Returned 91 matches (100 formulae, 111 docs)
    Lookup 405.035 ms, Re-ranking 469.943 ms
    Found 7445454 tuple postings, 5202654 formulae, 2703066 documents
[ formulas ] [ documents ] [ documents-by-formula ]

Doc 1
0.4878
-17.0000
11.0000
0.4878
testing/NTCIR/xhtml5/4/math0611781/math0611781_1_20.xhtml
ddx(logx+ax)=1x-ax2=x-ax2.

Doc 2
0.4412
-2.0000
8.0000
0.4412
testing/NTCIR/xhtml5/8/1111.5841/1111.5841_1_15.xhtml
v(𝐱)=αx,  α>0,

Doc 3
0.4412
-6.0000
8.0000
0.4412
testing/NTCIR/xhtml5/8/1108.4707/1108.4707_1_59.xhtml
f(x)=1(-logx)β, β>0,

Doc 4
0.4412
-8.0000
8.0000
0.4412
testing/NTCIR/xhtml5/4/math0609290/math0609290_1_3.xhtml
μ(dx)=dx1+|x|γ, γ>0,

Doc 5
0.4412
-9.0000
9.0000
0.4412
testing/NTCIR/xhtml5/8/1211.2005/1211.2005_1_40.xhtml
ρ(x)=cxx!, c>0, x0,

Doc 6
0.4412
-9.0000
9.0000
0.4412
testing/NTCIR/xhtml5/8/1211.2005/1211.2005_1_38.xhtml
ρ(x)=cxx!, c>0, x0,

Doc 7
0.4412
-18.0000
8.0000
0.4412
testing/NTCIR/xhtml5/8/1210.6126/1210.6126_1_12.xhtml
Ψ(z)=ddz(logΓ(z))=Γ(z)Γ(z), Rez>0,

Doc 8
0.4145
-14.0000
9.0000
0.4145
testing/NTCIR/xhtml5/7/1105.1468/1105.1468_1_48.xhtml
πDμ(x)=ce-μxxβ+1, c>0, x>0.

Doc 9
0.4145
-15.0000
9.0000
0.4145
testing/NTCIR/xhtml5/7/1105.0657/1105.0657_1_62.xhtml
πDμ(x)=ce-μxxβ+1, c>0, x>0,

Doc 10
0.3945
-5.0000
7.0000
0.3945
testing/NTCIR/xhtml5/3/math0304085/math0304085_1_126.xhtml
dPWdu(u)=1u-1

Doc 11
0.3945
-16.0000
9.0000
0.3945
testing/NTCIR/xhtml5/8/1208.3903/1208.3903_1_29.xhtml
ddx(log(1+x)-x+x22)=x21+x,

Doc 12
0.3673
-2.0000
6.0000
0.3673
testing/NTCIR/xhtml5/4/hep-th0512179/hep-th0512179_1_13.xhtml
dxdr(xM)=0,

Doc 13
0.3673
-2.0000
6.0000
0.3673
testing/NTCIR/xhtml5/4/hep-th0512179/hep-th0512179_1_15.xhtml
dxdr(xM)=0,

Doc 14
0.3673
-8.0000
7.0000
0.3673
testing/NTCIR/xhtml5/9/1309.0473/1309.0473_1_56.xhtml
ddt(1e2)=a()e2,

Doc 15
0.3673
-10.0000
7.0000
0.3673
testing/NTCIR/xhtml5/5/0810.2988/0810.2988_1_151.xhtml
dUdt(0)=1τTJ(VT)>0

Doc 16
0.3478
-8.0000
5.0000
0.3478
testing/NTCIR/xhtml5/2/hep-th0210052/hep-th0210052_1_90.xhtml
12(κ+-κ-)=dβdr,

Doc 17
0.3478
-8.0000
5.0000
0.3478
testing/NTCIR/xhtml5/3/hep-th0405181/hep-th0405181_1_185.xhtml
12(κ+-κ-)=dβdr,

Doc 18
0.3364
-11.0000
6.0000
0.3364
testing/NTCIR/xhtml5/1/hep-th0005141/hep-th0005141_1_2.xhtml
j-=ddx, j=0,12,1,,

