tangent
Not Supported
K
x0
x1
(
k
)
:=
T
*
(
k
×
)
/
(
a
⊗
(
1
-
a
)
)
Search
Returned 90 matches (100 formulae, 115 docs)
Lookup 10105.300 ms, Re-ranking 392.748 ms
Found 107343864 tuple postings, 8452740 formulae, 3725391 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5581
-13.0000
9.0000
0.5581
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_136.xhtml
ϕ
:
K
w
+
1
M
(
k
)
→
K
w
+
1
M
(
E
)
/
(
I
m
(
1
-
σ
)
)
Doc 2
0.4586
-4.0000
7.0000
0.4586
testing/NTCIR/xhtml5/9/1312.0567/1312.0567_1_73.xhtml
s
(
k
)
:=
𝐭
(
k
)
/
(
4
π
k
¯
)
Doc 3
0.4473
-5.0000
7.0000
0.4473
testing/NTCIR/xhtml5/4/math0610588/math0610588_1_58.xhtml
v
0
(
k
)
:=
v
(
k
)
/
(
1
+
|
k
|
)
s
Doc 4
0.4271
-8.0000
5.0000
0.4271
testing/NTCIR/xhtml5/4/math0507388/math0507388_1_186.xhtml
H
dR
/
k
1
(
F
)
/
(
k
⊗
(
F
×
/
k
×
)
)
Doc 5
0.4271
-8.0000
5.0000
0.4271
testing/NTCIR/xhtml5/4/math0507388/math0507388_1_183.xhtml
H
dR
/
k
1
(
F
)
/
(
k
⊗
(
F
×
/
k
×
)
)
Doc 6
0.4271
-14.0000
6.0000
0.4271
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_137.xhtml
K
w
+
1
M
(
E
)
/
(
I
m
(
1
-
σ
)
)
→
K
w
+
1
M
(
k
)
Doc 7
0.3721
-6.0000
4.0000
0.3721
testing/NTCIR/xhtml5/8/1203.4313/1203.4313_1_37.xhtml
D
(
a
)
=
c
(
a
)
/
(
1
-
c
(
a
)
)
Doc 8
0.3721
-8.0000
6.0000
0.3721
testing/NTCIR/xhtml5/9/1303.2713/1303.2713_1_122.xhtml
F
(
k
)
:=
E
(
k
)
-
(
1
-
k
2
)
K
(
k
)
Doc 9
0.3500
-3.0000
4.0000
0.3500
testing/NTCIR/xhtml5/8/1208.0112/1208.0112_1_146.xhtml
N
i
(
a
)
:=
T
a
i
(
1
)
Doc 10
0.3500
-6.0000
4.0000
0.3500
testing/NTCIR/xhtml5/3/math0305086/math0305086_1_69.xhtml
𝒪
T
*
G
(
k
)
:=
π
*
𝒪
G
(
k
)
Doc 11
0.3167
-2.0000
6.0000
0.5208
testing/NTCIR/xhtml5/3/math0404367/math0404367_1_74.xhtml
K
′
(
k
)
:=
K
(
k
′
)
T
′
(
k
)
=
4
i
K
′
(
k
)
Doc 12
0.3167
-2.0000
6.0000
0.3167
testing/NTCIR/xhtml5/3/math-ph0308010/math-ph0308010_1_66.xhtml
K
′
(
k
)
:=
K
(
k
′
)
Doc 13
0.3167
-5.0000
6.0000
0.3167
testing/NTCIR/xhtml5/9/1306.5875/1306.5875_1_18.xhtml
K
′
=
K
′
(
k
)
:=
K
(
k
′
)
Doc 14
0.3167
-5.0000
6.0000
0.3167
testing/NTCIR/xhtml5/9/1306.6220/1306.6220_1_3.xhtml
K
′
≡
K
′
(
k
)
:=
K
(
k
′
)
Doc 15
0.3167
-5.0000
6.0000
0.3167
testing/NTCIR/xhtml5/9/1306.5866/1306.5866_1_46.xhtml
K
′
≡
K
′
(
k
)
:=
K
(
k
′
)
Doc 16
0.3167
-5.0000
6.0000
0.3167
testing/NTCIR/xhtml5/9/1306.6173/1306.6173_1_9.xhtml
K
′
≡
K
′
(
k
)
:=
K
(
k
′
)
Doc 17
0.3167
-5.0000
