tangent
Not Supported
L
(
H
B
)
⊗
C
(
X
)
Search
Returned 75 matches (100 formulae, 165 docs)
Lookup 229.641 ms, Re-ranking 85.522 ms
Found 983651 tuple postings, 574506 formulae, 527877 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
1.0000
-3.0000
5.0000
2.0000
testing/NTCIR/xhtml5/5/0812.0665/0812.0665_1_69.xhtml
u
x
∈
ℬ
(
H
x
)
⊗
C
(
𝔾
)
v
y
∈
ℬ
(
H
y
)
⊗
C
(
ℍ
)
Doc 2
0.8660
0.0000
3.0000
1.4630
testing/NTCIR/xhtml5/2/math0112293/math0112293_1_2.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
C
(
X
)
⊗
𝒦
Doc 3
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1110.1645/1110.1645_1_107.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 4
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1110.1645/1110.1645_1_190.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 5
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/11/math9909047/math9909047_1_22.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 6
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1110.1645/1110.1645_1_5.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 7
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1110.1645/1110.1645_1_23.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 8
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/11/math9909047/math9909047_1_1.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 9
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/1/math0003100/math0003100_1_24.xhtml
C
(
X
)
⊗
𝒦
(
H
)
Doc 10
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/1/math0003108/math0003108_1_79.xhtml
C
(
X
)
⊗
𝒦
(
H
)
Doc 11
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1110.1645/1110.1645_1_149.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 12
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1110.1645/1110.1645_1_165.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 13
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/1/1102.0317/1102.0317_1_80.xhtml
C
(
G
)
⊗
𝒦
(
H
)
Doc 14
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/11/math9909047/math9909047_1_5.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 15
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1110.1645/1110.1645_1_20.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 16
0.8660
0.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1110.1645/1110.1645_1_171.xhtml
C
(
X
)
⊗
ℬ
(
ℋ
)
Doc 17
0.8660
-1.0000
5.0000
0.8660
testing/NTCIR/xhtml5/6/0908.1173/0908.1173_1_10.xhtml
ℓ
2
(
G
)
⊗
C
(
X
)
Doc 18
0.8660
-1.0000
5.0000
0.8660
testing/NTCIR/xhtml5/6/0908.1173/0908.1173_1_5.xhtml
ℓ
2
(
G
)
⊗
C
(
X
)
Doc 19
0.8660
-1.0000
5.0000
0.8660
testing/NTCIR/xhtml5/6/0908.1173/0908.1173_1_8.xhtml
ℓ
2
(
G
)
⊗
C
(
X
)
Doc 20
0.8660
-1.0000
5.0000
0.8660
testing/NTCIR/xhtml5/6/0908.1173/0908.1173_1_9.xhtml
ℓ
2
(
G
)
⊗
C
(
X
)
Doc 21
0.8660
-2.0000
5.0000
0.8660
testing/NTCIR/xhtml5/5/0812.0665/0812.0665_1_12.xhtml
(
ℬ
0
(
H
)
⊗
C
(
𝔾
)
)
Doc 22
0.8660
-2.0000
3.0000
1.7320
testing/NTCIR/xhtml5/6/0909.3951/0909.3951_1_4.xhtml
C
0
(
Y
)
⊗
L
2
(
H
