approach

aims to take the components (e.g., points, pixels, strokes, or connected components) of the

expression and output the structure of the expression in some form. Different approaches

work with different levels of components for the expressions. The expression components

given to the parser could be symbols, strokes, connected components, points, or pixels.

The Pythagorm system can use both strokes from handwritten expressions and connected
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components from typeset images. The last two types of components, points and pixels, are

used with complex parsing algorithms. One type of parser that has used these components

are convolutional neural networks[7]. In these cases the direct image or vector of points

are inputted and the data is already in a structured format. Other parsing methods, which

use the higher level components, strokes, connected components, and symbols, require some

starting structure from which the final expression structure will be constructed or extracted.

Commonly used starting points are graphs, time ordered sequence, left to right ordering, or

a form of two dimensional hierarchical ordering. The parsing algorithm might try to find

the expression structure incrementally or all at once.

The segmentation and classification of symbols often precede the final task, parsing,

of determining the structure of the expression. Using only the spatial relations between

components allows the approach used in Pythagorm to be independent from knowing the

component labels and prior knowledge of expression structure. The only information needed

for parsing is the visual representation of the expression itself. A common set of features

used to represent the spatial relations between components are geometric features. These

look at distances and other measures between the points of the components, the centers of

the components, or the bounding boxes around the components[3].

Visual features have also been used more recently and have been adapted to include

syntactical information with shape context features [3,4], which showed reduced error rates.

These features can be used with a graph of symbols in the expression similar to how com-

ponents were put into graphs for segmentation. Once again their is the option for ordering

the symbols by time or space. Either way these features can be used to classify individual

relations between symbols and then a set of the relations can be selected to represent the
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expression structure.

A frequently used technique in mathematical expression parsing, as well as general

text parsing, is syntactic methods [2]. One kind of syntactic method used for parsing math

expression is grammars. Mathematical expression are a kind of language, so it makes sense

to try and capture their structure with grammars. The grammars provide a set of rules for

how parts of the expression fit together to form a whole expression. Graph grammars use a

graph representation of the expression and use the grammar rules to combine nodes in to a

new node. In the case of graph grammars the parsing of the expression is done in a series

of steps which continually reduce the graph [10]. This process goes on until a single node,

holding a series of rules, represents the entire expression. In most cases the rules used by

the grammar for reducing the graph are handmade and it can take many rules to cover the

required cases. Even with large lists of rules not all cases maybe covered. The grammar

limits the types of expressions that can be recognized to those within the grammar. The

alternative to the handmade rules is data driven rules. With data driven rules a training set

with ground truths can be used to examine all the cases within the set of training examples.

Now this still leaves the limitation of only knowing cases from the training set. To apply the

parser to new data a new grammar would have to be extracted.

Another widely used grammar approach for parsing is stochastic context free gram-

mars [2]. Here grammar rules with probabilities are used along with the CYK algorithm to

construct the expression. The two dimensional adaptation of stochastic context free gram-

mar also include spatial information for the rules [9]. Once again there is a dependence on

the completeness of the rules, which needs to be constructed. Another common dependence

with grammars in mathematical expression recognition is the ability to apply a label on each
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component to determine what kind of symbol in the grammar it represents. Grammars rely

on having some prior knowledge of the structures found in all mathematical expressions.

The expression parsing from the segmented symbols in Pythagorm starts in a similar

manner as the segmentation. A line of sight graph was constructed from the symbols and

the edges were classified with a spatial relation and given a weight based on the classifiers

confidence of the classification. The final set of relations selected from the line of sight

graph is done using Edmonds algorithm. Edmonds’ finds the maximal spanning tree using

those classifier confidence weights on the edges of the graph. Other approaches have also

used spanning trees for parsing. Suzuki and Eto used spanning tree extraction over not

just relation possibilities in the expression, but also over symbol classes [9]. This approach

helped parsing with uncertain symbol classifications. In Pythagorm for both segmentation

and parsing the features used in the classifiers were spatial geometric features and visual

density features. The visual density features were used to capture the symbol features,

features for the parent and child symbols whose relation is being classified, and contextual

features of surrounding symbols.

2.5 Expression Tree Representations

Mathematical expressions are often represented as trees, with symbols or primitives

as the nodes in the tree and the edges represent a type of relation between them in the

expression. The two common types of trees for math expressions are symbol layout trees

and operator trees. The difference between them is what kind of relations you have between

the nodes in the tree. An operator tree uses the mathematical operations to structure the

tree. The requirement for an operator tree is to have the math operations already detected
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and identified to build the expression tree. Layout trees instead use the spatial positions

of symbols relative to each other to relate them and don’t require knowledge of the symbol

classes. These relations include relations like superscript and subscript.

2.6 Visual and Contextual Features

Visual features are common for offline classification of symbols, but because they are

capable of capturing both shape and spatial information they can be applied to expression

segmentation and parsing [11]. shape context features were used to help classify the struc-

tural relations between both strokes and symbols[13]. The shape context histogram was

placed over the components whose relation was being classified. Each component had its

own set of feature values for the histogram. A third set of values were found which repre-

sented other components which fell within the space of the histogram. In the end the three

separate set of values were found and included in the features. Because the values all come

from the same space, the histogram, the spatial information between all three can be related

back to each other.

The same technique was used to include syntax information in the features when

parsing symbols. Instead of values for parent, child, and other components values were

found for letter, number, and other components. Using this syntax information from visual

features the expression recognition rate increased. The problem was the usage of syntax

information required very accurate labeling of symbols, which was too difficult to achieve

with handwritten expressions[11].

Contextual information in visual features has been shown to be beneficial in clas-

sification of typeset symbols in my work, in classification of handwritten symbols, and in
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segmentation and parsing handwritten expressions [11]. The question of how much contex-

tual information is beneficial hasn’t been fully explored. My work has shown a very high

symbol recognition rate can be achieved with typeset expression images, as high as 99.3%

with contextual information in our experiments.

2.7 Summary

In many approaches to expression recognition, the structural recognition depends

on the recognition of symbol classes. In some approaches the combined information from

segmenting, symbol recognition, and parsing are used together to learn how to structure

and label the expressions. Our approach instead does each task individually using the

visual representation for features, Section 3.3. The classifiers trained on the features classify

the symbol and relation labels in a layout graph, Section 3.1. From labeled and weighted

edges of a layout graph a maximum spanning tree is extracted for the expression structure,

Section 3.6. The classifying in each task is helped by using contextual information from the

expression, see in Chapter 4.
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Chapter 3

Methodology

The components of the expression, connected components or symbols, are not rep-

resented as their original image from the scanned typeset expression image. Instead the

component’s image is processed into point sequences using its contours. The raw contours

are smoothed and resampled to help reduce noise from printing and scanning the documents.

The features for classification of symbols and relations are extracted using these processed

contours. The kinds of features used are geometric and visual densities from histograms.

Two kinds of histograms are used, two dimensional histograms and shape context features

histograms. The visual densities represent several kinds of information: symbol shape, spa-

tial information between two components, and contextual information for either a symbol or

component pair.

The hierarchical contextual parsing approach (HCP) uses graphs to represent the

expression for segmentation and parsing. The entire structure of the expression can be

described by a symbol layout tree (SLT), see Figure 3.1. The nodes of the graph can be

either type of component, connected components or symbols. With the relations between

the components represented as directed edges in the graph. Classifiers trained on geometric

and visual density features are used to classify and score edges in a line of sight graph of the

expression components. Segmentation is done by finding nodes connected by edges classified
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as Merge. The nodes connected by Merge edges are combined into symbols for a symbol level

expression graph. The expression at the symbol level is represented as a layout tree, with

spatial relations between the symbols. Symbol Recognition does not depend of the structure

of the expression once the symbol has been segmented it can be classified. Visual features

from the symbol and context from surrounding symbols are used by a classifier to label each

symbol.

A part of the examination of symbol layout trees for expressions involved looking at

modified representations of layout tree structures. Looking at base punctuation and symbol

accents they were previously given horizontal relations with other symbols, but these relations

does not resemble other horizontal relations. This can be seen in Figures 3.2 and 3.3. Other

expression structures were tried where different relations are used for these symbols. Using

the new structures we found the relations for these symbols are more accurately classified,

see Chapter 4.

3.1 Data and Representation

The dataset being used is the InftyMCCDB-2, modified from the InftyCDB-2 [20],

which contains typeset mathematical expressions from scanned article pages. Initially all the

information for expressions is stored jointly between two formats. The visual representation

of the expressions are stored as binary images in page files, each containing many different

expressions. The ground truth information for all expressions is stored in a single overview

file as text. The overview file contains the symbol classification and relation classification

between symbols in the expression. The relation classifications represent a spatial relation

between the symbols. In the InftyCDB-2 dataset there are seven spatial relations: horizontal
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(HORIZONTAL), right superscript (RSUP), right subscript (RSUB), upper (UPPER), under

(UNDER), left superscript (LSUP), left subscript (LSUB). An eighth spatial relations was

added for baseline punctuation (PUNC), see Subsection 3.1.2.

From its raw format the dataset was converted to a data format to work with the

Pythagorm system and tools[16]. Each expression is still represented in the two separate file

types. Each expression is stored in its own pair of files. A PNG image file has the complete

visual representation extracted symbol by symbol from the original page image. The symbol

classification and relation information for the expression is stored in a label graph file. The

label graph file stores a list of components, both connected components and symbols, for the

expression along with their classifications. The label graph file also stores the set of directed

edges in the symbol layout tree for the expression. The connected components and symbols

are linked by id to indicate what connected components belong to which symbol.

3.1.1 Creating Connected Component Ground Truth

The original InftyCDB-2 dataset only contained information for the ground truth

expression information at the symbol level. Each symbol was classified and the relations

between symbols were given for the expression. The symbols themselves were defined using

a bounding box for the page image which contained the expression. No information was given

for the connected components of the expressions. The expression images were all separated

from page images into their own images, while preserving relative position of the symbols in

the expression.

To extract the ground truth connected component information the isolated expres-

sion image was examined. First the set of connected components were taken from image
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using a depth first traversal of pixels and marking foreground pixels within each connected

component. A connected component is saved as another bounding box, like the symbols, for

its location in the expression image. The set of connected components was then matched

to the set of bounding boxes for symbols given in the original ground truth. The connected

components were added to the symbol with the smallest bounding box that the connected

components bounding box completely fit inside.

There were 326 cases, out of approximately 157700 connected components for around

142100 symbols, where symbols were given no connected components because of merged

connected components belonging to two different symbols, affecting <1% of expressions.

The merging prevented the combined connected component from fitting into any symbol’s

bounding box. To deal with this problem, if a symbol was given no connected components it

would use its original bounding box as the bounding box of its connected component in the

expression image. This would cut the merged portion to only include the part belonging to

the symbol. The segmentation done in Pythagorm system does not handle the splitting of

merged connected components or symbols. The connected component bounding boxes are

stored in the label graph file and used to extract the connected components from the image

during recognition, at which point they are processed (see Subsection 3.1.3).

3.1.2 Symbol Layout Tree (SLT)

Within our system the mathematical expressions are represented using layout trees,

with symbols or connected component) as nodes and the relations between them as edges.

For the connected components there are only two relations used during segmentation, merge

and split. These relations indicate whether two connected components belong to the same
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Figure 3.1: (Left) a symbol layout tree with the valid relation classifications on the edges.
(Right) A layout tree for the connected components in the same expression with edges
labeled as merge or split. Merge edges indicate the connected components belong to the
same symbol.

symbol or not. For symbols the spatial relations are used, see Figure 3.1. For classification

of these relations spatial and visual features are used, see 3.3. There are a few particular

cases where the layout structure being used causes problems with parsing expressions.

