tangent
Not Supported
d
d
x
(
log
c
x
)
=
1
x
ln
c
,
c
>
0
,
c
≠
1
Search
Returned 91 matches (100 formulae, 111 docs)
Lookup 405.035 ms, Re-ranking 469.943 ms
Found 7445454 tuple postings, 5202654 formulae, 2703066 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.4878
-17.0000
11.0000
0.4878
testing/NTCIR/xhtml5/4/math0611781/math0611781_1_20.xhtml
d
d
x
(
log
x
+
a
x
)
=
1
x
-
a
x
2
=
x
-
a
x
2
.
Doc 2
0.4412
-2.0000
8.0000
0.4412
testing/NTCIR/xhtml5/8/1111.5841/1111.5841_1_15.xhtml
v
(
𝐱
)
=
α
x
,
α
>
0
,
Doc 3
0.4412
-6.0000
8.0000
0.4412
testing/NTCIR/xhtml5/8/1108.4707/1108.4707_1_59.xhtml
f
(
x
)
=
1
(
-
log
x
)
β
,
β
>
0
,
Doc 4
0.4412
-8.0000
8.0000
0.4412
testing/NTCIR/xhtml5/4/math0609290/math0609290_1_3.xhtml
μ
(
d
x
)
=
d
x
1
+
|
x
|
γ
,
γ
>
0
,
Doc 5
0.4412
-9.0000
9.0000
0.4412
testing/NTCIR/xhtml5/8/1211.2005/1211.2005_1_40.xhtml
ρ
(
x
)
=
c
x
x
!
,
c
>
0
,
x
∈
ℕ
0
,
Doc 6
0.4412
-9.0000
9.0000
0.4412
testing/NTCIR/xhtml5/8/1211.2005/1211.2005_1_38.xhtml
ρ
(
x
)
=
c
x
x
!
,
c
>
0
,
x
∈
ℕ
0
,
Doc 7
0.4412
-18.0000
8.0000
0.4412
testing/NTCIR/xhtml5/8/1210.6126/1210.6126_1_12.xhtml
Ψ
(
z
)
=
d
d
z
(
log
Γ
(
z
)
)
=
Γ
′
(
z
)
Γ
(
z
)
,
Re
z
>
0
,
Doc 8
0.4145
-14.0000
9.0000
0.4145
testing/NTCIR/xhtml5/7/1105.1468/1105.1468_1_48.xhtml
π
D
μ
(
x
)
=
c
e
-
μ
x
x
β
+
1
,
c
>
0
,
x
>
0.
Doc 9
0.4145
-15.0000
9.0000
0.4145
testing/NTCIR/xhtml5/7/1105.0657/1105.0657_1_62.xhtml
π
D
μ
(
x
)
=
c
e
-
μ
x
x
β
+
1
,
c
>
0
,
x
>
0
,
Doc 10
0.3945
-5.0000
7.0000
0.3945
testing/NTCIR/xhtml5/3/math0304085/math0304085_1_126.xhtml
d
P
W
d
u
(
u
)
=
1
u
-
1
Doc 11
0.3945
-16.0000
9.0000
0.3945
testing/NTCIR/xhtml5/8/1208.3903/1208.3903_1_29.xhtml
d
d
x
(
log
(
1
+
x
)
-
x
+
x
2
2
)
=
x
2
1
+
x
,
Doc 12
0.3673
-2.0000
6.0000
0.3673
testing/NTCIR/xhtml5/4/hep-th0512179/hep-th0512179_1_13.xhtml
d
x
d
r
(
x
M
)
=
0
,
Doc 13
0.3673
-2.0000
6.0000
0.3673
testing/NTCIR/xhtml5/4/hep-th0512179/hep-th0512179_1_15.xhtml
d
x
d
r
(
x
M
)
=
0
,
Doc 14
0.3673
-8.0000
7.0000
0.3673
testing/NTCIR/xhtml5/9/1309.0473/1309.0473_1_56.xhtml
d
d
t
(
1
e
2
)
=
a
(
⋯
)
e
2
,
Doc 15
0.3673
-10.0000
7.0000
0.3673
testing/NTCIR/xhtml5/5/0810.2988/0810.2988_1_151.xhtml
d
U
d
t
(
0
)
=
1
τ
T
J
(
V
T
)
>
0
Doc 16
0.3478
-8.0000
5.0000