6.0000
0.3167
testing/NTCIR/xhtml5/9/1306.5866/1306.5866_1_14.xhtml
K
′
≡
K
′
(
k
)
:=
K
(
k
′
)
Doc 18
0.3167
-5.0000
5.0000
0.3167
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_46.xhtml
K
n
M
(
k
f
)
→
K
n
M
(
k
)
Doc 19
0.3167
-6.0000
5.0000
0.3167
testing/NTCIR/xhtml5/7/1101.2056/1101.2056_1_158.xhtml
K
¯
n
(
k
)
≅
K
¯
n
+
p
(
k
)
Doc 20
0.3167
-11.0000
4.0000
0.3167
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_53.xhtml
φ
:
K
*
M
(
k
)
/
2
→
Gr
I
⋅
*
(
W
(
k
)
)
Doc 21
0.3167
-11.0000
4.0000
0.3167
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_52.xhtml
φ
:
K
*
M
(
k
)
/
2
→
Gr
I
⋅
*
(
W
(
k
)
)
Doc 22
0.2609
-1.0000
3.0000
0.5018
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_10.xhtml
K
*
M
(
k
)
/
l
K
*
M
(
k
)
Doc 23
0.2609
-3.0000
5.0000
0.2609
testing/NTCIR/xhtml5/6/0907.5259/0907.5259_1_20.xhtml
K
′
(
k
)
=
K
(
k
′
)
Doc 24
0.2609
-3.0000
5.0000
0.2609
testing/NTCIR/xhtml5/2/math-ph0012001/math-ph0012001_1_37.xhtml
K
′
(
k
)
≡
K
(
k
′
)
Doc 25
0.2609
-3.0000
5.0000
0.2609
testing/NTCIR/xhtml5/2/math-ph0012001/math-ph0012001_1_38.xhtml
K
′
(
k
)
≡
K
(
k
′
)
Doc 26
0.2609
-5.0000
5.0000
0.2609
testing/NTCIR/xhtml5/5/0711.4696/0711.4696_1_65.xhtml
w
=
π
K
′
(
k
)
/
K
(
k
)
Doc 27
0.2609
-5.0000
3.0000
0.2609
testing/NTCIR/xhtml5/3/hep-th0311253/hep-th0311253_1_124.xhtml
T
*
(
a
)
:=
(
T
(
a
*
)
)
*
Doc 28
0.2609
-6.0000
3.0000
0.2609
testing/NTCIR/xhtml5/6/0903.1761/0903.1761_1_13.xhtml
K
a
*
(
z
)
=
K
a
(
1
-
z
)
Doc 29
0.2609
-7.0000
4.0000
0.2609
testing/NTCIR/xhtml5/6/0910.0446/0910.0446_1_80.xhtml
K
2
(
k
)
:=
clos
[
D
2
,
F
(
k
)
]
Doc 30
0.2609
-7.0000
3.0000
0.2609
testing/NTCIR/xhtml5/2/gr-qc0206037/gr-qc0206037_1_90.xhtml
K
~
a
b
(
k
)
=
δ
a
b
ρ
(
k
)
Doc 31
0.2609
-8.0000
5.0000
0.2609
testing/NTCIR/xhtml5/4/hep-th0509041/hep-th0509041_1_91.xhtml
q
=
exp
(
-
π
K
′
(
k
)
/
K
(
k
)
)
Doc 32
0.2609
-11.0000
4.0000
0.2609
testing/NTCIR/xhtml5/6/0905.3545/0905.3545_1_108.xhtml
(
𝚙
(
k
)
-
p
¯
(
k
)
)
/
(
1
-
p
¯
(
k
)
)
Doc 33
0.2609
-11.0000
4.0000
0.2609
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_3.xhtml
K
*
M
(
k
)
/
2
→
K
*
+
n
M
(
k
)
/
2
Doc 34
0.2609
-11.0000
4.0000
0.2609
testing/NTCIR/xhtml5/6/0905.3545/0905.3545_1_104.xhtml
(
𝚙
(
k
)
-
p
¯
(
k
)
)
/
(
1
-
p
¯
(
k
)
)
Doc 35
0.2609
-11.0000
3.0000
0.2609
testing/NTCIR/xhtml5/5/0805.4436/0805.4436_1_16.xhtml
H
p
