tangent
Not Supported
{
z
∈
H
:
|
z
|
>
1
,
|
?x0
(
z
)
|
<
1
2
}
Search
Returned 64 matches (100 formulae, 143 docs)
Lookup 215.191 ms, Re-ranking 159.268 ms
Found 4259307 tuple postings, 3091932 formulae, 1804560 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.6826
-10.0000
11.0000
0.6826
testing/NTCIR/xhtml5/7/1107.5500/1107.5500_1_58.xhtml
W
=
{
z
∈
ℂ
:
|
z
|
<
r
,
|
Arg
(
z
)
+
π
/
2
|
<
θ
}
.
Doc 2
0.6484
-5.0000
13.0000
0.6484
testing/NTCIR/xhtml5/3/math-ph0309022/math-ph0309022_1_18.xhtml
F
=
{
z
∈
H
:
|
z
|
≥
1
,
|
ν
|
≤
1
2
}
Doc 3
0.6484
-6.0000
12.0000
0.6484
testing/NTCIR/xhtml5/8/1208.6159/1208.6159_1_9.xhtml
ℱ
=
{
z
∈
C
:
|
z
|
≥
1
,
|
Re
z
|
≤
1
2
}
Doc 4
0.6484
-6.0000
12.0000
0.6484
testing/NTCIR/xhtml5/7/1105.6133/1105.6133_1_12.xhtml
ℱ
=
{
z
∈
ℋ
:
|
z
|
≥
1
,
|
Re
z
|
≤
1
2
}
Doc 5
0.6484
-9.0000
12.0000
0.6484
testing/NTCIR/xhtml5/8/1207.1174/1207.1174_1_49.xhtml
Σ
α
,
δ
=
{
z
∈
ℂ
:
|
z
|
>
δ
,
|
Arg
(
z
)
|
<
α
}
,
Doc 6
0.5699
-9.0000
12.0000
0.5699
testing/NTCIR/xhtml5/6/0912.2236/0912.2236_1_11.xhtml
ℱ
q
=
{
z
∈
ℍ
∣
|
z
|
≥
1
,
|
Re
(
z
)
|
≤
λ
q
2
}
Doc 7
0.5673
-8.0000
10.0000
0.5673
testing/NTCIR/xhtml5/5/0712.1391/0712.1391_1_36.xhtml
ℱ
=
{
z
∈
ℍ
∣
|
z
|
>
1
,
|
ℜ
𝔢
(
z
)
|
<
2
}
Doc 8
0.5673
-10.0000
10.0000
0.5673
testing/NTCIR/xhtml5/6/0907.5184/0907.5184_1_185.xhtml
𝕃
=
{
z
∈
ℂ
:
|
z
-
a
|
<
1
,
|
z
-
b
|
<
1
}
,
Doc 9
0.5422
-10.0000
9.0000
0.5422
testing/NTCIR/xhtml5/9/1312.1927/1312.1927_1_29.xhtml
D
^
=
{
z
∈
ℂ
:
|
z
|
>
a
>
0
,
|
arg
z
|
<
π
}
Doc 10
0.5422
-11.0000
9.0000
0.5422
testing/NTCIR/xhtml5/2/math0110252/math0110252_1_41.xhtml
𝐃
-
1
=
{
z
∈
𝐂
n
:
|
z
k
|
>
1
,
1
≤
k
≤
n
}
Doc 11
0.5422
-11.0000
9.0000
0.5422
testing/NTCIR/xhtml5/11/math9911240/math9911240_1_19.xhtml
D
-
1
=
{
z
∈
𝐂
n
:
|
z
k
|
>
1
,
1
≤
k
≤
n
}
Doc 12
0.5422
-16.0000
9.0000
0.5422
testing/NTCIR/xhtml5/3/math0305396/math0305396_1_47.xhtml
F
=
{
z
∈
ℂ
:
|
z
|
>
1
,
ℑ
(
z
)
>
0
and
|
ℜ
(
z
)
|
<
1
2
}
Doc 13
0.5096
-6.0000
8.0000
0.5096
testing/NTCIR/xhtml5/9/1306.2778/1306.2778_1_10.xhtml
{
z
∈
ℂ
;
z
≠
0
,
|
arg
z
|
<
π
2
}
Doc 14
0.5096
-7.0000
9.0000