0.3478
testing/NTCIR/xhtml5/2/hep-th0210052/hep-th0210052_1_90.xhtml
1
2
(
κ
+
-
κ
-
)
=
d
β
d
r
,
Doc 17
0.3478
-8.0000
5.0000
0.3478
testing/NTCIR/xhtml5/3/hep-th0405181/hep-th0405181_1_185.xhtml
1
2
(
κ
+
-
κ
-
)
=
d
β
d
r
,
Doc 18
0.3364
-11.0000
6.0000
0.3364
testing/NTCIR/xhtml5/1/hep-th0005141/hep-th0005141_1_2.xhtml
j
-
=
d
d
x
,
j
=
0
,
1
2
,
1
,
…
,
Doc 19
0.3200
-4.0000
8.0000
0.3200
testing/NTCIR/xhtml5/8/1207.6735/1207.6735_1_38.xhtml
f
(
x
)
=
1
x
p
,
x
>
0
Doc 20
0.3200
-4.0000
7.0000
0.3200
testing/NTCIR/xhtml5/7/1009.4280/1009.4280_1_183.xhtml
d
n
y
d
x
n
(
λ
)
=
0
,
Doc 21
0.3200
-6.0000
6.0000
0.3200
testing/NTCIR/xhtml5/10/gr-qc9511015/gr-qc9511015_1_21.xhtml
1
u
d
d
ρ
(
u
ϕ
′
)
=
0
,
Doc 22
0.3200
-8.0000
8.0000
0.3200
testing/NTCIR/xhtml5/4/math-ph0607038/math-ph0607038_1_80.xhtml
=
d
d
x
+
(
a
+
1
2
)
1
x
,
Doc 23
0.3200
-14.0000
6.0000
0.3200
testing/NTCIR/xhtml5/8/1110.2642/1110.2642_1_52.xhtml
h
′′
(
x
)
=
d
ξ
x
d
x
=
1
g
′′
(
ξ
x
)
>
0
,
Doc 24
0.3011
0.0000
7.0000
0.3011
testing/NTCIR/xhtml5/9/1401.0512/1401.0512_1_189.xhtml
c
>
0
,
c
≠
1
Doc 25
0.3011
-1.0000
6.0000
0.3011
testing/NTCIR/xhtml5/2/math0207083/math0207083_1_122.xhtml
d
d
x
(
g
)
=
0
Doc 26
0.3011
-1.0000
6.0000
0.3011
testing/NTCIR/xhtml5/2/math0207083/math0207083_1_121.xhtml
d
d
x
(
g
)
=
0
Doc 27
0.3011
-3.0000
4.0000
0.3011
testing/NTCIR/xhtml5/1/cs9808001/cs9808001_1_13.xhtml
g
(
x
)
=
d
x
d
t
,
Doc 28
0.3011
-3.0000
4.0000
0.3011
testing/NTCIR/xhtml5/1/cs9905016/cs9905016_1_23.xhtml
g
(
x
)
=
d
x
d
t
,
Doc 29
0.3011
-10.0000
6.0000
0.3011
testing/NTCIR/xhtml5/5/0706.2642/0706.2642_1_46.xhtml
d
d
x
(
s
log
x
-
x
)
=
-
x
-
s
x
Doc 30
0.2724
-2.0000
6.0000
0.2724
testing/NTCIR/xhtml5/10/hep-th9703176/hep-th9703176_1_58.xhtml
d
d
x
(
1
y
)
=
Doc 31
0.2724
-5.0000
7.0000
0.2724
testing/NTCIR/xhtml5/11/gr-qc9912067/gr-qc9912067_1_124.xhtml
d
Ω
2
d
x
(
x
0
)
=
0
,
Doc 32
0.2724
-5.0000
7.0000
0.2724
testing/NTCIR/xhtml5/11/gr-qc9912067/gr-qc9912067_1_129.xhtml
d
Ω
2
d
x
(
x
0
)
=
0
,
Doc 33
0.2724
-5.0000
7.0000
0.2724
testing/NTCIR/xhtml5/2/math-ph0010052/math-ph0010052_1_81.xhtml
d
n
w
d
x
n
(
0
)
=
0
,
Doc 34
0.2724
-7.0000
6.0000
0.2724
testing/NTCIR/xhtml5/5/0712.2728/0712.2728_1_5.xhtml
S
0
,
2
(
x
)
=
1
x
,
x
≫
1.
