tangent
Not Supported
G
k
,
σ
(
y
)
=
1
-
(
1
+
k
y
/
σ
)
-
1
/
k
Search
Returned 91 matches (100 formulae, 109 docs)
Lookup 1396.780 ms, Re-ranking 220.190 ms
Found 18974032 tuple postings, 10730882 formulae, 4385405 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.9215
-4.0000
13.0000
0.9215
testing/NTCIR/xhtml5/6/0905.1983/0905.1983_1_52.xhtml
G
P
D
γ
,
β
(
y
)
:=
1
-
(
1
+
γ
y
/
β
)
-
1
/
γ
,
Doc 2
0.7947
-9.0000
12.0000
0.7947
testing/NTCIR/xhtml5/7/1104.0359/1104.0359_1_54.xhtml
GPD
(
ξ
,
σ
)
(
x
)
=
1
-
(
1
+
ξ
x
/
σ
)
-
1
/
ξ
,
x
≥
0
Doc 3
0.6407
-7.0000
10.0000
0.6407
testing/NTCIR/xhtml5/5/0802.0433/0802.0433_1_68.xhtml
F
(
x
)
=
1
-
(
1
+
ξ
(
x
-
μ
)
σ
)
-
1
/
ξ
Doc 4
0.6407
-7.0000
10.0000
0.6407
testing/NTCIR/xhtml5/5/0802.0433/0802.0433_1_2.xhtml
F
(
x
)
=
1
-
(
1
+
ξ
(
x
-
μ
)
σ
)
-
1
/
ξ
Doc 5
0.5893
-3.0000
10.0000
0.5893
testing/NTCIR/xhtml5/9/1310.0953/1310.0953_1_11.xhtml
H
(
z
)
=
1
-
(
1
+
z
2
)
-
1
/
2
Doc 6
0.5893
-3.0000
9.0000
0.5893
testing/NTCIR/xhtml5/5/0712.4185/0712.4185_1_30.xhtml
η
(
𝐳
)
=
1
-
(
1
+
M
(
𝐳
)
)
-
1
,
Doc 7
0.5893
-5.0000
9.0000
0.5893
testing/NTCIR/xhtml5/6/1001.1540/1001.1540_1_18.xhtml
η
μ
(
z
)
=
1
-
(
1
+
M
μ
(
z
)
)
-
1
.
Doc 8
0.5893
-5.0000
9.0000
0.5893
testing/NTCIR/xhtml5/5/0803.4280/0803.4280_1_17.xhtml
η
φ
(
𝐳
)
=
1
-
(
1
+
M
φ
(
𝐳
)
)
-
1
,
Doc 9
0.5379
-3.0000
8.0000
0.5379
testing/NTCIR/xhtml5/9/1401.3383/1401.3383_1_6.xhtml
F
(
x
)
=
1
-
(
x
/
C
)
-
1
/
γ
Doc 10
0.4865
-2.0000
10.0000
0.4865
testing/NTCIR/xhtml5/5/0712.4323/0712.4323_1_93.xhtml
G
(
y
)
=
1
-
(
1
-
y
)
-
1
Doc 11
0.4865
-2.0000
9.0000
0.4865
testing/NTCIR/xhtml5/4/math0701436/math0701436_1_60.xhtml
u
=
1
-
(
1
+
x
)
-
1
/
d
Doc 12
0.4865
-3.0000
8.0000
0.4865
testing/NTCIR/xhtml5/8/1203.0447/1203.0447_1_95.xhtml
V
(
x
)
=
1
-
(
1
+
|
x
|
)
-
β
Doc 13
0.4865
-3.0000
8.0000
0.4865
testing/NTCIR/xhtml5/9/1212.2325/1212.2325_1_18.xhtml
V
(
x
)
=
1
-
(
1
+
|
x
|
)
-
θ
Doc 14
0.4865
-7.0000
8.0000
0.4865
testing/NTCIR/xhtml5/6/0904.0580/0904.0580_1_42.xhtml
G
γ
(
y
)
=
exp
{
-
(
1
+
γ
y
)
-
1
/
γ
}
Doc 15
0.4865
-7.0000
7.0000
0.4865
testing/NTCIR/xhtml5/7/1107.0935/1107.0935_1_3.xhtml
G
γ
(
x
)
=
exp
(
-
(
1
+
γ
x
)
-
1
/
γ
)
Doc 16
0.4350
-2.0000
8.0000
0.4350