0.5096
testing/NTCIR/xhtml5/8/1204.0502/1204.0502_1_5.xhtml
{
z
∈
ℋ
:
|
z
|
⩾
1
,
|
Re
z
|
⩽
1
/
2
}
Doc 15
0.5096
-7.0000
9.0000
0.5096
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_177.xhtml
{
z
∈
ℋ
:
|
z
|
⩾
1
,
|
Re
z
|
⩽
1
/
2
}
Doc 16
0.4848
0.0000
7.0000
0.4848
testing/NTCIR/xhtml5/6/1003.5061/1003.5061_1_27.xhtml
{
z
∈
ℂ
:
|
z
|
>
1
}
Doc 17
0.4848
0.0000
7.0000
0.4848
testing/NTCIR/xhtml5/3/math0304419/math0304419_1_32.xhtml
{
z
∈
ℍ
:
|
z
|
>
1
}
Doc 18
0.4848
0.0000
7.0000
0.4848
testing/NTCIR/xhtml5/3/math0306130/math0306130_1_46.xhtml
{
z
∈
ℂ
:
|
z
|
>
1
}
Doc 19
0.4848
-1.0000
7.0000
0.4848
testing/NTCIR/xhtml5/8/1207.6479/1207.6479_1_5.xhtml
{
z
∈
Ω
:
|
z
|
i
>
1
}
Doc 20
0.4730
-6.0000
9.0000
0.4730
testing/NTCIR/xhtml5/4/math0508315/math0508315_1_18.xhtml
{
z
∈
ℂ
∣
|
z
|
>
r
0
,
|
arg
z
|
<
β
}
Doc 21
0.4730
-12.0000
9.0000
0.4730
testing/NTCIR/xhtml5/9/1301.6211/1301.6211_1_28.xhtml
Ω
=
{
z
∈
ℍ
|
|
z
|
>
1
,
0
<
Re
(
z
)
<
1
/
2
}
.
Doc 22
0.4516
-9.0000
8.0000
0.4516
testing/NTCIR/xhtml5/7/1006.4323/1006.4323_1_22.xhtml
H
:=
{
z
∈
ℂ
:
|
z
|
<
1
,
Re
(
z
)
>
0
}
.
Doc 23
0.4516
-9.0000
8.0000
0.4516
testing/NTCIR/xhtml5/7/1006.4323/1006.4323_1_10.xhtml
D
+
:=
{
z
∈
ℂ
:
|
z
|
<
1
,
Re
(
z
)
>
0
}
Doc 24
0.4516
-17.0000
8.0000
0.4516
testing/NTCIR/xhtml5/8/1111.2296/1111.2296_1_125.xhtml
G
′
=
{
z
∈
𝐇
:
0
<
Re
z
<
1
,
|
z
-
1
2
|
>
1
2
}
.
Doc 25
0.4317
-12.0000
9.0000
0.8454
testing/NTCIR/xhtml5/7/1104.4271/1104.4271_1_29.xhtml
=
{
z
∈
ℂ
|
|
z
-
ρ
|
<
ϵ
,
|
arg
(
z
-
ρ
)
|
>
θ
}
,
=
{
z
∈
ℂ
|
|
z
|
<
ρ
+
η
,
|
arg
(
z
-
ρ
)
|
>
θ
}
,
Doc 26
0.4275
-3.0000
6.0000
0.4275
testing/NTCIR/xhtml5/1/1306.4481/1306.4481_1_12.xhtml
{
z
∈
ℂ
:
|
G
(
z
)
|
>
1
}
Doc 27
0.4275
-6.0000
7.0000
0.4275
testing/NTCIR/xhtml5/10/hep-th9707101/hep-th9707101_1_69.xhtml
H
+
=
{
z
∈
H
:
|
℘
+
ρ
|
>
1
}
Doc 28
0.3934
-13.0000
7.0000
0.3934
testing/NTCIR/xhtml5/5/math0703340/math0703340_1_54.xhtml
F
:=
{
z
∈
ℍ
:
|
Re
(
z
)
|
<
1
/
2
,
|
z
|
>
1
}
.
Doc 29
0.3700
-9.0000
5.0000
0.3700
testing/NTCIR/xhtml5/9/1305.3461/1305.3461_1_48.xhtml
U
=
{
z
∈
ℂ
:
|
z
|
<
1
2
}
⋐
𝔻
.