Doc 35
0.2724
-10.0000
5.0000
0.2724
testing/NTCIR/xhtml5/5/0705.0240/0705.0240_1_18.xhtml
1
M
P
2
(
d
ϕ
d
𝒩
)
2
=
r
8
,
Doc 36
0.2724
-12.0000
6.0000
0.2724
testing/NTCIR/xhtml5/6/0901.1751/0901.1751_1_73.xhtml
d
d
t
(
1
|
Q
|
∫
Q
v
(
t
)
d
x
)
=
0
,
Doc 37
0.2724
-18.0000
4.0000
0.2724
testing/NTCIR/xhtml5/7/1010.4432/1010.4432_1_5.xhtml
γ
(
A
)
=
1
log
2
∫
A
d
x
x
+
1
,
A
∈
ℬ
[
0
,
1
]
.
Doc 38
0.2542
-2.0000
6.0000
0.2542
testing/NTCIR/xhtml5/2/math0201109/math0201109_1_84.xhtml
m
(
x
)
=
1
x
,
Doc 39
0.2542
-2.0000
6.0000
0.2542
testing/NTCIR/xhtml5/6/1001.2630/1001.2630_1_41.xhtml
d
ℬ
d
x
(
x
)
=
Doc 40
0.2542
-2.0000
3.0000
0.2542
testing/NTCIR/xhtml5/1/hep-th0004106/hep-th0004106_1_27.xhtml
(
…
)
′
=
d
d
x
Doc 41
0.2542
-4.0000
4.0000
0.2542
testing/NTCIR/xhtml5/4/hep-th0509002/hep-th0509002_1_19.xhtml
ρ
(
h
)
=
d
x
d
h
,
Doc 42
0.2542
-6.0000
6.0000
0.2542
testing/NTCIR/xhtml5/6/1001.1485/1001.1485_1_2.xhtml
d
d
x
(
s
(
x
)
x
)
=
0
Doc 43
0.2542
-6.0000
4.0000
0.2542
testing/NTCIR/xhtml5/5/0710.4062/0710.4062_1_24.xhtml
f
(
x
)
=
d
z
(
x
)
d
x
,
Doc 44
0.2542
-6.0000
4.0000
0.2542
testing/NTCIR/xhtml5/4/hep-th0607125/hep-th0607125_1_31.xhtml
f
(
x
)
=
d
u
(
x
)
d
x
,
Doc 45
0.2542
-6.0000
3.0000
0.2542
testing/NTCIR/xhtml5/2/math0104026/math0104026_1_15.xhtml
μ
(
f
)
=
d
d
x
(
x
⋅
f
)
Doc 46
0.2542
-7.0000
4.0000
0.2542
testing/NTCIR/xhtml5/2/hep-ph0109051/hep-ph0109051_1_44.xhtml
x
˙
μ
(
τ
)
=
d
x
μ
d
τ
,
Doc 47
0.2542
-8.0000
6.0000
0.2542
testing/NTCIR/xhtml5/6/0907.4038/0907.4038_1_26.xhtml
d
V
2
d
x
(
x
)
=
o
(
1
x
)
Doc 48
0.2542
-8.0000
5.0000
0.2542
testing/NTCIR/xhtml5/5/0806.1836/0806.1836_1_77.xhtml
ψ
(
x
)
=
d
d
x
(
ln
Γ
(
x
)
)
.
