tangent
Not Supported
μ
(
A
)
=
{
1
if
0
∈
A
0
if
0
∉
A
.
Search
Returned 75 matches (100 formulae, 107 docs)
Lookup 114.141 ms, Re-ranking 220.363 ms
Found 2921478 tuple postings, 2552622 formulae, 1714880 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.9069
-2.0000
15.0000
0.9069
testing/NTCIR/xhtml5/4/math0504230/math0504230_1_9.xhtml
v
(
A
)
:=
{
1
if
0
∈
A
,
0
if
0
∉
A
.
Doc 2
0.8108
-7.0000
13.0000
0.8108
testing/NTCIR/xhtml5/2/math0104190/math0104190_1_6.xhtml
I
(
A
,
ω
)
=
def
{
1
,
if
ω
∈
A
0
,
if
ω
∉
A
.
Doc 3
0.7494
-3.0000
13.0000
0.7494
testing/NTCIR/xhtml5/9/1303.4612/1303.4612_1_9.xhtml
δ
x
(
A
)
=
{
1
if
x
∈
A
0
if
x
∉
A
x
A
x\notin A
subscript
δ
x
A
1if x∈AxAx\in A0if x∉AxAx\notin A
\delta_{x}(A)=\begin{cases}1&\mbox{if $x\in A$}\\ 0&\mbox{if $x\notin A$}\end{cases}
Doc 4
0.7494
-3.0000
13.0000
0.7494
testing/NTCIR/xhtml5/6/1002.4225/1002.4225_1_8.xhtml
ω
*
(
A
)
=
{
1
if
ω
∈
A
0
if
ω
∉
A
Doc 5
0.7494
-4.0000
11.0000
0.7494
testing/NTCIR/xhtml5/5/0811.0702/0811.0702_1_30.xhtml
δ
C
(
x
)
=
{
1
if
x
∈
C
0
if
x
∉
C
.
Doc 6
0.7494
-7.0000
13.0000
0.7494
testing/NTCIR/xhtml5/3/math0404428/math0404428_1_12.xhtml
I
A
(
t
)
=
{
1
,
if
t
∈
A
,
0
,
if
t
∉
A
t
A
t\not\in A
.
subscript
I
A
t
1if t∈AtAt\in A0if t∉AtAt\not\in A
I_{A}(t)=\begin{cases}1,&\text{if $t\in A$},\\ 0,&\text{if $t\not\in A$}.\end{cases}
Doc 7
0.7494
-10.0000
13.0000
0.7494
testing/NTCIR/xhtml5/5/0804.1837/0804.1837_1_20.xhtml
∫
A
δ
c
(
d
w
)
=
{
1
,
if
c
∈
A
,
0
,
if
c
∉
A
.
Doc 8
0.7494
-10.0000
13.0000
0.7494
testing/NTCIR/xhtml5/6/0908.3222/0908.3222_1_21.xhtml
∫
A
δ
c
(
d
w
)
=
{
1
,
if
c
∈
A
,
0
,
if
c
∉
A
.
Doc 9
0.7241
-11.0000
10.0000
0.7241
testing/NTCIR/xhtml5/6/0812.1085/0812.1085_1_69.xhtml
μ
(
s
)
=
{
1
if
0
≤
s
≤
2
/
3
0
if
3
/
4
≤
s
≤
1
Doc 10
0.7107
-4.0000
13.0000
0.7107
testing/NTCIR/xhtml5/4/math0504230/math0504230_1_15.xhtml
v
(
A
)
:=
{
1
if
𝐯
∈
A
,
0
if
𝐯
∉
A
.
Doc 11
0.6878
-3.0000
10.0000
0.6878
testing/NTCIR/xhtml5/7/1105.1628/1105.1628_1_13.xhtml
f
(
n
)
=
{
1
if
n
∈
𝒩
0
if
n
∉
𝒩
Doc 12
0.6878
-5.0000
12.0000
0.6878
testing/NTCIR/xhtml5/5/0712.0408/0712.0408_1_53.xhtml
χ
A
(
n
)
=
{
1
if
n
∈
A
0
if
n
∉
A
n
A
n\notin A
.
subscript
χ
A
n
1if n∈AnAn\in A0if n∉AnAn\notin A.
\chi_{A}(n)=\begin{cases}1&\text{if $n\in A$}\\ 0&\text{if $n\notin A$.}\end{cases}
Doc 13
0.6878
-5.0000
10.0000
0.6878
testing/NTCIR/xhtml5/8/1108.3933/1108.3933_1_8.xhtml
δ
X
(
k
)
=
{
1
if
k
∈
X
,
0
if
k
∉
X
Doc 14
0.6878
-5.0000
10.0000
0.6878
testing/NTCIR/xhtml5/2/hep-th0111245/hep-th0111245_1_11.xhtml
δ
Γ
(
x
)
=
{
1
if
x
∈
Γ
0
if
x
∉
Γ
.