testing/NTCIR/xhtml5/8/1111.3979/1111.3979_1_124.xhtml
ε
′′
=
1
-
(
1
+
ε
)
-
1
Doc 17
0.4350
-2.0000
8.0000
0.4350
testing/NTCIR/xhtml5/2/math0110280/math0110280_1_67.xhtml
ε
′′
=
1
-
(
1
+
ε
)
-
1
Doc 18
0.4350
-9.0000
8.0000
0.8701
testing/NTCIR/xhtml5/5/0802.0433/0802.0433_1_69.xhtml
1
-
(
1
+
ξ
(
y
-
μ
C
)
σ
C
)
-
1
/
ξ
1
-
(
1
+
ξ
(
y
C
-
μ
)
σ
)
-
1
/
ξ
Doc 19
0.4350
-9.0000
8.0000
0.4350
testing/NTCIR/xhtml5/6/0901.0527/0901.0527_1_46.xhtml
r
(
z
)
=
3
t
0
[
1
-
(
1
+
z
)
-
1
/
2
]
Doc 20
0.4350
-19.0000
9.0000
0.4350
testing/NTCIR/xhtml5/8/1211.3087/1211.3087_1_10.xhtml
ζ
(
s
)
=
H
G
E
V
(
s
)
=
exp
{
-
(
1
+
k
s
-
μ
σ
)
+
-
1
/
k
}
Doc 21
0.4051
-3.0000
7.0000
0.4051
testing/NTCIR/xhtml5/7/1107.1617/1107.1617_1_108.xhtml
g
i
(
y
)
=
1
/
(
1
+
y
2
)
Doc 22
0.4051
-3.0000
6.0000
0.4051
testing/NTCIR/xhtml5/6/1001.2157/1001.2157_1_29.xhtml
d
(
x
,
y
)
=
1
/
(
1
+
k
)
Doc 23
0.4051
-8.0000
7.0000
0.4051
testing/NTCIR/xhtml5/5/0712.4323/0712.4323_1_74.xhtml
G
(
y
)
=
exp
{
-
(
1
-
γ
y
)
-
1
/
γ
}
,
Doc 24
0.3836
-4.0000
7.0000
0.3836
testing/NTCIR/xhtml5/8/1204.5836/1204.5836_1_23.xhtml
γ
2
(
y
)
=
1
-
(
1
/
2
)
y
Doc 25
0.3836
-5.0000
6.0000
0.3836
testing/NTCIR/xhtml5/9/1308.1815/1308.1815_1_55.xhtml
τ
(
F
)
=
1
-
(
1
-
F
)
1
/
k
Doc 26
0.3529
-2.0000
7.0000
0.3529
testing/NTCIR/xhtml5/7/1105.2401/1105.2401_1_36.xhtml
G
(
t
)
=
1
/
(
1
+
t
)
Doc 27
0.3529
-2.0000
7.0000
0.3529
testing/NTCIR/xhtml5/1/0811.2028/0811.2028_1_12.xhtml
(
1
-
k
2
x
)
-
1
/
k
Doc 28
0.3529
-2.0000
6.0000
0.3529
testing/NTCIR/xhtml5/8/1208.0754/1208.0754_1_58.xhtml
ζ
(
σ
)
=
1
/
(
1
+
σ
)
Doc 29
0.3529
-4.0000
7.0000
0.3529
testing/NTCIR/xhtml5/4/cond-mat0506195/cond-mat0506195_1_19.xhtml
f
^
(
k
)
=
1
/
(
1
+
k
2
)
Doc 30
0.3529
-6.0000
7.0000
0.7059
testing/NTCIR/xhtml5/9/1212.4030/1212.4030_1_39.xhtml
w
(
y
)
=
1
/
(
1
+
|
y
|
n
+
σ
)
w
(
y
)
=
1
/
(
1
+
|
y
|
n
+
σ
0
)
Doc 31
0.3529
-6.0000
7.0000
0.3529
testing/NTCIR/xhtml5/4/math0606422/math0606422_1_53.xhtml
(
y
/
x
3
)
3
=
1
-
(
1
/
x
)
8
Doc 32
0.3529
-7.0000
7.0000
0.3529
testing/NTCIR/xhtml5/6/0902.4030/0902.4030_1_23.xhtml
ω
(
y
)
=
1
/
(
1
+
|
y
|
n
+
σ
0
)
Doc 33
0.3320
-1.0000
6.0000
0.3320
testing/NTCIR/xhtml5/9/1304.4422/1304.4422_1_4.xhtml
