tangent
Not Supported
σ
y
2
(
τ
)
=
2
π
2
τ
3
h
-
2
Search
Returned 82 matches (100 formulae, 117 docs)
Lookup 682.074 ms, Re-ranking 169.697 ms
Found 14090551 tuple postings, 8862448 formulae, 3812975 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5854
-3.0000
6.0000
0.5854
testing/NTCIR/xhtml5/7/1009.4402/1009.4402_1_106.xhtml
tr
𝐐
2
(
𝐫
)
=
2
3
s
+
2
Doc 2
0.5455
-6.0000
5.0000
0.5455
testing/NTCIR/xhtml5/6/0901.4834/0901.4834_1_12.xhtml
s
(
τ
)
=
π
2
N
c
2
2
T
3
(
τ
)
Doc 3
0.5161
-1.0000
5.0000
0.5161
testing/NTCIR/xhtml5/9/1303.1657/1303.1657_1_69.xhtml
p
fin
(
𝕋
2
)
=
2
3
Doc 4
0.5161
-2.0000
6.0000
0.5161
testing/NTCIR/xhtml5/4/hep-th0609172/hep-th0609172_1_10.xhtml
θ
(
τ
)
=
2
π
β
n
τ
Doc 5
0.5161
-2.0000
5.0000
0.5161
testing/NTCIR/xhtml5/7/1008.0819/1008.0819_1_43.xhtml
σ
2
(
u
)
=
1
2
u
2
Doc 6
0.5161
-3.0000
7.0000
0.5161
testing/NTCIR/xhtml5/5/0705.2632/0705.2632_1_51.xhtml
g
5
(
0
)
=
2
π
2
3
.
Doc 7
0.5161
-3.0000
6.0000
0.5161
testing/NTCIR/xhtml5/1/hep-th0008193/hep-th0008193_1_17.xhtml
a
(
τ
)
=
2
3
cosh
W
0
τ
Doc 8
0.5161
-4.0000
6.0000
0.5161
testing/NTCIR/xhtml5/5/0808.0159/0808.0159_1_49.xhtml
c
1
(
τ
)
=
2
3
e
-
τ
.
Doc 9
0.5161
-4.0000
5.0000
0.5161
testing/NTCIR/xhtml5/1/hep-th0104070/hep-th0104070_1_6.xhtml
σ
2
(
ϕ
)
=
3
32
π
2
ϕ
2
Doc 10
0.5161
-4.0000
5.0000
0.5161
testing/NTCIR/xhtml5/8/1112.0325/1112.0325_1_37.xhtml
R
4
d
(
F
)
=
2
3
Δ
-
2
Doc 11
0.5161
-5.0000
6.0000
0.5161
testing/NTCIR/xhtml5/8/1202.3870/1202.3870_1_27.xhtml
ψ
(
τ
)
=
2
T
τ
-
τ
2
T
2
Doc 12
0.5161
-6.0000
6.0000
0.5161
testing/NTCIR/xhtml5/4/hep-ph0602129/hep-ph0602129_1_11.xhtml
lim
τ
→
∞
F
H
(
τ
)
=
2
3
τ
.
Doc 13
0.4468
-2.0000
4.0000
0.4468
testing/NTCIR/xhtml5/2/math-ph0301002/math-ph0301002_1_59.xhtml
g
(
τ
)
=
1
2
π
τ
Doc 14
0.4468
-3.0000
6.0000
0.4468
testing/NTCIR/xhtml5/4/math-ph0601013/math-ph0601013_1_64.xhtml
η
=
2
π
2
γ
2
3
β
Doc 15
0.4468
-3.0000
4.0000
0.4468
testing/NTCIR/xhtml5/5/0710.3757/0710.3757_1_40.xhtml
h
(
i
)
=
2
-
2
i
2
Doc 16
0.4468
-6.0000
5.0000
0.4468
testing/NTCIR/xhtml5/3/astro-ph0403694/astro-ph0403694_1_168.xhtml
[
f
~
(
y
)
=
2
3
y
3
/
2
Doc 17
0.4468
-7.0000
6.0000
0.4468
testing/NTCIR/xhtml5/1/hep-th0005276/hep-th0005276_1_53.xhtml
S
3
=
2
π
2
3
k
2
V
T
3
,
Doc 18
0.4468
-7.0000
5.0000
0.4468
testing/NTCIR/xhtml5/7/1107.3836/1107.3836_1_23.xhtml
d
h
=
c
(
π
/
2
)
=
2
3
.