Doc 49
0.2542
-8.0000
5.0000
0.2542
testing/NTCIR/xhtml5/1/hep-th9905114/hep-th9905114_1_20.xhtml
x
n
′
=
d
x
n
d
α
(
0
)
=
1
Doc 50
0.2542
-8.0000
3.0000
0.2542
testing/NTCIR/xhtml5/9/1311.2295/1311.2295_1_7.xhtml
T
(
k
)
=
d
d
x
+
ω
k
x
,
Doc 51
0.2542
-10.0000
4.0000
0.2542
testing/NTCIR/xhtml5/2/math0105236/math0105236_1_128.xhtml
q
(
x
)
=
1
n
d
p
D
(
x
)
d
x
,
Doc 52
0.2542
-12.0000
5.0000
0.2542
testing/NTCIR/xhtml5/5/0808.2708/0808.2708_1_3.xhtml
x
(
0
)
=
1
a
,
d
x
d
t
|
t
=
0
=
0
,
Doc 53
0.2542
-13.0000
5.0000
0.2542
testing/NTCIR/xhtml5/2/cond-mat0106096/cond-mat0106096_1_130.xhtml
P
(
k
)
=
1
k
!
d
k
G
0
d
x
k
|
x
=
0
.
Doc 54
0.2542
-14.0000
5.0000
0.2542
testing/NTCIR/xhtml5/6/1003.5583/1003.5583_1_24.xhtml
G
(
s
)
=
1
s
!
d
s
H
0
(
x
)
d
x
s
|
x
=
0
Doc 55
0.2243
-8.0000
4.0000
0.2243
testing/NTCIR/xhtml5/3/math-ph0312061/math-ph0312061_1_6.xhtml
σ
(
ω
)
=
1
2
π
d
ϕ
d
ω
,
Doc 56
0.2243
-8.0000
4.0000
0.2243
testing/NTCIR/xhtml5/10/hep-th9807212/hep-th9807212_1_83.xhtml
(
d
x
μ
d
s
)
F
=
π
μ
m
,
Doc 57
0.2243
-12.0000
5.0000
0.2243
testing/NTCIR/xhtml5/9/1309.4344/1309.4344_1_18.xhtml
f
(
x
)
=
1
x
(
x
d
d
x
)
r
g
(
x
)
,
Doc 58
0.2073
-1.0000
3.0000
0.2073
testing/NTCIR/xhtml5/7/1104.4502/1104.4502_1_224.xhtml
=
d
d
x
,
Doc 59
0.2073
-3.0000
3.0000
0.2073
testing/NTCIR/xhtml5/9/1302.4632/1302.4632_1_104.xhtml
∂
x
=
d
d
x
,
Doc 60
0.2073
-3.0000
3.0000
0.2073
testing/NTCIR/xhtml5/10/hep-th9311142/hep-th9311142_1_16.xhtml
J
-
=
d
d
x
,
Doc 61
0.2073
-3.0000
3.0000
0.2073
testing/NTCIR/xhtml5/3/gr-qc0303067/gr-qc0303067_1_6.xhtml
v
=
d
x
d
t
,
Doc 62
0.2073
-6.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0902.3561/0902.3561_1_161.xhtml
D
(
x
)
=
d
S
d
x
(
x
)
Doc 63
0.2073
-6.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1303.3315/1303.3315_1_55.xhtml
f
(
x
)
=
d
μ
d
x
(
x
)
Doc 64
0.2073
-6.0000
5.0000
0.2073
testing/NTCIR/xhtml5/5/0706.2642/0706.2642_1_11.xhtml
g
(
x
)
=
d
f
d
x
(
x
)
Doc 65
0.2073
-6.0000
4.0000
0.2073
testing/NTCIR/xhtml5/4/math-ph0506017/math-ph0506017_1_17.xhtml
d
σ
d
x
=
1
y
2
,
Doc 66
0.2073
-7.0000
5.0000
0.2073
testing/NTCIR/xhtml5/2/math0209254/math0209254_1_85.xhtml
r
′
(
x
)
=
d
r
d
x
(
x
)
Doc 67
0.2073
-7.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/hep-th0405094/hep-th0405094_1_43.xhtml
Υ
′
(
x
)
=
d
Υ
d
x