(
1
+
y
)
-
1
/
2
Doc 34
0.3320
-2.0000
7.0000
0.3320
testing/NTCIR/xhtml5/10/gr-qc9408006/gr-qc9408006_1_34.xhtml
(
1
+
k
2
)
-
1
/
2
Doc 35
0.3320
-3.0000
5.0000
0.3320
testing/NTCIR/xhtml5/9/1401.3383/1401.3383_1_13.xhtml
F
Y
(
y
)
=
1
-
1
/
y
Doc 36
0.3320
-5.0000
6.0000
0.3320
testing/NTCIR/xhtml5/6/0907.0104/0907.0104_1_47.xhtml
u
=
(
1
+
z
)
-
1
/
γ
(
y
)
Doc 37
0.3320
-7.0000
6.0000
0.3320
testing/NTCIR/xhtml5/6/0903.0128/0903.0128_1_113.xhtml
(
1
+
y
)
-
1
/
2
≥
1
-
y
/
2
Doc 38
0.3320
-8.0000
6.0000
0.3320
testing/NTCIR/xhtml5/7/1103.5921/1103.5921_1_55.xhtml
K
¯
(
x
)
=
(
1
+
x
/
σ
)
-
1
/
α
Doc 39
0.3320
-10.0000
4.0000
0.6640
testing/NTCIR/xhtml5/4/math0701854/math0701854_1_4.xhtml
P
θ
,
σ
(
X
≥
x
)
=
(
1
+
x
/
σ
)
-
θ
p
θ
,
σ
(
x
)
=
θ
σ
(
1
+
x
/
σ
)
-
θ
-
1
Doc 40
0.3175
-4.0000
6.0000
0.3175
testing/NTCIR/xhtml5/4/math0610647/math0610647_1_32.xhtml
U
(
y
)
=
1
/
(
1
-
F
(
y
)
)
Doc 41
0.3175
-4.0000
6.0000
0.3175
testing/NTCIR/xhtml5/9/1211.6206/1211.6206_1_218.xhtml
g
(
y
)
=
1
/
(
1
-
ϕ
(
y
)
)
Doc 42
0.3175
-5.0000
6.0000
0.3175
testing/NTCIR/xhtml5/4/math0505332/math0505332_1_60.xhtml
𝐑
^
(
y
)
=
1
/
(
1
-
L
(
y
)
)
Doc 43
0.3004
-3.0000
7.0000
0.3004
testing/NTCIR/xhtml5/5/0810.1344/0810.1344_1_44.xhtml
G
(
y
)
=
1
/
(
1
-
y
)
Doc 44
0.3004
-3.0000
6.0000
0.3004
testing/NTCIR/xhtml5/5/math0703788/math0703788_1_88.xhtml
f
(
y
)
=
1
/
(
1
-
y
)
Doc 45
0.3004
-3.0000
6.0000
0.3004
testing/NTCIR/xhtml5/2/hep-th0212115/hep-th0212115_1_17.xhtml
ℱ
(
y
)
=
y
/
(
1
+
y
)
Doc 46
0.3004
-3.0000
6.0000
0.3004
testing/NTCIR/xhtml5/10/math9402216/math9402216_1_8.xhtml
G
(
z
)
=
1
/
(
1
-
z
)
Doc 47
0.3004
-3.0000
6.0000
0.3004
testing/NTCIR/xhtml5/10/math9402216/math9402216_1_9.xhtml
G
(
z
)
=
1
/
(
1
-
z
)
Doc 48
0.3004
-3.0000
6.0000
0.3004
testing/NTCIR/xhtml5/9/math9207221/math9207221_1_53.xhtml
G
(
z
)
=
1
/
(
1
-
z
)
Doc 49
0.3004
-5.0000
6.0000
0.3004
testing/NTCIR/xhtml5/4/math0701857/math0701857_1_48.xhtml
h
(
y
)
=
y
σ
/
(
1
+
y
σ
)
Doc 50
0.2804
-1.0000
6.0000
0.2804
testing/NTCIR/xhtml5/6/0911.4083/0911.4083_1_309.xhtml
G
k
(
y
k
)
=
1
Doc 51
0.2804
-1.0000
6.0000
0.2804
testing/NTCIR/xhtml5/6/0911.4083/0911.4083_1_313.xhtml
G
k
(
y
k
)
=
1
Doc 52
0.2804
-3.0000
