tangent
Not Supported
K
x0
x1
(
k
)
:=
T
*
(
k
×
)
/
(
a
⊗
(
1
-
a
)
)
Search
Returned 78 matches (100 formulae, 123 docs)
Lookup 272.570 ms, Re-ranking 293.431 ms
Found 3589935 tuple postings, 2326721 formulae, 1353963 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5581
-13.0000
9.0000
1.2262
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_136.xhtml
ϕ
:
K
w
+
1
M
(
k
)
→
K
w
+
1
M
(
E
)
/
(
I
m
(
1
-
σ
)
)
K
w
+
1
M
(
E
)
/
(
I
m
(
1
-
σ
)
)
K
w
M
(
k
)
Doc 2
0.4473
-5.0000
7.0000
0.4473
testing/NTCIR/xhtml5/4/math0610588/math0610588_1_58.xhtml
v
0
(
k
)
:=
v
(
k
)
/
(
1
+
|
k
|
)
s
Doc 3
0.4271
-14.0000
6.0000
0.4271
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_137.xhtml
K
w
+
1
M
(
E
)
/
(
I
m
(
1
-
σ
)
)
→
K
w
+
1
M
(
k
)
Doc 4
0.4043
-8.0000
6.0000
0.4043
testing/NTCIR/xhtml5/5/0707.3023/0707.3023_1_201.xhtml
K
(
ε
)
:=
C
(
1
-
ε
)
p
/
(
1
+
2
ε
)
Doc 5
0.3721
-8.0000
6.0000
0.3721
testing/NTCIR/xhtml5/9/1303.2713/1303.2713_1_122.xhtml
F
(
k
)
:=
E
(
k
)
-
(
1
-
k
2
)
K
(
k
)
Doc 6
0.3500
-3.0000
4.0000
0.3500
testing/NTCIR/xhtml5/8/1208.0112/1208.0112_1_146.xhtml
N
i
(
a
)
:=
T
a
i
(
1
)
Doc 7
0.3167
-2.0000
6.0000
0.5208
testing/NTCIR/xhtml5/3/math0404367/math0404367_1_74.xhtml
K
′
(
k
)
:=
K
(
k
′
)
T
′
(
k
)
=
4
i
K
′
(
k
)
Doc 8
0.3167
-2.0000
6.0000
0.3167
testing/NTCIR/xhtml5/3/math-ph0308010/math-ph0308010_1_66.xhtml
K
′
(
k
)
:=
K
(
k
′
)
Doc 9
0.2956
0.0000
6.0000
0.2956
testing/NTCIR/xhtml5/5/0810.0229/0810.0229_1_22.xhtml
a
⊗
(
1
-
a
)
Doc 10
0.2956
-15.0000
6.0000
0.2956
testing/NTCIR/xhtml5/4/math0605722/math0605722_1_1.xhtml
T
(
F
∗
)
/
⟨
a
⊗
(
1
-
a
)
:
a
∈
F
∗
-
{
1
}
⟩
Doc 11
0.2609
-1.0000
3.0000
0.5018
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_10.xhtml
K
*
M
(
k
)
/
l
K
*
M
(
k
)
Doc 12
0.2609
-3.0000
3.0000
0.2609
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_141.xhtml
K
w
+
1
M
(
k
)
/
l
Doc 13
0.2609
-4.0000
4.0000
0.2609
testing/NTCIR/xhtml5/8/1201.6405/1201.6405_1_57.xhtml
K
′
(
m
)
:=
K
(
1
-
m
)
Doc 14
0.2609
-4.0000
4.0000
0.2609
testing/NTCIR/xhtml5/7/1103.5691/1103.5691_1_14.xhtml
K
′
(
m
)
:=
K
(
1
-
m
)
Doc 15
0.2609
-5.0000
5.0000
0.2609
testing/NTCIR/xhtml5/5/0711.4696/0711.4696_1_65.xhtml
w
=
π
K
′
(
k
)
/
K
(
k
)
Doc 16
0.2609
-11.0000
4.0000
0.7428
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_39.xhtml
K
1
M
(
k
)
/
2
→
K
1
+
n
M
(
k
)
/
2
K
*
M
(
k
)
K
n
M
(
k
)
/
2
Doc 17
0.2609
-11.0000
4.0000
0.2609
testing/NTCIR/xhtml5/6/0905.3545/0905.3545_1_108.xhtml
(
𝚙
(
k
)
-
p
¯
(
k
)
)
/
(
1
-
p
¯
(
k
)
)
Doc 18
0.2609
-11.0000
4.0000
0.2609
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_3.xhtml
K
*
M
(
k
)
/
2
→
K
*
+
n
M
(
k
)
/
2
Doc 19
0.2609
-11.0000
4.0000
0.2609
testing/NTCIR/xhtml5/6/0905.3545/0905.3545_1_104.xhtml
(
𝚙
(
k
)
-
p
¯
(
k
)
)
/
(
1
-
p
¯
(
k
)
)
Doc 20
0.2410
0.0000
3.0000
0.4819
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_28.xhtml
K
*
M
(
k
)
1
∈
K
0
M
(
k
)
/
2
Doc 21
0.2410
0.0000
3.0000
0.4819
testing/NTCIR/xhtml5/6/0901.2648/0901.2648_1_13.xhtml
K
1
2
(
k
)
A
K
1
2
(
k
)
Doc 22
0.2410
0.0000
3.0000
0.4819
testing/NTCIR/xhtml5/6/0901.2648/0901.2648_1_11.xhtml