Doc 19
0.4468
-8.0000
5.0000
0.4468
testing/NTCIR/xhtml5/2/hep-th0103166/hep-th0103166_1_23.xhtml
V
(
σ
)
=
2
3
(
σ
2
-
9
4
)
2
Doc 20
0.4468
-10.0000
4.0000
0.4468
testing/NTCIR/xhtml5/8/1108.5153/1108.5153_1_42.xhtml
H
(
τ
)
=
1
2
(
p
2
+
m
2
(
τ
)
y
2
)
Doc 21
0.4468
-11.0000
6.0000
0.4468
testing/NTCIR/xhtml5/9/hep-ph9304236/hep-ph9304236_1_22.xhtml
E
(
τ
)
=
2
2
3
λ
v
3
|
sin
3
π
τ
|
Doc 22
0.4468
-17.0000
6.0000
0.4468
testing/NTCIR/xhtml5/8/1112.5403/1112.5403_1_29.xhtml
T
(
τ
)
=
2
1
/
2
3
1
/
4
e
0
1
/
4
π
τ
1
/
3
Doc 23
0.4468
-18.0000
7.0000
0.4468
testing/NTCIR/xhtml5/5/0811.3753/0811.3753_1_79.xhtml
B
t
w
≃
6
3
π
2
τ
(
κ
V
)
-
3
/
2
=
2
π
2
τ
H
3
Doc 24
0.4046
-5.0000
5.0000
0.4046
testing/NTCIR/xhtml5/6/1002.4880/1002.4880_1_39.xhtml
σ
X
2
(
τ
)
=
C
c
2
t
P
τ
Doc 25
0.3774
0.0000
6.0000
0.3774
testing/NTCIR/xhtml5/10/hep-th9810225/hep-th9810225_1_36.xhtml
=
2
π
2
3
Doc 26
0.3774
-2.0000
6.0000
0.3774
testing/NTCIR/xhtml5/10/hep-th9903124/hep-th9903124_1_90.xhtml
C
=
2
π
2
3
.
Doc 27
0.3774
-2.0000
5.0000
0.3774
testing/NTCIR/xhtml5/2/hep-th0205258/hep-th0205258_1_67.xhtml
f
(
τ
)
=
2
τ
2
Doc 28
0.3774
-4.0000
5.0000
0.3774
testing/NTCIR/xhtml5/2/hep-th0211289/hep-th0211289_1_98.xhtml
ω
2
(
τ
)
=
k
τ
2
.
Doc 29
0.3774
-5.0000
5.0000
0.3774
testing/NTCIR/xhtml5/10/hep-ph9811273/hep-ph9811273_1_183.xhtml
ℳ
2
(
τ
)
=
ℳ
0
2
τ
2
Doc 30
0.3774
-7.0000
6.0000
0.3774
testing/NTCIR/xhtml5/8/1111.1725/1111.1725_1_20.xhtml
Ω
=
2
π
2
3
ϕ
˙
2
H
4
,
Doc 31
0.3333
-2.0000
5.0000
0.3333
testing/NTCIR/xhtml5/10/hep-th9511188/hep-th9511188_1_56.xhtml
a
2
α
2
=
2
3
Doc 32
0.3333
-2.0000
5.0000
0.3333
testing/NTCIR/xhtml5/10/hep-th9511188/hep-th9511188_1_46.xhtml
a
2
α
2
=
2
3
Doc 33
0.3333
-2.0000
5.0000
0.3333
testing/NTCIR/xhtml5/10/hep-th9511188/hep-th9511188_1_31.xhtml
a
2
α
2
=
2
3
Doc 34
0.3333
-2.0000
5.0000
0.3333
testing/NTCIR/xhtml5/10/hep-th9511188/hep-th9511188_1_70.xhtml
a
2
α
2
=
2
3
Doc 35
0.3333
-2.0000
5.0000
0.3333
testing/NTCIR/xhtml5/10/hep-th9511188/hep-th9511188_1_47.xhtml
a
2
α
2
=
2
3
Doc 36
0.3333
-2.0000
5.0000
0.3333
testing/NTCIR/xhtml5/6/0904.0988/0904.0988_1_41.xhtml
S
(
τ
)
≈
2
3
τ
Doc 37
0.3333
-8.0000
4.0000
0.3333
testing/NTCIR/xhtml5/6/0905.4949/0905.4949_1_11.xhtml
16
π
G
ρ
=
2
3
θ
2
-
σ
2
.