Doc 15
0.6878
-5.0000
10.0000
0.6878
testing/NTCIR/xhtml5/9/1312.5078/1312.5078_1_5.xhtml
δ
x
(
A
)
=
{
0
if
x
∉
A
1
if
x
∈
A
x
A
x\in A
.
subscript
δ
x
A
0if x∉AxAx\notin A1if x∈AxAx\in A
\delta_{x}(A)=\begin{cases}0&\mbox{if $x\notin A$}\\ 1&\mbox{if $x\in A$}.\end{cases}
Doc 16
0.6878
-5.0000
9.0000
0.6878
testing/NTCIR/xhtml5/2/math0107180/math0107180_1_71.xhtml
δ
i
(
r
)
=
{
1
if
i
≥
r
0
if
i
<
r
.
Doc 17
0.6878
-6.0000
12.0000
0.6878
testing/NTCIR/xhtml5/7/1105.0717/1105.0717_1_2.xhtml
χ
A
(
x
)
=
{
1
if
x
∈
A
,
0
if
x
∉
A
,
Doc 18
0.6878
-8.0000
12.0000
0.6878
testing/NTCIR/xhtml5/3/math0302091/math0302091_1_49.xhtml
r
A
,
1
(
x
)
=
{
1
if
x
∈
A
,
0
if
x
∉
A
x
A
x\not\in A
,
subscript
r
A
1
x
1if x∈AxAx\in A,0if x∉AxAx\not\in A,
r_{A,1}(x)=\left\{\begin{array}[]{ll}1&\text{if $x\in A$,}\\ 0&\text{if $x\not\in A$,}\end{array}\right.
Doc 19
0.6878
-9.0000
9.0000
0.6878
testing/NTCIR/xhtml5/9/1309.3739/1309.3739_1_144.xhtml
E
a
(
t
)
=
{
1
if
a
≤
t
≤
1
0
if
0
≤
t
<
a
.
Doc 20
0.6878
-9.0000
9.0000
0.6878
testing/NTCIR/xhtml5/5/0708.1015/0708.1015_1_29.xhtml
ψ
(
x
)
=
{
1
if
0
<
x
⩽
γ
;
0
if
γ
<
x
⩽
1
γ
x
1
\gamma<x\leqslant 1
.
ψ
x
1if 0<x⩽γ0xγ0<x\leqslant\gamma0if γ<x⩽1γx1\gamma<x\leqslant 1
\psi(x)=\left\{\begin{array}[]{ll}1&\quad\hbox{if $0<x\leqslant\gamma$};\\ 0&\quad\mbox{if $\gamma<x\leqslant 1$}.\end{array}\right.
Doc 21
0.6630
-3.0000
8.0000
0.6630
testing/NTCIR/xhtml5/3/math0302145/math0302145_1_85.xhtml
b
(
x
)
=
{
1
if
0
≤
x
≤
α
0
otherwise.
b
x
1if 0≤x≤α0xα0\leq x\leq\alpha0otherwise.
b(x)=\left\{\begin{array}[]{ll}1&\mbox{if $0\leq x\leq\alpha$}\\ 0&\mbox{otherwise.}\end{array}\right.
Doc 22
0.6630
-4.0000
8.0000
0.6630
testing/NTCIR/xhtml5/5/0707.1744/0707.1744_1_50.xhtml
f
(
x
)
=
{
1
if
0
≤
x
≤
1
,
0
otherwise,
f
x
1if 0≤x≤10x10\leq x\leq 1,0otherwise,
\displaystyle f(x)=\begin{cases}1&\text{if\quad$0\leq x\leq 1$,}\\ 0&\text{otherwise,}\end{cases}
Doc 23
0.6630
-4.0000
8.0000
0.6630
testing/NTCIR/xhtml5/9/1401.2597/1401.2597_1_62.xhtml
ϕ
(
y
)
=
{
1
if
0
≤
y
<
1
,
0
otherwise.
Doc 24
0.6630
-6.0000
9.0000
0.6630
testing/NTCIR/xhtml5/9/1212.4647/1212.4647_1_59.xhtml
ξ
(
t
)
=
{
1
if
0
≤
t
≤
1
0
if
t
≥
2.
Doc 25
0.6630
-7.0000
9.0000
0.6630
testing/NTCIR/xhtml5/6/0909.2811/0909.2811_1_16.xhtml
E
(
γ
)
=
{
1
if
γ
≥
1
,
0
if
0
<
γ
<
1.
Doc 26
0.6630
-8.0000
10.0000
0.6630
testing/NTCIR/xhtml5/10/quant-ph9808067/quant-ph9808067_1_70.xhtml
V
s
(
A
∈
Δ
)
=
{
1
if
s
∈
A
¯
-
1
[
Δ
]
0
otherwise.
fragments
superscript
V
s
fragments
normal-(
A
Δ
normal-)
fragments
normal-{
1if s∈A¯-1[Δ]ssuperscriptnormal-¯A1normal-Δs\in\bar{A}^{-1}[\Delta]0otherwise.
V^{s}(A\in\Delta)=\left\{\begin{array}[]{ll}1&\mbox{if $s\in\bar{A}^{-1}[% \Delta]$}\\ 0&\mbox{otherwise.}\end{array}\right.
Doc 27
0.6630
-8.0000
9.0000
0.6630
testing/NTCIR/xhtml5/6/0908.0492/0908.0492_1_13.xhtml
ψ
(
r
)
=
{
1
if
0
≤
r
≤
1
,
0
if
r
>
1
r
1
\;r>1
.