Doc 30
0.3700
-10.0000
6.0000
0.3700
testing/NTCIR/xhtml5/8/1205.3971/1205.3971_1_18.xhtml
S
γ
:=
{
z
∈
ℛ
:
|
arg
(
z
)
|
<
γ
π
2
}
Doc 31
0.3700
-10.0000
5.0000
0.3700
testing/NTCIR/xhtml5/8/1209.4260/1209.4260_1_90.xhtml
𝔻
1
/
2
=
{
z
∈
ℂ
:
|
z
|
<
1
2
}
.
Doc 32
0.3700
-11.0000
7.0000
0.3700
testing/NTCIR/xhtml5/2/hep-th0210179/hep-th0210179_1_76.xhtml
D
=
{
z
|
|
z
|
>
1
,
|
Re
z
|
<
1
2
}
.
Doc 33
0.3700
-11.0000
5.0000
0.3700
testing/NTCIR/xhtml5/3/hep-th0407236/hep-th0407236_1_41.xhtml
F
:
|
τ
|
>
1
,
-
1
2
<
τ
1
<
1
2
Doc 34
0.3700
-11.0000
5.0000
0.3700
testing/NTCIR/xhtml5/8/1203.0190/1203.0190_1_80.xhtml
sing
(
f
-
1
)
⊂
{
z
∈
ℂ
:
|
z
|
<
1
2
}
,
Doc 35
0.3700
-14.0000
6.0000
0.3700
testing/NTCIR/xhtml5/8/1205.3971/1205.3971_1_104.xhtml
{
z
∈
ℛ
:
|
arg
(
z
)
-
σ
|
<
δ
π
2
,
|
z
|
small
}
.
Doc 36
0.3700
-15.0000
6.0000
0.3700
testing/NTCIR/xhtml5/4/math0512460/math0512460_1_32.xhtml
Δ
ρ
:=
{
z
∈
ℂ
:
0
<
arg
z
<
π
2
,
|
z
|
<
ρ
}
.
Doc 37
0.3349
-2.0000
7.0000
0.3349
testing/NTCIR/xhtml5/9/1303.0502/1303.0502_1_20.xhtml
|
g
(
z
)
|
<
1
2
α
Doc 38
0.3349
-6.0000
6.0000
0.3349
testing/NTCIR/xhtml5/7/1101.4937/1101.4937_1_72.xhtml
|
τ
|
>
1
,
|
Re
(
τ
)
|
<
1
2
Doc 39
0.3125
-3.0000
5.0000
0.3125
testing/NTCIR/xhtml5/3/math-ph0312040/math-ph0312040_1_23.xhtml
{
z
∈
𝐂
,
|
z
|
<
ℛ
}
Doc 40
0.3125
-3.0000
5.0000
0.3125
testing/NTCIR/xhtml5/5/0806.1826/0806.1826_1_5.xhtml
{
z
∈
ℂ
,
|
z
|
<
θ
}
Doc 41
0.3125
-11.0000
5.0000
0.3125
testing/NTCIR/xhtml5/3/math0407297/math0407297_1_15.xhtml
D
s
=
{
z
∈
ℂ
:
ℑ
z
<
0
,
|
z
|
>
1
}
Doc 42
0.3125
-15.0000
6.0000
0.3125
testing/NTCIR/xhtml5/6/0911.5266/0911.5266_1_38.xhtml
z
∈
ℂ
∖
[
-
1
,
1
]
⊃
{
z
:
|
z
|
>
1
,
z
∈
ℂ
}
Doc 43
0.2759
-7.0000
4.0000
0.2759
testing/NTCIR/xhtml5/9/1308.1842/1308.1842_1_33.xhtml
{
z
∈
ℂ
∣
|
z
|
<
1
2
ϑ
U
}
Doc 44
0.2759
-16.0000
5.0000
0.2759
testing/NTCIR/xhtml5/5/math0703295/math0703295_1_61.xhtml
{
z
∈
ℂ
+
∣
|
ℜ
(
z
)
|
<
c
⋅
ℑ
(
z
)
,
|
z
|
>
M
}
,
Doc 45
0.2759
-18.0000
5.0000
0.2759
testing/NTCIR/xhtml5/8/1111.0844/1111.0844_1_29.xhtml
D
=
{
z
:
|
Im
z
|
<
1
,
|
z
-
π
k
|
>
1
2
,
k
∈
ℤ
}
Doc 46
0.2548
0.0000
5.0000
0.2548
testing/NTCIR/xhtml5/10/math9709215/math9709215_1_18.xhtml
|
z
|
>
1
,
Doc 47
0.2548
0.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1306.0714/1306.0714_1_36.xhtml
|
z
|
>
1
,
Doc 48
0.2548
-1.0000
5.0000
0.5096
testing/NTCIR/xhtml5/2/math-ph0206023/math-ph0206023_1_227.xhtml
|
p
|
<
1
2
|
q
|
<
1
2
Doc 49
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1311.6377/1311.6377_1_184.xhtml
|
σ
|
<
1
2
Doc 50
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/6/0906.2424/0906.2424_1_23.xhtml
|
f
|
<
1
2
Doc 51
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/math0105088/math0105088_1_78.xhtml
|
δ
|
<
1
2
Doc 52
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/5/0711.4809/0711.4809_1_14.xhtml
|
s
|
<
1
2
Doc 53
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1204.2253/1204.2253_1_83.xhtml
|
δ
|
<
1
2
Doc 54
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/gr-qc9305003/gr-qc9305003_1_32.xhtml
|
δ
|
<
1
2
Doc 55
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1209.1031/1209.1031_1_12.xhtml
|
δ
|
<
1
2
Doc 56
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/10/math9612203/math9612203_1_184.xhtml
