tangent
Not Supported
∀
x
∀
y
P
(
x
,
y
)
⇔
∀
y
∀
x
P
(
x
,
y
)
Search
Returned 32 matches (100 formulae, 148 docs)
Lookup 541.180 ms, Re-ranking 352.229 ms
Found 9985360 tuple postings, 5006722 formulae, 2757745 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.3167
-10.0000
7.0000
0.3167
testing/NTCIR/xhtml5/9/1308.2986/1308.2986_1_40.xhtml
P
(
x
,
y
)
=
ϕ
(
y
+
x
P
(
x
,
y
)
)
.
Doc 2
0.2956
-7.0000
6.0000
0.2956
testing/NTCIR/xhtml5/4/math0506116/math0506116_1_54.xhtml
x
Q
(
x
,
y
)
-
y
P
(
x
,
y
)
Doc 3
0.2956
-7.0000
6.0000
0.2956
testing/NTCIR/xhtml5/4/math0506116/math0506116_1_108.xhtml
x
Q
(
x
,
y
)
-
y
P
(
x
,
y
)
Doc 4
0.2956
-8.0000
6.0000
0.2956
testing/NTCIR/xhtml5/9/1306.4628/1306.4628_1_159.xhtml
P
0
(
x
,
y
)
=
y
P
2
(
x
,
y
)
Doc 5
0.2956
-9.0000
6.0000
0.2956
testing/NTCIR/xhtml5/4/math0506116/math0506116_1_112.xhtml
p
x
Q
(
x
,
y
)
-
q
y
P
(
x
,
y
)
Doc 6
0.2956
-9.0000
6.0000
0.2956
testing/NTCIR/xhtml5/6/0903.0941/0903.0941_1_100.xhtml
y
P
d
(
x
,
y
)
-
x
Q
d
(
x
,
y
)
Doc 7
0.2956
-10.0000
6.0000
0.2956
testing/NTCIR/xhtml5/7/1009.1664/1009.1664_1_17.xhtml
P
(
x
,
y
)
=
x
m
y
n
P
0
(
x
,
y
)
Doc 8
0.2956
-10.0000
6.0000
0.2956
testing/NTCIR/xhtml5/7/1009.1664/1009.1664_1_16.xhtml
P
(
x
,
y
)
=
x
m
y
n
P
0
(
x
,
y
)
Doc 9
0.2410
-5.0000
5.0000
0.4819
testing/NTCIR/xhtml5/5/0810.3150/0810.3150_1_115.xhtml
(
x
,
y
)
↦
P
(
x
,
y
)
(
x
,
y
)
↦
Q
(
x
,
y
)
Doc 10
0.2410
-5.0000
5.0000
0.2410
testing/NTCIR/xhtml5/3/math0411632/math0411632_1_7.xhtml
(
x
,
y
)
→
P
(
x
,
y
)
Doc 11
0.2410
-5.0000
5.0000
0.2410
testing/NTCIR/xhtml5/4/math0509556/math0509556_1_89.xhtml
P
(
x
,
y
)
I
(
x
,
y
)
Doc 12
0.2410
-5.0000
4.0000
0.4819
testing/NTCIR/xhtml5/7/1006.5430/1006.5430_1_33.xhtml
(
x
,
y
)
→
K
(
x
,
y
)
(
x
,
y
)
→
L
(
x
,
y
)
Doc 13
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math-ph0406027/math-ph0406027_1_289.xhtml
(
x
,
y
)
↦
σ
(
x
,
y
)
Doc 14
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/2/math0010302/math0010302_1_89.xhtml
(
x
,
y
)
↦
r
(
x
,
y
)
Doc 15
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math0307381/math0307381_1_55.xhtml
(
x
,
y
)
↦
ϰ
(
x
,
y
)
Doc 16
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0903.2571/0903.2571_1_45.xhtml
(
x
,
y
)
↦
d
(
x
,
y
)
Doc 17
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/10/math9902065/math9902065_1_7.xhtml
(
x
,
y
)
↦
f
(
x
,
y
)
Doc 18
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1202.2235/1202.2235_1_53.xhtml
W
(
x
,
y
)
=
(
x
,
y
)
Doc 19
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1203.2783/1203.2783_1_33.xhtml
(
x
,
y
)
↦
c
(
x
,
y
)
Doc 20
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/1/1205.1952/1205.1952_1_4.xhtml
(
x
,
y
)
→
w
(
x
,
y
)
Doc 21
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/2/math0210321/math0210321_1_19.xhtml
Φ
(
x
,
y
)
=
(
x
,
y
)
Doc 22
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0907.3288/0907.3288_1_22.xhtml
ξ
(
x
,
y
)
η
(
x
,
y
)
Doc 23
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1104.3849/1104.3849_1_12.xhtml
(
x
,
y
)
↦
d
(
x
,
y
)
Doc 24
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math-ph0406027/math-ph0406027_1_281.xhtml
(
x
,
y
)
↦
σ
(
x
,
y
)
Doc 25
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0803.3665/0803.3665_1_48.xhtml
(
x
,
y
)
↦
F
(
x
,
y
)
Doc 26
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0909.4709/0909.4709_1_75.xhtml
r
(
x
,
y
)
=
(
x
,
y
)
Doc 27
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0810.2911/0810.2911_1_38.xhtml
V
(
x
,
y
)
=
(
x
,
y
)
Doc 28
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0906.4157/0906.4157_1_16.xhtml
(
x
,
y