K
1
2
(
k
)
A
K
1
2
(
k
)
Doc 23
0.2410
0.0000
3.0000
0.4819
testing/NTCIR/xhtml5/1/hep-th0002177/hep-th0002177_1_61.xhtml
K
a
+
(
k
)
K
¯
a
-
(
k
)
Doc 24
0.2410
0.0000
3.0000
0.4819
testing/NTCIR/xhtml5/1/hep-th0002177/hep-th0002177_1_58.xhtml
K
a
+
(
k
)
K
¯
a
-
(
k
)
Doc 25
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_176.xhtml
K
w
M
(
k
)
Doc 26
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_24.xhtml
K
*
M
(
k
)
Doc 27
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_177.xhtml
K
w
M
(
k
)
Doc 28
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_5.xhtml
K
*
M
(
k
)
Doc 29
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/5/0705.2471/0705.2471_1_17.xhtml
K
φ
χ
(
k
)
Doc 30
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_81.xhtml
K
n
M
(
k
)
Doc 31
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/4/math0508147/math0508147_1_46.xhtml
K
i
M
(
k
)
Doc 32
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/4/math0508147/math0508147_1_47.xhtml
K
i
M
(
k
)
Doc 33
0.2410
0.0000
2.0000
0.2410
testing/NTCIR/xhtml5/2/math0112212/math0112212_1_165.xhtml
K
α
′
(
a
)
Doc 34
0.2410
-1.0000
3.0000
0.4819
testing/NTCIR/xhtml5/1/hep-th0002177/hep-th0002177_1_56.xhtml
where
K
a
+
(
k
)
where
K
¯
a
-
(
k
)
Doc 35
0.2410
-1.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0301205/math0301205_1_134.xhtml
K
~
0
(
k
N
)
Doc 36
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/5/0803.0178/0803.0178_1_78.xhtml
K
c
(
1
)
(
β
)
Doc 37
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/math0501042/math0501042_1_56.xhtml
K
n
(
1
)
(
y
)
Doc 38
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/7/1102.3406/1102.3406_1_29.xhtml
K
c
(
1
)
(
β
)
Doc 39
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/7/1102.3406/1102.3406_1_25.xhtml
K
c
(
1
)
(
β
)
Doc 40
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/7/1102.3406/1102.3406_1_17.xhtml
K
c
(
1
)
(
β
)
Doc 41
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/5/0803.0178/0803.0178_1_77.xhtml
K
c
(
1
)
(
β
)
Doc 42
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_19.xhtml
K
*
M
(
k
)
/
2
Doc 43
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_22.xhtml
K
n
M
(
k
)
/
2
Doc 44
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_55.xhtml
K
i
M
(
k
)
/
2
Doc 45
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_54.xhtml
K
n
M
(
k
)
/
2
Doc 46
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_16.xhtml
K
*
M
(
k
)
/
2
Doc 47
0.2410
-4.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_32.xhtml
h
∈
K
n
M
(
k
)
/
2
Doc 48
0.2410
-4.0000
3.0000
0.2410
testing/NTCIR/xhtml5/5/0809.3820/0809.3820_1_26.xhtml
K
g
(
Z
)
/
(
1
+
Z
)
Doc 49
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1312.3289/1312.3289_1_14.xhtml
T
(
ϑ
r
)
/
(
1
-
ϑ
r
)
Doc 50
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0707.1081/0707.1081_1_31.xhtml
b
(
k
)
/
(
1
+
b
(
k
)
)
Doc 51
0.2410
-5.0000
2.0000
0.2410
testing/NTCIR/xhtml5/7/1107.1743/1107.1743_1_130.xhtml
(
1
-
χ
)
K
n
±
(
R
±
)
Doc 52
0.2410
-5.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/math0405468/math0405468_1_143.xhtml
K
μ
,
(
1
L