)
C
0
(
Y
)
⊗
L
2
(
H
)
∞
Doc 23
0.8660
-3.0000
5.0000
0.8660
testing/NTCIR/xhtml5/10/math9806026/math9806026_1_21.xhtml
M
(
K
(
H
)
⊗
C
*
(
G
)
)
Doc 24
0.8660
-3.0000
5.0000
0.8660
testing/NTCIR/xhtml5/10/math9806026/math9806026_1_22.xhtml
M
(
K
(
H
)
⊗
C
*
(
G
)
)
Doc 25
0.8660
-3.0000
5.0000
0.8660
testing/NTCIR/xhtml5/10/math9806026/math9806026_1_19.xhtml
M
(
K
(
H
)
⊗
C
0
(
G
)
)
Doc 26
0.8660
-3.0000
5.0000
0.8660
testing/NTCIR/xhtml5/6/0908.1173/0908.1173_1_41.xhtml
v
∈
ℓ
2
(
G
)
⊗
C
(
X
)
Doc 27
0.8660
-3.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1204.4942/1204.4942_1_53.xhtml
B
=
C
(
X
)
⊗
¯
B
(
H
)
Doc 28
0.8660
-4.0000
5.0000
0.8660
testing/NTCIR/xhtml5/1/hep-th0006223/hep-th0006223_1_12.xhtml
Y
≡
Γ
(
Cliff
(
E
)
)
⊗
C
(
X
)
Doc 29
0.8660
-4.0000
5.0000
0.8660
testing/NTCIR/xhtml5/4/math0509706/math0509706_1_25.xhtml
U
∈
M
(
𝒦
(
H
)
⊗
C
(
𝔾
)
)
Doc 30
0.8660
-4.0000
5.0000
0.8660
testing/NTCIR/xhtml5/4/math0605489/math0605489_1_23.xhtml
U
∈
M
(
𝒦
(
H
)
⊗
C
(
𝔾
)
)
Doc 31
0.8660
-4.0000
4.0000
0.8660
testing/NTCIR/xhtml5/4/math0504024/math0504024_1_3.xhtml
C
∗
(
H
)
⊗
𝒦
(
L
2
(
μ
)
)
Doc 32
0.8660
-4.0000
4.0000
0.8660
testing/NTCIR/xhtml5/4/math-ph0506024/math-ph0506024_1_42.xhtml
K
(
L
2
(
M
)
)
⊗
C
*
(
H
)
Doc 33
0.8660
-4.0000
4.0000
0.8660
testing/NTCIR/xhtml5/4/math-ph0506024/math-ph0506024_1_46.xhtml
K
(
L
2
(
M
)
)
⊗
C
*
(
H
)
Doc 34
0.8660
-4.0000
3.0000
0.8660
testing/NTCIR/xhtml5/8/1208.2049/1208.2049_1_49.xhtml
C
0
(
X
)
⊗
𝒦
(
L
2
(
Z
)
)
Doc 35
0.7317
0.0000
2.0000
0.7317
testing/NTCIR/xhtml5/4/math0509103/math0509103_1_38.xhtml
C
(
X
i
)
⊗
𝒦
Doc 36
0.7317
0.0000
2.0000
0.7317
testing/NTCIR/xhtml5/7/1009.2592/1009.2592_1_69.xhtml
C
(
X
i
)
⊗
B
Doc 37
0.7317
0.0000
2.0000
0.7317
testing/NTCIR/xhtml5/4/math0509425/math0509425_1_24.xhtml
C
(
X
j
)
⊗
𝒦
Doc 38
0.7317
0.0000
2.0000
0.7317
testing/NTCIR/xhtml5/4/math0509427/math0509427_1_37.xhtml
C
(
X
i
)
⊗
𝒦
Doc 39
0.7317
0.0000
2.0000
0.7317
testing/NTCIR/xhtml5/4/math0509427/math0509427_1_32.xhtml
C
(
X
i
)
⊗
𝒦
Doc 40
0.7317
-1.0000
4.0000
0.7317
testing/NTCIR/xhtml5/8/1209.1152/1209.1152_1_217.xhtml
C
(
m
)
⊗
C
(
n
)
Doc 41
0.7317
-1.0000
4.0000
0.7317
testing/NTCIR/xhtml5/8/1209.1152/1209.1152_1_215.xhtml
C
(
m
)
⊗
C
(
n
)
Doc 42
0.7317
-1.0000
4.0000
0.7317
testing/NTCIR/xhtml5/5/0704.0041/0704.0041_1_12.xhtml
C
(
M
)
⊗
C
(
Y
)
Doc 43
0.7317
-1.0000
4.0000
0.7317
testing/NTCIR/xhtml5/4/math0603449/math0603449_1_41.xhtml
C
(
X
)
⊗
C
(
Y
)
Doc 44
0.7317
-1.0000
4.0000
0.7317
testing/NTCIR/xhtml5/5/0704.0041/0704.0041_1_9.xhtml
C
(
M
)
⊗
C
(
Y
)
Doc 45
0.7317
-1.0000
4.0000
0.7317
testing/NTCIR/xhtml5/5/0704.0041/0704.0041_1_10.xhtml
C
(
M
)
⊗
C
(
Y
)
Doc 46
0.7317
-1.0000
2.0000
0.7317
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_105.xhtml
∈
C
(
X
i
)
⊗
K
Doc 47
0.7317
-1.0000
2.0000
0.7317
testing/NTCIR/xhtml5/4/math0602513/math0602513_1_100.xhtml
C
(
X
j
)
⊗
F
j
Doc 48
0.7317
-2.0000
4.0000
0.7317
testing/NTCIR/xhtml5/6/0909.1598/0909.1598_1_64.xhtml
C
(
X
)
⊗
C
(
𝕋
)
.