Two prominent instances of problems in layout structures can be found for the hor-

izontal spatial relationship, baseline punctuation and accent symbols. These two cases are

fairly similar to each other, in that both have horizontal relations which don’t line up with

most other horizontal relations. baseline punctuation, commas, periods, and ldots, are much

lower than both their parent and child symbols in the symbol layout tree. Accents, overlines,

tilde, hats, dots, vectors, and checks, are all found above a symbol or set of symbols but

are considered a part of the main baseline instead of their own above the contained sym-

bols. For reference see Figures 3.2 and 3.3. Example expression 3 has several commas with

horizontal relations to the symbols before and after them in the expression. Accents can
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also have superscript and subscript relations. This is another issue with the accents. The

child relations are from the accent but are usually place in reference to the symbol under the

accent. In example expression 1 there are two overlines, one is above a z and has a subscript

relation to the j symbol. While its possible for a classifier to learn these outlier relations,

the final parsing algorithm will still end up having to choose between these outliers and the

incorrect relations which look more like other horizontal relations. With the case in example

expression 1 of a j subscript to the overline there is the chance the j will be parsed as a

subscript of the z instead. This can also lead to baseline punctuation becoming a part of

the subscript baseline or horizontal relations going to the symbol under the accent instead

of the accent itself. An arguably better approach to the outlier relations is to change the

expression representation in the symbol layout tree structure to better match the expected

spatial and visual layout of symbols. Again see Figures 3.2 and 3.3.

Punctuation Relation. These baseline punctuation relations have more in common

with subscript symbols than other horizontal relation symbols. Having the baseline punc-

tuation separate from the main baseline and moved to its own sub baseline from its parent

symbol allows for its horizontal relation to be replaced with a more typical representation of

horizontal relationships. Baseline punctuation is given its own baseline with its own new re-

lation class punctuation (PUNC). The separate baseline allows for easily reintegrating parsed

expressions into the original expression structure with a simple graph transform without any

additional information, like symbol class.

Baseline punctuation in some cases has another obstacle, subscripts. When a symbol

has both subscripts and punctuation there is even more confusion in parsing. From the very

start there is a chance that the subscript will block the line of sight between parent symbol
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and the punctuation, see Figure 3.7. This problem with line of sight is handled in Subsection

3.2.1. The next challenge is dealing with the fact that the subscript and punctuation look

horizontal to each other. This is often reflected in the final parsing, with the punctuation

having the subscript symbol as its parent with a horizontal relation. The current PUNC

relation does not directly handle this problem, but because the PUNC relation is specific to

a particular set of symbol classes it seems like there should be a way avoid these errors. The

immediate response is to use symbol classes to have the classifier learn these cases. Instead

experiments, see the symbol shape context experiments in 4.5.1, show using features for the

child’s shape help in these cases.

Accent Restructuring. Using the same approach of creating a new relation and

baseline does not neatly transfer to the problem of accents. Like baseline punctuation there is

the problem of the incorrect horizontal relations being added to the expression. For accents

this incorrect relation is between the parent symbol to the accent and the symbol below

the accent. For reference see Figure 3.2 and its overline symbols. In example expression 1

there is a z symbol with an overline, a relation between the previous symbol and the z more

closely match other horizontal relations. This relation will have a stronger confidence than

the relation from the parent symbol to the accent in many cases. In the restructured layout

trees this relation is made the correct horizontal relation in the ground truth representation

of the expression. The accent is given an above relation to symbol under it, again see Figure

3.2. This does mean in the cases where there are multiple symbols under the accent the

range of the accent will have to be recovered after parsing. Any child relations of the accent

are given to the symbol, or right most symbol, under it.

Removing Trailing Punctuation. The removing of trailing punctuation in expres-
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sions was done as part of the processing of the expressions from the InftyCDB-2 dataset for

any punctuation at the end of expressions. The expressions came from scanned mathemat-

ics papers and for expression that were placed inline the trailing punctuation, commas or

periods, was often included. The trailing punctuation itself is not really a part of the mathe-

matical expression. For many applications of typeset math expression recognition including

the trailing would be a hindrance. In order to better represent the problem the trailing

punctuation was removed.

The trailing punctuation in expression was removed by finding the symbol with the

right most bounding box right side and checking its class to see if it was a comma or period.

All commas and periods found at the end of expressions were removed. This change affected

20% of expressions. Many of the expression with trailing punctuation were smaller, as they

were the ones included inline in the papers.

3.1.3 Image Processing

As stated in the previous section, the input data is images of the mathematical

expressions. Each symbol in the expression is made up of either a single connected component

or a set of connected components. Before trying to do any kind of recognition the symbols are

modified to be represented by sequences of points. To change the symbols from being images

to point sequences the contours are taken for each connected component in the symbol. The

contours of a connected component consists of a single outer contour and any number of

inner contours. The extraction of contours simply takes all the edge points of the connected

components and choosing a arbitrary starting point travels along the edge adding the pixel

locations to point sequences. This is done for each edge of the connected component.
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Figure 3.2: Graph Structures with arrow from parent to child: Red-Horizontal, Dark Blue-
Subscript, Light Blue-Superscript, Dark Green-Upper, Orange-Under, Light Green-PUNC
(Left) Example expression 1 with original ground truth expression structure. The baseline
punctuation is part of the main baseline and has a horizontal relation to its parent and child.
Overlines are a part of the main baseline and child has Under relation. (Right) Example
expression 1 altered expression structure. Baseline punctuation has its own baseline and has
PUNC relation with parent. accents are now in Upper baseline. Child symbols of accents
now belong to the symbol below them.

Figure 3.3: Graph Structures with arrow from parent to child: Red-Horizontal, Dark
Blue-Subscript, Light Blue-Superscript, Dark Green-Upper, Orange-Under, Light Green-
PUNC (Top) Example expression 3 original ground truth expression structure. The baseline
punctuation is part of the main baseline and has a horizontal relation to its parent and
child.(Bottom) Example expression 3 altered expression structure. Baseline punctuation has
its own baseline and has PUNC relation with parent.
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Figure 3.4: A processed alpha symbol from example expression 2. (Top Left) The original
symbol image. (Top Right) The extracted contour of the symbol image. (Bottom Left)
The smoothed contour using smoothing distance of 2 to average point locations with points
before and after in sequence. The smoothed contour has the same number of points. (Bottom
Right) The symbol contours after using Catmull to do more smoothing and resample the
contours.
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The contours are able to capture the symbol shape with less information than the

entire image of the symbol. Due to directly taking the contours from the symbol image there

is noise from the scanned image. The later preprocessing by the Pythagorm system for point

sequences, used for both typeset data and handwritten strokes, does not completely handle

this noise. So, an added smoothing step is used in the contour extraction for typeset images.

This smoothing replaces a point in the sequence with a point whose position is determined

by taking the mean position of the original point and a set number of points before and after

the original in the sequence. Previous work found using a distance of two, the previous two

points and following two points, for the smoothing improves symbol recognition the most.

Using a higher smoothing distance resulted in losing shape characteristics of the symbols.

Curves and corners of the symbols became straighter and less distinct. This smoothing is

done on each contour for a connected component. The smoothed contours have the same

number of points as the original and the same end points.

We next apply the preprocessing steps described in Davila et al. [6] for handwritten

symbol recognition. this resamples the point sequences using Catmull-Rom splines. This

resampling adds additional points the points sequences to make the distance between points

more uniform.

3.2 Expression Graphs

Throughout the stages of expression recognition the expressions are represented as

graphs. There are two kinds of expression graphs that are used, primitive level graph and

symbol level graph. The difference between these two type of graphs is what the nodes in

the graph represent. In a primitive level expression graph each node represents a connected
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Figure 3.5: A processed y symbol from example expression 2. (Top Left) The original
symbol image. (Top Right) The extracted contour of the symbol image. (Bottom Left)
The smoothed contour using smoothing distance of 2 to average point locations with points
before and after in sequence. The smoothed contour has the same number of points. (Bottom
Right) The symbol contours after using Catmull to do more smoothing and resample the
contours.
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component in the expression. The edges between the nodes represent the relations between

the connected components. This relation can either be one of the spatial relations or it

can be labeled with Merge or Split, see Figure 3.1. The merge relation indicates these two

connected components belong to the same symbol in the expression. Split simply indicates

the opposite. For the Pythagorm recognition system used the primitive level graphs are only

used for segmentation and only use the merge/split relations for them.

The symbol level expression graphs instead have each node represent a symbol from

the math expression. The edges between the nodes have one of the spatial relations or a label

of NoRelation. The NoRelation label is used to either indicate that the edge has not been

classified or the edge is not in the valid ground truth expression graph. The expression graph

representing the structure of a mathematical expression will be a single direction spanning

tree.

In both primitive and symbol graphs the edges of the expression graph are directed,

though all merge and split edges in the primitive expression graphs can be taken as reflexive.

This means for spatial relation there will be a parent and a child node or symbol. The

spatial relation describes the relation from the parent to the child. For example if there is

a superscript relation between two symbols the parent symbol is the base symbol and the

child is the superscript symbol. With all ground truth horizontal relations the parent is to

the left of the child, see Figures 3.2 and 3.3.

3.2.1 Line of Sight Graphs

Initially when the structure of the expression is not known and has to be parsed there

needs to be an initial set possible edges between the nodes of the expression graph. A fully
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connected graph would ensure that no edge from the ground truth graph is absent from this

starting graph, but would also include a large number of false edges which are not in the

ground truth graph. An alternative approach is to use a line of sight graph. A line of sight

graph adds edges between two components, connected components or symbols, which can

“see” each other in some geometric space and are not block by other components. While

this does not guarantee all the edges from the ground truth will be included, it reduces the

number of false edges. The typeset symbol graphs in the training set had a precision of 5%

with fully the connected graph approach, or 1:19 ratio ground truth edges to false edges.

The line of sight graphs had precision levels around 20%, or 1 to 4 ratio of ground truth to

false edges. The recall of the line of sight was over 99% and with some modification to find

punctuation reached >99.8% recall for ground truth edges.

The Line of Sight graphs are constructed with the method outlined in [11]. This

method uses the center of a component’s bounding box as an eye and checks the angle

ranges blocked, determined by angle between eye and points on the convex hull, by other

components. For each component node in the graph it checks the angle ranges of all other

components in order of smallest point to point distance between itself, parent node, and the

other component, child node. The parent node starts by being able to see in a full 360 degree

range around its eye. For each child node its blocking angle range is compared against the

still yet unblocked angles of the parent. If there is an overlap between the child’s blocking

angles and the still viewable angles of the parent node then it is determined that the parent

can see the child and the edge is added to the line of sight graph. Then the seen child node’s

angle range is removed from the set of angles viewable from the parent’s eye. The line of

sight graph is also constructed to be reflexiv. If a parent can see the child an edge is also
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Figure 3.6: The dotted lines show edges between symbols in a line of sight graph from a
segment of the example expression 2. These edges will be scored and classified during parsing
then Edmonds algorithm will select a maximum spanning tree from these edges.

added from the child to the parent, see Figure 3.6.

Using this approach for line of sight graph building gives a recall just over 99% for

the edges belonging to the ground truth expression graph and a precision of 22%. A few of

the stated difficulties with typeset mathematical expressions directly impact the line of sight

graph building. Crowded baselines and extended sub-baselines result in obstructed line of

sight between horizontal symbols on the same baseline, see Figure 1.1.

Punctuation Finding. A common problem is for baseline punctuation, commas,

periods, and ldots, to be blocked by subscripts. On inspection of theses cases of blocked

line of sight it can be seen that for many of them no straight line can connect these two

symbols without passing through another blocking symbol, see Figure 3.7. This indicates

that the some variations for line of sight wouldn’t be as beneficial in trying to capture these

missing cases. Some variations [11] make use of multiple eyes for the parent symbol, alternate
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representations of the child symbol, or modified rules for when angle ranges are considered

blocked. The multiple eyes could include points on the convex hull, the corners of a bounding

box, or eyes at different heights along the center line. With no line between any point on the

parent to the child multiple eyes would have any effect in these cases. The same can be said

of different representations of the child symbol. The third type of variation allows line of

sight through at least one symbol which would normally block the line of sight. This could

potentially allow the missing edges to be found, but would greatly reduce the precision of

the line of sight graph.

