tangent
Not Supported
P
1
(
X
)
=
P
(
X
)
/
(
X
-
α
x0
)
Search
Returned 89 matches (100 formulae, 107 docs)
Lookup 4690.540 ms, Re-ranking 240.561 ms
Found 107563896 tuple postings, 9874086 formulae, 4293216 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.6288
-2.0000
8.0000
0.6288
testing/NTCIR/xhtml5/5/0805.2694/0805.2694_1_52.xhtml
w
(
X
)
=
P
(
X
)
/
|
X
|
.
Doc 2
0.5860
-6.0000
9.0000
0.5860
testing/NTCIR/xhtml5/7/1007.3162/1007.3162_1_51.xhtml
P
M
(
X
)
=
P
M
0
(
X
)
P
M
1
(
X
)
Doc 3
0.5860
-9.0000
9.0000
0.5860
testing/NTCIR/xhtml5/4/math0610517/math0610517_1_118.xhtml
P
(
X
1
P
(
X
2
)
)
=
P
(
X
1
)
P
(
X
2
)
,
Doc 4
0.5545
0.0000
6.0000
0.5545
testing/NTCIR/xhtml5/2/hep-th0301105/hep-th0301105_1_53.xhtml
P
1
(
x
)
=
P
(
x
)
Doc 5
0.5545
0.0000
6.0000
0.5545
testing/NTCIR/xhtml5/5/0803.0900/0803.0900_1_19.xhtml
P
1
(
s
)
=
P
(
s
)
Doc 6
0.5545
-3.0000
7.0000
0.5545
testing/NTCIR/xhtml5/1/math0003173/math0003173_1_83.xhtml
P
2
(
X
)
=
P
3
(
X
)
=
2
Doc 7
0.5545
-5.0000
6.0000
0.5545
testing/NTCIR/xhtml5/9/1309.7378/1309.7378_1_19.xhtml
R
(
X
)
=
R
1
(
X
)
/
R
2
(
X
)
Doc 8
0.5545
-5.0000
6.0000
0.5545
testing/NTCIR/xhtml5/10/alg-geom9510009/alg-geom9510009_1_51.xhtml
𝐒𝐡
(
X
)
=
𝐒𝐡
(
X
~
)
/
π
1
(
X
)
Doc 9
0.5545
-6.0000
6.0000
0.5545
testing/NTCIR/xhtml5/9/1301.1813/1301.1813_1_102.xhtml
l
1
(
X
)
=
l
0
(
X
-
c
(
X
)
V
)
Doc 10
0.5106
-2.0000
8.0000
0.8688
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_90.xhtml
S
(
X
)
=
P
(
X
)
B
(
X
)
P
(
X
)
=
S
N
(
X
)
Doc 11
0.5106
-2.0000
8.0000
0.5106
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_94.xhtml
S
(
X
)
=
P
(
X
)
B
(
X
)
Doc 12
0.5106
-2.0000
8.0000
0.5106
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_38.xhtml
S
(
X
)
=
P
(
X
)
T
(
X
)
Doc 13
0.5106
-2.0000
8.0000
0.5106
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_102.xhtml
S
(
X
)
=
P
(
X
)
B
(
X
)
Doc 14
0.5106
-4.0000
7.0000
0.5106
testing/NTCIR/xhtml5/4/math0507409/math0507409_1_10.xhtml
N
u
m
(
X
)
=
A
(
X
)
/
(
numerical equivalence
)
Doc 15
0.4800
-1.0000
7.0000
0.4800
testing/NTCIR/xhtml5/7/1010.1842/1010.1842_1_19.xhtml
P
(
X
)
=
P
(
X
)
¯
Doc 16
0.4800
-1.0000
5.0000
0.4800
testing/NTCIR/xhtml5/4/math0702271/math0702271_1_64.xhtml
α
(
X
)
=
α
n
(
X
)
Doc 17
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/2/math0301027/math0301027_1_94.xhtml
P
𝒞
(
X
)
=
P
𝒟
(
X
)
Doc 18
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/6/0911.2128/0911.2128_1_38.xhtml
P
A
(
X
)
=
P
B
(
X
)
Doc 19
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/4/math0510140/math0510140_1_173.xhtml
P
′′
(
X
)
=
P
′
(
X
)
Doc 20
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/8/1110.1116/1110.1116_1_11.xhtml
P
A
(
X
)
=
P
(
X
)
e
Doc 21
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0712.4402/0712.4402_1_129.xhtml
P
(
X
|
T
)
=
P
(
X
)
Doc 22
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/8/1110.1116/1110.1116_1_7.xhtml
P
A
(
X
)
=
P
B
(
X
)
Doc 23
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/4/math0510140/math0510140_1_24.xhtml
P
′
(
X
)
=
P
′′
(
X
)
Doc 24
0.4800
-2.0000
5.0000
0.4800
testing/NTCIR/xhtml5/11/math9910114/math9910114_1_114.xhtml
P
(
λ
-
α
)
=
P
(
λ
)
Doc 25
0.4800
-2.0000
5.0000
0.4800
testing/NTCIR/xhtml5/4/math0611601/math0611601_1_141.xhtml