Doc 49
0.7317
-2.0000
4.0000
0.7317
testing/NTCIR/xhtml5/4/math0508165/math0508165_1_1.xhtml
C
(
X
)
⊗
^
C
(
Y
)
Doc 50
0.7317
-2.0000
4.0000
0.7317
testing/NTCIR/xhtml5/7/1010.0600/1010.0600_1_6.xhtml
C
(
X
)
⊗
C
*
(
G
)
Doc 51
0.7317
-2.0000
4.0000
0.7317
testing/NTCIR/xhtml5/7/1010.0600/1010.0600_1_15.xhtml
C
(
X
)
⊗
C
*
(
G
)
Doc 52
0.7317
-2.0000
4.0000
0.7317
testing/NTCIR/xhtml5/7/1010.0600/1010.0600_1_7.xhtml
C
(
X
)
⊗
C
*
(
G
)
Doc 53
0.7317
-3.0000
5.0000
0.7317
testing/NTCIR/xhtml5/6/0908.4512/0908.4512_1_83.xhtml
C
c
(
T
)
⊗
C
c
(
X
)
Doc 54
0.7317
-3.0000
4.0000
1.3287
testing/NTCIR/xhtml5/7/1106.5912/1106.5912_1_41.xhtml
C
0
(
X
)
⊗
C
*
(
Γ
)
C
0
(
X
)
⊗
A
Doc 55
0.7317
-3.0000
4.0000
0.7317
testing/NTCIR/xhtml5/7/1106.5912/1106.5912_1_42.xhtml
C
0
(
X
)
⊗
C
*
(
Γ
)
Doc 56
0.7317
-4.0000
4.0000
0.7317
testing/NTCIR/xhtml5/10/math9801069/math9801069_1_109.xhtml
C
*
(
𝒜
H
)
⊗
C
*
(
H
)
Doc 57
0.7317
-4.0000
4.0000
0.7317
testing/NTCIR/xhtml5/8/1209.1152/1209.1152_1_59.xhtml
C
*
(
G
)
⊗
max
C
*
(
H
)
Doc 58
0.7317
-4.0000
4.0000
0.7317
testing/NTCIR/xhtml5/8/1209.1152/1209.1152_1_57.xhtml
C
*
(
G
)
⊗
max
C
*
(
H
)
Doc 59
0.7317
-4.0000
4.0000
0.7317
testing/NTCIR/xhtml5/8/1209.1152/1209.1152_1_61.xhtml
C
*
(
G
)
⊗
max
C
*
(
H
)
Doc 60
0.7317
-4.0000
4.0000
0.7317
testing/NTCIR/xhtml5/4/math0608375/math0608375_1_275.xhtml
C
(
X
)
⊗
C
c
∞
(
ℝ
n
)
Doc 61
0.7317
-5.0000
5.0000
0.7317
testing/NTCIR/xhtml5/7/1005.1718/1005.1718_1_27.xhtml
𝔄
-
1
(
X
0
)
⊗
C
0
(
X
)
Doc 62
0.7317
-5.0000
4.0000
0.7317
testing/NTCIR/xhtml5/6/1001.0853/1001.0853_1_3.xhtml
C
0
∞
(
X
)
⊗
C
0
∞
(
Y
)
Doc 63
0.7317
-5.0000
4.0000
0.7317
testing/NTCIR/xhtml5/2/math0206088/math0206088_1_234.xhtml
C
∗
(
X
~
)
⊗
v
C
∗
(
π
)
Doc 64
0.6486
-1.0000
2.0000
0.6486
testing/NTCIR/xhtml5/4/math-ph0602006/math-ph0602006_1_33.xhtml
C
(
K
)
→
L
(
H
)
Doc 65
0.6486
-3.0000
2.0000
0.6486
testing/NTCIR/xhtml5/4/math-ph0602006/math-ph0602006_1_109.xhtml
φ
:
C
(
X
)
→
L
(
H
)
Doc 66
0.6486
-5.0000
4.0000
0.9730
testing/NTCIR/xhtml5/7/1103.5237/1103.5237_1_117.xhtml
M
(
H
∞
)
×
C
(
G
L
(
X
)
)
E
C
(
G
L
(
X
)
)
Doc 67
0.5970
0.0000
4.0000
0.5970
testing/NTCIR/xhtml5/3/math0302273/math0302273_1_65.xhtml
K
(
H
)
⊗
C
Doc 68
0.5970
0.0000
3.0000
1.1940
testing/NTCIR/xhtml5/10/math9907151/math9907151_1_34.xhtml
K
(
X
)
⊗
C
K
G
i
(
X
)
⊗
C
Doc 69
0.5970
0.0000
2.0000
1.1940
testing/NTCIR/xhtml5/7/1009.2592/1009.2592_1_57.xhtml
C
(
X
)
⊗
B
C
0
(
X
)
⊗
B
Doc 70
0.5970
0.0000
2.0000
1.1940
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_52.xhtml
C
(
X
)
⊗
B
C
0
(
X
)
⊗
B
Doc 71