)
(
k
)
(
q
)
Doc 53
0.2410
-6.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1209.3548/1209.3548_1_6.xhtml
K
(
k
)
×
/
(
K
(
k
)
×
)
2
Doc 54
0.2410
-6.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1204.3376/1204.3376_1_26.xhtml
T
(
z
)
2
/
(
1
-
T
(
z
)
)
Doc 55
0.2410
-7.0000
2.0000
0.2410
testing/NTCIR/xhtml5/6/0906.2542/0906.2542_1_26.xhtml
K
1
n
(
u
=
1
/
(
1
-
ϵ
)
)
Doc 56
0.2410
-10.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1303.2713/1303.2713_1_123.xhtml
G
′
(
k
)
=
k
E
(
k
)
/
(
1
-
k
2
)
Doc 57
0.2410
-11.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/hep-th0104255/hep-th0104255_1_28.xhtml
k
(
x
)
≡
[
K
′
(
x
)
/
(
1
-
K
(
x
)
)
]
Doc 58
0.2410
-11.0000
2.0000
0.4819
testing/NTCIR/xhtml5/8/1111.3458/1111.3458_1_91.xhtml
[
φ
]
1
(
k
)
=
[
K
0
(
1
)
(
φ
)
]
1
(
k
)
[
K
0
(
1
)
(
φ
)
]
1
(
k
)
=
[
φ
]
1
(
k
)
Doc 59
0.2410
-11.0000
2.0000
0.2410
testing/NTCIR/xhtml5/4/math0505264/math0505264_1_23.xhtml
φ
a
(
z
)
:=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 60
0.2410
-12.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math0210138/math0210138_1_69.xhtml
ϵ
(
a
)
=
a
⊗
a
+
(
1
-
a
)
⊗
(
1
-
a
)
Doc 61
0.2410
-12.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/0910.0639/0910.0639_1_22.xhtml
r
~
(
k
)
:=
(
1
-
|
r
(
k
)
|
2
)
/
k
2
.
Doc 62
0.2410
-17.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math0210138/math0210138_1_26.xhtml
ϵ
(
a
)
:=
a
⊗
a
+
(
1
-
a
)
⊗
(
1
-
a
)
∈
k
×
⊗
k
Doc 63
0.2041
-5.0000
5.0000
0.2041
testing/NTCIR/xhtml5/5/0711.3920/0711.3920_1_55.xhtml
K
η
a
0
⊗
(
a
-
a
0
)
Doc 64
0.2041
-6.0000
4.0000
0.2041
testing/NTCIR/xhtml5/8/1208.3978/1208.3978_1_8.xhtml
f
(
(
a
-
b
)
/
(
1
-
t
)
)
Doc 65
0.2041
-6.0000
3.0000
0.2041
testing/NTCIR/xhtml5/5/0705.1003/0705.1003_1_143.xhtml
T
(
k
)
=
4
K
(
k
)
/
r
Doc 66
0.2041
-6.0000
3.0000
0.2041
testing/NTCIR/xhtml5/9/1401.5647/1401.5647_1_2.xhtml
K
(
z
)
:=
z
/
(
1
-
z
)
2
Doc 67
0.2041
-11.0000
3.0000
0.2041
testing/NTCIR/xhtml5/9/1307.4900/1307.4900_1_7.xhtml
φ
a
(
z
)
=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 68
0.2041
-11.0000
3.0000
0.2041
testing/NTCIR/xhtml5/9/1307.5784/1307.5784_1_30.xhtml
σ
a
(
z
)
=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 69
0.2041
-11.0000
3.0000
0.2041
testing/NTCIR/xhtml5/1/1101.4201/1101.4201_1_46.xhtml
φ
a
(
z
)
=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 70
0.2041
-11.0000
3.0000
0.2041
testing/NTCIR/xhtml5/9/1307.5784/1307.5784_1_23.xhtml
σ
a
(
z
)
=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 71
0.2041
-11.0000
3.0000
0.2041
testing/NTCIR/xhtml5/9/1312.1516/1312.1516_1_2.xhtml
σ
a
(
z
)
=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 72
0.2041
-11.0000
3.0000
0.2041
testing/NTCIR/xhtml5/9/1301.2740/1301.2740_1_4.xhtml
φ
a
(
z
)
=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 73
0.2041
-11.0000
3.0000
0.2041
testing/NTCIR/xhtml5/6/0912.3487/0912.3487_1_1.xhtml
σ
a
(
z
)
=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 74
0.1860
-1.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1103.5346/1103.5346_1_7.xhtml
K
(
1
)
(
k
)
Doc 75
0.1860
-1.0000
2.0000
0.1860