6.0000
0.2804
testing/NTCIR/xhtml5/4/math0503638/math0503638_1_89.xhtml
(
1
+
|
y
|
)
-
1
/
2
Doc 53
0.2804
-4.0000
5.0000
0.2804
testing/NTCIR/xhtml5/7/1011.5836/1011.5836_1_297.xhtml
(
1
+
θ
)
-
1
=
1
-
θ
Doc 54
0.2804
-5.0000
5.0000
0.2804
testing/NTCIR/xhtml5/5/0712.4323/0712.4323_1_94.xhtml
G
(
y
)
=
(
1
+
y
α
)
-
1
Doc 55
0.2804
-7.0000
5.0000
0.2804
testing/NTCIR/xhtml5/7/1103.5921/1103.5921_1_54.xhtml
K
¯
(
x
)
=
(
1
+
x
/
σ
)
-
1
Doc 56
0.2804
-12.0000
5.0000
0.2804
testing/NTCIR/xhtml5/8/1109.6053/1109.6053_1_71.xhtml
(
1
+
σ
)
-
1
=
(
1
/
Y
)
(
1
-
σ
+
σ
2
)
Doc 57
0.2474
-2.0000
5.0000
0.2474
testing/NTCIR/xhtml5/10/cond-mat9712041/cond-mat9712041_1_69.xhtml
(
1
-
y
)
-
1
/
2
Doc 58
0.2474
-3.0000
6.0000
0.4410
testing/NTCIR/xhtml5/7/1011.2388/1011.2388_1_31.xhtml
r
1
=
1
-
(
1
/
k
)
B
1
-
(
1
/
k
)
Doc 59
0.2474
-3.0000
6.0000
0.2474
testing/NTCIR/xhtml5/8/1110.6369/1110.6369_1_33.xhtml
p
1
=
1
/
(
1
+
k
)
Doc 60
0.2474
-4.0000
5.0000
0.2474
testing/NTCIR/xhtml5/5/0810.5075/0810.5075_1_3.xhtml
(
1
-
x
⋅
y
)
-
1
/
2
Doc 61
0.2474
-8.0000
4.0000
0.2474
testing/NTCIR/xhtml5/8/1208.6071/1208.6071_1_76.xhtml
J
1
/
v
(
y
)
=
1
+
O
(
1
/
v
)
Doc 62
0.2474
-11.0000
5.0000
0.2474
testing/NTCIR/xhtml5/1/math0003043/math0003043_1_31.xhtml
f
(
-
1
)
=
(
1
-
α
)
-
1
/
p
(
1
+
y
)
Doc 63
0.2286
-3.0000
5.0000
0.2286
testing/NTCIR/xhtml5/7/1010.3680/1010.3680_1_31.xhtml
G
0
(
k
)
(
y
)
=
1
Doc 64
0.2286
-3.0000
5.0000
0.2286
testing/NTCIR/xhtml5/7/1010.3680/1010.3680_1_47.xhtml
G
0
(
k
)
(
y
)
=
1
Doc 65
0.2286
-3.0000
5.0000
0.2286
testing/NTCIR/xhtml5/4/math0701083/math0701083_1_13.xhtml
G
k
(
n
)
(
1
)
=
1
Doc 66
0.2286
-8.0000
2.0000
0.2286
testing/NTCIR/xhtml5/3/math-ph0410003/math-ph0410003_1_79.xhtml
f
(
k
,
0
)
=
1
+
O
(
1
/
k
)
Doc 67
0.2286
-12.0000
3.0000
0.2286
testing/NTCIR/xhtml5/4/math0702406/math0702406_1_37.xhtml
δ
σ
(
y
-
ν
k
,
σ
A
k
q
)
=
δ
σ
(
y
)
Doc 68
0.1935
-2.0000
5.0000
0.3871
testing/NTCIR/xhtml5/7/1011.2388/1011.2388_1_33.xhtml
Q
1
-
(
1
/
k
)
Q
1
-
(
1
/
k
)
T
1
¯
Doc 69
0.1935
-2.0000
5.0000
0.1935
testing/NTCIR/xhtml5/7/1011.2388/1011.2388_1_32.xhtml
Q
1
-
(
1
/
k
)
Doc 70
0.1935
-4.0000
4.0000
0.1935
testing/NTCIR/xhtml5/9/1308.1815/1308.1815_1_7.xhtml
1
-
(