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/3/math0306171/math0306171_1_455.xhtml
C
(
X
)
⊗
ℬ
Doc 72
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/6/0904.0541/0904.0541_1_5.xhtml
C
(
X
)
⊗
𝒦
Doc 73
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1009.2592/1009.2592_1_53.xhtml
C
(
X
)
⊗
B
Doc 74
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_2.xhtml
C
(
X
)
⊗
K
Doc 75
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1009.2592/1009.2592_1_65.xhtml
C
(
X
)
⊗
B
Doc 76
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1009.2592/1009.2592_1_5.xhtml
C
(
X
)
⊗
B
Doc 77
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_1.xhtml
C
(
X
)
⊗
B
Doc 78
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1007.0363/1007.0363_1_64.xhtml
C
(
X
)
⊗
A
Doc 79
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1009.2592/1009.2592_1_56.xhtml
C
(
X
)
⊗
B
Doc 80
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_53.xhtml
C
(
X
)
⊗
B
Doc 81
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_55.xhtml
C
(
X
)
⊗
B
Doc 82
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/10/math9706213/math9706213_1_8.xhtml
C
(
X
)
⊗
𝒜
Doc 83
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/4/math0509427/math0509427_1_65.xhtml
C
(
X
)
⊗
𝒦
Doc 84
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/3/math0306171/math0306171_1_464.xhtml
C
(
X
)
⊗
ℬ
Doc 85
0.5970
0.0000
2.0000
0.5970
testing/NTCIR/xhtml5/4/math0509107/math0509107_1_16.xhtml
C
(
X
)
⊗
𝒦
Doc 86
0.5970
-1.0000
4.0000
0.5970
testing/NTCIR/xhtml5/10/math9807148/math9807148_1_60.xhtml
L
2
(
H
)
⊗
ℂ
Doc 87
0.5970
-1.0000
3.0000
1.1940
testing/NTCIR/xhtml5/2/math0104168/math0104168_1_49.xhtml
K
Γ
(
X
)
⊗
C
K
Γ
i
(
X
)
⊗
C
Doc 88
0.5970
-1.0000
3.0000
1.1940
testing/NTCIR/xhtml5/2/math0111225/math0111225_1_64.xhtml
L
p
(
X
)
⊗
E
L
q
(
X
)
⊗
E
∗
Doc 89
0.5970
-1.0000
3.0000
1.1940
testing/NTCIR/xhtml5/2/math0111225/math0111225_1_62.xhtml
L
p
(
X
)
⊗
E
L
q
(
X
)
⊗
E
∗
Doc 90
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/2/math0111225/math0111225_1_63.xhtml
L
p
(
X
)
⊗
E
Doc 91
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/math9901113/math9901113_1_51.xhtml
h
g
(
X
)
⊗
C
Doc 92
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/math9901113/math9901113_1_56.xhtml
h
g
(
X
)
⊗
C
Doc 93
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/math9907151/math9907151_1_120.xhtml
K
G
(
X
)
⊗
C
Doc 94
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/math9907151/math9907151_1_78.xhtml
K
G
(
X
)
⊗
C
Doc 95
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/math9907151/math9907151_1_3.xhtml