The problem with the third approach is that it allows too much transparency. For

the case of baseline punctuation there are two characteristics which allow for high recall in

recovering missing edges to them, location and size. Baseline punctuation are most commonly

found to the lower right of their parent symbol and are usually several times smaller. I

modified the line of sight to check if a blocked symbol is contained in this location and much

smaller than itself. If both cases are satisfied then an edge is added from the parent to

blocked child. To restrict where baseline punctuation was looked for I used an angle range

of 310-360 degrees in which the child symbol must be contained. The constraint on size

compared the area of the parent to child and required the parent to be atleast 3.5 times

larger. See Figure 3.8. While there is the potential for edge cases where these do not hold

the majority of baseline punctuation in the inftyCDB-2 dataset missed by normal line of

sight are recovered using this method. This increases the recall of correct relations by .33%

in the line of sight graph. There is a reduction in precision when this method is used, from

both small, non-punctuation symbols being seen in the same angle range and large parent

symbols seeing many other symbols which would normally be blocked. Depending of the size
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Figure 3.7: Examples of blocked line of sight. (Left) The subscript i symbol is blocking the
line of sight from the alpha to both the comma and a symbols. Because the i symbol is
closer the angle range it blocks is removed from the visible range before the alpha looks to
the comma or a. (Right) The z symbol blocks line of sight between the overline and the j
symbol. In the original graph structure that ’j’ would be a subscript to the overline accent.
After restructuring the j is a subscript to the z instead.

and angle range allowed for the finding the punctuation the precision can drop to 18-19%

precision, with an increase of recall to 99.74-99.84%.

Shrinking Blocked Range. The second modification looks to reduce the amount

of blocking caused by the subscript and superscript symbols along the horizontal baseline.

To do this a transparent end technique is used, where the range of angle blocked by a child

symbol are reduced by shrinking the angle range size of the child symbol. Before removing

the child’s angle range from the still visible range of the parent it is shrunk by a percentage

factor based on the original size of the angle range. An equal portion is removed from the top

and bottom of the blocking range. This means superscript and subscript symbols will have

a small portion of their blocking range remain visible at the top and bottom of the symbol.

This approach manages to increase recall of the line of sight, but with another reduction to

precision, to below 16% precision from 19% precision.
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Figure 3.8: Example of finding blocked punctuation symbols from example expression 3.
The parent symbol alpha is looking for small symbols in the 310-360 degree range from its
center eye. The comma symbol fits in that range. The area of the alpha symbols bounding
box will be compared to the area of the comma’s bounding box. If the parent’s bounding
box is 3.5 times larger in area an edge will be added to the line of sight graph from parent
to child.
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3.3 Features for Symbol and Relation Classification

Principle to the methods explored in this thesis is the types of features used for each

step in the expression recognition. Only two types of features are used, spatial and visual.

The spatial features include geometric feature sets and is used with pairs of connected com-

ponents for segmenting and pairs of symbols for parsing. Visual density features are captured

using two kinds of histograms, shape context features and 2D Grid Histograms. These his-

tograms are able to capture features in a few different ways. Like geometric features the

histograms can examine pairs of expression components, but can also look at individual com-

ponents. The individual component features can be used in symbol classification, but they

have also been found useful in parsing. The methods of feature extraction mentioned have

dealt with directly observing what is being classified. For symbol classification histograms

of the just symbol are used. For parsing the histograms can look at the parent, child, and

space between them. There is another form of features which are indirectly related to whats

being classified, contextual features. Contextual features, unlike component or component

pair features, don’t explicitly measure what being classified. The contextual features gather

information from around the subject, either locally or globally. The histograms are used to

gather local contextual features in the form of visual density of all components not being

classified in the same area. The amount of context is controlled by the size of the histogram

being used. These contextual visual densities are useful for all tasks in math expression

recognition, see Chapter 4.
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3.3.1 Geometric Features

Geometric features are used for connected component pairs and symbol pairs. The

geometric features are measures in distances, area overlaps and differences, size ratios, and

angles. For pairs of connected components or symbols a common set of features are distances

and differences based on the bounding boxes around each stroke/symbol. These distances

include: distance between center points, difference in vertical position of bounding box tops

and bottoms, difference in horizontal positions of left and right edges, difference in area, and

amount of overlapping area.

Another set of geometric differences looks at the set of points in each stroke/symbol.

Features of this nature are maximum and minimum distance between the two set of points,

A measure of how parallel the two set of points are, distance between the mass centers, and

difference in average vertical position and horizontal position.

Geometric features for symbols can also look at specific points in each stroke/symbol,

namely start and end points. The start and end points between the two sets of points can

be used in another set of distances, horizontal differences, vertical differences, and angles

between them. With expression images and typeset symbol there are no real start and

endpoint to the stroke or symbol. Artificial start and end points could be given, but they

might not hold the same level of information. Geometric features work well when trying

to discern the spatial relationship between symbols, see experiments using only geometric

features for parsing in Section 4.5.1.
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3.3.2 Shape Context Features

The shape context features [3] are circular histograms constructed from concentric

circles and lines passing through the center to divide the space into uniform angular sectors.

The cells or bins of the histogram are defined by arcs from the concentric circles and segments

of the lines passing through the center of the circles, See Figure 3.9. This figure shows a

shape context features histogram being used for shape density features. Shape context

feature circles are centered on the center of the bounding box containing the symbol or

component pair. Shape context features are used to represent visual density features of

a symbol have a outer circle with a radius equal to the distance between the center to

the furthest most point of the symbol or component pair. The concentric circles’ radii are

uniformly distributed between the center point and the outer circle’s edge. The angular

sectors are evenly distributed at angles starting from 0 degrees from the horizontal. With

contextual shape context the radius of the outer circle uses the radius of the base symbol

shape context multiplied by the radius factor. The radius factor controls how much of the

surrounding contextual information will be included in the contextual features. Figure 3.10

shows contextual features for a overline symbol in example expression 1. The shape context

has a radius factor of 8, meaning the entire shape context radius is 8 times the distance

between the overline’s center and outer most point.

The simplest approach to measuring visual density with the shape context feature

is to count how many points from the symbols fall within each bin and using these values.

The problem with this is the discrete nature of point counting does not handle variance well.

If a line moves from being along one side of a bin edge to another the two bin values shift

dramatically. An approach to help deal with variance is using Parzen shape context features.
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With Parzen a distance measure is used between each symbol point and the centers of the

bins. The distance measure comes from a Gaussian pulse centered at the symbol point. The

symbol point can now contribute to every bin value proportional to its distance. The Parzen

method requires a sigma value used in the Gaussian pulses from each point. The sigma is

derived from the maximum radius of the shape context times the standard deviation factor.

The sigma factor is used to control how flat or peaked each Gaussian distribution is for the

symbol points. A large sigma factor will result in a flatter distribution, thus a more even

distribution of value among all the bins.

The approach used for shape context in parsing and segmentation is to use a single

shape context and collect three sets of values for the bins. One set where the bin values

come from the points in the parent, one set for the child points, and one set for all other

points within the shape context’s range. When doing symbol classification two sets of values

can be used for the symbol and all surrounding context points. The multiple set of values

from the same histogram allows spatial information from each set to be directly compared

to each other. In classifying relations this information can be used to tell where the parent,

child, and context are relative to each other.

3.3.3 2D Grid Histograms

The grid histogram can be viewed as a grid of cells or a grid of points that make up

the corners of the cells. The method of grid histogram used in this work has a grid of corner

points. The number of points in the grid is used as a measure of its resolution. As more

points are placed in the same area the resolution of measured features increases. For symbol

and symbol context features the histogram is centered at the center of the symbol’s bounding
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Figure 3.9: shape context features (SCF) histogram for capturing shape density features of
alpha symbol in example expression 3. The SCF has 5 circles, 14 angle sectors, and radius
factor of 1 (sized to fit from symbol center to outer most point). (Left) Point counting
method is used for bin values and is normalized by total bin values. The hashed bins have
a value of 0. (Center) symbol points overlayed on SCF. (Right) Parzen method is used for
bin values. This gives smoother density with smaller differences between neighboring bins.
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Figure 3.10: shape context features (SCF) histogram for capturing context density features
of overline symbol in example expression 1. The SCF has 5 circles, 14 angle sectors, and
radius factor of 8 (radius is 8 times larger than needed to fit entire overline symbol. Center
of SCF is the center of the overline symbol being classified. (Left) Point counting method is
used for bin values and is normalized by total bin values. The hashed bins have a value of
0. (Center) context points overlayed on SCF. (Right) Parzen method is used for bin values.
This gives smoother density with smaller differences between neighboring bins.
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Figure 3.11: shape context features (SCF) histogram for capturing spatial density features
of the relation between a(parent) and i(child) symbol in example expression 3. The SCF has
6 circles, 12 angle sectors, and radius factor of 1.5 (radius is 1.5 times larger than need to fit
both parent and child symbol in SCF). (Left) Symbol points and feature values for parent
spatial density. (Middle) Symbol points and feature values for child spatial density. (Right)
Context points and feature values for context spatial density.
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Figure 3.12: (Left) alpha symbol points overlayed on 2D Grid Histogram (Right) 8x8 2D
Grid Histogram using fuzzy point histogram for capturing symbol shape density features.
Alpha symbol taken from example expression 3.

box. The longest dimension of the symbol’s bounding box is used as the side length of the

entire grid. A similar method is used for arranging the grid around a pair of components,

but with the bounding box containing both components instead. For capturing context,

either for a symbol or pair of connected components, the histogram is centered again on the

symbol or component pair. The size of the histogram can be increased by a factor of the

base length calculated for symbol or component pair features to include more context.

The feature values for the histogram are based on the distribution of points relative

to the corner points. This can be done in a number of ways with different distance metrics.

The method used for symbol classification was a fuzzy histogram [6] were each symbol point

contributed to the four nearest corners (the corners of the cell it is in) based on the euclidean

distance between them. Another approach is to use Parzen based contribution from each
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Figure 3.13: 2D Grid histogram spatial densities for a relation between parent symbol a and
child symbol i from example expression 3. Grid is centered between the parent and child
symbols and is sized to fit both symbols. (Left) Parent symbol points in grid histogram and
the density features. (Right) child symbol points in grid histogram and the density features.
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symbol point to corner. The Parzen method has the same benefits as it did with shape

context features, see 3.3.2. The Parzen method simulates contribution of each symbol point

using a Gaussian pulse. This allows a symbol point to contribute to all corners in the grid,

but will contribute much more to those closer to it. This gives a smoother distribution of

density and helps with variance in the positions of symbols. The sigma for the Gaussian

distributions is the product of the grid’s diagonal length and a sigma factor. The sigma factor

is used to control how flat or peaked each Gaussian distribution is for the symbol points. A

large sigma factor will result in a flatter distribution, thus a more even distribution of value

among all the corners.

3.3.4 Maximum Spanning Tree Context

The maximum spanning tree (MST) context features[11] are used to directly visual

represent relations between symbols and capture visual density features using histograms.

A two dimensional grid histogram was used for capturing the visual density features. The

way the relations are represented visually is a line of points from the geometric center of the

parent symbol to the center of the child symbol. The number of points is directly related to

the distance between the two centers.

This feature is used to capture the information presented by doing an initial pass

with a classifier. The classifier will give the class probabilities for an edge and these will be

used as class confidences for the edge when extracting mst context. A histogram is centered

on a relation between two symbols and will record the visual densities for each visualized

mst edge. Just like normal relation visual densities multiple sets of values can be recorded

for the histogram, but instead of values for the parent, child, and context, it can be values
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for particular relation classes. For example if the intent was to get the horizontal relations

visual densities the histogram can record the visual densities of all the visualized relations

and each point in the relation lines will be modified by its horizontal class confidence. This

way edges that have a higher probability of being horizontal relations contribute more to the

histogram. Doing this gives a visual density representation of the surrounding relations to

try and help in classifying other relations.

In testing this feature was used to visualize possible baselines, horizontal relations,

visual densities as another form of contextual information. The results showed a decrease in

accuracy when this feature was used. More experimentation will have to be done to get a

better idea of how mst context can be used.

Experimental Results. The results did not show MST context helping parsing.

An initial pass of parsing was done using a classifier trained with just the geometric and

normal grid histogram features to classify the set of possible relations in the line of sight

graph. Next the MST context features came from these classified relations and a second

pass of classifying all the relations in the line of sight graph was done. At the end Edmond’s

algorithm found the maximum spanning tree for the final expression layout structure. The

MST context extracted only looked at the relations classified as horizontal, to capture a

visual representation of the expression’s baselines. Three methods were used for the initial

parsing pass. The first approach kept all relations from the line of sight graph and used

all of them for the MST context. The second approach used Edmonds’ algorithm to get

a maximum spanning tree and only used the relations in the mst for the MST context.