Doc 38
0.3333
-10.0000
6.0000
0.3333
testing/NTCIR/xhtml5/10/hep-th9603068/hep-th9603068_1_31.xhtml
π
2
(
τ
0
)
+
σ
2
(
τ
0
)
=
σ
T
2
,
Doc 39
0.3077
-1.0000
5.0000
0.5453
testing/NTCIR/xhtml5/8/1211.1381/1211.1381_1_43.xhtml
d
=
2
3
h
d
>
2
3
h
Doc 40
0.3077
-3.0000
4.0000
0.3077
testing/NTCIR/xhtml5/9/1310.2302/1310.2302_1_187.xhtml
b
τ
=
2
3
D
τ
Doc 41
0.3077
-3.0000
4.0000
0.3077
testing/NTCIR/xhtml5/8/1111.6613/1111.6613_1_5.xhtml
n
=
2
3
r
-
2
Doc 42
0.3077
-3.0000
4.0000
0.3077
testing/NTCIR/xhtml5/10/hep-th9907004/hep-th9907004_1_12.xhtml
Ω
2
=
2
3
Φ
2
Doc 43
0.3077
-3.0000
4.0000
0.3077
testing/NTCIR/xhtml5/2/hep-th0212155/hep-th0212155_1_138.xhtml
R
2
=
2
3
r
2
Doc 44
0.3077
-4.0000
4.0000
0.3077
testing/NTCIR/xhtml5/4/astro-ph0603525/astro-ph0603525_1_2.xhtml
l
s
2
=
2
3
l
2
Doc 45
0.3077
-4.0000
4.0000
0.3077
testing/NTCIR/xhtml5/7/1011.3765/1011.3765_1_28.xhtml
f
2
=
2
3
c
2
.
Doc 46
0.3077
-4.0000
4.0000
0.3077
testing/NTCIR/xhtml5/2/hep-th0202057/hep-th0202057_1_35.xhtml
3
V
2
=
2
3
mod
2
Doc 47
0.3077
-5.0000
4.0000
0.3077
testing/NTCIR/xhtml5/2/hep-th0208055/hep-th0208055_1_14.xhtml
y
~
=
2
3
y
3
/
2
Doc 48
0.3077
-5.0000
3.0000
0.3077
testing/NTCIR/xhtml5/10/gr-qc9602003/gr-qc9602003_1_73.xhtml
β
2
=
4
3
π
2
ℓ
2
Doc 49
0.3077
-6.0000
4.0000
0.3077
testing/NTCIR/xhtml5/2/math0105243/math0105243_1_300.xhtml
A
s
=
2
3
π
(
s
-
2
)
Doc 50
0.3077
-6.0000
4.0000
0.3077
testing/NTCIR/xhtml5/7/1103.0299/1103.0299_1_11.xhtml
β
=
2
3
m
2
H
-
2
.