K
G
(
X
)
⊗
C
Doc 96
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/5/0705.4510/0705.4510_1_25.xhtml
L
p
(
X
)
⊗
ℬ
Doc 97
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/math9907151/math9907151_1_4.xhtml
K
G
(
X
)
⊗
C
Doc 98
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/5/0705.4510/0705.4510_1_24.xhtml
L
p
(
X
)
⊗
ℬ
Doc 99
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/math9901113/math9901113_1_57.xhtml
h
g
(
X
)
⊗
C
Doc 100
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/math9901113/math9901113_1_53.xhtml
h
g
(
X
)
⊗
C
Doc 101
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/2/math0111225/math0111225_1_61.xhtml
L
p
(
X
)
⊗
E
Doc 102
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/5/0705.4510/0705.4510_1_26.xhtml
L
p
(
X
)
⊗
ℬ
Doc 103
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/5/0705.4510/0705.4510_1_99.xhtml
L
p
(
X
)
⊗
ℬ
Doc 104
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/2/math0104168/math0104168_1_161.xhtml
K
Γ
(
X
)
⊗
C
Doc 105
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/11/math-ph9910044/math-ph9910044_1_23.xhtml
C
(
X
)
⊗
𝒜
¯
Doc 106
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/2/math0205257/math0205257_1_120.xhtml
C
0
(
X
)
⊗
A
Doc 107
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/5/0807.4288/0807.4288_1_92.xhtml
C
(
X
)
⊗
𝖲
.
Doc 108
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/2/math0112293/math0112293_1_69.xhtml
C
0
(
X
)
⊗
𝒦
Doc 109
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/2/math0112293/math0112293_1_53.xhtml
C
0
(
X
)
⊗
𝒦
Doc 110
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/5/0708.4074/0708.4074_1_33.xhtml
C
(
X
)
⊗
A
ω
Doc 111
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/2/math0112293/math0112293_1_38.xhtml
C
0
(
X
)
⊗
𝒦
Doc 112
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/10/math9906169/math9906169_1_54.xhtml
C
0
(
X
)
⊗
𝒜
Doc 113
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/2/math0112293/math0112293_1_37.xhtml
C
0
(
X
)
⊗
𝒦
Doc 114
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/4/math0509425/math0509425_1_29.xhtml
C
(
X
1
)
⊗
𝒦
Doc 115
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/3/math0302050/math0302050_1_143.xhtml
C
(
X
)
⊗
M
k
Doc 116
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/2/math0112293/math0112293_1_55.xhtml
C
0
(
X
)
⊗
𝒦
Doc 117
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/2/math0112293/math0112293_1_8.xhtml
C
0
(
X
)
⊗
𝒦
Doc 118
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/2/math0112293/math0112293_1_58.xhtml