(
x
)
Doc 68
0.2073
-7.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0907.3073/0907.3073_1_9.xhtml
F
′
(
x
)
=
d
F
d
x
(
x
)
Doc 69
0.2073
-7.0000
4.0000
0.2073
testing/NTCIR/xhtml5/8/1210.6552/1210.6552_1_1.xhtml
x
˙
(
t
)
=
d
x
d
t
(
t
)
Doc 70
0.2073
-7.0000
4.0000
0.2073
testing/NTCIR/xhtml5/11/hep-th9911189/hep-th9911189_1_19.xhtml
d
J
d
x
=
1
F
(
x
)
,
Doc 71
0.2073
-7.0000
3.0000
0.2073
testing/NTCIR/xhtml5/3/math-ph0305050/math-ph0305050_1_15.xhtml
v
(
x
)
=
d
u
d
x
1
u
Doc 72
0.2073
-8.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1212.0818/1212.0818_1_17.xhtml
ψ
0
(
x
)
=
d
ϕ
K
d
x
(
x
)
Doc 73
0.2073
-8.0000
5.0000
0.2073
testing/NTCIR/xhtml5/5/0706.1419/0706.1419_1_182.xhtml
ρ
(
x
)
=
d
μ
⊞
ν
d
x
(
x
)
Doc 74
0.2073
-8.0000
4.0000
0.2073
testing/NTCIR/xhtml5/5/0712.1674/0712.1674_1_4.xhtml
H
(
a
)
=
1
a
d
a
d
t
,
Doc 75
0.2073
-8.0000
4.0000
0.2073
testing/NTCIR/xhtml5/9/1401.5106/1401.5106_1_46.xhtml
x
(
0
)
=
0
=
d
x
d
V
(
0
)
Doc 76
0.2073
-9.0000
5.0000
0.4145
testing/NTCIR/xhtml5/6/0905.2444/0905.2444_1_23.xhtml
x
d
d
x
(
1
x
d
A
d
x
)
1
x
d
d
x
(
x
d
B
d
x
)
Doc 77
0.2073
-9.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1307.5896/1307.5896_1_127.xhtml
w
(
x
)
=
1
x
(
ψ
(
-
log
x
)
)
2
Doc 78
0.2073
-9.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0905.2444/0905.2444_1_24.xhtml
x
d
d
x
(
1
x
d
A
d
x
)
Doc 79
0.2073
-9.0000
3.0000
0.2073
testing/NTCIR/xhtml5/7/1104.4232/1104.4232_1_36.xhtml
∂
(
n
)
=
1
n
!
(
d
d
x
)
n
Doc 80
0.2073
-9.0000
3.0000
0.2073
testing/NTCIR/xhtml5/8/1110.0229/1110.0229_1_87.xhtml
∂
n
=
1
n
!
(
d
d
x
)
n
.
Doc 81
0.2073
-9.0000
3.0000
0.2073
testing/NTCIR/xhtml5/7/1104.3921/1104.3921_1_64.xhtml
∂
(
n
)
=
1
n
!
(
d
d
x
)
n
Doc 82
0.2073
-12.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0912.4488/0912.4488_1_56.xhtml
F
g
(
x
)
=
1
x
g
(
log
x
)
,
x
>
0
,
Doc 83
0.2073
-14.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/hep-th0410083/hep-th0410083_1_49.xhtml
I
pole
(
0
)
=
1
240
d
5
ϕ
d
x
5
|
x
=
0
,
Doc 84
0.2073
-14.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/math-ph0502050/math-ph0502050_1_54.xhtml
Pf
(
1
|
x
|
)
=
d
d
x
(
sgn
(
x
)
log
|
x
|
)
,
Doc 85
0.2073
-14.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1312.7171/1312.7171_1_12.xhtml
d
d
x
Li
k
(
x
)
=
1
x
Li
k
-
1
(
x
)
.