)
→
d
(
x
,
y
)
Doc 29
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1209.2621/1209.2621_1_128.xhtml
(
x
,
y
)
↦
κ
(
x
,
y
)
Doc 30
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0810.3352/0810.3352_1_7.xhtml
(
x
,
y
)
→
d
(
x
,
y
)
Doc 31
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1108.0036/1108.0036_1_81.xhtml
a
(
x
,
y
)
b
(
x
,
y
)
Doc 32
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0512123/math0512123_1_108.xhtml
a
(
x
,
y
)
ψ
(
x
,
y
)
Doc 33
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1005.4576/1005.4576_1_85.xhtml
(
x
,
y
)
↦
B
(
x
,
y
)
Doc 34
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1011.3561/1011.3561_1_89.xhtml
(
x
,
y
)
↦
R
(
x
,
y
)
Doc 35
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0512123/math0512123_1_101.xhtml
a
(
x
,
y
)
ϕ
(
x
,
y
)
Doc 36
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1101.2761/1101.2761_1_44.xhtml
W
(
x
,
y
)
=
(
x
,
y
)
Doc 37
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1308.2459/1308.2459_1_30.xhtml
(
x
,
y
)
↦
d
(
x
,
y
)
Doc 38
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1211.2611/1211.2611_1_48.xhtml
(
x
,
y
)
↦
q
(
x
,
y
)
Doc 39
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0803.3665/0803.3665_1_49.xhtml
(
x
,
y
)
↦
f
(
x
,
y
)
Doc 40
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math0405491/math0405491_1_30.xhtml
(
x
,
y
)
→
ξ
(
x
,
y
)
Doc 41
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math-ph0610007/math-ph0610007_1_26.xhtml
(
x
,
y
)
=
Φ
(
x
,
y
)
Doc 42
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1104.3849/1104.3849_1_121.xhtml
(
x
,
y
)
↦
d
(
x
,
y
)
Doc 43
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0512123/math0512123_1_109.xhtml
a
(
x
,
y
)
ψ
(
x
,
y
)
Doc 44
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/1/1205.1952/1205.1952_1_3.xhtml
(
x
,
y
)
→
w
(
x
,
y
)
Doc 45
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/2/math-ph0106002/math-ph0106002_1_135.xhtml
α
(
x
,
y
)
=
(
x
,
y
)
Doc 46
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math-ph0406027/math-ph0406027_1_316.xhtml
(
x
,
y
)
↦
σ
(
x
,
y
)
Doc 47
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/1/1205.1952/1205.1952_1_6.xhtml
(
x
,
y
)
→
w
(
x
,
y
)
Doc 48
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1309.5841/1309.5841_1_57.xhtml
(
x
,
y
)
↦
f
(
x
,
y
)
Doc 49
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/hep-th0603116/hep-th0603116_1_50.xhtml
E
(
x
,
y
)
B
(
x
,
y
)
Doc 50
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1303.6827/1303.6827_1_13.xhtml
E
(
x
,
y
)
=
(
x
,
y
)
Doc 51
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0712.1372/0712.1372_1_116.xhtml
Q
(
x
,
y
)
𝒮
(
x
,
y
)
Doc 52
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0710.0408/0710.0408_1_118.xhtml
(
x
,
y
)
↦
c
(
x
,
y
)
Doc 53
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1302.3075/1302.3075_1_54.xhtml
(
x
,
y
)
→
V
(
x
,
y
)
Doc 54
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0905.2256/0905.2256_1_13.xhtml
(
x
,
y
)
↦
g
(
x
,
y
)
Doc 55
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0909.1342/0909.1342_1_266.xhtml
T
(
x
,
y
)
=
(
x
,
y
)
Doc 56
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math0303007/math0303007_1_63.xhtml
(
x
,
y
)
→
M
(
x
,
y
)
Doc 57
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1005.4893/1005.4893_1_10.xhtml
(
x
,
y
)
→
l
(
x
,
y
)
Doc 58
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/2/math-ph0106002/math-ph0106002_1_132.xhtml
α
(
x
,
y
)
=
(
x
,
y
)
Doc 59
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0802.0054/0802.0054_1_25.xhtml
(
x
,
y
)
⟼