Doc 19
0.3200
-4.0000
8.0000
0.3200
testing/NTCIR/xhtml5/8/1207.6735/1207.6735_1_38.xhtml
f(x)=1xp, x>0

Doc 20
0.3200
-4.0000
7.0000
0.3200
testing/NTCIR/xhtml5/7/1009.4280/1009.4280_1_183.xhtml
dnydxn(λ)=0,

Doc 21
0.3200
-6.0000
6.0000
0.3200
testing/NTCIR/xhtml5/10/gr-qc9511015/gr-qc9511015_1_21.xhtml
1uddρ(uϕ)=0,

Doc 22
0.3200
-8.0000
8.0000
0.3200
testing/NTCIR/xhtml5/4/math-ph0607038/math-ph0607038_1_80.xhtml
=ddx+(a+12)1x,

Doc 23
0.3200
-14.0000
6.0000
0.3200
testing/NTCIR/xhtml5/8/1110.2642/1110.2642_1_52.xhtml
h′′(x)=dξxdx=1g′′(ξx)>0,

Doc 24
0.3011
0.0000
7.0000
0.3011
testing/NTCIR/xhtml5/9/1401.0512/1401.0512_1_189.xhtml
c>0, c1

Doc 25
0.3011
-1.0000
6.0000
0.3011
testing/NTCIR/xhtml5/2/math0207083/math0207083_1_122.xhtml
ddx(g)=0

Doc 26
0.3011
-1.0000
6.0000
0.3011
testing/NTCIR/xhtml5/2/math0207083/math0207083_1_121.xhtml
ddx(g)=0

Doc 27
0.3011
-3.0000
4.0000
0.3011
testing/NTCIR/xhtml5/1/cs9808001/cs9808001_1_13.xhtml
g(x)=dxdt,

Doc 28
0.3011
-3.0000
4.0000
0.3011
testing/NTCIR/xhtml5/1/cs9905016/cs9905016_1_23.xhtml
g(x)=dxdt,

Doc 29
0.3011
-10.0000
6.0000
0.3011
testing/NTCIR/xhtml5/5/0706.2642/0706.2642_1_46.xhtml
ddx(slogx-x)=-x-sx

Doc 30
0.2724
-2.0000
6.0000
0.2724
testing/NTCIR/xhtml5/10/hep-th9703176/hep-th9703176_1_58.xhtml
ddx(1y)=

Doc 31
0.2724
-5.0000
7.0000
0.2724
testing/NTCIR/xhtml5/11/gr-qc9912067/gr-qc9912067_1_124.xhtml
dΩ2dx(x0)=0,

Doc 32
0.2724
-5.0000
7.0000
0.2724
testing/NTCIR/xhtml5/11/gr-qc9912067/gr-qc9912067_1_129.xhtml
dΩ2dx(x0)=0,

Doc 33
0.2724
-5.0000
7.0000
0.2724
testing/NTCIR/xhtml5/2/math-ph0010052/math-ph0010052_1_81.xhtml
dnwdxn(0)=0,

Doc 34
0.2724
-7.0000
6.0000
0.2724
testing/NTCIR/xhtml5/5/0712.2728/0712.2728_1_5.xhtml
S0,2(x)=1x,  x1.

Doc 35
0.2724
-10.0000
5.0000
0.2724
testing/NTCIR/xhtml5/5/0705.0240/0705.0240_1_18.xhtml
1MP2(dϕd𝒩)2=r8,

Doc 36
0.2724
-12.0000
6.0000
0.2724
testing/NTCIR/xhtml5/6/0901.1751/0901.1751_1_73.xhtml
ddt(1|Q|Qv(t)dx)=0,

Doc 37
0.2724
-18.0000
4.0000
0.2724
testing/NTCIR/xhtml5/7/1010.4432/1010.4432_1_5.xhtml
γ(A)=1log2Adxx+1,A[0,1].