1
-
z
)
1
/
k
Doc 71
0.1935
-4.0000
4.0000
0.1935
testing/NTCIR/xhtml5/3/hep-th0503043/hep-th0503043_1_62.xhtml
(
1
-
y
)
-
1
+
p
2
Doc 72
0.1765
0.0000
4.0000
0.1765
testing/NTCIR/xhtml5/4/hep-th0604053/hep-th0604053_1_21.xhtml
G
k
(
y
)
Doc 73
0.1765
-2.0000
4.0000
0.1765
testing/NTCIR/xhtml5/10/hep-th9402073/hep-th9402073_1_29.xhtml
(
1
-
1
/
k
)
Doc 74
0.1765
-2.0000
3.0000
0.3529
testing/NTCIR/xhtml5/6/1001.2101/1001.2101_1_36.xhtml
(
1
-
1
/
σ
)
n
(
1
-
1
/
σ
)
log
σ
n
Doc 75
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/9/1304.4636/1304.4636_1_92.xhtml
(
1
-
1
/
k
10
)
Doc 76
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/7/1107.2737/1107.2737_1_75.xhtml
μ
=
1
-
1
/
k
Doc 77
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/6/0912.2459/0912.2459_1_8.xhtml
n
(
1
-
1
/
k
)
Doc 78
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/9/1310.4640/1310.4640_1_65.xhtml
d
(
1
-
1
/
k
)
Doc 79
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/4/math0506260/math0506260_1_25.xhtml
a
=
1
-
1
/
k
Doc 80
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/8/1109.2969/1109.2969_1_46.xhtml
(
1
-
1
/
k
)
r
Doc 81
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/7/1004.1263/1004.1263_1_81.xhtml
s
=
1
-
1
/
k
Doc 82
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/7/1004.1263/1004.1263_1_60.xhtml
s
=
1
-
1
/
k
Doc 83
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/7/1107.2737/1107.2737_1_80.xhtml
μ
=
1
-
1
/
k
Doc 84
0.1765
-3.0000
4.0000
0.1765
testing/NTCIR/xhtml5/9/1304.4636/1304.4636_1_77.xhtml
(
1
-
1
/
k
10
)
Doc 85
0.1765
-4.0000
4.0000
0.1765
testing/NTCIR/xhtml5/7/1011.3426/1011.3426_1_30.xhtml
(
1
-
1
/
k
)
-
1
Doc 86
0.1765
-4.0000
4.0000
0.1765
testing/NTCIR/xhtml5/6/0905.2313/0905.2313_1_164.xhtml
t
=
(
1
-
1
/
k
)
Doc 87
0.1765
-5.0000
4.0000
0.1765
testing/NTCIR/xhtml5/9/1304.4636/1304.4636_1_60.xhtml
1
-
(
1
-
1
/
4
)
k
Doc 88
0.1765
-5.0000
4.0000
0.1765
testing/NTCIR/xhtml5/9/1304.4636/1304.4636_1_61.xhtml
1
-
(
1
-
1
/
4
)
k
Doc 89
0.1765
-5.0000
4.0000
0.1765
testing/NTCIR/xhtml5/9/1401.2710/1401.2710_1_21.xhtml
1
-
α
(
1
-
1
/
k
)
Doc 90
0.1765
-6.0000
4.0000
0.1765
testing/NTCIR/xhtml5/1/1204.0535/1204.0535_1_32.xhtml
(
1
/
k
)
(
1
-
1
/