φ
(
x
,
y
)
Doc 60
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0512123/math0512123_1_86.xhtml
a
(
x
,
y
)
ϕ
(
x
,
y
)
Doc 61
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0801.2650/0801.2650_1_208.xhtml
H
(
x
,
y
)
=
(
x
,
y
)
Doc 62
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1111.2325/1111.2325_1_38.xhtml
(
x
,
y
)
↦
a
(
x
,
y
)
Doc 63
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0908.3256/0908.3256_1_13.xhtml
(
x
,
y
)
↦
d
(
x
,
y
)
Doc 64
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/1/0911.1023/0911.1023_1_12.xhtml
h
(
x
,
y
)
=
(
x
,
y
)
Doc 65
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1306.0433/1306.0433_1_17.xhtml
Φ
(
x
,
y
)
=
(
x
,
y
)
Doc 66
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1008.0819/1008.0819_1_45.xhtml
𝐢
(
x
,
y
)
=
(
x
,
y
)
Doc 67
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0712.1372/0712.1372_1_118.xhtml
Q
(
x
,
y
)
𝒮
(
x
,
y
)
Doc 68
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math-ph0311042/math-ph0311042_1_17.xhtml
(
x
,
y
)
,
K
(
x
,
y
)
Doc 69
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0801.3402/0801.3402_1_29.xhtml
(
x
,
y
)
↦
f
(
x
,
y
)
Doc 70
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1212.6264/1212.6264_1_32.xhtml
(
x
,
y
)
→
λ
(
x
,
y
)
Doc 71
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/10/q-alg9505028/q-alg9505028_1_14.xhtml
(
x
,
y
)
=
β
(
x
,
y
)
Doc 72
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0801.2650/0801.2650_1_204.xhtml
H
(
x
,
y
)
=
(
x
,
y
)
Doc 73
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0512123/math0512123_1_78.xhtml
a
(
x
,
y
)
ϕ
(
x
,
y
)
Doc 74
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/10/gr-qc9902034/gr-qc9902034_1_29.xhtml
(
x
,
y
)
↦
σ
(
x
,
y
)
Doc 75
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0707.2810/0707.2810_1_2.xhtml
(
x
,
y
)
↦
M
(
x
,
y
)
Doc 76
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1007.0653/1007.0653_1_14.xhtml
(
x
,
y
)
→
l
(
x
,
y
)
Doc 77
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0512123/math0512123_1_83.xhtml
a
(
x
,
y
)
ϕ
(
x
,
y
)
Doc 78
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math-ph0701009/math-ph0701009_1_65.xhtml
(
x
,
y
)
↦
K
(
x
,
y
)
Doc 79
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0505496/math0505496_1_12.xhtml
(
x
,
y
)
↦
d
(
x
,
y
)
Doc 80
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1108.0036/1108.0036_1_83.xhtml
a
(
x
,
y
)
b
(
x
,
y
)
Doc 81
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1212.6353/1212.6353_1_87.xhtml
(
x
,
y
)
↦
F
(
x
,
y
)
Doc 82
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0506036/math0506036_1_64.xhtml
Φ
(
x
,
y
)
Ψ
(
x
,
y
)
Doc 83
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0811.1734/0811.1734_1_11.xhtml
(
x
,
y
)
→
d
(
x
,
y
)
Doc 84
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0909.1342/0909.1342_1_263.xhtml
T
(
x
,
y
)
=
(
x
,
y
)
Doc 85
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1111.6409/1111.6409_1_26.xhtml
(
x
,
y
)
↦
γ
(
x
,
y
)
Doc 86
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0909.3043/0909.3043_1_30.xhtml
(
x
,
y
)
↦
α
(
x
,
y
)
Doc 87
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/1002.4647/1002.4647_1_22.xhtml
(
x
,
y
)
→
ξ
(
x
,
y
)
Doc 88
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/1002.4559/1002.4559_1_33.xhtml
(
x
,
y
)
↦
u
(
x
,
y
)
Doc 89
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1304.0227/1304.0227_1_192.xhtml
g
(
x
,
y
)
=
(
x
,
y
)
Doc 90
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1205.2092/1205.2092_1_26.xhtml
(
x
,
y
)
→
i
(
x
,
y
)
Doc 91