The final approach also used Edmonds’ to extract the MST in the first pass, but only after

applying the unique symbol relation constraint, see Section 3.6. The unique symbol relation
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constraint forces each parent node to have a most one child node with a given spatial relation.

So, each symbol can only have one horizontal child, one superscript child, one subscript child,

etc. A grid histogram using parzen was used for the MST context features, with a resolution

of 10x10 and size to fit the parent and child symbols. None of the tested methods seemed

to show improvements in relation classification or parsing the expression structure.

MST context caused relations to be skewed towards horizontal relations in all the

tested cases. It maybe that MST context does not work well for parsing as it is too simple

to capture the intended information. The MST context was meant to represent both the

information gained in the first pass of relation classification with the remembered confidences

and it was suppose to add information relating the position of symbols to the baseline

structure of the expression. This seems like a lot of information to be conveyed by the single

line drawn between symbols. There may still be a better way of representing this information

visually.

3.3.5 Directionally Extended Context

Previous experiments had found increasing the size of histograms to capture more

context information from surrounding symbols can help to an extent in parsing typeset

expressions. Directionally extended context looks at increasing the amount of context by

looking along the horizontal axis, as most expressions have a more horizontal than vertical

structure. Two forms of directionally expanding histograms were tested, one for grid his-

tograms and another for shape context histograms. For grid histograms additional columns

can be added to the grid to extend it horizontally. For shape context the radius was in-

creased and a bounding box was used to restrict the points which contribute the feature
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values. The directionally extended context features were combined with the geometric fea-

tures and additional visual density features. For the extended grid histogram it captured

parent, child, and the context visual densities. For the extended shape context only context

features were captured and the other visual densities were from a grid histogram. Neither

of these extended context showed improvements over the normal increased in size density

histograms.

The extended context features also failed to show any improvements during cross

validation. The two dimensional grid histogram has repeatedly shown worse performance

when larger histograms are used to capture more context. My speculation on this is either it

is an issue with high variance of context further out from the relation being classified or the

searches in my experiments need to be expanded to include more combinations of parameters

for the features. For shape context histogram the improvement in relation classification

matched normally expanding the shape context to include more context. Restricting the

points considered to those horizontal with the parent and child symbol points didn’t help.

It may be that the other points aren’t as noisy as thought. Another reasonable explanation

has to do with the effect of adding more visual density features. As more histograms are

added or histograms are made higher resolution with more features values the total number

of feature values goes up, but the number of helpful features does not increase as quickly.

One way to improve the extended shape context is to instead of removing certain context

points, remove certain bins in areas which have less or no useful information. This will

hopefully improve the ratio of helpful to unhelpful feature value.
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3.4 Symbol Segmentation

The algorithm used for segmentation follows the binary approach used previously

for segmenting handwritten symbols using visual features [11]. A primitive level expression

graph, with each connected component as node, is used to represent the entire expression.

The initial graph structure is set by building a line of sight graph between the connected

components. A classifier is used on each edge in the graph, using features from the connected

component pair. The edges in the primitive expression graph are directed but edges are added

reflexively to the line of sight graph. This means each neighboring connected components in

the graph will get features for both parent child directions. The edge is given a classification

of either merge or split by the classifier. A sub-graph is extracted with all the nodes from

the original graph and only the edges which were classified as merge. Connected nodes in

the sub-graph will be merged into symbols. All nodes that can reach each other are made

into a single symbol node for a symbol level expression graph.

3.5 Symbol Recognition

Symbol recognition is done from a symbol level expression graph. The edges in the

graph are not considered for this task. Symbol recognition takes each node in the symbol

graph and extracts the features for the symbol and uses a classifier to label the node with

one of the symbol classes. The features used are visual densities for the symbol shape and

local context.

50



3.6 Expression Parsing

Parsing is done on the symbol level line of sight graph. Unlike segmentation the

classifier for parsing does not directly classify each edge. Instead the classifier is used to give

each edge probability scores for each of the possible spatial relations, including NoRelation.

From these scores the highest is selected to give the edge a weight and possible classification.

NoRelation is never used as a possible classification, instead if NoRelation is the highest

score the next highest is selected. If this was not done when a max spanning tree is found it

might select a NoRelation edge with strong confidence, there are many of these in each line

of sight graph. This would result in an invalid final expression structure. With the weighted

expression graph Edmonds’ algorithm[8] is used to select a maximum spanning tree and

resolve any cycles. The maximum spanning tree is used as the final expression structure.

3.6.1 Cascade Classifiers

The purpose of using cascade classifies for parsing is to use multiple stages of classi-

fication and parsing to iteratively improve the results. The cascade designed for parsing the

typeset expression uses two classifiers and operates in two stages. Both classifiers use the

same features and the same training set. The difference between them is how the training

samples are labeled and the classifications they can give. In the typeset expression more

than 70% of the relations are classified as horizontal. This leads to the majority of errors

made when parsing involve the horizontal relation class. Common errors include false edges

with the ground truth relation of NoRelation being classified as horizontal, the reverse where

horizontal relations are not included in the final expression structure, and confusions between

RSUB and horizontal relations.
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The first phase of the cascade looks at detecting the horizontal relations in the ex-

pression. The classifier used for this is trained on three classes instead of all the relations.

The three relations are Horizontal, NotHorizontal, and NoRelation. The difference between

NotHorizontal and NoRelation classifications is that NotHorizontal are relations found in

the ground truth expression graphs, but are not horizontal relations. NoRelation are still

any relation that doesn’t show up in the ground truth expression graph. In the first stage

this classifier is used to classify all the edges in the line of sight graph as horizontal or

NotHorizontal and give a score to those classified as horizontal.

The second phase classifies and scores all the remaining edges in the expression graph

without scores. The classifier for the second phase is trained using all the relation classes.

This phase behaves just like the normal parsing for all the unclassified edges, giving each

edge a weight equal to the highest probability from the classifier. Once all the edges have a

probable relation class and a weight, from the probability score of one of the two classifiers,

Edmonds’ would be used to extract a maximum spanning tree.

3.6.2 Unique Symbol Relation Constraint

When using Edmonds’ algorithm a maximum spanning tree is selected without any

consideration of the possible classes of the relations, only the weight of the edges are con-

sidered. This means the final set of selected edges might have an invalid mathematical

expression structure. A common example is having two horizontal relations from a single

parent symbol. In Figure 3.14 you can see an possible scored expression graph before Ed-

monds’ has been run. The rho symbol has two horizontal relations to its children, one to

the alpha and one to the left parenthesis. In this case the relation to the alpha should be a
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subscript, but because it looks more horizontal that relation gets a higher probability score.

This is actually a common problem in relations. One possible way of handling this problem

is to use a unique symbol relation constraint which will prevent invalid expression structure,

like multiple horizontal relations. The hope is the unique symbol relation constraint will

choose the correct relation to keep, thus filtering invalid relationship hypotheses.

The unique symbol relation constraint implemented looked for all cases where a parent

symbol has multiple edges with the same relation to child symbols. The relation with the

highest score for that relation remains. All the duplicates would be forced to chose their

next highest relation score. If the next most likely relation is NoRelation then the relation

with the next highest probability is used. If an edge ever has a score of 0 it was removed.

The removal does run the risk of no valid maximum spanning tree being found by Edmonds’

algorithm. Using this constraint helps with cases of RSUB relations being classified as

Horizontal. There was a small decrease in detected correct relations, due to constraint

selecting the wrong relation, but overall the expression rate went up, see Tables 4.3 and 4.4.

3.7 Evaluation Metrics and Tools

The evaluation of results is done using the LgEval library[17][16] created for the

analysis of expression graphs represented as layout trees. The layout trees examined can

have primitives, connected components for typeset, or symbols as the nodes in the graph.

These tools produce evaluation metrics and for both the primitive and symbol level. These

tools also produce confusion histograms for error analysis.

The evaluation metrics are based on recall and precision of labels in the produced

layout trees. These labels include labels on the nodes for symbol classification and labels
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Figure 3.14: Graph Structures with arrow from parent to child: Red-Horizontal, Dark Blue-
Subscript, Light Blue-Superscript, Dark Green-Upper, Orange-Under, Light Green-PUNC.
A partial line of sight graph (reduced number of edges for clarity) with many of the more
confidant edges with most likely relation classification. This Graph would be passed to
Edmonds’ algorithm to find maximum spanning tree. Notice rho symbol has two likely
horizontal relations to child symbols. Both can be selected by Edmonds’, but this would
form an invalid expression structure.

on the edges for relations between the nodes. The recall indicates what percentage of the

correct labels are present in the produced tree out of all the correct labels in the valid layout

trees. Precision indicates what percentage of the produced labels are valid labels. Using

these many different metrics can be examined. The primary metrics are symbol detection,

symbol classification, relation detection, and relation classification, see Figure 3.15. symbols

are segmented correctly when all the correct primitives for a symbol are labeled as being

part of the same symbol. symbol classification requires the symbol to be detected correctly

and have the right symbol class label. relation detection indicates whether an edge exists

between the two components in both the produced tree and the valid layout tree. Relation

classification depends on the correct detection of an edge and the correct relation label for the

edge. The symbol detection is used for segmentation analysis. symbol classification is used
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for symbol recognition. Expression parsing uses both relation detection and classification.

Another important aspect of evaluating results is error analysis. The confusion his-

tograms are a good tool for seeing what mistakes are being made. Besides the standard table

confusion histogram for both symbol labels and relation labels, there are subgraph confusion

histograms. These allow detailed case analysis to be viewed in an organized way. With a

subgraph of size one the confusion histogram would show errors in single nodes in the symbol

layout tree. This would contain segmentation errors for a symbol and classification errors. If

the subgraph was expanded to size two this would be errors between two nodes, and include

relation parsing errors. This tool also allows for the reporting of which expressions these

errors are occurring in, see Figure 3.16. These tools provide informative and valuable insight

to the behavior of our recognition system.

3.8 Summary

The recognition of scanned typeset math expressions from the InftyMCCDB-2 dataset,

created from the InftyCDB-2 dataset, is done by first processing the connect components

from images to point sequence representations. The expression are represented as symbol

layout trees with an initial edge set from doing line of sight[11]. Multiple forms of the layout

trees were tried for parsing symbols. The connected components are segmented into symbols

by classifying the relations between them in the graph as either merge or split. All con-

nected components connected by merge edges are combined into a symbol. At the symbol

level another line of sight graph is constructed, but with the modification of looking for block

punctuation. Two set of classifications are done independently. The edges between symbols

are given relation classifications and weights from one classifier and nodes are given symbol
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Figure 3.15: This is a portion of the evaluation output showing the symbol level metrics at
the top (labeled as Objects) and expression rates at the bottom (labeled Files).
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Figure 3.16: (Top) shows samples of confusion histogram output for subgraphs of size 1.
The first symbol is an i and is segmented incorrectly and miss classified. (Bottom) shows
samples of confusion histogram output for subgraphs of size 2. The first error shows relation
detection errors between p and +.
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classifications from a separate classifier. In all three sets of classifications, connected compo-

nent relations, symbol relations, and symbol class the features used are spatial features and

visual density features. The relations use the geometric features, which have been expanded

from 38 [11] features to 50. All three type of classifications use the visual densities from

histogram. These visual densities capture symbol shape, spatial information between pairs

of components, and contextual information. The histograms used were two dimensional grid

histograms and shape context features histograms.
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Chapter 4

Results and Discussion

A series of experiments were conducted to examine the features and approaches to

symbol segmentation, symbol recognition, and expression parsing. The dataset used is the

InftyMCCDB-2 as described in Section 3.1. Each recognition task was first explored indi-

vidually and final testing was done by doing full expression recognition from the connected

component level.

The experiments look at feature parameters for adapting the geometric and den-

sity histogram features used, adding new contextual features, alternative expression layout

structures, and modified processes for parsing. The feature parameter experiments are done

through cross validation testing on the training set and look at the direct recall rates of the

classifiers. The assumption for segmentation and parsing is that a classifier with better recall

in classifying the relations found in the line of sight graphs will do better in segmentation

and parsing.