P
(
α
1
)
=
P
(
α
2
)
Doc 26
0.4800
-3.0000
7.0000
0.9600
testing/NTCIR/xhtml5/5/0805.3917/0805.3917_1_25.xhtml
P
^
(
X
)
2
=
P
^
(
X
)
V
P
(
X
)
=
P
′
(
X
)
V
Doc 27
0.4800
-3.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0805.3917/0805.3917_1_29.xhtml
P
^
(
X
)
2
=
P
^
(
X
)
Doc 28
0.4800
-3.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0805.3917/0805.3917_1_43.xhtml
V
P
(
X
)
=
P
′
(
X
)
V
Doc 29
0.4800
-3.0000
7.0000
0.4800
testing/NTCIR/xhtml5/10/alg-geom9605006/alg-geom9605006_1_14.xhtml
P
n
(
X
)
=
P
n
(
X
′
)
Doc 30
0.4800
-3.0000
7.0000
0.4800
testing/NTCIR/xhtml5/7/1107.3592/1107.3592_1_7.xhtml
P
(
X
)
P
(
X
)
=
P
(
X
)
Doc 31
0.4800
-4.0000
7.0000
0.4800
testing/NTCIR/xhtml5/6/0901.4176/0901.4176_1_26.xhtml
P
λ
/
0
(
X
)
=
P
λ
(
X
)
Doc 32
0.4800
-4.0000
6.0000
0.4800
testing/NTCIR/xhtml5/3/math0311391/math0311391_1_23.xhtml
h
(
X
)
=
x
(
X
)
/
y
(
X
)
Doc 33
0.4800
-5.0000
7.0000
0.9600
testing/NTCIR/xhtml5/5/0807.2155/0807.2155_1_131.xhtml
P
b
(
X
)
*
=
P
b
(
X
-
1
)
P
b
(
X
-
1
)
=
P
ς
(
b
)
(
X
)
Doc 34
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0807.2155/0807.2155_1_150.xhtml
P
ς
b
(
X
)
=
P
b
(
X
-
1
)
Doc 35
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/7/1009.4451/1009.4451_1_119.xhtml
P
A
p
(
X
)
=
P
r
,
p
(
X
)
Doc 36
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/2/math0011042/math0011042_1_21.xhtml
P
m
(
X
)
=
P
2
m
(
X
)
=
1
Doc 37
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/2/math0011042/math0011042_1_99.xhtml
P
m
(
X
)
=
P
2
m
(
X
)
=
1
Doc 38
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/3/math0306222/math0306222_1_25.xhtml
P
n
0
k
(
X
)
=
P
n
k
(
X
)
Doc 39
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/9/1309.0880/1309.0880_1_142.xhtml
v
:
W
0
→
P
(
X
ν
)
=
P
(
X
)
Doc 40
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/1/math0003173/math0003173_1_58.xhtml
P
m
(
X
)
=
P
m
+
1
(
X
)
=
2
Doc 41
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0807.2155/0807.2155_1_157.xhtml
P
b
(
X
-
1
)
=
P
ς
(
b
)
(
X
)
Doc 42
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/1/math0003173/math0003173_1_59.xhtml
P
m
-
1
(
X
)
=
P
m
(
X
)
=
2
Doc 43
0.4800
-6.0000
3.0000
0.8382
testing/NTCIR/xhtml5/2/math0112036/math0112036_1_58.xhtml
D
(
P
1
(
X
)
)
=
D
(
P
2
(
X
)
)
P
1
(
X
)
,
P
2
(
X
)
Doc 44
0.4800
-10.0000
7.0000
0.4800
testing/NTCIR/xhtml5/4/math0510140/math0510140_1_172.xhtml
P
′′
(
X
)
=
P
′
(
X
)
=
P
(
X
)
∩
C
(
X
)
Doc 45
0.4598
-2.0000
8.0000
0.4598
testing/NTCIR/xhtml5/5/0807.4430/0807.4430_1_161.xhtml
P
(
X
)
=
Q
(
X
)
R
(
X
)
Doc 46
0.4598
-2.0000
8.0000
0.4598
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_33.xhtml
P
(
X
)
=
Q
(
X
)
T
(
X
)
Doc 47
0.4598
-2.0000
7.0000
0.4598
testing/NTCIR/xhtml5/8/1210.6429/1210.6429_1_92.xhtml
G
(
X
)
=
A
(
X
)
P
(
X
)
Doc 48
0.4348
-2.0000
7.0000
1.5597
testing/NTCIR/xhtml5/3/math0310387/math0310387_1_52.xhtml
P
1
(
X
)
,
P
2
(
X
)
X
,
P
1
(
X
)
⟂
P
2
(
X
)
P
1
(
X
)
,
P
2
(
X
)
⟂
X
a
(
X
)
=
∥
P
1
(
X
)
∥
2
Doc 49
0.4348
-2.0000
6.0000
0.4348
testing/NTCIR/xhtml5/9/1304.1794/1304.1794_1_111.xhtml
y
(
X
)
=
(
X
-
α
)
i
Doc 50
0.4348
-3.0000
7.0000
0.4348
testing/NTCIR/xhtml5/5/0809.0535/0809.0535_1_31.xhtml
F
1
(
X
)
=
P
(
X
)
.