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0510049/math0510049_1_206.xhtml
(
x
,
y
)
→
f
(
x
,
y
)
Doc 92
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1005.1403/1005.1403_1_51.xhtml
(
x
,
y
)
↦
e
(
x
,
y
)
Doc 93
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/0910.2977/0910.2977_1_70.xhtml
φ
(
x
,
y
)
=
(
x
,
y
)
Doc 94
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1303.4912/1303.4912_1_30.xhtml
(
x
,
y
)
↦
ϕ
(
x
,
y
)
Doc 95
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math0310021/math0310021_1_38.xhtml
T
(
x
,
y
)
ρ
(
x
,
y
)
Doc 96
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1308.6675/1308.6675_1_165.xhtml
(
x
,
y
)
↦
f
(
x
,
y
)
Doc 97
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/10/math9902065/math9902065_1_27.xhtml
(
x
,
y
)
↦
f
(
x
,
y
)
Doc 98
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1302.5402/1302.5402_1_43.xhtml
(
x
,
y
)
↦
f
(
x
,
y
)
Doc 99
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math-ph0601041/math-ph0601041_1_89.xhtml
(
x
,
y
)
↦
K
(
x
,
y
)
Doc 100
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1301.3716/1301.3716_1_91.xhtml
h
(
x
,
y
)
-
(
x
,
y
)
Doc 101
0.2410
-6.0000
5.0000
0.4819
testing/NTCIR/xhtml5/3/math0402240/math0402240_1_141.xhtml
r
(
x
,
y
)
/
P
(
x
,
y
)
P
(
x
,
y
)
ψ
=
r
(
x
,
y
)
Doc 102
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/1/hep-lat0006027/hep-lat0006027_1_74.xhtml
P
(
x
,
y
)
→
P
(
x
,
y
)
Doc 103
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/1/math0008119/math0008119_1_38.xhtml
P
(
x
,
y
)
,
Q
(
x
,
y
)
Doc 104
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/3/math0408246/math0408246_1_5.xhtml
P
(
x
,
y
)
,
Q
(
x
,
y
)
Doc 105
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/3/math0305248/math0305248_1_5.xhtml
P
(
x
,
y
)
,
Q
(
x
,
y
)
Doc 106
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/11/cs9910010/cs9910010_1_105.xhtml
P
(
x
,
y
)
=
f
(
x
,
y
)
Doc 107
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/1/math0008119/math0008119_1_6.xhtml
P
(
x
,
y
)
,
Q
(
x
,
y
)
Doc 108
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/quant-ph0109068/quant-ph0109068_1_2.xhtml
P
(
x
,
y
)
=
f
(
x
,
y
)
Doc 109
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/6/0912.5276/0912.5276_1_49.xhtml
P
(
x
,
y
)
≠
sgn
(
x
,
y
)
Doc 110
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/quant-ph0109068/quant-ph0109068_1_3.xhtml
P
(
x
,
y
)
=
f
(
x
,
y
)
Doc 111
0.2410
-6.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math-ph0111010/math-ph0111010_1_16.xhtml
P
(
x
,
y
)
/
Q
(
x
,
y
)
Doc 112
0.2410
-6.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1005.1721/1005.1721_1_9.xhtml
γ
(
x
,
y
)
=
I
(
x
,
y
)
Doc 113
0.2410
-6.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1005.3927/1005.3927_1_21.xhtml
j
(
x
,
y
)
≤
k
(
x
,
y
)
Doc 114
0.2410
-6.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1110.5740/1110.5740_1_91.xhtml
C
(
x
,
y
)
=
p
(
x
,
y
)
Doc 115
0.2410
-6.0000
4.0000
0.2410
testing/NTCIR/xhtml5/7/1005.1398/1005.1398_1_97.xhtml
C
(
x
,
y
)
=
p
(
x
,
y
)
Doc 116
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/4/math0505027/math0505027_1_16.xhtml
(
P
(
x
,
y
)
,
Q
(
x
,
y
)
)
Doc 117
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/4/hep-th0601063/hep-th0601063_1_41.xhtml
P
(
x
,
y
)
=
det
K
(
x
,
y
)
Doc 118
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/9/1301.4778/1301.4778_1_14.xhtml
(
P
(
x
,
y
)
,
Q
(
x
,
y
)
)
Doc 119
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/cond-mat0211166/cond-mat0211166_1_21.xhtml
P
′
(
x
,
y
)
=
P
(
x
,
y
)
Doc 120