|
x
|
<
1
2
Doc 57
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1304.6277/1304.6277_1_161.xhtml
|
a
|
<
1
2
Doc 58
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1107.4621/1107.4621_1_26.xhtml
|
α
|
<
1
2
Doc 59
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/6/1003.5333/1003.5333_1_31.xhtml
|
l
|
<
1
2
Doc 60
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/5/0804.0034/0804.0034_1_35.xhtml
|
α
|
<
1
2
Doc 61
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1007.0823/1007.0823_1_15.xhtml
|
κ
|
<
1
2
Doc 62
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/math0312319/math0312319_1_18.xhtml
|
δ
|
<
1
2
Doc 63
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1008.4533/1008.4533_1_172.xhtml
|
λ
|
<
1
2
Doc 64
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/6/0905.0062/0905.0062_1_73.xhtml
|
x
|
<
1
2
Doc 65
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/10/solv-int9701003/solv-int9701003_1_16.xhtml
|
β
|
<
1
2
Doc 66
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/math-ph0308037/math-ph0308037_1_20.xhtml
|
t
|
<
1
2
Doc 67
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/4/math0610008/math0610008_1_70.xhtml
|
γ
|
<
1
2
Doc 68
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/6/1003.5333/1003.5333_1_19.xhtml
|
l
|
<
1
2
Doc 69
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1302.2422/1302.2422_1_45.xhtml
|
a
|
<
1
2
Doc 70
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1312.6164/1312.6164_1_29.xhtml
|
x
|
<
1
2
Doc 71
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/math0206018/math0206018_1_104.xhtml
|
α
|
<
1
2
Doc 72
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/math-ph0208035/math-ph0208035_1_62.xhtml
|
β
|
<
1
2
Doc 73
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1312.6516/1312.6516_1_48.xhtml
|
h
|
<
1
2
Doc 74
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/hep-th0012190/hep-th0012190_1_81.xhtml
|
ω
|
<
1
2
Doc 75
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/5/0705.2150/0705.2150_1_31.xhtml
|
θ
|
<
1
2
Doc 76
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1106.4960/1106.4960_1_77.xhtml
|
g
|
<
1
2
Doc 77
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/hep-th0111200/hep-th0111200_1_80.xhtml
|
B
|
<
1
2
Doc 78
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/5/0803.0332/0803.0332_1_127.xhtml
|
R
|
<
1
2
Doc 79
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/math-ph0211015/math-ph0211015_1_134.xhtml
|
β
|
<
1
2
Doc 80
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1311.5279/1311.5279_1_20.xhtml
|
λ
|
<
1
2
Doc 81
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/hep-th0012190/hep-th0012190_1_84.xhtml
|
ω
|
<
1
2
Doc 82
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/gr-qc9305003/gr-qc9305003_1_59.xhtml
|
δ
|
<
1
2
Doc 83
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/math-ph0208035/math-ph0208035_1_19.xhtml
|
β
|
<
1
2
Doc 84
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1108.0087/1108.0087_1_14.xhtml
|
δ
|
<
1
2
Doc 85
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1108.0087/1108.0087_1_10.xhtml
|
δ
|
<
1
2
Doc 86
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/6/1002.1126/1002.1126_1_122.xhtml
|
s
|
<
1