,
p
(
S
p
e
c
(
k
)
)
=
K
p
M
(
k
)
Doc 36
0.2609
-11.0000
3.0000
0.2609
testing/NTCIR/xhtml5/5/0805.4436/0805.4436_1_18.xhtml
H
p
,
p
(
S
p
e
c
(
k
)
)
=
K
p
M
(
k
)
Doc 37
0.2609
-13.0000
4.0000
0.5018
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_39.xhtml
K
*
M
(
k
)
/
2
→
a
¯
K
*
+
n
M
(
k
)
/
2
K
*
M
(
k
)
Doc 38
0.2410
0.0000
3.0000
0.4819
testing/NTCIR/xhtml5/1/hep-th0002177/hep-th0002177_1_61.xhtml
K
a
+
(
k
)
K
¯
a
-
(
k
)
Doc 39
0.2410
0.0000
3.0000
0.4819
testing/NTCIR/xhtml5/1/hep-th0002177/hep-th0002177_1_58.xhtml
K
a
+
(
k
)
K
¯
a
-
(
k
)
Doc 40
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_24.xhtml
K
*
M
(
k
)
Doc 41
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_28.xhtml
K
*
M
(
k
)
Doc 42
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_5.xhtml
K
*
M
(
k
)
Doc 43
0.2410
-1.0000
3.0000
0.4819
testing/NTCIR/xhtml5/1/hep-th0002177/hep-th0002177_1_56.xhtml
where
K
a
+
(
k
)
where
K
¯
a
-
(
k
)
Doc 44
0.2410
-1.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/1003.3289/1003.3289_1_81.xhtml
K
r
M
(
k
r
)
Doc 45
0.2410
-1.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/1003.3289/1003.3289_1_80.xhtml
K
r
M
(
k
r
)
Doc 46
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/math0307233/math0307233_1_113.xhtml
K
n
(
k
)
(
M
)
Doc 47
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/math0307233/math0307233_1_79.xhtml
K
n
(
k
)
(
M
)
Doc 48
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/nlin0402026/nlin0402026_1_30.xhtml
K
α
(
a
)
(
λ
)
Doc 49
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/2/math0209270/math0209270_1_169.xhtml
K
ϕ
ˇ
*
(
a
)
Doc 50
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0107110/math0107110_1_16.xhtml
K
*
M
(
k
)
/
2
Doc 51
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0101023/math0101023_1_19.xhtml
K
*
M
(
k
)
/
2
Doc 52
0.2410
-2.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/hep-th0311255/hep-th0311255_1_31.xhtml
K
a
b
(
a
≥
b
)
Doc 53
0.2410
-2.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/hep-th0402076/hep-th0402076_1_57.xhtml
K
a
b
(
a
≥
b
)
Doc 54
0.2410
-3.0000
3.0000
0.2410
testing/NTCIR/xhtml5/3/math-ph0402039/math-ph0402039_1_8.xhtml
K
m
(
m
)
(
k
)
=
k
Doc 55
0.2410
-4.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/math0304063/math0304063_1_208.xhtml
K
n
Q
(
P
(
ℒ
(
a
)
)
)
Doc 56
0.2410