Doc 86
0.2073
-14.0000
4.0000
0.2073
testing/NTCIR/xhtml5/5/0802.2776/0802.2776_1_15.xhtml
ℋ
(
x
)
=
1
2
(
d
ϕ
d
x
)
2
+
V
(
ϕ
)
;
Doc 87
0.1754
-6.0000
4.0000
0.1754
testing/NTCIR/xhtml5/5/0808.3499/0808.3499_1_17.xhtml
d
𝐰
d
x
=
1
x
L
𝐰
Doc 88
0.1754
-8.0000
4.0000
0.1754
testing/NTCIR/xhtml5/5/0706.2343/0706.2343_1_82.xhtml
d
𝐰
d
x
=
1
x
L
(
x
)
𝐰
Doc 89
0.1754
-11.0000
3.0000
0.1754
testing/NTCIR/xhtml5/3/cond-mat0410095/cond-mat0410095_1_10.xhtml
A
^
=
1
x
d
d
x
x
d
d
x
,
Doc 90
0.1754
-15.0000
5.0000
0.1754
testing/NTCIR/xhtml5/10/gr-qc9707045/gr-qc9707045_1_34.xhtml
d
ln
β
d
x
~
=
1
x
~
(
1
N
-
1
)
,
Doc 91
0.1600
-4.0000
4.0000
0.1600
testing/NTCIR/xhtml5/4/hep-th0512179/hep-th0512179_1_10.xhtml
d
r
d
x
>
0
,
Doc 92
0.1600
-4.0000
4.0000
0.1600
testing/NTCIR/xhtml5/4/hep-th0512179/hep-th0512179_1_12.xhtml
d
r
d
x
>
0
,
Doc 93
0.1600
-6.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/0705.3282/0705.3282_1_11.xhtml
D
=
1
i
d
d
x
,
Doc 94
0.1600
-7.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0712.4066/0712.4066_1_18.xhtml
d
y
d
x
=
1
x
2
.
Doc 95
0.1600
-7.0000
4.0000
0.1600
testing/NTCIR/xhtml5/8/1202.2402/1202.2402_1_6.xhtml
δ
x
=
1
x
⋅
d
d
x
Doc 96
0.1600
-8.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0705.3990/0705.3990_1_70.xhtml
d
d
x
b
(
x
)
=
-
1
x
Doc 97
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/7/1007.4349/1007.4349_1_14.xhtml
a
=
1
2
(
x
+
d
d
x
)
a
†
=
1
2
(
x
-
d
d
x
)
Doc 98
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/7/1010.0204/1010.0204_1_17.xhtml
a
=
1
2
(
x
+
d
d
x
)
a
†
=
1
2
(
x
-
d
d
x
)
Doc 99
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/6/0905.2929/0905.2929_1_9.xhtml
b
=
1
2
(
x
+
d
d
x
)
b
†
=
1
2
(
x
-
d
d
x
)
Doc 100
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/7/1106.0112/1106.0112_1_84.xhtml
a
=
1
2
(
x
+
d
d
x
)
a
†
=
1
2
(
x
-
d
d
x
)
Doc 101
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/1003.4620/1003.4620_1_58.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 102
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1106.0112/1106.0112_1_82.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 103
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1007.4349/1007.4349_1_18.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 104
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/math-ph0409052/math-ph0409052_1_2.xhtml
a
±
=
1
2
(
x
±
d
d
x
)
Doc 105
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/gr-qc0404009/gr-qc0404009_1_27.xhtml
T
H
=
1
4
π
(
d
f
d
x
)
+
Doc 106
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/10/hep-th9808062/hep-th9808062_1_9.xhtml
b
±
=
1
2
(
x
∓
d
d
x
)
Doc 107
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/hep-th0307205/hep-th0307205_1_17.xhtml
T
=
1
4
π
d
V
d
x
|
x
=
x
0
Doc 108
0.1600
-10.0000
3.0000
0.1600
testing/NTCIR/xhtml5/10/hep-th9710224/hep-th9710224_1_9.xhtml
x
0
˙
=
d
x
0
d
t
>
0
,
∀
t
Doc 109
0.1600
-12.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0707.3451/0707.3451_1_55.xhtml
=
1
r
(
r
p
0
)
1
/
2
d
d
x
,
Doc 110
0.1600
-14.0000
4.0000
0.1600
testing/NTCIR/xhtml5/9/1309.4344/1309.4344_1_42.xhtml
1
x
(
x
d
d
x
)
r
f
(
x
)
=
g
(
x
)
,
Doc 111
0.1600
-14.0000
4.0000
0.1600
testing/NTCIR/xhtml5/10/gr-qc9706011/gr-qc9706011_1_12.xhtml
1
2
(
d
ϕ
d
x
3
)
2
-
U
(
ϕ
)
=
0
,