The results of these experiments shows the hierarchical contextual parsing approach

is effective in recognizing scanned typeset math expressions, see Tables 4.3 and 4.4. This

recognition of expressions is aided by the contextual features (3.3), the altered layouts (3.1),

and a unique symbol relation constraint (3.6).
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4.1 Data

The dataset used for all experiments and testing is the InftyMCCDB-2 dataset cre-

ated from the InftyCDB-2 dataset, see Section 3.1. From the dataset 19381 Typeset math

expressions are split into a training and testing set. The expressions come from scanned

English mathematics papers. The dataset contains a total of over 142000 symbols instances

from 213 different symbol classes. The expressions range in size from a single symbol to more

than 75 symbols, with an average of 7.33 symbols per expression. The symbols themselves

are made up an average of 1.11 connected components, with a standard deviation of .36.

This puts the large majority of symbols at having only one connected component. There

are several symbol classes with a standard representation containing two or three connected

components: i, j, equals, leq, geq, double prime, Theta, colon, cdots, ldots, plus minus.

Many other instances of symbol instances with multiple connected components are fractured

symbols whose connected components were split by printing and scanning noise. In extreme

cases a symbol with a normal representation of a single connected component can be frac-

tured into more than ten connected components. The original dataset does not deal with

symbols at the level of connected components, this was added for this thesis and is outlined

in the data processing section in the methodology chapter.

To create the training and testing sets the original set of expression was divide into

two sets of 12551 and 6830 expression with approximately the same distribution of symbol

classes and relation classes. The splitting of data using a sum of squared differences only

concerned the class distributions and not the sizes of the expressions. As a result the average

number of symbols in expressions is slightly higher in the training dataset than the testing

by .6 symbols per expression, but the training dataset also have a higher standard deviation
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in the number of symbols per expression.

During the course of the investigations for parsing typeset math expressions several

alternate structures for expressions were examined, see Subsection 3.1.2. This involved

rewriting the ground truth representation of the expression to match the new structure.

These changes did not effect any symbol classification or segmentation information. Here

is a list of the expression set versions and the changes made from the original expression

structure:

• Expressions v1: No Changes

• Expressions v1b: Modified v1. Trailing punctuation removed from end of expres-

sions.

• Expressions v2: Modified v1b. Switched accents (tilde, hat, dot, check, and vec)

from being in baseline.

• Expressions v3: Modified v2. Added PUNC relation for baseline punctuation (comma,

period, ldots).

• Expressions v4: Modified v3. Added ACCENT relation for accent overline symbols,

• Expressions v5: Modified v3. Switched overline symbols same as other accents.
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Table 4.1: Common Symbols in Dataset
Relation Frequencies

Symbol Class Training Testing
Right Parenthe-
sis

6.5% 6.5%

Left Parenthesis 6.4% 6.4%
One 4.5% 4.5%
Comma 3.8% 3.7%
Equal 3.6% 3.6%
two 2.8% 2.8%
Zero 2.7% 2.7%
i 2.0% 2.0%
Minus 1.9% 1.9%
Plus 1.8% 1.8%

Table 4.2: Relation Frequencies in dataset
Relation Class Frequencies

Symbol Class v1b Train-
ing

v1b Test-
ing

v5 Train-
ing

v5 Testing

HORIZONTAL 77.7% 77.4% 73.5% 73.3%
RSUB 11.9% 12.0% 11.9% 12.0%
RSUP 6.2% 6.2% 6.2% 6.2%
PUNC –% –% 4.2% 4.2%
UNDER 3.2% 3.2% 1.4% 1.4%
UPPER 1.0% 1.1% 2.8% 2.9%
LSUP <.1% <.1% <.1% <.1%
LSUB 0.0% 0.0% 0.0% 0.0%

4.2 Classifiers

For all experiments and testing random forests classifiers are used [18]. The imple-

mentation used for the random forests is from the scikit-learn library for python. This selects

random features from the pool of all features to use in building the decision trees. All com-
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parisons of results use consistent set of parameters for the random forests. The initial set

of parameters used for the random forest included: 50 trees, max depth of 40, max number

of selected features was the square root of the total number of features, and Gini measure

is used for making the splits in the tree. These parameters come from previous work using

a similar set of features [11] and the same approach to segmenting and parsing handwritten

expressions. After some initial testing the max number of features was changed to a con-

stant value of 30. This was done after observing lowered results when using higher resolution

visual density histograms and include a higher number of such histograms. The reasoning

for this is that visual density histograms contain many feature values to describe the entire

space, but at time many of these feature values are not discriminative enough to help in

classification. At higher resolutions and more histograms the ratio of discriminative features

to those not helping in classification become worse. The trade off is the possibility of over

fitting to the dataset. This is handled by using five fold cross validation on the training set

for feature parameter selection.

4.3 Symbol Segmentation

The experimentation done with segmentation was limited to adapting the previous

approach tried for binary segmentation of math symbols in handwritten expressions using

the spatial and visual features [11] outline in methodology and adapting the visual density

features for the typeset data. The final results using geometric features, visual densities, and

multi scale context, using multiple histograms of different sizes for contextual information,

achieved a 99.47% symbol recall on the test set from InftyMCCDB-2 of over 44,700 symbols,

comprised of 49,600 connected components. This includes the 326 cases of manually split
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merged connected components.

Segmentation experiments deal exclusively with which features set should be used and

what parameters are optimal for these features. The experiments are done by doing searches

over the feature parameters in cross validation on the training set. The metric used evaluation

in the cross validation is classification rate of relations between connected components, either

merge or split. The merge relation indicates that these two connected components belong to

the same symbol. The parameters which give the best results in cross validation are used in

testing on the test set, where symbol recall is used for evaluation. Symbol recall measures

how many symbols from the testing set were able to be fully constructed with all connected

components from the segmentation.

4.3.1 Symbol Segmentation Experiments

The main experiments consisted of looking for optimal resolution the visual densities,

comparing the use of shape context feature densities with 2 dimensional grid histograms,

and finding the best amount of context to use for segmentation. Two grid searches were

done with five fold cross validation on the training dataset, see Section 1.1 in Appendix.

In the grid search what is reported are the classification rates of the edges in the graphs

being examined. While this does not directly indicate the trend in symbol recovery for the

parameters being tested, it is reasonable to believe the parameters which produce a classifier

with more accurate classifications would give higher symbol segmentation rates. Each grid

search paired one of the visual density methods with the geometric features, those used in

[11]. The resolution of the visual densities was varied. Also in the grid searches the amount

of context viewed was increased by increasing the size of the histogram. For both types of
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histograms using a single histogram was used to collect all three sets of values, parent density,

child density, and context density. This means increasing the size of the histogram while

keeping the same absolute resolution, number of values in the histogram, lowers relative

resolution in regard to the symbols being viewed.

The first set of experiments yielded the result that both shape context features his-

tograms and 2 dimensional grid histograms do equally well when sized to only fit the parent

and child components, with relation classification rate around 99.74%. Also in terms of

most effective resolution for the histograms it seemed that lower resolution histograms did

better than higher. In this area a more expansive grid search over even smaller resolution

histograms might yield better results. The lowest shape context resolution, 3 circles and 6

sector angles, and the lowest grid histogram, 5 by 5 grid, did the best. In these experiments

as the size and amount of context viewed increased the shape context feature histograms

did better than the grid histograms, by ¡.1% in relation classification. This is possible due

to lower variance in the shape context histograms. This is what lead to choosing the shape

context histogram for the multi scale context features.

The next set of experiments looked at using multi scale context. These experiments

added a second density histogram to the previously done grid searches, were the second

histogram was a shape context feature histogram which only looked at context. Now the set

of features consisted of the geometric features, a histogram to get parent, child, and context

with a base size, and a shape context histogram with a radius factor greater than 1.0 to get

only context. The resolution of the of the context only shape context feature histogram was

kept constant, 3 circles and 10 angle bins, based off results of the previous experiments [15].

Also the parameters of the other histogram were kept constant. The only thing being varied
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Figure 4.1: Examples of fractured symbols from example expression 2. Some symbol classes
will have common points of fracturing, but each fracture is caused by random noise.

was the context only histogram size, and therefore amount of context viewed.

The second set of experiments for multi scale context showed higher accuracy rates

in the cross validation. At this point the accuracy for edge merge/split classification ranged

around 99.7% and the variations between parameters were less than a tenth of a percent.

The context range chosen from this experiment was 1.75x the base radius for fitting the

parent and child. In comparing the object recall rate when segmenting the testing set there

was not much of an increase, less than a tenth of a percent. The change in precision was also

small, but it did improve more than the recall, from 99.20% to 99.23%. I found using two

shape context histograms worked best, giving a symbol recall rate of 99.47% and precision

99.23%. These results make sense when looking at the type of errors in segmentation.

4.3.2 Results Analysis

Segmentation of typeset symbols has two kinds of merges between connected compo-

nents. There are valid merges between symbols with traditionally more than one connected

66



component and there are merges between symbols that have been fractured into multiple

connected components. The fracturing is a result of noise and can have high variation in

how symbols are fractured. Symbol shape is stable, resulting in stable appearance of valid

merges. The most frequent cases where valid merges fail are lower case i and double prime.

In both cases the individual connected components of the symbols look like other symbol

classes. Look at the lower case i errors in more detail show the missed merges occur when

the i is a subscript. This puts the dot for the i at about the position you would expect to

see a period, possibly creating some confusion in the contextual information.

Fractured symbols produce the majority of errors in segmentation of type set symbols.

While some symbols have common weak points where fracturing is most likely to occur

there is still a lot of variation in the fractures. This high variation might explain why lower

resolution histograms did better and why shape context histograms did better for extended

context. The shape context has higher resolution (smaller and closer bins) towards the center

and lower resolution further away. Large differences in location for further out context or

even parent and child components affect values less in the lower resolution portion of the

histogram. Shape context histograms are also better at capturing direction information with

the angle sectors. For grid histogram depending on the relative sizes of the histogram a corner

might represent different angle for different histograms, preventing reliable comparisons for

direction.

When the multi scale context is used the correct classifications increase, but only a

small increase in recall of symbols is seen. Looking at the errors the explanation for this is

that the fractured symbols not being properly merged are getting more pieces together, but

still end up without all the parts together. What makes the fractured symbols segmentation
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problem hard is the high variance and low number of cases available to train on. Over the

entire dataset each symbol might have relatively few fractured cases and each can be a little

different from the others. overall segmentation was able to do well with relatively few, 122,

simple feature.

4.4 Symbol Classification

The experiments for symbol classification looked to answer several questions. Is using

grid histograms or shape context histograms better for symbol classification? Which provides

better classification when using shape context histograms, point counting method or parzen

method? What is the behavior of the histograms as resolution is increased? Does using

context help symbol classification? Is there an amount of context that is detrimental to

symbol classification?

The result showed the extremely regular shape of typeset symbols allows for high

classification rates with either of the histogram types and with all of their methods for

measuring densities. With a single visual density histogram, grid histogram, shape context

with point counting, or shape context with parzen, a recognition rate of 98.2% is achievable

with high resolution. When context was added the recognition rate went to 99.3% and

neither the histogram for the symbol density or the context had to be as high resolution.

Context allowed better recognition with less feature values. The results are inconclusive in

regard to deciding on the best visual density feature to use, but some important behaviors

can be seen in these experiments’ results. Behaviors of the histograms for resolution and

size changes and comparison of the two kinds of visual density histograms.

Experiments for symbol classification focus only on the which features to use and best
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parameters to use with those features. The experiments used the ground truth segmentation

for all the symbols. Experiments used cross validation with the training set to compare the

different feature sets using the metric of symbol classification rate. The symbol classification

rate measures how many of the symbols being classified are given the correct classification.

After cross validate finds the best parameters and features sets testing is done on the testing

dataset.

4.4.1 Experiments

The first experiments used single histograms to capture the shape density of the

symbol being classified. In the experiments the resolution and method of measuring values

for the histogram were varied. grid histograms were test with resolutions from 2x2 to 11x11,

using the fuzzy histogram method. Shape context histograms were tried using combinations

of 1 to 5 circles and 2 to 18 angle sectors. The measuring methods used with the shape

context histograms were point counting and Parzen. When Parzen was being used with the

shape context features a narrow range of sigma factors were tested, from .05 to .15. This

range of sigma factors was shown to be best for the high resolution shape context histograms.