C
0
(
X
)
⊗
𝒦
Doc 119
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/4/math0509427/math0509427_1_36.xhtml
C
(
X
2
)
⊗
𝒦
Doc 120
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/3/math0306171/math0306171_1_119.xhtml
C
0
(
X
)
⊗
A
Doc 121
0.5970
-1.0000
2.0000
0.5970
testing/NTCIR/xhtml5/4/math0605197/math0605197_1_152.xhtml
C
(
X
)
⊗
M
l
Doc 122
0.5970
-2.0000
5.0000
0.5970
testing/NTCIR/xhtml5/5/0807.4288/0807.4288_1_41.xhtml
C
(
X
)
⊗
C
(
X
)
Doc 123
0.5970
-2.0000
4.0000
0.5970
testing/NTCIR/xhtml5/5/0801.1233/0801.1233_1_61.xhtml
C
(
𝔾
)
⊗
C
(
𝔾
)
Doc 124
0.5970
-2.0000
4.0000
0.5970
testing/NTCIR/xhtml5/7/1004.4161/1004.4161_1_31.xhtml
C
(
ℍ
)
⊗
C
(
ℍ
)
Doc 125
0.5970
-2.0000
4.0000
0.5970
testing/NTCIR/xhtml5/7/1103.0264/1103.0264_1_58.xhtml
C
(
𝔾
)
⊗
C
(
𝔾
)
Doc 126
0.5970
-2.0000
4.0000
0.5970
testing/NTCIR/xhtml5/3/math0407525/math0407525_1_222.xhtml
ℳ
(
𝒦
(
H
)
⊗
C
)
Doc 127
0.5970
-2.0000
4.0000
0.5970
testing/NTCIR/xhtml5/5/0801.1233/0801.1233_1_64.xhtml
C
(
𝔾
)
⊗
C
(
𝔾
)
Doc 128
0.5970
-2.0000
3.0000
0.5970
testing/NTCIR/xhtml5/7/1008.2084/1008.2084_1_97.xhtml
L
2
(
X
)
⊗
W
x
Doc 129
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/3/math0404341/math0404341_1_30.xhtml
C
(
X
~
)
⊗
𝐙
𝐂
Doc 130
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/10/math9812009/math9812009_1_94.xhtml
C
∞
(
X
)
⊗
𝒪
w
Doc 131
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_48.xhtml
I
=
C
(
X
)
⊗
B
Doc 132
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_84.xhtml
I
=
C
(
X
)
⊗
B
Doc 133
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1009.2592/1009.2592_1_51.xhtml
I
=
C
(
X
)
⊗
B
Doc 134
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_3.xhtml
I
=
C
(
X
)
⊗
K
Doc 135
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_90.xhtml
I
=
C
(
X
)
⊗
K
Doc 136
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1009.2592/1009.2592_1_68.xhtml
M
(
C
(
X
)
⊗
B
)
Doc 137
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_42.xhtml
I
=
C
(
X
)
⊗
K
Doc 138
0.5970
-2.0000
2.0000
0.5970
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_8.xhtml
M
(
C
(
X
)
⊗
B
)
Doc 139
0.5970
-4.0000
5.0000
0.5970
testing/NTCIR/xhtml5/2/math0301336/math0301336_1_110.xhtml
C
(
X
1
)
⊗
C
(
X
2
)
Doc 140
0.5970
-4.0000
5.0000
0.5970
testing/NTCIR/xhtml5/10/dg-ga9611001/dg-ga9611001_1_171.xhtml
C
∞
(
X
)
⊗
C
∞
(
X
)
Doc 141
0.5970
-4.0000
5.0000
0.5970
testing/NTCIR/xhtml5/5/0811.0095/0811.0095_1_30.xhtml
d
∈
C
(
X
)
⊗
C
(
X
)
Doc 142
0.5970
-4.0000
5.0000
0.5970
testing/NTCIR/xhtml5/4/math0512405/math0512405_1_76.xhtml