Doc 51
0.3077
-7.0000
4.0000
0.3077
testing/NTCIR/xhtml5/8/1110.5392/1110.5392_1_107.xhtml
γ
=
2
3
m
2
H
-
2
≪
1
Doc 52
0.3077
-7.0000
4.0000
0.3077
testing/NTCIR/xhtml5/5/0808.3575/0808.3575_1_24.xhtml
a
2
=
2
3
λ
2
=
l
-
2
Doc 53
0.3077
-7.0000
4.0000
0.3077
testing/NTCIR/xhtml5/5/0806.1018/0806.1018_1_28.xhtml
a
2
=
2
3
λ
2
=
l
-
2
Doc 54
0.3077
-7.0000
4.0000
0.3077
testing/NTCIR/xhtml5/6/1003.1417/1003.1417_1_98.xhtml
∇
c
ϕ
2
=
2
3
η
⊗
h
2
Doc 55
0.3077
-8.0000
5.0000
0.3077
testing/NTCIR/xhtml5/9/alg-geom9305003/alg-geom9305003_1_53.xhtml
Λ
ℙ
2
=
2
3
h
+
2
3
h
Doc 56
0.3077
-9.0000
4.0000
0.3077
testing/NTCIR/xhtml5/5/0811.2190/0811.2190_1_152.xhtml
a
2
=
2
3
α
2
δ
(
B
-
2
A
)
Doc 57
0.3077
-18.0000
3.0000
0.3077
testing/NTCIR/xhtml5/5/0710.2312/0710.2312_1_16.xhtml
Z
X
(
τ
)
=
(
8
π
2
τ
2
)
-
1
/
2
∣
η
(
τ
)
∣
-
2
,
Doc 58
0.2937
-3.0000
6.0000
0.2937
testing/NTCIR/xhtml5/4/math0512636/math0512636_1_73.xhtml
σ
2
(
h
)
=
∥
h
∥
2
2
Doc 59
0.2609
-3.0000
3.0000
0.2609
testing/NTCIR/xhtml5/10/gr-qc9510002/gr-qc9510002_1_75.xhtml
t
2
(
τ
2
)
=
τ
2
Doc 60
0.2609
-3.0000
3.0000
0.2609
testing/NTCIR/xhtml5/10/gr-qc9510002/gr-qc9510002_1_59.xhtml
t
2
(
τ
2
)
=
τ
2
Doc 61
0.2609
-8.0000
3.0000
0.2609
testing/NTCIR/xhtml5/6/0902.4805/0902.4805_1_50.xhtml
𝔄
-
2
(
L
)
=
L
2
-
π
2
3
Doc 62
0.2609
-10.0000
3.0000
0.2609
testing/NTCIR/xhtml5/1/gr-qc0008043/gr-qc0008043_1_10.xhtml
R
(
τ
)
=
4
α
(
α
+
2
)
-
2
τ
-
2
Doc 63
0.2609
-11.0000
3.0000
0.2609
testing/NTCIR/xhtml5/1/hep-th0008060/hep-th0008060_1_32.xhtml
t
→
e
π
τ
2
2
2
π
4
π
2
τ
2
Doc 64
0.2609
-11.0000
3.0000
0.2609
testing/NTCIR/xhtml5/1/hep-th0008060/hep-th0008060_1_30.xhtml
t
→
e
π
τ
2
2
2
π
4
π
2
τ
2
Doc 65
0.2609
-12.0000
3.0000
0.2609
testing/NTCIR/xhtml5/7/1012.1608/1012.1608_1_101.xhtml
E
2
^
(
τ
)
=
E
2
(
τ
)
-
3
π
τ
2
.
Doc 66
0.2609
-12.0000
3.0000
0.2609
testing/NTCIR/xhtml5/4/hep-th0512227/hep-th0512227_1_11.xhtml
E
2
^
(
τ
)
=
E
2
(
τ
)
-
3
π
τ
2
.