The results from the first experiments show that for each type of histogram tried

there is a similar behavior as resolution is increased and each was able to reach the same

maximum symbol recognition rate at 98.2%. The universal pattern was as resolution in-

creased the recognition rate increased, until leveling off around the maximum at the highest

resolutions. At the lowest resolutions the grid histogram did much better than both shape

context histograms. Also at the lower resolution the point counting shape context histogram

did better than the Parzen, but this might be due to the selection of sigma factors. At the
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Figure 4.2: A processed fracture ’y’ symbol from example expression 2. (Top Left) The
original symbol image. (Top Right) The extracted contour of the symbol image. (Bottom
Left) The smoothed contour using smoothing distance of 2 to average point locations with
points before and after in sequence. The smoothed contour has the same number of points.
(Bottom Right) The symbol contours after using Catmull splines to do more smoothing and
resample the contours.
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medium resolutions, having 25 to 49 feature values, the grid histogram and Parzen shape

context did the best with the grid histogram doing slightly better in one case. Though at

these resolutions the difference in recognition rates between histograms are from .1% and

.5%. After this point the recognition rates level off as resolution is increased and differences

between the histograms drop to <.1%. Even at the lowest resolutions the worst histograms

achieved >90% accuracy in symbol recognition, showing how effective these simple features

are for typeset symbol recognition. The fact that at high resolutions even methods like point

counting level off in accuracy instead of dropping seems to reflect the regularity of typeset

symbols’ shape.

The next set of experiments aimed at adding contextual information as a way to

improve the recognition rate. The experiments also explored how much context is actually

helpful and what effects resolution have. For the experiments two histograms would be

used, one to capture the target symbols shape and anther to capture the contextual infor-

mation from around the target symbol. The histogram for symbol shape was kept constant

throughout these experiments as a 5x5 grid histogram using the fuzzy method of measuring

values at the corners. In each of the experiments a shape context histogram was used for

the contextual information. The contextual histogram varied its resolution and size for the

experiments. The resolution varied from 1 circle and 2 angle bins to 5 circles and 16 angle

bins. The size of the histogram ranged from 1 to 8 times the base radius needed to fit all

the target symbol’s points within a circles centered on the symbol.

With the second set of experiments the contextual information showed improved

symbol classification, even when low resolution contextual information was used. On its

own without the contextual histogram the 5x5 grid histogram achieves a symbol recognition
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rate of 97.4%. When contextual information is added using a shape context histogram

with 2 circles and 6 angle sectors the symbol recognition rate increased to 98.8%. This

shows that having contextual information along with the symbol visual density can do better

than symbol visual density on its own and with less feature values. As the resolution of

the contextual information increases the recognition rate also increases. Like the symbol

visual densities increasing the resolution has diminishing returns, but no downward trends

in recognition rate were seen. The difference in recognition rate between low resolution and

high resolution contextual histogram was between .5% and 1.2% depending on its size. The

other parameter which was varied for the contextual histogram was its size. As the size

increased and more contextual information was included the recognition rate increased. The

exception to this trend is very low resolution histograms did worse when size was increased.

The difference in symbol recognition was <.5% between the smallest and largest contextual

histograms. In combining the symbol density and contextual features symbol recognition

reached 99.3%. This was done using a 8x8 grid histogram using fuzzy point measurements

for the symbol’s shape and a shape context features histogram using point counting with 5

circles, 14 angle sectors, and radius factor of 8 for context only.

4.4.2 Results Analysis

Classification based on symbol shape alone has the obvious problem of trying to

distinguish symbol classes with the same or similar shape. Even with the very high resolution

histograms for visual density there are many cases of this problem. Looking at the errors

for the best symbol features only symbol recognizers the classes causing the most confusion

are the ones with a simple horizontal line shape. The classes which all share this shape are
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Figure 4.3: Graph comparing the symbol recognition rate when using different histograms
for visual symbol density features. These histograms to capture symbol shape density are
the only features used in symbol recognition. X axis is the symbol classification accuracy,
the y axis is the number of feature values (aka. resolution) in the histogram and used in
the classifier. 2D grid (Grey line) does best at low resolution. All three converge at high
resolutions.

fractional line, minus, overline, and hyphen. Confusion between these classes makes up 40%

to 50% of the errors. The next set of most confused symbol classes are dot, cdot, and period.

These make up another 10% of errors. Other common confusions are letters with similar

lower and upper cases, such as ’S’, ’P’, and ’O’. For the horizontal line classes there is little

to no way of telling them apart by looking at the symbols in isolation.

Contextual information was able to cut down on the errors caused by classes with

the same or similar shape. The confusion between the horizontal line classes was almost

completely eliminated. There was still come confusion between cdot and period. When

looking at the actual cases where these errors occur you can see that the confused symbols are
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relatively far from any other symbol. The contextual histogram size is based on the size of the

symbol being classified, so with smaller symbols less context information is captured. Some of

the remaining errors in symbol classification still include traditional difficult classifications,

such as capital and lower case letters. For similar shapes there are a few distinct cases.

Lower case ’L’ is being mistaken for one, parentheses, and ’I’, periods and commas have a

few confusions. With such high classification rates more and more of the remaining errors

are linked to printing and scanning noise in the dataset. A larger portion of errors are from

fractured symbols. The fracturing of symbols that are usually one connected component

into several was seen to be a problem in segmentation as well. In classification even if the

fractured symbol is properly segmented it may not be classified correctly. Almost 25% of

the remaining classification errors involve fractured symbols.

4.5 Expression Parsing

The experiments for parsing expressions looked at both adapting previously used

approaches and features, as well as adding new ways of parsing. The initial experiments

for parsing used the ground truth segmentation and symbol classification. First set of ex-

periments looked at reproducing the approached used for handwritten expression parsing

[11] and adapting the features to typeset expressions. The adapting of features includes

introducing the grid histogram to expression parsing, as it was originally used for symbol

recognition. The second set of experiments looked at how modified representations of ex-

pressions structures could help in parsing them. The next set of experiments looked at using

multiple stages of parsing with a cascade of classifiers. Experiments were also done to look

at using different forms of contextual information to do parsing, with a focus on baseline
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information. The final experiments looked at a simple form of adding unique symbol relation

constant to the parsing to prevent results from having invalid expression structures.

The experiments for parsing either focused on the features, and their parameters,

used for classifying relations or on the parsing algorithms itself. The experiments done

on features consisted of first doing cross validation testing with a search over the space

of parameter values for the features and then doing parsing tests with the best performing

parameters from the cross validation. The experiments for the parsing algorithm only looked

at parsing results. In the cross validation the metric used for evaluation is the classification

rate of all relations in the validation set. This includes both the actual relations and false

relations found when building the line of sight graph. The false relations have a ground truth

relation of NoRelation. The parsing has a few metrics for evaluation. Two different kinds

of correctness are looked at, detection and detection with classification. Detection refers to

correctly identifying that two symbols have a relation between them in the valid layout tree.

For detection the classification of the relation doesn’t matter. It is in the second, detection

and classification, where the relation between the to symbols is a valid relation and correctly

classified. These two measure can be done at the relation level or expression level. At the

relation level the rates refer to what proportion of all relations in all expression being tested

are correct. For expression level the measure is the proportion of test expression with no

errors for that measure.

4.5.1 Experiments

Adapted Parsing Approach. The original approach[11] to parsing used geometric

features along with visual density histogram to classify relation edges in a line of sight graph.
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This histogram used was a shape context histogram. The shape context histogram was used

to capture visual density features for the parent symbols location, child symbols location,

and surrounding context. In addition to these feature types a second kind of visual density

histogram was added, the two dimensional grid histogram. The grid histogram could be used

in place of the shape context histogram to get the parent, child, and context visual density

information.

Comparison of the different features was done by using each individually for the

classification of relations between symbols. The original set of geometric features consisted

of 38 values. The set of geometric features was then expanded to 50 values. In the cross

validation testing it was shown that the expanded set of geometric values did better in

classifying the relations between symbols.

The density histograms were tested independently with different resolutions and sizes.

In the testing the histogram would collect all three set of values, parent, child, and context.

The grid histogram resolutions tested in cross validation ranged from 6x6 to 10x10 and

sizes from 1.0 to 1.5 times the base size. The shape context histogram resolution ranged

from 4 circles and 6 angle sectors to 6 circles and 12 angle sectors. The sizes tried for the

shape context went from 1.0 to 2.0. Both histograms used the Parzen method for measuring

density values. In each case increasing the resolution helped. Also using more than the base

size of the histogram helped in classifying relations when using shape context but not grid

histograms. Increasing the grid sizes lowered classification. For grid histograms 1.00 times

the base size worked best and for shape context 1.5 times worked best. What was not tried

was a smaller histogram for just the parent and child density features and a larger one for

context. The grid histogram seemed to have an advantage when using smaller histograms,
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but as size increased the shape context improved more. Both histograms did better than the

geometric features on their own. Looking at expression level detection and classification the

geometric features got 90.54%, shape context features 93.25%, and grid histogram 93.46%.

When looking at just the geometric features the cross validation indicated that in-

cluding the added features helped in relation classification. Looking at results on the testing

set agree, with a slight increase in relation classification from 97.25% to 97.56%. A greater

increase was seen in the expression rate when the new geometric features were used, 90.54%

from 80.52%. The geometric features were out performed by both the shape context his-

tograms and grid histograms in the cross validation.

Experiments looking using only a density histogram for parsing saw grid histograms

perform better than shape context with smaller, base sized histograms, but worse for larger

histograms. In the cross validation relation classification ranged from 98.9% to 99.22%.

When the size of the histograms was kept at the base size, just big enough to fit both the

parent and child symbol, The grid histogram seemed to do slightly better than shape context,

by about .1%. In testing the expression rate rose from 93.24% to 93.46% when a 7x7 grid

histogram was used instead of a shape context with 6 circles and 12 angle sectors. As the

size of the histograms increased the gird histogram did worse than before and the shape

context did better in cross validation. There are a few factors that might account for grid

histograms performance in larger histograms with more context. The variance in positioning

of context might increase further out from the center and cause a grid with uniform bin sizes

problems. Shape context have larger bins further from the center and this might help with

the higher variance for the context. Also as grids grow larger all the bins grow larger at the

same rate, meaning less detail every where. This would include the parent and child spatial
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density features. In shape context the outer bins are affected more than the inner bins terms

of feature details.

After examining the features in isolation they were combined to use both the extended

geometric features along with a visual density histogram. When using a grid histogram the

base size was used, but the shape context used a size of 1.5 times the base size. The resolution

for the grid was 10x10 and the shape context used 6 circles and 12 angle sectors. For both sets

of features the experiments showed about the same recognition rates. The grid histogram

covers more area than the shape context of the same base size, so at the tested sizes the

shape context actually has more contextual information. It may be that the grid histogram

does better for the parent and child spatial densities, but worse for context because of higher

variance in the context. No experiments were done to exclude the context information when

using the grid histogram and use a shape context histograms for all contextual information.

Alternate Expression Representations. These experiments were done to test

the alternate ways of representing the structures of expressions. The two changes made

to the structure were removing baseline punctuation and accents from the main baseline.

Baseline line punctuation symbols, commas, periods, and ldots, from the main baseline to

their own baseline with their own relation class. This means instead of having a comma

horizontal the the symbols it is separating it would be considered like a subscript and the

two symbols would now be horizontal to each other. Accents instead of being horizontal to

the symbol before them would be considered above the symbol under them, then the symbol

under them would be horizontal to the previous symbol. (see structure changes figure). The

experiments were run using geometric features combined with a grid histogram for visual

density features. Using these two changes to the expression representation increased relation
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detection, classification, and expression structure recognition. The best expression level

detection and classification rates when up by 2% when going from expression v1b to v5, see

Table 4.3.

Alternate expression representations experiments show when the expression structure

were changed to better represent the spatial relations with baseline punctuation and accents

the relation classification and expression recognition increased. The feature set used included

the extended geometric features and a grid histogram using parzen with resolution 10x10, at

the base size. The grid histogram captured the parent, child, and context visual densities.

The original expression, see v1b in Section 4.1, detected 98.86% of the correct relations,

had 98.51% of relations correctly classified, and 93.65% expression recognition rate. With

the modified expressions, version 5, relation detection went to 99.29%, relation classification

went to 98.98%, and the expression rate was 95.31%. In number of errors regarding baseline

punctuation and accents dropped with the new expression structures, with the number of

relation errors in the parsed expressions decreasing by 33%.