ψ
r
1 if 0≤r≤1 0r1\;0\leq r\leq 10 if r>1r1\;r>1.
\psi(r)=\left\{\begin{array}[]{ll}1&\mbox{ if $\;0\leq r\leq 1$},\\ 0&\mbox{ if $\;r>1$.}\end{array}\right.
Doc 28
0.6630
-9.0000
9.0000
0.6630
testing/NTCIR/xhtml5/4/math0509073/math0509073_1_180.xhtml
φ
0
(
r
)
=
{
1
-
r
if
0
≤
r
≤
1
0
if
r
≥
1
r
1
r\geq\ 1
subscript
φ
0
r
-1rif 0≤r≤10r10\leq r\leq 10if r≥ 1r 1r\geq\ 1
\varphi_{0}(r)=\begin{cases}1-r&\text{if $0\leq r\leq 1$}\\ 0&\text{if $r\geq\ 1$}\\ \end{cases}
Doc 29
0.6630
-9.0000
9.0000
0.6630
testing/NTCIR/xhtml5/3/hep-th0404160/hep-th0404160_1_18.xhtml
Ω
(
u
)
=
{
1
,
if
0
≤
u
≤
1
,
0
,
if
u
>
1.
Doc 30
0.6630
-10.0000
9.0000
0.6630
testing/NTCIR/xhtml5/9/1306.3190/1306.3190_1_79.xhtml
ϕ
0
(
t
)
=
{
1
if
0
⩽
t
⩽
1
2
,
0
if
t
⩾
1.
Doc 31
0.6482
-8.0000
12.0000
0.6482
testing/NTCIR/xhtml5/6/1002.4225/1002.4225_1_26.xhtml
a
δ
ω
1
(
A
)
=
{
a
if
ω
1
∈
A
0
if
ω
1
∉
A
Doc 32
0.6358
-11.0000
9.0000
0.6358
testing/NTCIR/xhtml5/3/math0309026/math0309026_1_21.xhtml
ρ
(
y
)
=
{
1
,
if
0
≤
|
y
|
≤
1
0
,
if
|
y
|
>
2
y
2
|y|>2
ρ
y
1if 0≤|y|≤10y10\leq|y|\leq 10if |y|>2y2|y|>2
\displaystyle\rho(y)=\begin{cases}1,&\text{if $0\leq|y|\leq 1$}\\ 0,&\text{if $|y|>2$}\end{cases}
Doc 33
0.6358
-11.0000
9.0000
0.6358
testing/NTCIR/xhtml5/2/math0208240/math0208240_1_107.xhtml
ρ
(
y
)
=
{
1
,
if
0
≤
|
y
|
≤
1
0
,
if
|
y
|
>
2
y
2
|y|>2
ρ
y
1if 0≤|y|≤10y10\leq|y|\leq 10if |y|>2y2|y|>2
\displaystyle\rho(y)=\begin{cases}1,&\text{if $0\leq|y|\leq 1$}\\ 0,&\text{if $|y|>2$}\end{cases}
Doc 34
0.6261
-5.0000
12.0000
0.6261
testing/NTCIR/xhtml5/4/math0610385/math0610385_1_21.xhtml
[
A
]
(
x
)
=
{
1
if
x
∈
A
0
if
x
∉
A
Doc 35
0.6261
-5.0000
10.0000
0.6261
testing/NTCIR/xhtml5/4/math0701001/math0701001_1_88.xhtml
H
(
x
)
=
{
1
if
x
∈
H
0
if
x
∉
H
x
H
x\notin H
.
H
x
1 if x∈HxHx\in H0 if x∉HxHx\notin H.
H(x)=\begin{cases}1&\text{ if $x\in H$}\\ 0&\text{ if $x\notin H$.}\end{cases}
Doc 36
0.6261
-5.0000
8.0000
0.6261
testing/NTCIR/xhtml5/9/1312.1185/1312.1185_1_8.xhtml
δ
S
(
T
)
=
{
1
if
S
=
T
0
if
S
≠
T
Doc 37
0.6261
-6.0000
9.0000
0.6261
testing/NTCIR/xhtml5/11/math9912131/math9912131_1_94.xhtml
δ
x
(
y
)
=
{
1
if
y
=
x
0
if
y
≠
x
.
Doc 38
0.6261
-6.0000
9.0000
0.6261
testing/NTCIR/xhtml5/9/1308.2088/1308.2088_1_146.xhtml
w
(
s
)
=
{
1
if
s
≥
k
;
0
if
s
<
k
.