}
Doc 51
0.4348
-4.0000
7.0000
0.4348
testing/NTCIR/xhtml5/7/1104.4957/1104.4957_1_21.xhtml
I
,
P
1
(
X
)
,
P
2
(
X
)
Doc 52
0.4348
-4.0000
6.0000
0.4348
testing/NTCIR/xhtml5/5/0805.2694/0805.2694_1_76.xhtml
Q
2
(
X
)
=
P
2
(
X
-
W
)
Doc 53
0.4348
-4.0000
6.0000
0.4348
testing/NTCIR/xhtml5/9/1303.5390/1303.5390_1_33.xhtml
P
(
X
)
=
(
X
-
λ
)
Q
(
X
)
Doc 54
0.4348
-4.0000
5.0000
0.4348
testing/NTCIR/xhtml5/4/math0606693/math0606693_1_48.xhtml
f
(
X
)
=
(
X
-
a
)
g
(
X
)
Doc 55
0.4348
-5.0000
6.0000
0.4348
testing/NTCIR/xhtml5/9/1308.0954/1308.0954_1_49.xhtml
J
(
X
)
=
Div
0
(
X
)
/
P
(
X
)
Doc 56
0.4348
-6.0000
6.0000
0.4348
testing/NTCIR/xhtml5/5/0810.5041/0810.5041_1_16.xhtml
P
4
(
X
)
=
⋯
=
P
9
(
X
)
=
1
Doc 57
0.4348
-8.0000
7.0000
0.4348
testing/NTCIR/xhtml5/3/math0310387/math0310387_1_89.xhtml
A
(
X
)
=
(
P
1
(
X
)
|
…
|
P
ν
(
X
)
)
Doc 58
0.4348
-9.0000
7.0000
0.4348
testing/NTCIR/xhtml5/3/math0310387/math0310387_1_45.xhtml
P
1
(
X
)
,
P
2
(
X
)
,
…
,
P
ν
(
X
)
Doc 59
0.4054
-1.0000
6.0000
0.8108
testing/NTCIR/xhtml5/9/1309.7560/1309.7560_1_5.xhtml
P
(
X
)
=
P
(
0
)
Q
(
X
)
=
P
(
X
)
-
P
(
0
)
Doc 60
0.4054
-1.0000
6.0000
0.4054
testing/NTCIR/xhtml5/10/dg-ga9708008/dg-ga9708008_1_14.xhtml
P
1
(
X
)
=
P
X
Doc 61
0.4054
-1.0000
6.0000
0.4054
testing/NTCIR/xhtml5/3/math0403512/math0403512_1_113.xhtml
K
(
X
)
=
P
(
X
)
Doc 62
0.4054
-1.0000
6.0000
0.4054
testing/NTCIR/xhtml5/9/1309.0880/1309.0880_1_141.xhtml
P
(
X
)
=
P
(
Y
)
Doc 63
0.4054
-2.0000
6.0000
0.4054
testing/NTCIR/xhtml5/6/0903.2593/0903.2593_1_229.xhtml
R
O
(
X
)
=
P
(
X
)
Doc 64
0.4054
-2.0000
6.0000
0.4054
testing/NTCIR/xhtml5/3/cs0501008/cs0501008_1_15.xhtml
P
(
X
)
=
P
X
(
x
)
Doc 65
0.4054
-2.0000
5.0000
0.4054
testing/NTCIR/xhtml5/4/math0508417/math0508417_1_44.xhtml
P
(
α
)
=
P
(
-
α
)
Doc 66
0.4054
-2.0000
5.0000
0.4054
testing/NTCIR/xhtml5/4/math0508418/math0508418_1_16.xhtml
P
(
α
)
=
P
(
-
α
)
Doc 67
0.4054
-2.0000
5.0000
0.4054
testing/NTCIR/xhtml5/4/math0512228/math0512228_1_25.xhtml
P
(
α
)
=
P
(
-
α
)
Doc 68
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/5/0810.5041/0810.5041_1_145.xhtml
χ
m
(
X
)
=
P
m
(
X
)
Doc 69
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/7/1004.5344/1004.5344_1_48.xhtml
χ
ϕ
∗
(
X
)
=
P
(
X
)
Doc 70