2
Doc 87
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/11/quant-ph9910044/quant-ph9910044_1_5.xhtml
|
γ
|
<
1
2
Doc 88
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1106.4960/1106.4960_1_147.xhtml
|
x
|
<
1
2
Doc 89
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1301.0909/1301.0909_1_24.xhtml
|
u
|
<
1
2
Doc 90
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/5/0803.0332/0803.0332_1_126.xhtml
|
R
|
<
1
2
Doc 91
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1203.1786/1203.1786_1_6.xhtml
|
δ
|
<
1
2
Doc 92
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/10/hep-th9607174/hep-th9607174_1_91.xhtml
|
ε
|
<
1
2
Doc 93
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1111.6198/1111.6198_1_62.xhtml
|
z
|
<
1
2
Doc 94
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1104.3455/1104.3455_1_50.xhtml
|
x
|
<
1
2
Doc 95
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/math0310474/math0310474_1_150.xhtml
|
z
|
<
1
2
Doc 96
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1311.0795/1311.0795_1_82.xhtml
|
y
|
<
1
2
Doc 97
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/math0311048/math0311048_1_120.xhtml
|
x
|
<
1
2
Doc 98
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/6/0901.3609/0901.3609_1_77.xhtml
|
m
|
<
1
2
Doc 99
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/1/quant-ph0007103/quant-ph0007103_1_4.xhtml
|
γ
|
<
1
2
Doc 100
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/math-ph0308037/math-ph0308037_1_23.xhtml
|
t
|
<
1
2
Doc 101
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/4/hep-th0602048/hep-th0602048_1_16.xhtml
|
α
|
<
1
2
Doc 102
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1304.1241/1304.1241_1_42.xhtml
|
σ
|
<
1
2
Doc 103
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/10/hep-th9903194/hep-th9903194_1_24.xhtml
|
m
|
<
1
2
Doc 104
0.2548
-1.0000
4.0000
0.2548
testing/NTCIR/xhtml5/8/1202.3063/1202.3063_1_24.xhtml
|
z
|
<
1
4
Doc 105
0.2548
-1.0000
4.0000
0.2548
testing/NTCIR/xhtml5/7/1007.3020/1007.3020_1_13.xhtml
|
z
|
<
1
3
Doc 106
0.2548
-1.0000
4.0000
0.2548
testing/NTCIR/xhtml5/6/0910.2453/0910.2453_1_33.xhtml
|
z
|
<
1
4
Doc 107
0.2548
-1.0000
4.0000
0.2548
testing/NTCIR/xhtml5/7/1007.3020/1007.3020_1_12.xhtml
|
z
|
<
1
3
Doc 108
0.2548
-1.0000
4.0000
0.2548
testing/NTCIR/xhtml5/6/0903.4321/0903.4321_1_50.xhtml
|
z
|
<
1
4
Doc 109
0.2548
-1.0000
4.0000
0.2548
testing/NTCIR/xhtml5/8/1210.6526/1210.6526_1_26.xhtml
|
z
|
<
1
3
Doc 110
0.2548
-3.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1207.5930/1207.5930_1_17.xhtml
|
z
-
2
|
<
1
2
Doc 111
0.2548
-3.0000
5.0000
0.2548
testing/NTCIR/xhtml5/5/0707.0771/0707.0771_1_129.xhtml
0
<
|
z
|
<
1
2
Doc 112
0.2548
-4.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1109.2967/1109.2967_1_69.xhtml
{
0
<
|
z
|
<
1
2
}
Doc 113
0.2548
-4.0000
4.0000
0.2548
testing/NTCIR/xhtml5/5/0707.2159/0707.2159_1_159.xhtml
{
z
∈
ℂ
,
|
z
|
>
L
}
Doc 114
0.2548
-5.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/math0009180/math0009180_1_18.xhtml
0
<
|
z
|
<
1
2
r
0
Doc 115
0.2548
-6.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/cond-mat0403017/cond-mat0403017_1_4.xhtml
[
|
η
|
<
1
2
,
1
,
0
]
Doc 116
0.2548
-7.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1201.4075/1201.4075_1_32.xhtml