-5.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0707.1081/0707.1081_1_31.xhtml
b
(
k
)
/
(
1
+
b
(
k
)
)
Doc 57
0.2410
-5.0000
3.0000
0.2410
testing/NTCIR/xhtml5/1/physics0602026/physics0602026_1_14.xhtml
K
i
n
(
n
n
)
(
k
i
n
)
Doc 58
0.2410
-5.0000
3.0000
0.2410
testing/NTCIR/xhtml5/1/physics0602026/physics0602026_1_19.xhtml
K
i
n
(
n
n
)
(
k
i
n
)
Doc 59
0.2410
-5.0000
2.0000
0.2410
testing/NTCIR/xhtml5/3/math0405468/math0405468_1_143.xhtml
K
μ
,
(
1
L
)
(
k
)
(
q
)
Doc 60
0.2410
-6.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1209.3548/1209.3548_1_6.xhtml
K
(
k
)
×
/
(
K
(
k
)
×
)
2
Doc 61
0.2410
-7.0000
3.0000
0.7229
testing/NTCIR/xhtml5/2/hep-ph0202141/hep-ph0202141_1_34.xhtml
K
μ
ρ
L
(
k
)
K
ν
L
ρ
(
k
)
K
μ
ρ
L
(
k
)
K
ν
T
ρ
(
k
)
K
μ
ρ
T
(
k
)
K
ν
T
ρ
(
k
)
Doc 62
0.2410
-7.0000
2.0000
0.4819
testing/NTCIR/xhtml5/8/1111.3458/1111.3458_1_92.xhtml
0
=
[
K
j
(
1
)
(
φ
)
]
1
(
k
)
[
K
j
(
1
)
(
φ
)
]
1
(
k
)
=
0
Doc 63
0.2410
-10.0000
4.0000
0.2410
testing/NTCIR/xhtml5/9/1303.2713/1303.2713_1_123.xhtml
G
′
(
k
)
=
k
E
(
k
)
/
(
1
-
k
2
)
Doc 64
0.2410
-10.0000
3.0000
0.2410
testing/NTCIR/xhtml5/10/cond-mat9802271/cond-mat9802271_1_14.xhtml
K
1
(
2
)
(
k
)
K
1
(
k
)
≃
70
%
.
Doc 65
0.2410
-11.0000
2.0000
0.4819
testing/NTCIR/xhtml5/8/1111.3458/1111.3458_1_91.xhtml
[
K
0
(
1
)
(
φ
)
]
1
(
k
)
=
[
φ
]
1
(
k
)
[
φ
]
1
(
k
)
=
[
K
0
(
1
)
(
φ
)
]
1
(
k
)
Doc 66
0.2410
-11.0000
2.0000
0.2410
testing/NTCIR/xhtml5/4/math0505264/math0505264_1_23.xhtml
φ
a
(
z
)
:=
(
a
-
z
)
/
(
1
-
a
¯
z
)
Doc 67
0.2410
-12.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/0910.0639/0910.0639_1_22.xhtml
r
~
(
k
)
:=
(
1
-
|
r
(
k
)
|
2
)
/
k
2
.
Doc 68
0.2410
-17.0000
5.0000
0.2410
testing/NTCIR/xhtml5/2/math0210138/math0210138_1_26.xhtml
ϵ
(
a
)
:=
a
⊗
a
+
(
1
-
a
)
⊗
(
1
-
a
)
∈
k
×
⊗
k
Doc 69
0.2295
-5.0000
4.0000
0.2295
testing/NTCIR/xhtml5/6/0908.3682/0908.3682_1_171.xhtml
P
a
*
(
k
)
=
P
-
a
(
k
¯
)
Doc 70
0.2041
-5.0000
5.0000
0.2041
testing/NTCIR/xhtml5/5/0711.3920/0711.3920_1_55.xhtml
K
η
a
0
⊗
(
a
-
a
0
)
Doc 71
0.2041
-10.0000
2.0000
0.2041
testing/NTCIR/xhtml5/8/1204.5268/1204.5268_1_12.xhtml
b
k
(
a
)
=
(
k
a
-
1
)
/
(
k
-
1
)
Doc 72
0.2041
-15.0000
3.0000
0.2041
testing/NTCIR/xhtml5/7/1107.0127/1107.0127_1_33.xhtml
b
n
,
t
(
k
)
(
k
/
t
-
(
n
-
k
)
/
(
1
-
t
)
)
Doc 73
0.1860