Doc 38
0.2542
-2.0000
6.0000
0.2542
testing/NTCIR/xhtml5/2/math0201109/math0201109_1_84.xhtml
m(x)=1x,

Doc 39
0.2542
-2.0000
6.0000
0.2542
testing/NTCIR/xhtml5/6/1001.2630/1001.2630_1_41.xhtml
ddx(x)=

Doc 40
0.2542
-2.0000
3.0000
0.2542
testing/NTCIR/xhtml5/1/hep-th0004106/hep-th0004106_1_27.xhtml
()=ddx

Doc 41
0.2542
-4.0000
4.0000
0.2542
testing/NTCIR/xhtml5/4/hep-th0509002/hep-th0509002_1_19.xhtml
ρ(h)=dxdh,

Doc 42
0.2542
-6.0000
6.0000
0.2542
testing/NTCIR/xhtml5/6/1001.1485/1001.1485_1_2.xhtml
ddx(s(x)x)=0

Doc 43
0.2542
-6.0000
4.0000
0.2542
testing/NTCIR/xhtml5/5/0710.4062/0710.4062_1_24.xhtml
f(x)=dz(x)dx,

Doc 44
0.2542
-6.0000
4.0000
0.2542
testing/NTCIR/xhtml5/4/hep-th0607125/hep-th0607125_1_31.xhtml
f(x)=du(x)dx,

Doc 45
0.2542
-6.0000
3.0000
0.2542
testing/NTCIR/xhtml5/2/math0104026/math0104026_1_15.xhtml
μ(f)=ddx(xf)

Doc 46
0.2542
-7.0000
4.0000
0.2542
testing/NTCIR/xhtml5/2/hep-ph0109051/hep-ph0109051_1_44.xhtml
x˙μ(τ)=dxμdτ,

Doc 47
0.2542
-8.0000
6.0000
0.2542
testing/NTCIR/xhtml5/6/0907.4038/0907.4038_1_26.xhtml
dV2dx(x)=o(1x)

Doc 48
0.2542
-8.0000
5.0000
0.2542
testing/NTCIR/xhtml5/5/0806.1836/0806.1836_1_77.xhtml
ψ(x)=ddx(lnΓ(x)).

Doc 49
0.2542
-8.0000
5.0000
0.2542
testing/NTCIR/xhtml5/1/hep-th9905114/hep-th9905114_1_20.xhtml
xn=dxndα(0)=1

Doc 50
0.2542
-8.0000
3.0000
0.2542
testing/NTCIR/xhtml5/9/1311.2295/1311.2295_1_7.xhtml
T(k)=ddx+ωkx,

Doc 51
0.2542
-10.0000
4.0000
0.2542
testing/NTCIR/xhtml5/2/math0105236/math0105236_1_128.xhtml
q(x)=1ndpD(x)dx,

Doc 52
0.2542
-12.0000
5.0000
0.2542
testing/NTCIR/xhtml5/5/0808.2708/0808.2708_1_3.xhtml
x(0)=1a, dxdt|t=0=0,

Doc 53
0.2542
-13.0000
5.0000
0.2542
testing/NTCIR/xhtml5/2/cond-mat0106096/cond-mat0106096_1_130.xhtml
P(k)=1k!dkG0dxk|x=0.

Doc 54
0.2542
-14.0000
5.0000
0.2542
testing/NTCIR/xhtml5/6/1003.5583/1003.5583_1_24.xhtml
G(s)=1s!dsH0(x)dxs|x=0

Doc 55
0.2243
-8.0000
4.0000
0.2243
testing/NTCIR/xhtml5/3/math-ph0312061/math-ph0312061_1_6.xhtml
σ(ω)=12πdϕdω,

Doc 56
0.2243
-8.0000
4.0000
0.2243
testing/NTCIR/xhtml5/10/hep-th9807212/hep-th9807212_1_83.xhtml
(dxμds)F=πμm,

Doc 57
0.2243
-12.0000
5.0000
0.2243
testing/NTCIR/xhtml5/9/1309.4344/1309.4344_1_18.xhtml
f(x)=1x(xddx)rg(x),

Doc 58
0.2073
-1.0000
3.0000
0.2073
testing/NTCIR/xhtml5/7/1104.4502/1104.4502_1_224.xhtml
=ddx,

Doc 59
0.2073
-3.0000
3.0000
0.2073
testing/NTCIR/xhtml5/9/1302.4632/1302.4632_1_104.xhtml
x=ddx,

Doc 60
0.2073
-3.0000
3.0000
0.2073
testing/NTCIR/xhtml5/10/hep-th9311142/hep-th9311142_1_16.xhtml
J-=ddx,