{
z
:
|
z
-
λ
n
|
<
1
2
}
Doc 117
0.2548
-10.0000
5.0000
0.2548
testing/NTCIR/xhtml5/7/1005.5192/1005.5192_1_24.xhtml
α
∈
{
z
:
|
z
+
1
2
|
<
1
2
}
Doc 118
0.2548
-15.0000
5.0000
0.2548
testing/NTCIR/xhtml5/9/1302.2417/1302.2417_1_91.xhtml
z
∈
D
(
a
)
=
{
z
:
|
z
-
a
|
<
1
-
|
a
|
2
}
Doc 119
0.2548
-16.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/hep-th0202097/hep-th0202097_1_8.xhtml
|
τ
|
>
1
,
|
τ
1
|
<
1
2
,
τ
=
τ
1
+
i
τ
2
Doc 120
0.2548
-17.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/math0412039/math0412039_1_9.xhtml
ℱ
:=
{
z
|
|
z
|
>
1
,
-
1
2
<
ℜ
(
z
)
≤
1
2
}
Doc 121
0.2158
-8.0000
5.0000
0.2158
testing/NTCIR/xhtml5/6/0907.3307/0907.3307_1_4.xhtml
{
z
:
|
z
|
<
1
,
h
(
z
)
≠
0
}
Doc 122
0.2158
-8.0000
5.0000
0.2158
testing/NTCIR/xhtml5/8/1109.1616/1109.1616_1_14.xhtml
{
z
:
|
z
|
<
1
,
|
arg
z
|
<
π
}
Doc 123
0.2158
-9.0000
5.0000
0.2158
testing/NTCIR/xhtml5/5/math0703452/math0703452_1_6.xhtml
{
z
:
|
z
|
<
1
,
|
z
-
1
|
>
ϵ
}
Doc 124
0.2158
-9.0000
5.0000
0.2158
testing/NTCIR/xhtml5/1/math-ph0008002/math-ph0008002_1_356.xhtml
D
1
:=
{
z
:
|
z
|
<
1
,
z
∈
ℂ
}
Doc 125
0.2158
-11.0000
5.0000
0.2158
testing/NTCIR/xhtml5/5/0710.3570/0710.3570_1_190.xhtml
Ω
=
{
z
:
|
z
|
<
1
,
|
1
-
z
|
<
1
}
Doc 126
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/6/0903.3866/0903.3866_1_88.xhtml
|
z
|
<
1
r
Doc 127
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/2/math0301112/math0301112_1_40.xhtml
|
z
|
<
1
e
Doc 128
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/2/math0301112/math0301112_1_27.xhtml
|
z
|
<
1
e
Doc 129
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/9/1306.5873/1306.5873_1_6.xhtml
|
z
|
<
π
2
Doc 130
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/4/hep-th0610134/hep-th0610134_1_20.xhtml
|
z
|
<
1
e
Doc 131
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/4/math0612614/math0612614_1_2.xhtml
|
z
|
<
1
s
Doc 132
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/4/math0701816/math0701816_1_85.xhtml
|
z
|
<
r
2
Doc 133
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/4/math0701816/math0701816_1_87.xhtml
|
z
|
<
r
2
Doc 134
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/6/1002.2602/1002.2602_1_57.xhtml
|
z
|
<
1
ρ
Doc 135
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/4/math0612614/math0612614_1_5.xhtml
|
z
|
<
1
b
Doc 136
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/10/math9905175/math9905175_1_8.xhtml
|
z
|
<
1
p
Doc 137
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/6/1002.2602/1002.2602_1_58.xhtml
|
z
|
<
1
ρ
Doc 138
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/4/math0701816/math0701816_1_86.xhtml
|
z
|
<
r
2
Doc 139
0.1967
-2.0000
4.0000
0.1967
testing/NTCIR/xhtml5/2/math0301112/math0301112_1_26.xhtml
|
z
|
<
1
e
Doc 140
0.1967
-7.0000
4.0000
0.1967
testing/NTCIR/xhtml5/7/1106.3899/1106.3899_1_221.xhtml
Q
>
1
,
0
<
α
<
1
2
Doc 141
0.1967
-7.0000
4.0000
0.1967
testing/NTCIR/xhtml5/7/1106.1342/1106.1342_1_187.xhtml
Q
>
1
,
0
<
α
<
1
2
Doc 142
0.1967
-7.0000
4.0000
0.1967
testing/NTCIR/xhtml5/7/1010.0662/1010.0662_1_105.xhtml
ν
(
{
z
∈
∂
H
:
|
z
|
<
ϵ
}
)
Doc 143
0.1538
-2.0000
4.0000
0.1538
testing/NTCIR/xhtml5/4/hep-th0507056/hep-th0507056_1_76.xhtml
|
z
|
>
1
2