-1.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1103.5346/1103.5346_1_7.xhtml
K
(
1
)
(
k
)
Doc 74
0.1860
-2.0000
1.0000
0.1860
testing/NTCIR/xhtml5/9/math9301209/math9301209_1_22.xhtml
T
(
k
)
(
a
k
)
Doc 75
0.1860
-2.0000
1.0000
0.1860
testing/NTCIR/xhtml5/9/math9301209/math9301209_1_28.xhtml
T
(
k
)
(
a
k
)
Doc 76
0.1860
-3.0000
3.0000
0.1860
testing/NTCIR/xhtml5/2/math0108216/math0108216_1_22.xhtml
K
1
(
k
)
=
k
×
Doc 77
0.1860
-4.0000
2.0000
0.1860
testing/NTCIR/xhtml5/4/math0503058/math0503058_1_4.xhtml
K
l
,
𝐦
(
k
)
(
1
)
Doc 78
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/hep-th0510253/hep-th0510253_1_84.xhtml
(
k
a
k
)
/
(
k
b
k
)
Doc 79
0.1860
-5.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/1002.0286/1002.0286_1_55.xhtml
O
(
k
1
/
(
1
-
a
)
)
Doc 80
0.1860
-5.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/1309.3496/1309.3496_1_242.xhtml
T
*
(
ℍ
2
(
-
a
2
)
)
Doc 81
0.1860
-6.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1006.2322/1006.2322_1_22.xhtml
K
a
=
K
-
1
(
1
-
a
)
Doc 82
0.1860
-6.0000
3.0000
0.1860
testing/NTCIR/xhtml5/3/hep-th0502163/hep-th0502163_1_20.xhtml
e
2
/
(
1
-
Π
(
k
2
)
)
Doc 83
0.1860
-6.0000
2.0000
0.1860
testing/NTCIR/xhtml5/4/math0507388/math0507388_1_179.xhtml
k
⊗
(
k
(
X
)
×
/
k
×
)
Doc 84
0.1860
-6.0000
1.0000
0.3165
testing/NTCIR/xhtml5/8/1209.5011/1209.5011_1_162.xhtml
h
(
k
)
(
a
k
k
(
k
)
)
*
(
a
k
k
(
k
)
)
*
g
(
k
)
Doc 85
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/9/1311.7571/1311.7571_1_87.xhtml
b
=
(
1
-
a
)
/
(
k
-
1
)
Doc 86
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/9/1311.7571/1311.7571_1_90.xhtml
b
=
(
1
-
a
)
/
(
k
-
1
)
Doc 87
0.1860
-7.0000
4.0000
0.1860
testing/NTCIR/xhtml5/9/1312.3732/1312.3732_1_52.xhtml
a
(
1
-
a
)
/
(
a
2
+
b
)
Doc 88
0.1860
-7.0000
3.0000
0.1860
testing/NTCIR/xhtml5/4/math0508288/math0508288_1_28.xhtml
(
1
+
r
k
)
/
(
1
-
r
k
)
Doc 89
0.1860
-8.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0901.0497/0901.0497_1_18.xhtml
G
(
k
2
)
→
(
1
-
a
)
/
k
2
Doc 90
0.1860
-8.0000
3.0000
0.1860
testing/NTCIR/xhtml5/3/hep-th0402167/hep-th0402167_1_34.xhtml
β
(
k
)
=
(
1
-
k
2
)
T
(
k
)
Doc 91
0.1860
-8.0000
3.0000
0.1860
testing/NTCIR/xhtml5/10/math9310223/math9310223_1_5.xhtml
E
(
k
)
-
(
1
-
k
2
)
K
(
k
)
Doc 92
0.1860
-8.0000
1.0000
0.1860
testing/NTCIR/xhtml5/5/math0703308/math0703308_1_163.xhtml
ψ
(
k
)
(
a
π
(
k
)
)
=
a
π
.