Doc 39
0.6261
-6.0000
8.0000
0.6261
testing/NTCIR/xhtml5/1/math0004166/math0004166_1_18.xhtml
η
t
(
s
)
=
{
1
if
t
=
s
0
if
t
≠
s
t
s
t\not=s
,
subscript
η
t
s
1if t=stst=s0if t≠stst\not=s ,
\eta_{t}(s)~{}=~{}\begin{cases}1&\text{if $t=s$}\\ 0&\text{if $t\not=s$}\ ,\end{cases}
Doc 40
0.6018
-5.0000
10.0000
0.6018
testing/NTCIR/xhtml5/7/1008.1032/1008.1032_1_7.xhtml
ϵ
x
(
A
)
=
{
1
if
x
∈
A
,
0
otherwise
.
subscript
ϵ
x
A
1if x∈AxAx\in A, 0otherwise
\displaystyle\epsilon_{x}(A)=\left\{\begin{array}[]{cc}1&\hbox{if $x\in A$, }% \\ 0&\rm{otherwise}.\end{array}\right.
Doc 41
0.6018
-6.0000
9.0000
0.6018
testing/NTCIR/xhtml5/3/math0402443/math0402443_1_97.xhtml
h
ξ
(
k
)
=
{
1
if
k
∈
A
ξ
,
0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.
subscript
h
ξ
k
1if k∈AξksubscriptAξk\in A_{\xi},0otherwise
h_{\xi}(k)=\left\{\begin{array}[]{lc}1&\mbox{if $k\in A_{\xi}$,}\\ 0&\mbox{otherwise}.\end{array}\right.
Doc 42
0.6018
-6.0000
9.0000
0.6018
testing/NTCIR/xhtml5/2/hep-th0212168/hep-th0212168_1_12.xhtml
Θ
(
t
)
=
{
1
if
t
>
0
0
if
t
<
0
t
0
t<0
.
normal-Θ
t
1if t>0t0t>00if t<0t0t<0
\Theta(t)=\left\{\begin{array}[]{ll}1&\mbox{if $t>0$}\\ 0&\mbox{if $t<0$}\,.\end{array}\right.
Doc 43
0.6018
-6.0000
9.0000
0.6018
testing/NTCIR/xhtml5/6/0909.0944/0909.0944_1_12.xhtml
θ
(
α
)
=
{
1
if
α
≥
0
0
if
α
<
0
α
0
\alpha<0
.
θ
α
1if α≥0α0\alpha\geq 00if α<0α0\alpha<0
\theta(\alpha)=\left\{\begin{array}[]{ll}1&\textrm{if $\alpha\geq 0$}\\ 0&\textrm{if $\alpha<0$}.\end{array}\right.
Doc 44
0.6018
-11.0000
10.0000
0.6018
testing/NTCIR/xhtml5/9/1306.4891/1306.4891_1_50.xhtml
∑
d
∣
n
μ
(
d
)
=
{
1
if
n
=
1
;
0
if
n
>
1
n
1
n>1
.
subscript
fragments
d
normal-∣
n
μ
d
1if n=1n1n=10if n>1n1n>1
\sum_{d\mid n}\mu\left(d\right)=\begin{cases}1&\text{if $n=1$};\\ 0&\text{if $n>1$}.\end{cases}
Doc 45
0.6018
-11.0000
10.0000
0.6018
testing/NTCIR/xhtml5/9/1306.4891/1306.4891_1_51.xhtml
∑
d
∣
n
μ
(
d
)
=
{
1
if
n
=
1
;
0
if
n
>
1
n
1
n>1
.
subscript
fragments
d
normal-∣
n
μ
d
1if n=1n1n=10if n>1n1n>1
\sum_{d\mid n}\mu\left(d\right)=\begin{cases}1&\text{if $n=1$};\\ 0&\text{if $n>1$}.\end{cases}
Doc 46
0.5751
-2.0000
7.0000
0.5751
testing/NTCIR/xhtml5/10/hep-th9701112/hep-th9701112_1_65.xhtml
θ
(
X
)
=
{
1
if
X
is positive definite
0
else.
θ
X
1if XXX is positive definite0else.
\theta(X)=\left\{\begin{array}[]{cl}1&\mbox{if $X$ is positive definite}\\ 0&\mbox{else.}\end{array}\right.
Doc 47
0.5751
-3.0000
7.0000
0.5751
testing/NTCIR/xhtml5/5/0711.3877/0711.3877_1_63.xhtml
ϵ
(
t
)
=
{
1
if
t
=
e
0
otherwise.
ϵ
t
1if t=etet=e0otherwise.
\epsilon(t)=\left\{\begin{array}[]{ll}1&\mbox{if $t=e$}\\ 0&\mbox{otherwise.}\end{array}\right.
Doc 48
0.5751
-3.0000
7.0000
0.5751
testing/NTCIR/xhtml5/10/hep-th9405108/hep-th9405108_1_32.xhtml
δ
(
x
)
=
{
1
if
x
= 0 mod-
p
p
p
0
otherwise.
δ
x
1if xxx = 0 mod-ppp0otherwise.
\displaystyle\delta(x)=\left\{\begin{array}[]{ll}1&\mbox{if $x$ = 0 mod-$p$}\\ 0&\mbox{otherwise.}\\ \end{array}\right.
Doc 49
0.5751
-3.0000
7.0000
0.5751
testing/NTCIR/xhtml5/8/1111.6692/1111.6692_1_59.xhtml
f
(
n
)
=
{
1
if
n
is prime and splits completely in
K
0
otherwise.