C
*
(
H
)
⊗
C
*
(
H
)
Doc 143
0.5970
-5.0000
5.0000
0.5970
testing/NTCIR/xhtml5/3/math0411043/math0411043_1_13.xhtml
C
*
(
X
)
⊗
ℤ
C
*
(
X
)
Doc 144
0.5970
-5.0000
5.0000
0.5970
testing/NTCIR/xhtml5/3/math0411043/math0411043_1_20.xhtml
C
*
(
X
)
⊗
ℤ
C
*
(
X
)
Doc 145
0.5970
-6.0000
5.0000
0.5970
testing/NTCIR/xhtml5/4/math0503423/math0503423_1_79.xhtml
g
∈
C
c
(
X
)
⊗
C
c
(
X
)
Doc 146
0.5085
-2.0000
3.0000
0.5085
testing/NTCIR/xhtml5/9/1311.2748/1311.2748_1_11.xhtml
C
(
H
)
=
L
(
H
)
Doc 147
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/5/0806.3687/0806.3687_1_32.xhtml
ℋ
⊗
C
(
X
)
Doc 148
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/5/0806.3687/0806.3687_1_34.xhtml
ℋ
⊗
C
(
X
)
Doc 149
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/2/math0211347/math0211347_1_6.xhtml
𝒜
⊗
C
(
X
)
Doc 150
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/5/0704.3651/0704.3651_1_32.xhtml
K
⊗
C
(
X
)
Doc 151
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/5/0806.3687/0806.3687_1_31.xhtml
ℋ
⊗
C
(
X
)
Doc 152
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/7/1006.5501/1006.5501_1_10.xhtml
L
B
(
H
B
)
Doc 153
0.4615
-1.0000
3.0000
0.4615
testing/NTCIR/xhtml5/7/1007.0363/1007.0363_1_61.xhtml
C
(
G
)
⊗
C
Doc 154
0.4615
-1.0000
3.0000
0.4615
testing/NTCIR/xhtml5/7/1007.0363/1007.0363_1_58.xhtml
C
(
G
)
⊗
C
Doc 155
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0503049/math0503049_1_75.xhtml
𝒜
⊗
C
*
(
X
)
Doc 156
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/3/math0407525/math0407525_1_232.xhtml
B
(
H
)
⊗
C
~
Doc 157
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0503049/math0503049_1_76.xhtml
𝒜
⊗
C
*
(
X
)
Doc 158
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0509107/math0509107_1_10.xhtml
M
k
⊗
C
(
X
)
Doc 159
0.4615
-2.0000
3.0000
0.4615
testing/NTCIR/xhtml5/2/math0112227/math0112227_1_48.xhtml
L
∞
(
X
)
⊗
1
Doc 160
0.4615
-2.0000
3.0000
0.4615
testing/NTCIR/xhtml5/10/q-alg9512021/q-alg9512021_1_51.xhtml
C
∞
(
M
)
⊗
C
Doc 161
0.4615
-3.0000
4.0000
0.4615
testing/NTCIR/xhtml5/8/1209.1152/1209.1152_1_239.xhtml
C
(
2
)
⊗
C
(
2
)
Doc 162
0.3243
-2.0000
3.0000
0.3243
testing/NTCIR/xhtml5/5/0709.4316/0709.4316_1_21.xhtml
L
(
C
(
X
)
)
Doc 163
0.3243
-3.0000
2.0000
0.6486
testing/NTCIR/xhtml5/7/1103.5237/1103.5237_1_7.xhtml
C
(
G
L
(
X
)
)
E
C
(
G
L
(
X
)
)
Doc 164
0.3243
-4.0000
3.0000
0.3243
testing/NTCIR/xhtml5/3/hep-th0409158/hep-th0409158_1_26.xhtml
L
2
(
H
ˇ
2
(
X
)
)
Doc 165
0.3243
-4.0000
2.0000
0.3243
testing/NTCIR/xhtml5/7/1103.5237/1103.5237_1_8.xhtml
E
C
(
G
L
(
X
)
)