Doc 67
0.2609
-14.0000
3.0000
0.2609
testing/NTCIR/xhtml5/4/hep-th0606149/hep-th0606149_1_13.xhtml
∂
τ
2
f
(
τ
)
=
-
ω
2
τ
-
2
3
f
(
τ
)
,
Doc 68
0.2376
-1.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/hep-th0012188/hep-th0012188_1_117.xhtml
2
π
2
τ
2
Doc 69
0.2376
-1.0000
3.0000
0.2376
testing/NTCIR/xhtml5/10/hep-ph9804308/hep-ph9804308_1_12.xhtml
2
3
π
2
Doc 70
0.2376
-1.0000
3.0000
0.2376
testing/NTCIR/xhtml5/1/chao-dyn9609004/chao-dyn9609004_1_13.xhtml
2
3
y
2
Doc 71
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/10/hep-th9507113/hep-th9507113_1_42.xhtml
c
2
=
2
3
Doc 72
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/6/0910.3815/0910.3815_1_135.xhtml
β
2
=
2
3
Doc 73
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/8/1111.2435/1111.2435_1_22.xhtml
z
2
=
2
3
Doc 74
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/3/math0407076/math0407076_1_1.xhtml
ζ
2
=
2
3
Doc 75
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/3/math0308250/math0308250_1_114.xhtml
A
2
=
2
3
Doc 76
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/7/1107.4370/1107.4370_1_15.xhtml
α
2
=
2
3
Doc 77
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/10/hep-th9512156/hep-th9512156_1_39.xhtml
w
2
=
2
3
Doc 78
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/5/0808.3105/0808.3105_1_182.xhtml
r
2
=
2
3
Doc 79
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/6/0910.3815/0910.3815_1_171.xhtml
β
2
=
2
3
Doc 80
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/hep-th0206151/hep-th0206151_1_45.xhtml
ℓ
2
=
2
3
Doc 81
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/6/1003.5333/1003.5333_1_5.xhtml
β
2
=
2
3
Doc 82
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/3/hep-th0302131/hep-th0302131_1_30.xhtml
b
2
=
2
3
Doc 83
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/hep-th0108239/hep-th0108239_1_10.xhtml
c
2
=
2
3
Doc 84
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/7/1004.5023/1004.5023_1_49.xhtml
r
2
=
2
3
Doc 85
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/6/1003.5333/1003.5333_1_3.xhtml
β
2
=
2
3
Doc 86
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/7/1004.5023/1004.5023_1_46.xhtml
r
2
=
2
3
Doc 87
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/hep-th0205185/hep-th0205185_1_145.xhtml
E
2
=
2
3
Doc 88
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/6/0909.3419/0909.3419_1_45.xhtml
γ
2
=
2
3
Doc 89
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/5/0808.3105/0808.3105_1_179.xhtml
r
2
=
2
3
Doc 90
0.2376
-2.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/math0207217/math0207217_1_245.xhtml
a
<
2
3
h
Doc 91
0.2376
-2.0000
3.0000
0.2376
testing/NTCIR/xhtml5/7/1010.2002/1010.2002_1_145.xhtml
2
3
n
-
2
Doc 92
0.2376
-2.0000
3.0000
0.2376
testing/NTCIR/xhtml5/5/0804.0874/0804.0874_1_83.xhtml
-
2
3
τ
2
Doc 93
0.2376
-3.0000
3.0000
0.2376
testing/NTCIR/xhtml5/6/0911.4235/0911.4235_1_91.xhtml
E
(
τ
3
)
=
-
2
Doc 94
0.2376
-3.0000
3.0000
0.2376
testing/NTCIR/xhtml5/6/0911.4235/0911.4235_1_93.xhtml
E
(
τ
3
)
=
-
2
Doc 95
0.2376
-5.0000
4.0000
0.2376
testing/NTCIR/xhtml5/3/hep-th0304091/hep-th0304091_1_28.xhtml
σ
2
(
σ
2
-
2
)
=
0.
Doc 96
0.2376
-5.0000
4.0000
0.2376
testing/NTCIR/xhtml5/5/0710.2534/0710.2534_1_17.xhtml
σ
2
(
σ
2
-
2
)
=
0.