Doc 50
0.5751
-4.0000
9.0000
0.5751
testing/NTCIR/xhtml5/10/math9501211/math9501211_1_29.xhtml
ν
(
A
)
=
{
1
if
A
is co-countable,
0
if
A
A
A
is countable.
ν
A
1if AAA is co-countable,0if AAA is countable.
\nu(A)=\left\{\begin{array}[]{ll}1&\mbox{if $A$ is co-countable,}\\ 0&\mbox{if $A$ is countable.}\end{array}\right.
Doc 51
0.5751
-4.0000
8.0000
0.5751
testing/NTCIR/xhtml5/8/1203.1093/1203.1093_1_45.xhtml
ℐ
(
𝒜
)
=
{
1
if
𝒜
is true
0
if
𝒜
is false
Doc 52
0.5751
-4.0000
8.0000
0.5751
testing/NTCIR/xhtml5/1/1307.5413/1307.5413_1_50.xhtml
ϵ
(
ℓ
)
=
{
1
if
ℓ
is even
0
if
ℓ
is odd
Doc 53
0.5751
-4.0000
8.0000
0.5751
testing/NTCIR/xhtml5/9/1302.6659/1302.6659_1_65.xhtml
ℐ
(
𝒜
)
=
{
1
if
𝒜
is true
0
if
𝒜
is false
Doc 54
0.5751
-4.0000
8.0000
0.5751
testing/NTCIR/xhtml5/6/0907.4347/0907.4347_1_125.xhtml
γ
(
n
)
=
{
1
if
n
is even
0
if
n
n
n
is odd
γ
n
1 if nnn is even0 if nnn is odd
\gamma(n)=\left\{\begin{array}[]{rl}1&\text{ if $n$ is even}\\ 0&\text{ if $n$ is odd}\end{array}\right.
Doc 55
0.5751
-4.0000
8.0000
0.5751
testing/NTCIR/xhtml5/8/1201.3702/1201.3702_1_72.xhtml
ℐ
(
𝒜
)
=
{
1
if
𝒜
is true
0
if
𝒜
is false
Doc 56
0.5751
-4.0000
8.0000
0.5751
testing/NTCIR/xhtml5/6/1003.2439/1003.2439_1_49.xhtml
χ
(
𝒜
)
=
{
1
if
𝒜
is true
0
if
𝒜
is false
Doc 57
0.5751
-4.0000
8.0000
0.5751
testing/NTCIR/xhtml5/9/1303.6744/1303.6744_1_50.xhtml
ℐ
(
𝒜
)
=
{
1
if
𝒜
is true
0
if
𝒜
is false
Doc 58
0.5751
-4.0000
8.0000
0.5751
testing/NTCIR/xhtml5/2/math0010293/math0010293_1_348.xhtml
δ
(
P
)
=
{
1
if
P
is true,
0
if
P
P
P
is false.
δ
P
1if PPP is true,0if PPP is false.
\displaystyle\delta(P)=\begin{cases}1&\text{if $P$ is true,}\\ 0&\text{if $P$ is false.}\end{cases}
Doc 59
0.5751
-6.0000
8.0000
1.1502
testing/NTCIR/xhtml5/10/q-alg9712036/q-alg9712036_1_8.xhtml
u
(
x
)
=
{
1
if
x
≥
0
0
if
x
>
0
x
0
x>0
u
x
1 if x≥0x0x\geq 00 if x>0x0x>0
u(x)=\begin{cases}1&\text{ if $x\geq 0$}\\ 0&\text{ if $x>0$ }\end{cases}
δ
(
x
)
=
{
1
if
x
=
0
0
if
x
≠
0
x
0
x\neq 0
.
δ
x
1 if x=0x0x=00 if x≠0x0x\neq 0
\delta(x)=\begin{cases}1&\text{ if $x=0$}\\ 0&\text{ if $x\neq 0$ }\end{cases}.
Doc 60
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/5/0802.2274/0802.2274_1_27.xhtml
θ
(
t
)
=
{
1
if
t
>
0
0
if
t
<
0.
Doc 61
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/7/1008.3401/1008.3401_1_27.xhtml
δ
(
x
)
=
{
1
if
x
=
0
0
if
x
≠
0.
Doc 62
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/2/quant-ph0205085/quant-ph0205085_1_3.xhtml
θ
(
τ
)
=
{
1
if
τ
≥
0
0
if
τ
<
0
τ
0
\tau<0
θ
τ
1if τ≥0τ0\tau\geq 00if τ<0τ0\tau<0
\theta(\tau)=\begin{cases}1&\text{if $\tau\geq 0$}\\ 0&\text{if $\tau<0$}\end{cases}
Doc 63
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/3/math0408013/math0408013_1_73.xhtml
φ
(
x
)
=
{
1
if
x
=
0
0
if
x
≠
0
Doc 64
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/3/math0312417/math0312417_1_107.xhtml
Θ
(
x
)
=
{
1
if
x
≥
0
0
if
x
<
0
Doc 65
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/5/0811.4166/0811.4166_1_43.xhtml
θ
(
t
)
=
{
1
if
t
>
0
0
if
t
<
0.