Doc 61
0.2073
-3.0000
3.0000
0.2073
testing/NTCIR/xhtml5/3/gr-qc0303067/gr-qc0303067_1_6.xhtml
v=dxdt,

Doc 62
0.2073
-6.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0902.3561/0902.3561_1_161.xhtml
D(x)=dSdx(x)

Doc 63
0.2073
-6.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1303.3315/1303.3315_1_55.xhtml
f(x)=dμdx(x)

Doc 64
0.2073
-6.0000
5.0000
0.2073
testing/NTCIR/xhtml5/5/0706.2642/0706.2642_1_11.xhtml
g(x)=dfdx(x)

Doc 65
0.2073
-6.0000
4.0000
0.2073
testing/NTCIR/xhtml5/4/math-ph0506017/math-ph0506017_1_17.xhtml
dσdx=1y2,

Doc 66
0.2073
-7.0000
5.0000
0.2073
testing/NTCIR/xhtml5/2/math0209254/math0209254_1_85.xhtml
r(x)=drdx(x)

Doc 67
0.2073
-7.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/hep-th0405094/hep-th0405094_1_43.xhtml
Υ(x)=dΥdx(x)

Doc 68
0.2073
-7.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0907.3073/0907.3073_1_9.xhtml
F(x)=dFdx(x)

Doc 69
0.2073
-7.0000
4.0000
0.2073
testing/NTCIR/xhtml5/8/1210.6552/1210.6552_1_1.xhtml
x˙(t)=dxdt(t)

Doc 70
0.2073
-7.0000
4.0000
0.2073
testing/NTCIR/xhtml5/11/hep-th9911189/hep-th9911189_1_19.xhtml
dJdx=1F(x),

Doc 71
0.2073
-7.0000
3.0000
0.2073
testing/NTCIR/xhtml5/3/math-ph0305050/math-ph0305050_1_15.xhtml
v(x)=dudx1u

Doc 72
0.2073
-8.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1212.0818/1212.0818_1_17.xhtml
ψ0(x)=dϕKdx(x)

Doc 73
0.2073
-8.0000
5.0000
0.2073
testing/NTCIR/xhtml5/5/0706.1419/0706.1419_1_182.xhtml
ρ(x)=dμνdx(x)

Doc 74
0.2073
-8.0000
4.0000
0.2073
testing/NTCIR/xhtml5/5/0712.1674/0712.1674_1_4.xhtml
H(a)=1adadt,

Doc 75
0.2073
-8.0000
4.0000
0.2073
testing/NTCIR/xhtml5/9/1401.5106/1401.5106_1_46.xhtml
x(0)=0=dxdV(0)

Doc 76
0.2073
-9.0000
5.0000
0.4145
testing/NTCIR/xhtml5/6/0905.2444/0905.2444_1_23.xhtml
xddx(1xdAdx)
1xddx(xdBdx)

Doc 77
0.2073
-9.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1307.5896/1307.5896_1_127.xhtml
w(x)=1x(ψ(-logx))2

Doc 78
0.2073
-9.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0905.2444/0905.2444_1_24.xhtml
xddx(1xdAdx)

Doc 79
0.2073
-9.0000
3.0000
0.2073
testing/NTCIR/xhtml5/7/1104.4232/1104.4232_1_36.xhtml
(n)=1n!(ddx)n

Doc 80
0.2073
-9.0000
3.0000
0.2073
testing/NTCIR/xhtml5/8/1110.0229/1110.0229_1_87.xhtml
n=1n!(ddx)n.

Doc 81
0.2073
-9.0000
3.0000
0.2073
testing/NTCIR/xhtml5/7/1104.3921/1104.3921_1_64.xhtml
(n)=1n!(ddx)n

Doc 82
0.2073
-12.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0912.4488/0912.4488_1_56.xhtml
Fg(x)=1xg(logx),  x>0,

Doc 83
0.2073
-14.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/hep-th0410083/hep-th0410083_1_49.xhtml
Ipole(0)=1240d5ϕdx5|x=0,

Doc 84
0.2073
-14.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/math-ph0502050/math-ph0502050_1_54.xhtml
Pf(1|x|)=ddx(sgn(x)log|x|),

Doc 85
0.2073
-14.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1312.7171/1312.7171_1_12.xhtml
ddxLik(x)=1xLik-1(x).