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math0109178/math0109178_1_80.xhtml
P
(
x
,
y
)
=
Ψ
0
(
x
,
y
)
Doc 121
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/8/1111.0626/1111.0626_1_12.xhtml
P
(
x
,
y
)
=
ϕ
(
x
,
y
)
n
Doc 122
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math0109178/math0109178_1_102.xhtml
P
(
x
,
y
)
=
Φ
ϵ
(
x
,
y
)
Doc 123
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/8/1111.3418/1111.3418_1_7.xhtml
K
α
(
x
,
y
)
,
P
(
x
,
y
)
Doc 124
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math0109178/math0109178_1_78.xhtml
P
(
x
,
y
)
=
Ψ
0
(
x
,
y
)
Doc 125
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/8/1206.6743/1206.6743_1_40.xhtml
R
(
x
,
y
)
=
P
(
x
2
,
y
)
Doc 126
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math0109178/math0109178_1_79.xhtml
P
(
x
,
y
)
=
Ψ
0
(
x
,
y
)
Doc 127
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/8/1111.3418/1111.3418_1_51.xhtml
K
α
(
x
,
y
)
,
P
(
x
,
y
)
Doc 128
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/7/1107.2495/1107.2495_1_21.xhtml
(
x
1
,
y
1
)
↦
P
(
x
,
y
)
Doc 129
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/3/math0411042/math0411042_1_16.xhtml
P
(
x
,
y
)
=
P
2
(
x
,
y
)
Doc 130
0.2410
-7.0000
5.0000
0.2410
testing/NTCIR/xhtml5/3/math0502197/math0502197_1_18.xhtml
|
P
(
x
,
y
)
|
=
P
(
x
,
y
)
Doc 131
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/9/1309.1726/1309.1726_1_18.xhtml
(linear terms)
+
Q
(
x
,
y
)
P
(
x
,
y
)
b
Doc 132
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math0109178/math0109178_1_28.xhtml
P
(
x
,
λ
y
)
=
λ
P
(
x
,
y
)
Doc 133
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/9/1309.1726/1309.1726_1_10.xhtml
(linear terms)
+
Q
(
x
,
y
)
P
(
x
,
y
)
b
Doc 134
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/9/1309.1726/1309.1726_1_15.xhtml
(linear terms)
+
Q
(
x
,
y
)
P
(
x
,
y
)
b
Doc 135
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/9/1309.1726/1309.1726_1_8.xhtml
(linear terms)
+
Q
(
x
,
y
)
P
(
x
,
y
)
b
Doc 136
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/9/1309.1726/1309.1726_1_17.xhtml
(linear terms)
+
Q
(
x
,
y
)
P
(
x
,
y
)
b
Doc 137
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/9/1309.1726/1309.1726_1_9.xhtml
(linear terms)
+
Q
(
x
,
y
)
P
(
x
,
y
)
b
Doc 138
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/3/math0411632/math0411632_1_60.xhtml
V
:
P
(
x
,
y
)
→
V
(
x
,
y
)
Doc 139
0.2410
-8.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/cs0112012/cs0112012_1_104.xhtml
F
=
P
(
x
,
y
)
/
Q
(
x
,
y
)
Doc 140
0.2410
-9.0000
5.0000
0.2410
testing/NTCIR/xhtml5/4/math0607561/math0607561_1_87.xhtml
P
D
n
(
x
,
y
)
↗
P
D
(
x
,
y
)
Doc 141
0.2410
-10.0000
5.0000
0.2410
testing/NTCIR/xhtml5/4/math0702394/math0702394_1_7.xhtml
P
λ
(
x
,
y
)
=
1
-
λ
P
(
x
,
y
)
Doc 142
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0505088/math0505088_1_38.xhtml
(
x
,
y
)
→
(
x
,
y
)
Doc 143
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0610724/math0610724_1_78.xhtml
(
x
,
y
)
↦
(
x
,
y
)
Doc 144
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0610724/math0610724_1_76.xhtml
(
x
,
y
)
↦
(
x
,
y
)
Doc 145
0.1860
-6.0000
4.0000
0.3721
testing/NTCIR/xhtml5/6/1002.4757/1002.4757_1_8.xhtml
(
x
,
y
)
↦
max
(
x
,
y
)
(
x
,
y
)
↦
min
(
x
,
y
)
Doc 146
0.1860
-6.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1107.3598/1107.3598_1_25.xhtml
{
(
x
,
y
)
:
(
x
,
y
)
Doc 147
0.1860
-6.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0701705/math0701705_1_7.xhtml
(
x
,
y
)
ι
=
(
x
,
y
)
Doc 148
0.1860
-6.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0903.4533/0903.4533_1_47.xhtml
(
x
,
y
)
φ
=
(
x
,
y
)