Doc 66
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/10/hep-th9505152/hep-th9505152_1_54.xhtml
θ
(
k
)
=
{
1
if
k
>
0
0
if
k
<
0
k
0
k<0
θ
k
1if k>0k0k>00if k<0k0k<0
\theta(k)=\left\{\begin{array}[]{ll}1&\mbox{if $k>0$}\\ 0&\mbox{if $k<0$}\end{array}\right.
Doc 67
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/8/1108.4224/1108.4224_1_29.xhtml
θ
(
i
)
=
{
1
if
i
>
0
0
if
i
≤
0.
Doc 68
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/5/0707.2332/0707.2332_1_98.xhtml
h
(
t
)
=
{
1
if
t
≤
0
0
if
t
≥
1.
Doc 69
0.5751
-6.0000
8.0000
0.5751
testing/NTCIR/xhtml5/4/math0608773/math0608773_1_11.xhtml
θ
(
P
)
=
{
1
if
P
is true
,
0
if
P
P
P
is false
.
θ
P
1if PPP is true0if PPP is false
\displaystyle\theta(P)=\left\{\begin{array}[]{ll}1&\hbox{if $P$ is true},\\ 0&\hbox{if $P$ is false}.\end{array}\right.
Doc 70
0.5751
-7.0000
8.0000
0.5751
testing/NTCIR/xhtml5/7/1101.3197/1101.3197_1_59.xhtml
H
(
x
)
=
{
1
if
x
>
1
,
0
if
x
<
1.
x
1.
x<1.
H
x
1if x>1x1x>1,0if x<1.x1.x<1.
H(x)=\left\{\begin{array}[]{l l}1&\quad\mbox{if $x>1$,}\\ 0&\quad\mbox{if $x<1.$}\\ \end{array}\right.
Doc 71
0.5751
-7.0000
8.0000
0.5751
testing/NTCIR/xhtml5/2/nlin0103057/nlin0103057_1_71.xhtml
θ
(
x
)
=
{
1
if
x
>
0
,
0
if
x
≤
0.
Doc 72
0.5751
-7.0000
8.0000
0.5751
testing/NTCIR/xhtml5/5/0704.0927/0704.0927_1_95.xhtml
∑
m
2
|
d
μ
(
m
)
=
{
1
if
d
is square-free
0
otherwise.
fragments
subscript
fragments
superscript
m
2
normal-|
d
μ
fragments
normal-(
m
normal-)
1if ddd is square-free0otherwise.
\sum_{m^{2}|d}\mu(m)\ =\ \begin{cases}1&\text{{\rm if $d$ is square-free}}\\ 0&\text{{\rm otherwise.}}\end{cases}
Doc 73
0.5751
-7.0000
8.0000
0.5751
testing/NTCIR/xhtml5/7/1011.0229/1011.0229_1_117.xhtml
∑
m
2
|
d
μ
(
m
)
=
{
1
if
d
is square-free
0
otherwise.
fragments
subscript
fragments
superscript
m
2
normal-|
d
μ
fragments
normal-(
m
normal-)
1if ddd is square-free0otherwise.
\sum_{m^{2}|d}\mu(m)\ =\ \begin{cases}1&\text{{\rm if $d$ is square-free}}\\ 0&\text{{\rm otherwise.}}\end{cases}
Doc 74
0.5751
-7.0000
8.0000
0.5751
testing/NTCIR/xhtml5/7/1010.3433/1010.3433_1_20.xhtml
ψ
(
λ
)
=
{
1
if
λ
≥
3
,
0
if
λ
≤
2
λ
2
\lambda\leq 2
ψ
λ
1if λ≥3λ3\lambda\geq 3,0if λ≤2λ2\lambda\leq 2
\psi(\lambda)=\begin{cases}1&\text{if $\lambda\geq 3$,}\\ 0&\text{if $\lambda\leq 2$}\end{cases}
Doc 75
0.5751
-7.0000
8.0000
0.5751
testing/NTCIR/xhtml5/2/hep-th0103259/hep-th0103259_1_22.xhtml
θ
(
α
)
=
{
1
if
α
>
0
,
0
if
α
≤
0 .
Doc 76
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/10/alg-geom9702008/alg-geom9702008_1_33.xhtml
∑
m
|
ℓ
μ
(
m
)
=
{
1
if
ℓ
=
1
,
0
otherwise.