Doc 93
0.1860
-9.0000
4.0000
0.1860
testing/NTCIR/xhtml5/1/math0411297/math0411297_1_9.xhtml
d
=
(
1
-
a
)
/
(
a
+
b
-
2
)
Doc 94
0.1860
-9.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1101.1161/1101.1161_1_112.xhtml
F
(
k
)
(
1
)
-
F
(
k
)
(
1
-
t
)
Doc 95
0.1860
-9.0000
2.0000
0.1860
testing/NTCIR/xhtml5/4/hep-th0512060/hep-th0512060_1_46.xhtml
χ
(
k
2
)
=
1
-
Ω
^
(
1
)
(
k
2
)
Doc 96
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_66.xhtml
α
≠
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 97
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_63.xhtml
α
≠
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 98
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_16.xhtml
α
=
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 99
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_18.xhtml
α
=
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 100
0.1860
-10.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0905.3642/0905.3642_1_22.xhtml
α
≠
a
n
(
a
-
1
)
/
(
1
-
a
n
)
Doc 101
0.1860
-10.0000
3.0000
0.1860
testing/NTCIR/xhtml5/10/cond-mat9603167/cond-mat9603167_1_12.xhtml
r
=
K
(
1
-
k
2
)
/
2
K
(
k
2
)
Doc 102
0.1860
-10.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/1401.5134/1401.5134_1_40.xhtml
(
1
-
(
a
1
k
)
/
(
2
a
0
)
)
>
0
Doc 103
0.1860
-11.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0701062/math0701062_1_8.xhtml
(
a
)
k
=
(
-
1
)
k
/
(
1
-
a
)
-
k
Doc 104
0.1860
-11.0000
3.0000
0.1860
testing/NTCIR/xhtml5/4/math0603246/math0603246_1_20.xhtml
H
0
(
E
*
(
k
)
)
⊆
H
0
(
K
*
(
k
)
)
Doc 105
0.1860
-12.0000
3.0000
0.1860
testing/NTCIR/xhtml5/6/0910.0639/0910.0639_1_134.xhtml
ψ
(
k
)
:=
(
1
-
|
φ
^
(
k
)
|
2
)
/
k
2
Doc 106
0.1860
-13.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1012.5535/1012.5535_1_43.xhtml
=
{
2
(
1
-
a
)
}
f
(
k
)
C
1
(
x
,
k
)
,
Doc 107
0.1860
-14.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/1003.3749/1003.3749_1_19.xhtml
T
(
a
¯
)
n
=
(
1
-
a
)
/
(
1
-
a
n
+
1
)
Doc 108
0.1860
-14.0000
3.0000
0.1860
testing/NTCIR/xhtml5/5/0804.3260/0804.3260_1_62.xhtml
∑
σ
∈
Gal
(
k
′
/
k
)
(
1
-
σ
)
K
T
(
k
′
)
Doc 109
0.1455
-6.0000
0.0000
0.1455
testing/NTCIR/xhtml5/8/1209.5011/1209.5011_1_96.xhtml
T
k
*
r
(
k
)
=
y
(
k
)
Doc 110
0.1455
-9.0000
1.0000
0.1455
testing/NTCIR/xhtml5/5/0711.2300/0711.2300_1_18.xhtml
K
(
k
)
i
j
-
F
(
k
)
H
i
j
,
Doc 111
0.1304
-6.0000
1.0000
0.1304
testing/NTCIR/xhtml5/6/0909.3520/0909.3520_1_108.xhtml
F
(
K
(
k
)
)
=
K
(
k
)
Doc 112
0.1304
-6.0000
0.0000
0.1304
testing/NTCIR/xhtml5/8/1202.5287/1202.5287_1_13.xhtml
ℛ
a
(
k
)
=
a
ℛ
(
k
)
Doc 113
0.1304
-6.0000
0.0000
0.1304
testing/NTCIR/xhtml5/8/1202.5287/1202.5287_1_8.xhtml
ℛ
a
(
k
)
=
a
ℛ
(
k
)
Doc 114
0.1304
-7.0000
0.0000
0.1304
testing/NTCIR/xhtml5/8/1209.5011/1209.5011_1_107.xhtml
y
(
k
)
=
T
k
*
r
(
k
)
Doc 115
0.1304
-8.0000
1.0000
0.1304
testing/NTCIR/xhtml5/7/1107.3160/1107.3160_1_32.xhtml
z
j
(
k
)
=
g
(
a
j
(
k
)
)