Looking at the change in error cases for the baseline punctuation there are more

relations detected and correctly classified than before. The two main errors with punctuation

were adding it to the end of a subscript baseline or incorrectly classifying the relation as

RSUB instead. The first error occurred when there was a subscript symbol between the

parent symbol and the baseline punctuation, which makes it look like the punctuation is

horizontal to the subscript symbol. If there was no subscript symbol in the way then the

relation looks more like a subscript relation visually. With the change to the structure by

having the punctuation have its own relation, PUNC, both cases were reduced. there are

still cases of both, but now when the PUNC relation is misclassified as RSUB it can be
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fixed in post processing by using the classification of the symbols to correct all relations to

baseline punctuation to be PUNC. There are also a few classes of non-baseline punctuation

symbols with a relation of PUNC which should be RSUB. These can also be fixed with the

same kind of post processing.

The changing of the relations dealing with accents has many different effects. The

first was an increase in relation recall for the line of sight graph. There were cases where

the symbol under the accent would block line of sight to the parent symbol or child symbols

of the accent. One of the major errors with accents was the parent symbol choosing a

horizontal relation to the symbol under the accent instead of the accent itself. The change in

structure made the ground truth match the horizontal sequence of symbols on writing lines.

In the confusion histogram the number of incorrectly classified false relations (NoRelation) as

horizontal dropped by 40%. The number of Horizontal relations miss-classified as NoRelation

dropped by 50%. The other relations which improved are the child relations of the accent,

which were changed to have the symbol under the accent as the parent. Previously any

RSUB or RSUP relation belonged to the accent, but would be classified as belonging to the

symbol under the accent. All of these errors were fixed by the change in expression structure.

The few remaining error cases for accents happen when there is multiple symbols under the

accent and incorrect one is chosen to have the upper relation from the accent to it. Again

this is something that can be fixed in post processing, but currently there are only 6 cases

of this in the test set.

Before the structural changes the accent errors made up the majority of the top

errors, closely followed by baseline punctuation. After the structural change there are still

some baseline punctuation errors, but the top errors belong to line of sight errors caused
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by blocking subscripts and superscripts. These are relations that are not even detected for

classification when the line of sight graph is built. Another frequent problem is subscript

symbols being given horizontal relations, some of these cases overlap with the block subscripts

and others are just subscripts which seem to be on the same vertical level as their parent

symbol. More than 50% of the remaining errors are either horizontal relations not being

detected or false relations being classified as horizontal.

Cascade Classifiers. The experiments used multiple classifiers to do a sequence of

classifications of relations before extracting the final expression structure. In the experiments

two classifiers were used. The first classifier is used to try and identify relations as a horizontal

or not horizontal. The second classifier is used on all relations classified by the first as not

horizontal. The idea is the binary classification of horizontal relations would be easier. Both

classifiers use geometric features and shape context features. The experiments showed no

improvement in relation classification, indicating this simple approach to a cascade wouldn’t

help. This approach might be improved by adding unique symbol relation constraint which

restrict the relations chosen and eliminate invalid ones for the next round of classification.

Another approach would be instead of a cascade use a set of binary classifiers for all the

relations.

With most of the relations in expressions being horizontal and most errors involving

the horizontal relation it is the relation where the most overall improvement can be gained.

Unfortunately using the cascading approach didn’t show any increase in relation classification

or expression recognition. More horizontal relations were correctly classified, but at the same

time there were more miss classifications of horizontal. Both other real relations between

symbols and false relations between symbols that should be excluded from the final expression
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structure were classified as being horizontal relations. This might be an effect of the high

prior for horizontal relations, 78% of all relations. It might be possible to get improvement

from the cascading classifier if unique symbol relation constraint was used to restrict the

selection of horizontal relations. currently any number of horizontal relations can be selected

for a symbol in the first pass of relation classification.

Symbol Shape Context. These experiments aimed to use the parent and child’s

shape visual density as additional context in classifying the relation between them. These

features were used along side the geometric and a grid histogram for the parent, child, and

context information.

The symbol visual densities for the parent and child symbols were used as additional

context for the classification of relations between two symbols. The visual densities used for

the individual parent and child symbols were the same as those used in symbol recognition

and captured the shape densities of the symbol. The experiments combined either the child

or parent shape densities with the geometric features and grid histogram for capturing the

spatial density features for the parent, child, and context. Grid histograms were used the

parent and child shape density features. The resolutions were varied in the experiments from

5x5 to 7x7. The experiments showed increased relation recognition and expression parsing

when including the child shape visual density, but not when using the parent shape density.

symbol shape features as context for parsing turn out to be helpful for the punctuation

relation classification. Relation classification and expression recognition was improved when

a grid histogram of just the child symbol was added to the feature set. The cross validation

however showed no improvement for the same features with the parent symbol. The cross

validation indicated a lower resolution grid for the child was more helpful. The increases seen
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in the cross validation were less than .1%. When looking at parsing the test set expressions

(version 5) when using the child shape density features a 6x6 grid is used, which adds to the

geometric features and 10x10 grid histogram for spatial density. The testing results show the

recall on correctly classified relations goes up by .1% to 99.08%. The expression rate goes

up by .55% to 95.86%. Looking at the difference in errors between using the child shape

and not it becomes apparent why it helped. The error cases where the child shape helped

was baseline punctuation. In the version 5 expression the baseline punctuation has its own

relation, but this would probably also help when punctuation had horizontal relations with

its parent. The number of confusions between RSUB and PUNC relations go from 42 to

12. Many of the remaining errors for the PUNC relation are undetected relations that are

completely missing from the final expression graphs. In many cases these missed relations

are replaced by having the baseline punctuation horizontal to a subscript instead. A solution

to this might be once again changing the expression structure to have baseline punctuation

included as extensions of subscripts.

Unique Symbol Relation Constraint. The following experiments were done to

see if applying unique symbol relation constraint when parsing could help resolve cases where

invalid expression structures were being found when parsing. The most common error in

these invalid expression structures was a parent symbol having multiple horizontal relations

to child symbols, see Figure 3.14. The unique symbol relation constraint limits a parent

symbol to only having at most one of each relation with it set of child symbols. If after

classifying the relations in the line of sight graph there are more than one child with the

same relation to the parent the one child with the highest probability from the classifier for

the relation is kept. All other child symbols with the same relation are changed to their next
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most probable relation class. After all conflicts are resolved Edmonds’ algorithm is used

to find the maximum spanning tree as the final expression structure. The experiment was

conducted using a classifier trained with the geometric features, grid histogram for spatial

densities, and a grid histogram for the child symbol shape density. The experiment showed

slightly improved relation classification and expression parsing.

Adding the unique symbol relation constraint to force symbols to not have duplicate

relations to child symbols does help in parsing. The trade off in using this restraint is there

are cases where when deciding between multiple child symbols with the same relation the

wrong one is selected to keep that relation class and have the other child symbols change

theirs the wrong one is selected. This will cause slightly lower relation detection and precision

goes down for both relation detection and relation classification. Looking at the confusion

histograms there are actually more errors than without the unique symbol relation constraint,

20% more errors. Despite this the expression rate actually goes up. The reason for this is that

the expressions with harder error cases get worse, but the easier expressions are improved.

When using the geometric features, 10x10 grid histogram for spatial densities, and the child

symbol shape densities with a 6x6 grid histogram the expression recognition rate goes from

95.86% to 95.97%. The errors which are helped by the unique symbol relation constraint are

subscripts being mistaken for horizontal relations.

4.6 Full Expression Recognition

Once each of the tasks for expression recognition had been tested individually, tests

were done which did all three tasks. The segmentation would be done first on the primitive

level symbol graph. Segmentation would merge the connected component nodes into symbol

84



nodes. These symbol nodes would be used to construct a new line of sight graph. The symbol

recognizer labeled each node. Last the parser would be used to get the final expression

structure.

The same classifier and method was used to do the segmentation for all the tests.

The segmenter used the 38 geometric features, a shape context features histogram with 3

circles, 6 angle sectors, and radius factor of 1.0 to capture the spatial density for the parent,

child, and context, and a second shape context features histogram with 3 circles, 10 angle

sectors, and radius factor 1.75 to capture more contextual information. The segmenter had

a symbol recall rate of 99.47%.

The symbol recognition was kept the same for all tests as well. The features used

were a 8x8 Grid histogram for the symbol density features and a shape context features

histogram for context features with 5 circles, 14 angle sectors, and a radius factor of 8. On

perfectly segmented symbols this classifier achieved 99.3% accuracy in symbol recognition.

On symbol segmented by the segmenter outlined above 98.73% of all symbols were correctly

classified.

A number of different parsers were tried for the full recognition. The results are out-

lined in the table below. The evaluation metrics being used are relation detection, relations

classification, expression relation detection rate, expression relation classification rate, and

expression structure rate. The relation detection indicates what percent of all relations in

all the ground truth expressions were included in the parsed expressions. This does not

include having the correct class for the relation, just whether two symbols which are suppose

to have a relation between do. Relation classification is the percent of all relations that

were correctly detected and classified. Expression detection rate indicates what percent of
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expression have no errors in detecting the correct relations between symbols. Expression

classification rate indicates what percent of expressions have no relation errors, either detec-

tion or classification. Expression structure rate is the percent of expressions with no errors,

segmentation, symbol recognition, or parsing.

4.7 Summary of Experiment Results

The experiments showed the effectiveness of Hierarchical Contextual Parsing for

recognition of scanned typeset expressions using maximum spanning tree extraction with

simple classifiers. The contextual features used for each of the recognition tasks helped in

their classifications and in it appeared the shape context histograms were better able to

handle the variance of context than the grid histograms, see Subsections 4.3.2 and 4.5.1.

Segmentation seems to benefit from multiple scales of context, one right around the parent

and child connected components and a second which extends further out into the surround-

ing area with a radius 1.75 times larger than the first set of context. Parsing benefited from

additional context is a different way. When adding a visual density histogram to capture the

child symbols shape it improved classification of PUNC relations, see symbol shape context

in subsection 4.5.1. For symbol classification a large amount of context, radius 8 times the

symbol radius, can be used with shape context histograms. Beyond the features themselves

additional factors were found to help in parsing the typeset expressions. One such factor was

the layout representation of the expressions. Changing how baseline punctuation and accent

relations are represented, see Section 3.1, also improved recognition. The other addition to
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parsing was using a unique symbol relation constraint, see Section 3.6, to remove invalid ex-

pression hypotheses increased expression recognition rates. The final expression recognition

rate starting from connected component level was 90.83%.
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Table 4.3: Detection(Det) and Detection with Classification(Det+Class) results for parsing
expressions using geometric and density histogram features. Density histograms - shape
context features:scf(circles,angle sectors,radius factor), Grid histogram:2dh(rows x cols, size
factor). Ground truth representation(GT Rep) refers to the verson of expresstion version
used as ground truth. v1: Original Expressions, v1b: Trailing Punctuation has been re-
moved, v5: Trailing Punctuation has been removed and Baseline and Accent restructuring
has been done.