Doc 77
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/7/1106.5110/1106.5110_1_92.xhtml
∑
r
2
|
n
μ
(
r
)
=
{
1
if
n
is squarefree
0
otherwise
,
Doc 78
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/8/1110.3900/1110.3900_1_75.xhtml
b
(
t
)
=
{
1
if
t
<
3
/
4
0
if
t
>
1
Doc 79
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/9/1307.3637/1307.3637_1_7.xhtml
χ
(
P
)
=
{
1
,
if
P
is true
;
0
,
if
P
P
P
is false
,
χ
P
1if PPP is true0if PPP is false
\chi(P)=\begin{cases}1,&\text{if $P$ is true};\\ 0,&\text{if $P$ is false},\end{cases}
Doc 80
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/4/math0605031/math0605031_1_44.xhtml
χ
(
x
)
=
{
1
if
x
≥
2
,
0
if
x
≤
1
x
1
x\leq 1
,
χ
x
1if x≥2x2x\geq 2,0if x≤1x1x\leq 1,
\chi(x)=\begin{cases}1&\text{if $x\geq 2$,}\\ 0&\text{if $x\leq 1$,}\end{cases}
Doc 81
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/9/1212.6719/1212.6719_1_43.xhtml
Θ
(
ξ
)
=
{
1
if
|
ξ
|
≤
1
0
if
|
ξ
|
≥
2
Doc 82
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/2/math0112077/math0112077_1_53.xhtml
∑
d
|
n
μ
(
d
)
=
{
1
if
n
=
1
,
0
otherwise,
Doc 83
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/9/1304.6823/1304.6823_1_32.xhtml
θ
(
f
(
x
)
)
=
{
1
if
f
>
0
0
if
f
<
0
Doc 84
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/10/math9803062/math9803062_1_149.xhtml
θ
(
x
)
=
{
1
if
x
≥
0
,
0
if
x
<
0
x
0
x<0
.
θ
x
1 if x≥0x0x\geq 0,0 if x<0x0x<0.
\theta(x)=\begin{cases}1&\text{ if $x\geq 0$,}\\ 0&\text{ if $x<0$.}\end{cases}
Doc 85
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/1/hep-ph0004008/hep-ph0004008_1_40.xhtml
θ
(
y
)
=
{
1
,
if
y
≥
0
0
,
if
y
<
0
Doc 86
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/9/1312.2540/1312.2540_1_317.xhtml
tr
π
(
m
𝑎𝑑𝑑
)
=
{
1
if
π
has additive reduction
0
if
π
otherwise
.
.
Doc 87
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/6/0902.1873/0902.1873_1_133.xhtml
u
s
(
x
)
=
{
1
if
x
<
0.5
,
0
if
x
>
0.5.
Doc 88
0.5751
-8.0000
8.0000
0.5751
testing/NTCIR/xhtml5/6/0904.0696/0904.0696_1_14.xhtml
θ
(
x
)
=
{
1
if
x
>
0
,
0
if
x
<
0
x
0
x<0
.
θ
x
1 if x>0x0x>0,0 if x<0x0x<0.
\theta(x)\,=\,\begin{cases}1&\text{ if $x>0$,}\\ 0&\text{ if $x<0$.}\end{cases}
Doc 89
0.5751
-11.0000
9.0000
0.5751
testing/NTCIR/xhtml5/9/1308.3322/1308.3322_1_19.xhtml
μ
11
(
C
2
k
)
=
{
1
,
if
k
=
2
0
,
if
k
≥
3
k
3
\;k\geq 3
subscript
μ
11
subscript
C
2
k
1if k=2k2\;k=20if k≥3k3\;k\geq 3
\mu_{11}(C_{2k})=\left\{\begin{array}[]{ll}1,&\textrm{if $\;k=2$}\\ 0,&\textrm{if $\;k\geq 3$}\end{array}\right.
Doc 90
0.5751
-11.0000
9.0000
0.5751
testing/NTCIR/xhtml5/9/1308.3322/1308.3322_1_16.xhtml
μ
11
(
C
2
k
)
=
{
1
,
if
k
=
2
0
,
if
k
≥
3
k
3
\;k\geq 3
subscript
μ
11
subscript
C
2
k
1if k=2k2\;k=20if k≥3k3\;k\geq 3
\mu_{11}(C_{2k})=\left\{\begin{array}[]{ll}1,&\textrm{if $\;k=2$}\\ 0,&\textrm{if $\;k\geq 3$}\end{array}\right.
Doc 91
0.5641
-9.0000
10.0000
0.5641
testing/NTCIR/xhtml5/5/0811.2291/0811.2291_1_47.xhtml
χ
B
(
a
)
=
{
1
if
a
∈
B
0
if
a
∈
A
\
B
.
Doc 92
0.5405
-5.0000
9.0000
0.5405
testing/NTCIR/xhtml5/9/1303.0239/1303.0239_1_50.xhtml
1
A
(
x
)
=
{
1
if
x
∈
A
,
0
otherwise.
subscript
1
A
x
1if x∈AxAx\in A,0otherwise.
1_{A}(x)=\begin{cases}1&\text{if $x\in A$,}\\ 0&\text{otherwise.}\end{cases}
Doc 93
0.5405
-7.0000
8.0000
0.5405
testing/NTCIR/xhtml5/6/0904.1005/0904.1005_1_121.xhtml
μ
(
u
)
=
{
1
,
if
u
=
v
;
0
,
otherwise
.
Doc 94
0.5405
-7.0000
8.0000
0.5405
testing/NTCIR/xhtml5/4/math0508629/math0508629_1_33.xhtml
γ
k
(
Q
)
=
{
1
if
k
≥
d
0
if
k
≤
0.