testing/NTCIR/xhtml5/5/0707.0045/0707.0045_1_56.xhtml
K
~
0
1
(
1
)
Doc 76
0.1860
-1.0000
2.0000
0.1860
testing/NTCIR/xhtml5/7/1011.0782/1011.0782_1_19.xhtml
K
¯
n
(
1
)
Doc 77
0.1860
-1.0000
2.0000
0.1860
testing/NTCIR/xhtml5/5/0707.0045/0707.0045_1_59.xhtml
K
~
ε
1
(
1
)
Doc 78
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/5/0708.2946/0708.2946_1_73.xhtml
1
/
(
1
-
a
)
Doc 79
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0611645/math0611645_1_83.xhtml
b
/
(
1
-
a
)
Doc 80
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0611645/math0611645_1_82.xhtml
b
/
(
1
-
a
)
Doc 81
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1102.3040/1102.3040_1_9.xhtml
1
/
(
1
-
a
)
Doc 82
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/5/0708.2307/0708.2307_1_49.xhtml
b
/
(
1
-
a
)
Doc 83
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/1/math0003005/math0003005_1_109.xhtml
b
/
(
1
-
a
)
Doc 84
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1102.3041/1102.3041_1_7.xhtml
1
/
(
1
-
a
)
Doc 85
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/8/1110.4699/1110.4699_1_13.xhtml
1
/
(
1
-
a
)
Doc 86
0.1860
-4.0000
2.0000
0.1860
testing/NTCIR/xhtml5/4/math0503058/math0503058_1_4.xhtml
K
l
,
𝐦
(
k
)
(
1
)
Doc 87
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/1002.0286/1002.0286_1_55.xhtml
O
(
k
1
/
(
1
-
a
)
)
Doc 88
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/8/1211.2045/1211.2045_1_47.xhtml
(
b
-
a
)
/
(
1
-
a
)
Doc 89
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/1002.4559/1002.4559_1_15.xhtml
(
1
-
x
)
/
(
1
-
a
)
Doc 90
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/3/math0308060/math0308060_1_88.xhtml
(
1
-
a
)
/
(
1
+
a
)
Doc 91
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/5/0707.2313/0707.2313_1_34.xhtml
(
1
-
a
)
/
(
1
-
c
)
Doc 92
0.1860
-5.0000
3.0000
0.1860
testing/NTCIR/xhtml5/1/math0004019/math0004019_1_4.xhtml
(
a
-
b
)
/
(
1
-
q
)
Doc 93
0.1860
-6.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1102.3041/1102.3041_1_43.xhtml
(
1
-
a
)
/
(
-
a
log
a
)
Doc 94
0.1860
-6.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1006.2322/1006.2322_1_22.xhtml
K
a
=
K
-
1
(
1
-
a
)
Doc 95
0.1860
-6.0000
3.0000
0.1860
testing/NTCIR/xhtml5/5/0810.0135/0810.0135_1_56.xhtml
t
>
K
(
0
)
/
(
1
-
λ
)
Doc 96
0.1860
-6.0000
3.0000
0.1860
testing/NTCIR/xhtml5/8/1210.3972/1210.3972_1_88.xhtml
K
I
(
f
)
1
/
(
1
-
n
)
Doc 97
0.1860
-6.0000
3.0000
0.1860
testing/NTCIR/xhtml5/8/1211.2045/1211.2045_1_54.xhtml
b
(
1
-
b
)
/
(
b
-
a
)
Doc 98
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/3/math0308060/math0308060_1_69.xhtml
A
:=
(
1
+
a
)
/
(
1
-
a
)
Doc 99
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/9/1311.7571/1311.7571_1_87.xhtml
b
=
(
1
-
a
)
/
(
k
-
1
)
Doc 100
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/9/1311.7571/1311.7571_1_90.xhtml
b
=
(
1
-
a
)
/
(
k
-
1
)
Doc 101
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/9/1312.3732/1312.3732_1_52.xhtml
a
(
1
-
a
)
/
(
a
2
+
b
)
Doc 102
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/10/math9902126/math9902126_1_18.xhtml
C
(
a
)
T
(
1
-
a
)
/
2
.