Parsing TypeSet Expressions
Relations Expressions

GT
Rep

Features Det Det+Class Det Det+Class

Parsing with Given Symbols
v1b 38 Geometric,SCF(5,6,1.5)* 98.44 98.09 93.06 91.96
v1b 38 Geometric,SCF(5,6,1.5) 98.74 98.34 94.33 93.16
v1b 50 Geometric,2DH(10x10,1.0) 98.86 98.51 94.8 93.65
v1b 50 Geometric,2DH(10x10,1.0),Child-

2DH(6x6)
98.85 98.58 94.6 93.88

v1 50 Geometric,2DH(10x10,1.0),Child-
2DH(6x6)

98.81 98.55 94.35 93.66

v5 50 Geometric,2DH(10x10,1.0) 99.29 98.98 96.5 95.31
v5 Geometric,2DH(10x10,1.0),Child-

2DH(6x6)
99.32 99.09 96.66 95.86

v5 Geometric,2DH(10x10,1.0),Child-
2DH(6x6)**

99.3 99.07 96.54 95.97

Parsing with Segmented Symbols
v1b 38 Geometric,SCF(5,6,1.5)* 97.56 97.25 91.19 90.23
v1b 38 Geometric,SCF(5,6,1.5) 97.87 97.54 92.53 91.48
v1b 50 Geometric,2DH(10x10,1.0) 97.95 97.64 92.78 91.77
v1b 50 Geometric,2DH(10x10,1.0),Child-

2DH(6x6)
97.95 97.73 92.69 92.05

v1 50 Geometric,2DH(10x10,1.0),Child-
2DH(6x6)

97.82 97.6 92.15 91.68

v5 50 Geometric,2DH(10x10,1.0) 98.36 98.08 94.35 93.38
v5 Geometric,2DH(10x10,1.0),Child

2DH(6x6)
98.4 98.19 94.52 93.89

v5 Geometric,2DH(10x10,1.0),Child
2DH(6x6)**

98.37 98.18 94.41 93.95

* The line of sight graph does not use extra search to find baseline punctuation
** The unique symbol relation constraint is used during parsing
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Table 4.4: Expression Rates for Full Recognition of Typeset Math Expressions using geo-
metric and density histograms. Density histograms - shape context features:scf(circles,angle
sectors,radius factor), Grid histogram:2dh(rows x cols, size factor). Ground truth representa-
tion(GT Rep) refers to the verson of expresstion version used as ground truth. v1: Original
Expressions, v1b: Trailing Punctuation has been removed, v5: Trailing Punctuation has
been removed and Baseline and Accent restructuring has been done.

Full TypeSet Expression Recognition
Expr GT Parsing Features Expr Rate
v1b 38 Geometric,SCF(5,6,1.5)* 87.28
v1b 38 Geometric,SCF(5,6,1.5) 88.46
v1b 50 Geometric, 2DH(10x10,1.0) 88.81
v1b 50 Geometric,

2DH(10x10,1.0),Child-2DH(6x6)
89.02

v1 50 Geometric,
2DH(10x10,1.0),Child-2DH(6x6)

88.45

v5 50 Geometric,2DH(10x10,1.0) 90.31
v5 Geometric,2DH(10x10,1.0),Child-

2DH(6x6)
90.76

v5 Geometric,2DH(10x10,1.0),Child-
2DH(6x6)**

90.83

* The line of sight graph does not use extra search to find baseline punctuation
** The unique symbol relation constraint is used during parsing
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Chapter 5

Conclusion and Future Work

Our results provide strong support for typeset math expression recognition being

done effectively by maximum spanning tree extraction with simple classifiers using spatial

and visual density features. These visual density features have been seen as very effective for

the segmentation and recognition of symbols, along with symbol relationships. The visual

approach to these tasks is aided by restructuring the expressions to better match the actual

visual layout. These structural changes include moving baseline punctuation to their own

baseline with a new relation and changing accents to only having an above relation with the

symbol under them. One of the major difficulties in using a line of sight graph with typeset

expressions is the crowded baselines, often caused by more horizontally adjacent subscripts.

Modifications to the line of sight algorithm can improve the relation recall and have been

shown to improve expression recognition rates even with loss to precision, resulting in more

invalid edges in the set of hypotheses.

Additionally exploring forms of contextual information shows promising improve-

ments to typeset expression recognition. The context used in symbol recognition has shown

the ability to improve recognition beyond what only shape features achieved. Having two

scales of context for segmentation also improved symbol recall over using less context. In

parsing the attempts at using baseline specific context with maximum spanning tree context
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and directonally extended context showed more confusions involving the dominant relation,

horizontal. It was found that using a visual density histogram to capture the shape of the

parent or child histogram can help with parsing relations that have a high correlation to

certain symbol classes. In the case of the relation class specific for baseline punctuation

looking at the child symbol’s shape helped reduce false positives and false negatives for the

relation when parsing. From benefits seen in using the context information from shape con-

text features and grid histograms, visual context still seems to be a promising area to look

for features to improve approaches to expression recognition.

Looking beyond discriminative features to improve relation classification, a common

approach to parsing is using language constraints. The implemented language constraint of

have only one of each relation type between a parent and its child symbols prevented invalid

expressions where a parent could have the same relation to multiple child symbols. Using

this constraint was able to improve expression recognition rates in testing. Including more

knowledge about expressions and their structures seems to be a good way to supplement the

approach presented above.

5.1 Future Work

Considering what has been seen and learned from this work there are a number of

possible future works that would seem promising. The current system does all the recognition

tasks in one pass and further more the segmentation and parsing are done without any

knowledge of symbol class. They don’t use symbol classification information or scores from

the classifier used for symbol recognition. It is common for this information to be utilized in

the segmentation and parsing. With the observed levels of symbol recognition in our system it
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should be examined if this information could be used to improve the segmentation or parsing.

The symbol classes or class confidences could be used directly, in language constraints, or for

syntax-based features. To an even greater extent information can be shared from all three

tasks to help recognition. One way of doing this is have multiple iterations of recognition,

where after each round the results are saved in features for the next round. This would be

an extended Hierarchical Contextual Parsing(HCP) approach.

A major part of the hierarchical contextual parsing approach is the visual density

features used for all three recognition tasks. The changes made to expression structures to

better take advantage of them seems like a step in the right direction. There are probably

additional changes or alterations that could be made to the layout structure of expressions.

One such change is to have the punctuation fully merge with the subscript baselines. A

common error is to see the punctuation as a horizontal extension to the end of baselines.

Changing the expressions to reflect this could see further improvements and would eliminate

the need for the special line of sight rule to look for blocked punctuation. A slightly different

way of looking at modifications to the visual density would be masking the visual space to

something other than euclidean space. Visual features could then be taken from this space

as an alternative or in addition to the features in the original space.

One of the things shown is the effectiveness of simpler classifiers, a random forest

in our case, could be used in the classifications. Moving forward more complex classifiers

could be used with the same set of features or just layout structure. One candidate would

be using neural networks trained on the spatial and visual features to try and improve

on the difficult and edge cases, like subscripts located in the horizontal baseline, in the

expression recognition. Another purpose of deep learning with networks could be learning
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new visual density features from a convolutional neural network. Moving from the space of

understanding the problem and how it can be approached with simple methods allows for a

lot of possible ways forward.
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Appendix 1

Grid Search Appendix

1.1 Grid Searches for Segmentation

Grid search properties:

5 fold cross validation over training set.

Classifier: Random Forest (50 Trees, 40 Max Depth, 30 Max Features Selected, Gini Split

Criteria)

Grid Search 1:

Lei Hu’s 38 Geometric Features

Two Dimensional Grid Histogram (Parent, Child, Context)

Parzen with Sigma Factor of .1

Resolutions : [5x5, 6x6, 7x7, 8x8, 9x9]

Sizes: [1.0, 1.25]

Grid Search 2:

Lei’s 38 Geometric Features

Two Dimensional Grid Histogram (Parent, Child, Context)

Parzen with Standard Deviation Factor of .1
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Resolution: 5x5

Size: 1.0

Shape Context Features (context only)

Parzen with Sigma Factor of .1

Number of Circles: [2, 3, 4]

Number of Angle Sectors: [6, 8, 10]

Radius Factor: [1.25, 1.5, 1.75, 2.0]

Grid Search 3:

Lei Hu’s 38 Geometric Features

Two Dimensional Grid Histogram (Parent, Child, Context)

Parzen with Standard Deviation Factor of .1

Resolution: 5x5

Size: 1.0

Two Dimensional Grid Histogram (Child)

Parzen with Standard Deviation Factor of .1

Resolution: [5x5, 6x6, 7x7]

Grid Search 4:

Lei Hu’s 38 Geometric Features

Shape Context Features (Parent, Child, Context)

Parzen with Sigma Factor of .1

Number of Circles: [3, 4, 5]
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Number of Angle Sectors: [6, 10]

Radius Factor: [1.0, 1.5]

Grid Search 5:

Lei Hu’s 38 Geometric Features

Shape Context Features

Parzen with Sigma Factor of .1

Number of Circles: 3

Number of Angle Sectors: 6

Radius Factor: 1.0

Recorded Values: [(Parent and Child), (Parent, Child, Context)]

Shape Context Features

Parzen with Sigma Factor of .1

Number of Circles: [3]

Number of Angle Sectors: [10]

Radius Factor: [1.25, 1.5, 1.75]

Recorded Values: [(Context Only), (Parent, Child, Context)]

1.2 Grid Searches for Classification

Grid search properties:

5 fold cross validation over training set.

Classifier: Random Forest (50 Trees, 40 Max Depth, 30 Max Features Selected, Gini Split
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Criteria)

Grid Search 1:

Shape Context Features (symbol)

Parzen with Sigma Factor: [.075, .1, .125]

Number of Circles: [1, 2, 3, 4, 5]

Number of Angle Sectors: [2, 4, 6, 8, 10, 12, 14, 16]

Grid Search 2:

Shape Context Features (symbol)

Point Counting

Number of Circles: [1, 2, 3, 4, 5]

Number of Angle Sectors: [2, 4, 6, 8, 10, 12, 14, 16]

Grid Search 3: Grid Histogram (symbol)

Size: [2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9, 10x10, 11x11]

Grid Search 4:

Grid Histogram (symbol)

Size: 5x5

Shape Context Features (context)

Parzen with Sigma Factor: [.1]

Number of Circles: [1, 2, 3, 4, 5]

Number of Angle Sectors: [2, 4, 6, 8, 10, 12, 14]
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Radius Factor: [1.0, 2.0, 4.0, 8.0]

Grid Search 5:

Grid Histogram (symbol)

Size: 5x5

Shape Context Features (context)

Point Counting

Number of Circles: [1, 2, 3, 4, 5]

Number of Angle Sectors: [2, 4, 6, 8, 10, 12, 14]

Radius Factor: [1.0, 2.0, 4.0, 8.0]

1.3 Grid Searches for Parsing

Grid search properties:

5 fold cross validation over training set.

Classifier: Random Forest (50 Trees, 40 Max Depth, 30 Max Features Selected, Gini Split

Criteria)

Grid Search 1:

Geometric Features: [38 Features, 50 Features]

Grid Search 2:

Shape Context Features (Parent, Child, Context)
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Parzen with Sigma Factor of .1

Number of Circles: [4, 5, 6]

Number of Angle Sectors: [6, 8, 10, 12]

Radius Factor: [1.0, 1.5, 2.0]

Grid Search 3:

Two Dimensional Grid Histogram (Parent, Child, Context)

Parzen with Standard Deviation Factor of .1

Resolution: [6x6, 7x7, 8x8, 9x9, 10x10]

Size: [1.0, 1.25, 1.5]

Grid Search 4:

Geometric Features: [38 Features, 50 Features]

Shape Context Features (Parent, Child, Context)

Parzen with Sigma Factor of .1

Number of Circles: [5, 6]

Number of Angle Sectors: [10, 12]

Radius Factor: [1.0, 1.5, 2.0]

Grid Search 5:

Geometric Features: [38 Features, 50 Features]

Two Dimensional Grid Histogram (Parent, Child, Context)

Parzen with Standard Deviation Factor of [.08, .09, .1, .11]
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Resolution: [7x7, 8x8, 9x9, 10x10]

Size: [1.0]

Grid Search 6:

50 Geometric Features

Two Dimensional Grid Histogram (Parent, Child, Context)

Parzen with Standard Deviation Factor of .1

Resolution: 10x10

Size: 1.0

Two Dimensional Grid Histogram (Child)

Parzen with Standard Deviation Factor of .1

Resolution: [5x5, 6x6, 7x7]

Grid Search 7:

50 Geometric Features

Two Dimensional Grid Histogram (Parent, Child, Context)

Parzen with Standard Deviation Factor of .1

Resolution: 10x10

Size: 1.0

Two Dimensional Grid Histogram (Parent)

Parzen with Standard Deviation Factor of .1

Resolution: [5x5, 6x6, 7x7]
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Grid Search 8:

50 Geometric Features

Two Dimensional Grid Histogram (Parent, Child, Context)

Parzen with Standard Deviation Factor of .1

Resolution: 10x10

Size: 1.0

Shape Context Features (context only)

Parzen with Sigma Factor of .1

Number of Circles: [6]

Number of Angle Sectors: [12]

Radius Factor: [1, 1.25, 1.5, 1.75, 2.0, 2.25]
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