Doc 86
0.2073
-14.0000
4.0000
0.2073
testing/NTCIR/xhtml5/5/0802.2776/0802.2776_1_15.xhtml
(x)=12(dϕdx)2+V(ϕ);

Doc 87
0.1754
-6.0000
4.0000
0.1754
testing/NTCIR/xhtml5/5/0808.3499/0808.3499_1_17.xhtml
d𝐰dx=1xL𝐰

Doc 88
0.1754
-8.0000
4.0000
0.1754
testing/NTCIR/xhtml5/5/0706.2343/0706.2343_1_82.xhtml
d𝐰dx=1xL(x)𝐰

Doc 89
0.1754
-11.0000
3.0000
0.1754
testing/NTCIR/xhtml5/3/cond-mat0410095/cond-mat0410095_1_10.xhtml
A^=1xddxxddx,

Doc 90
0.1754
-15.0000
5.0000
0.1754
testing/NTCIR/xhtml5/10/gr-qc9707045/gr-qc9707045_1_34.xhtml
dlnβdx~=1x~(1N-1),

Doc 91
0.1600
-4.0000
4.0000
0.1600
testing/NTCIR/xhtml5/4/hep-th0512179/hep-th0512179_1_10.xhtml
drdx>0,

Doc 92
0.1600
-4.0000
4.0000
0.1600
testing/NTCIR/xhtml5/4/hep-th0512179/hep-th0512179_1_12.xhtml
drdx>0,

Doc 93
0.1600
-6.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/0705.3282/0705.3282_1_11.xhtml
D=1iddx,

Doc 94
0.1600
-7.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0712.4066/0712.4066_1_18.xhtml
dydx=1x2.

Doc 95
0.1600
-7.0000
4.0000
0.1600
testing/NTCIR/xhtml5/8/1202.2402/1202.2402_1_6.xhtml
δx=1xddx

Doc 96
0.1600
-8.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0705.3990/0705.3990_1_70.xhtml
ddxb(x)=-1x

Doc 97
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/7/1007.4349/1007.4349_1_14.xhtml
a=12(x+ddx)
a=12(x-ddx)

Doc 98
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/7/1010.0204/1010.0204_1_17.xhtml
a=12(x+ddx)
a=12(x-ddx)

Doc 99
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/6/0905.2929/0905.2929_1_9.xhtml
b=12(x+ddx)
b=12(x-ddx)

Doc 100
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/7/1106.0112/1106.0112_1_84.xhtml
a=12(x+ddx)
a=12(x-ddx)

Doc 101
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/1003.4620/1003.4620_1_58.xhtml
a=12(x+ddx)

Doc 102
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1106.0112/1106.0112_1_82.xhtml
a=12(x+ddx)

Doc 103
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1007.4349/1007.4349_1_18.xhtml
a=12(x+ddx)

Doc 104
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/math-ph0409052/math-ph0409052_1_2.xhtml
a±=12(x±ddx)

Doc 105
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/gr-qc0404009/gr-qc0404009_1_27.xhtml
TH=14π(dfdx)+

Doc 106
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/10/hep-th9808062/hep-th9808062_1_9.xhtml
b±=12(xddx)

Doc 107
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/hep-th0307205/hep-th0307205_1_17.xhtml
T=14πdVdx|x=x0

Doc 108
0.1600
-10.0000
3.0000
0.1600
testing/NTCIR/xhtml5/10/hep-th9710224/hep-th9710224_1_9.xhtml
x0˙=dx0dt>0,t

Doc 109
0.1600
-12.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0707.3451/0707.3451_1_55.xhtml
=1r(rp0)1/2ddx,

Doc 110
0.1600
-14.0000
4.0000
0.1600
testing/NTCIR/xhtml5/9/1309.4344/1309.4344_1_42.xhtml
1x(xddx)rf(x)=g(x),

Doc 111
0.1600
-14.0000
4.0000
0.1600
testing/NTCIR/xhtml5/10/gr-qc9706011/gr-qc9706011_1_12.xhtml
12(dϕdx3)2-U(ϕ)=0,