Doc 103
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/10/hep-th9706102/hep-th9706102_1_16.xhtml
T
(
t
)
=
t
/
(
1
-
a
t
)
Doc 104
0.1860
-7.0000
3.0000
0.3721
testing/NTCIR/xhtml5/9/1302.0527/1302.0527_1_95.xhtml
u
=
(
a
-
x
)
/
(
1
-
x
)
x
=
(
a
-
u
)
/
(
1
-
u
)
Doc 105
0.1860
-7.0000
3.0000
0.1860
testing/NTCIR/xhtml5/1/hep-th9809172/hep-th9809172_1_9.xhtml
Q
=
(
1
-
k
)
/
(
k
-
2
)
Doc 106
0.1860
-7.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1107.1743/1107.1743_1_243.xhtml
K
n
±
(
(
1
-
χ
2
)
T
n
)
Doc 107
0.1860
-7.0000
3.0000
0.1860
testing/NTCIR/xhtml5/4/math0610824/math0610824_1_23.xhtml
(
1
-
A
)
/
(
k
(
1
-
B
)
)
Doc 108
0.1860
-7.0000
3.0000
0.1860
testing/NTCIR/xhtml5/10/q-alg9607003/q-alg9607003_1_66.xhtml
(
a
;
q
)
m
/
(
1
-
q
)
m
Doc 109
0.1860
-8.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1009.1800/1009.1800_1_27.xhtml
(
1
-
a
n
)
/
(
a
-
a
-
1
)
Doc 110
0.1860
-8.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1009.1800/1009.1800_1_93.xhtml
(
1
-
a
n
)
/
(
a
-
a
-
1
)
Doc 111
0.1860
-9.0000
4.0000
0.1860
testing/NTCIR/xhtml5/1/math0411297/math0411297_1_9.xhtml
d
=
(
1
-
a
)
/
(
a
+
b
-
2
)
Doc 112
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_18.xhtml
α
=
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 113
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_66.xhtml
α
≠
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 114
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_63.xhtml
α
≠
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 115
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_16.xhtml
α
=
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 116
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_22.xhtml
α
≠
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 117
0.1860
-11.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0701062/math0701062_1_8.xhtml
(
a
)
k
=
(
-
1
)
k
/
(
1
-
a
)
-
k
Doc 118
0.1860
-12.0000
3.0000
0.1860
testing/NTCIR/xhtml5/6/0910.0639/0910.0639_1_134.xhtml
ψ
(
k
)
:=
(
1
-
|
φ
^
(
k
)
|
2
)
/
k
2
Doc 119
0.1860
-13.0000
4.0000
0.1860
testing/NTCIR/xhtml5/1/hep-th0009075/hep-th0009075_1_24.xhtml
(
a
|
b
)
=
(
-
1
)
b
/
(
1
-
a
|
-
b
)
Doc 120
0.1860
-13.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0904.0966/0904.0966_1_32.xhtml
c
:=
(
a
-
ρ
)
/
(
1
-
a
ρ
)
∈
(
0
,
∞
)
Doc 121
0.1860
-13.0000
4.0000
0.1860
testing/NTCIR/xhtml5/3/math0407260/math0407260_1_59.xhtml
p
(
a
)
=
(
1
-
a
/
2
)
2
/
(
1
-
a
)
2
Doc 122
0.1860
-13.0000
3.0000
0.1860
testing/NTCIR/xhtml5/8/1202.6062/1202.6062_1_80.xhtml
ϕ
=
(
k
r
)
(
1
+
z
)
/
2
K
ν
(
k
r
)
,
Doc 123
0.1860
-14.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/1003.3749/1003.3749_1_19.xhtml
T
(
a
¯
)
n
=
(
1
-
a
)
/
(
1
-
a
n
+
1
)