k
)
Doc 91
0.1765
-6.0000
4.0000
0.1765
testing/NTCIR/xhtml5/6/0906.0949/0906.0949_1_3.xhtml
(
r
/
2
)
(
1
-
1
/
k
)
Doc 92
0.1765
-6.0000
4.0000
0.1765
testing/NTCIR/xhtml5/4/hep-th0609087/hep-th0609087_1_43.xhtml
Γ
(
1
+
2
j
-
1
/
k
)
Doc 93
0.1765
-6.0000
4.0000
0.1765
testing/NTCIR/xhtml5/1/1204.0535/1204.0535_1_34.xhtml
(
1
/
k
)
(
1
-
1
/
k
)
Doc 94
0.1765
-6.0000
3.0000
0.1765
testing/NTCIR/xhtml5/2/hep-th0110193/hep-th0110193_1_22.xhtml
d
y
2
/
(
1
-
1
/
y
)
Doc 95
0.1765
-10.0000
3.0000
0.1765
testing/NTCIR/xhtml5/6/1001.2101/1001.2101_1_35.xhtml
n
(
1
-
1
/
σ
)
log
σ
n
-
O
(
n
)
Doc 96
0.1765
-14.0000
3.0000
0.1765
testing/NTCIR/xhtml5/6/1003.1927/1003.1927_1_71.xhtml
(
1
+
y
)
1
/
2
=
1
+
y
/
2
+
O
(
y
2
)
Doc 97
0.1481
-10.0000
5.0000
0.1481
testing/NTCIR/xhtml5/3/math0405154/math0405154_1_78.xhtml
1
+
k
+
k
2
+
…
=
1
/
(
1
-
k
)
Doc 98
0.1379
-1.0000
4.0000
0.1379
testing/NTCIR/xhtml5/6/1001.1688/1001.1688_1_53.xhtml
(
1
/
k
)
-
Doc 99
0.1237
-3.0000
3.0000
0.1237
testing/NTCIR/xhtml5/6/0907.0243/0907.0243_1_51.xhtml
(
1
+
1
/
k
)
Doc 100
0.1237
-3.0000
3.0000
0.1237
testing/NTCIR/xhtml5/6/0907.0243/0907.0243_1_15.xhtml
(
1
+
1
/
k
)
Doc 101
0.1237
-3.0000
3.0000
0.1237
testing/NTCIR/xhtml5/6/0907.0243/0907.0243_1_11.xhtml
(
1
+
1
/
k
)
Doc 102
0.1237
-3.0000
3.0000
0.1237
testing/NTCIR/xhtml5/2/math0211298/math0211298_1_189.xhtml
(
1
+
1
/
k
)
Doc 103
0.1237
-3.0000
3.0000
0.1237
testing/NTCIR/xhtml5/2/cs0204024/cs0204024_1_5.xhtml
1
+
(
1
/
k
)
Doc 104
0.1237
-6.0000
3.0000
0.1237
testing/NTCIR/xhtml5/10/hep-th9405016/hep-th9405016_1_19.xhtml
λ
=
1
+
𝒪
(
1
/
k
)
Doc 105
0.1237
-7.0000
3.0000
0.1237
testing/NTCIR/xhtml5/1/1211.6997/1211.6997_1_58.xhtml
γ
=
1
+
Θ
(
1
/
k
2
)
Doc 106
0.1237
-8.0000
3.0000
0.1237
testing/NTCIR/xhtml5/2/math0105031/math0105031_1_17.xhtml
(
y
-
1
)
σ
=
(
y
σ
)
-
1
Doc 107
0.1237
-9.0000
3.0000
0.1237
testing/NTCIR/xhtml5/2/math0204009/math0204009_1_28.xhtml
1
/
(
1
-
(
-
1
)
)
=
1
/
2
Doc 108
0.1237
-12.0000
3.0000
0.1237
testing/NTCIR/xhtml5/1/math0002111/math0002111_1_43.xhtml
1
/
(
1
-
y
)
=
1
+
y
/
(
1
-
y
)
Doc 109
0.1237
-15.0000
3.0000
0.1237
testing/NTCIR/xhtml5/1/math0002111/math0002111_1_26.xhtml
1
/
(
1
-
y
)
=
1
+
y
+
y
2
/
(
1
-
y
)