Doc 95
0.5405
-8.0000
9.0000
0.5405
testing/NTCIR/xhtml5/7/1004.3709/1004.3709_1_77.xhtml
t
x
=
1
A
(
x
)
=
{
1
if
x
∈
A
,
0
if otherwise
subscript
t
x
subscript
1
A
x
1if x∈AxAx\in A0if otherwise
t_{x}=1_{A}(x)=\begin{cases}1&\text{if $x\in A$},\\ 0&\text{if otherwise}\end{cases}
Doc 96
0.5405
-8.0000
8.0000
0.5405
testing/NTCIR/xhtml5/7/1106.3637/1106.3637_1_84.xhtml
f
(
s
)
=
{
1
if
s
⩽
0
;
0
if
s
⩾
ε
s
ε
s\geqslant\varepsilon
,
f
s
1if s⩽0s0s\leqslant 00if s⩾εsεs\geqslant\varepsilon
f(s)=\left\{\begin{array}[]{ll}1&\mbox{if $s\leqslant 0$};\\ 0&\mbox{if $s\geqslant\varepsilon$},\end{array}\right.
Doc 97
0.5405
-8.0000
7.0000
0.5405
testing/NTCIR/xhtml5/5/0711.2185/0711.2185_1_49.xhtml
I
A
(
x
)
=
{
1
if
x
∈
A
0
if
x
∉
A
.
Doc 98
0.5220
-6.0000
9.0000
0.5220
testing/NTCIR/xhtml5/5/0807.0970/0807.0970_1_28.xhtml
φ
(
ω
)
=
{
0
if
ω
∉
A
α
if
ω
∈
A
ω
A
\omega\in A
.
φ
ω
0 if ω∉AωA\omega\notin Aα if ω∈AωA\omega\in A
\varphi(\omega)=\left\{\begin{array}[]{ll}0&\textrm{ if $\omega\notin A$}\\ \alpha&\textrm{ if $\omega\in A$}.\end{array}\right.
Doc 99
0.5143
-5.0000
8.0000
0.5143
testing/NTCIR/xhtml5/5/0806.0490/0806.0490_1_136.xhtml
1
(
A
)
=
{
1
if
A
occurs
,
0
otherwise
.
Doc 100
0.5018
-2.0000
10.0000
0.5018
testing/NTCIR/xhtml5/9/1303.0281/1303.0281_1_11.xhtml
{
1
if
x
∈
A
0
if
x
∉
A
Doc 101
0.5018
-8.0000
9.0000
0.5018
testing/NTCIR/xhtml5/1/1012.1350/1012.1350_1_72.xhtml
(
a
A
)
i
=
{
1
if
i
∉
A
2
if
i
∈
A
.
Doc 102
0.4791
-4.0000
8.0000
0.9582
testing/NTCIR/xhtml5/9/1312.6492/1312.6492_1_5.xhtml
β
e
=
{
1
if
e
∈
\in
A
A
A
is in the cut and is interdicted
0
otherwise
subscript
β
e
1if eee∈\inAAA is in the cut and is interdicted0otherwise
\beta_{e}=\begin{cases}1&\text{if $e$$\in$$A$ is in the cut and is interdicted% }\\ 0&\text{otherwise}\end{cases}
γ
e
=
{
1
if
e
∈
\in
A
A
A
is on sink side of the cut and is not interdicted
0
otherwise
subscript
γ
e
1if eee∈\inAAA is on sink side of the cut and is not interdicted0otherwise
\gamma_{e}=\begin{cases}1&\text{if $e$$\in$$A$ is on sink side of the cut and % is not interdicted}\\ 0&\text{otherwise}\end{cases}
Doc 103
0.4791
-8.0000
9.0000
0.4791
testing/NTCIR/xhtml5/10/math9801067/math9801067_1_37.xhtml
I
i
=
{
1
if
i
∈
A
,
0
if
i
∈
B
i
B
i\in B
,
subscript
I
i
1if i∈AiAi\in A,0if i∈BiBi\in B,
I_{i}=\left\{\begin{array}[]{ll}1&\mbox{if $i\in A$,}\\ 0&\mbox{if $i\in B$,}\\ \end{array}\right.
Doc 104
0.4174
-8.0000
7.0000
0.4174
testing/NTCIR/xhtml5/6/0904.4226/0904.4226_1_11.xhtml
δ
J
(
A
)
=
{
1
J
∈
A
0
J
∉
A
.
Doc 105
0.4174
-11.0000
7.0000
0.4174
testing/NTCIR/xhtml5/8/1211.0717/1211.0717_1_9.xhtml
δ
x
(
A
)
=
{
1
,
x
∈
A
,
0
,
x
∉
A
.
Doc 106
0.3925
-6.0000
7.0000
0.3925
testing/NTCIR/xhtml5/2/math0206289/math0206289_1_19.xhtml
η
j
=
{
1
if
j
is even
0
if
j
j
j
is odd
subscript
η
j
1 if jjj is even0 if jjj is odd
\eta_{j}=\begin{cases}1&\text{ if $j$ is even}\\ 0&\text{ if $j$ is odd}\end{cases}
Doc 107
0.3925
-6.0000
7.0000
0.3925
testing/NTCIR/xhtml5/2/math0108121/math0108121_1_161.xhtml
C
i
=
{
1
if
i
is odd
0
if
i
i
i
is even,
superscript
C
i
1if iii is odd0if iii is even,
C^{i}=\begin{cases}1&\text{if $i$ is odd}\\ 0&\text{if $i$ is even,}\end{cases}