Doc 97
0.2376
-5.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/hep-th0110060/hep-th0110060_1_41.xhtml
σ
2
(
σ
2
-
2
)
=
0
Doc 98
0.2376
-6.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/hep-th0110251/hep-th0110251_1_39.xhtml
σ
2
(
σ
2
-
2
)
=
0
,
Doc 99
0.2376
-6.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/math-ph0110008/math-ph0110008_1_30.xhtml
σ
2
(
σ
2
-
2
)
=
0
,
Doc 100
0.2376
-6.0000
4.0000
0.2376
testing/NTCIR/xhtml5/1/hep-th9407140/hep-th9407140_1_14.xhtml
E
∞
=
2
3
×
12
π
2
Doc 101
0.2376
-6.0000
4.0000
0.2376
testing/NTCIR/xhtml5/2/hep-th0110083/hep-th0110083_1_48.xhtml
σ
2
(
σ
2
-
2
)
=
0
,
Doc 102
0.2376
-6.0000
3.0000
0.2376
testing/NTCIR/xhtml5/8/1110.5392/1110.5392_1_23.xhtml
γ
∼
2
3
m
2
H
-
2
Doc 103
0.2376
-6.0000
3.0000
0.2376
testing/NTCIR/xhtml5/6/0904.0988/0904.0988_1_69.xhtml
A
3
(
τ
)
≈
e
2
3
τ
Doc 104
0.2376
-7.0000
4.0000
0.4752
testing/NTCIR/xhtml5/5/0805.1657/0805.1657_1_40.xhtml
i
=
2
|
V
|
+
2
3
-
2
i
=
2
|
V
|
-
2
3
-
2
Doc 105
0.2376
-7.0000
4.0000
0.2376
testing/NTCIR/xhtml5/5/0805.1657/0805.1657_1_35.xhtml
i
=
2
|
V
|
+
2
3
-
2
Doc 106
0.2376
-7.0000
3.0000
0.2376
testing/NTCIR/xhtml5/3/gr-qc0411070/gr-qc0411070_1_8.xhtml
-
2
3
Θ
2
+
2
σ
2
,
Doc 107
0.2376
-8.0000
3.0000
0.2376
testing/NTCIR/xhtml5/2/math0105248/math0105248_1_12.xhtml
σ
2
:=
7
-
2
3
π
2
≐
0.42.
Doc 108
0.2376
-8.0000
3.0000
0.2376
testing/NTCIR/xhtml5/8/1202.2595/1202.2595_1_28.xhtml
σ
2
:=
7
-
2
3
π
2
≐
0.4203
Doc 109
0.2376
-10.0000
4.0000
0.2376
testing/NTCIR/xhtml5/4/hep-th0602284/hep-th0602284_1_56.xhtml
r
=
2
3
(
E
0
-
2
j
2
-
2
)
Doc 110
0.2376
-11.0000
3.0000
0.2376
testing/NTCIR/xhtml5/2/math0105246/math0105246_1_14.xhtml
σ
2
:=
𝐕𝐚𝐫
Y
=
7
-
2
3
π
2
≐
0.42.
Doc 111
0.2376
-14.0000
3.0000
0.2376
testing/NTCIR/xhtml5/5/0805.1029/0805.1029_1_38.xhtml
𝒱
=
1
2
τ
1
(
τ
2
-
2
3
τ
1
)
.
Doc 112
0.2376
-14.0000
3.0000
0.2376
testing/NTCIR/xhtml5/5/0805.1029/0805.1029_1_129.xhtml
𝒱
=
1
2
τ
1
(
τ
2
-
2
3
τ
1
)
.
Doc 113
0.1860
-15.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/1301.3042/1301.3042_1_66.xhtml
G
2
(
-
1
/
τ
)
=
τ
2
G
2
(
τ
)
-
2
π
i
τ
Doc 114
0.1667
-6.0000
3.0000
0.1667
testing/NTCIR/xhtml5/7/1009.5409/1009.5409_1_176.xhtml
m
2
=
n
2
-
2
3
Doc 115
0.1667
-7.0000
3.0000
0.1667
testing/NTCIR/xhtml5/6/0910.5725/0910.5725_1_41.xhtml
2
3
(
x
2
+
x
)
-
2
Doc 116
0.1667
-9.0000
3.0000
0.3333
testing/NTCIR/xhtml5/3/hep-th0409077/hep-th0409077_1_37.xhtml
g
2
-
2
=
h
4
3
π
2
,
g
3
-
2
=
h
4
3
π
2
,
Doc 117
0.1667
-10.0000
3.0000
0.1667
testing/NTCIR/xhtml5/5/0806.4358/0806.4358_1_24.xhtml
-
2
3
1
τ
+
O
(
τ
-
2
)