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/3/math0408256/math0408256_1_11.xhtml
π
k
(
X
)
=
P
k
(
X
)
Doc 71
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/2/math0201117/math0201117_1_249.xhtml
Q
(
X
)
=
P
(
X
)
+
1
Doc 72
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/2/math0103140/math0103140_1_36.xhtml
k
(
X
)
=
P
(
X
×
B
)
Doc 73
0.4054
-5.0000
6.0000
0.4054
testing/NTCIR/xhtml5/1/math0001006/math0001006_1_71.xhtml
P
j
(
C
/
X
)
=
P
j
(
X
)
Doc 74
0.4054
-5.0000
5.0000
0.4054
testing/NTCIR/xhtml5/5/0712.3092/0712.3092_1_9.xhtml
f
(
X
)
=
g
(
X
)
(
X
-
a
)
Doc 75
0.4054
-6.0000
6.0000
0.4054
testing/NTCIR/xhtml5/7/1004.4601/1004.4601_1_98.xhtml
g
(
X
)
=
P
E
(
X
)
⋅
h
(
X
)
Doc 76
0.4054
-6.0000
6.0000
0.4054
testing/NTCIR/xhtml5/4/math0504042/math0504042_1_39.xhtml
X
2
d
P
(
1
/
X
)
=
P
(
X
)
Doc 77
0.4054
-9.0000
6.0000
0.4054
testing/NTCIR/xhtml5/5/0801.3840/0801.3840_1_38.xhtml
Φ
r
(
X
)
=
(
X
r
-
1
)
/
(
X
-
1
)
Doc 78
0.4054
-10.0000
6.0000
0.4054
testing/NTCIR/xhtml5/6/0904.2762/0904.2762_1_25.xhtml
W
(
X
)
=
P
(
X
)
(
P
(
X
)
-
1
W
(
X
)
)
Doc 79
0.3582
-2.0000
6.0000
0.3582
testing/NTCIR/xhtml5/9/1309.0877/1309.0877_1_44.xhtml
P
n
(
X
)
→
P
(
X
)
Doc 80
0.3582
-3.0000
6.0000
0.3582
testing/NTCIR/xhtml5/5/0707.1469/0707.1469_1_17.xhtml
P
(
X
1
)
×
P
(
X
2
)
Doc 81
0.3582
-5.0000
6.0000
0.3582
testing/NTCIR/xhtml5/3/math0310387/math0310387_1_78.xhtml
P
1
(
X
)
,
…
,
P
ν
(
X
)
Doc 82
0.3582
-5.0000
6.0000
0.3582
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_84.xhtml
P
1
(
X
)
,
⋯
,
P
h
(
X
)
Doc 83
0.3582
-5.0000
6.0000
0.3582
testing/NTCIR/xhtml5/3/math0303340/math0303340_1_40.xhtml
P
(
X
)
=
∏
j
(
X
-
α
j
)
Doc 84
0.3582
-5.0000
6.0000
0.3582
testing/NTCIR/xhtml5/11/hep-th9908100/hep-th9908100_1_21.xhtml
P
1
(
X
)
,
…
,
P
N
(
X
)
Doc 85
0.3582
-5.0000
5.0000
0.3582
testing/NTCIR/xhtml5/8/1209.5470/1209.5470_1_17.xhtml
ρ
R
(
X
)
=
1
-
α
R
(
X
)
Doc 86
0.3582
-7.0000
5.0000
0.3582
testing/NTCIR/xhtml5/5/0811.3165/0811.3165_1_95.xhtml
g
(
X
)
=
(
X
-
X
σ
)
g
1
(
X
)
Doc 87
0.3582
-8.0000
6.0000
0.3582
testing/NTCIR/xhtml5/7/1004.4601/1004.4601_1_96.xhtml
P
E
(
X
)
=
∏
i
∈
E
(
X
-
α
i
)
Doc 88
0.3582
-8.0000
5.0000
0.3582
testing/NTCIR/xhtml5/5/0706.2632/0706.2632_1_63.xhtml
I
m
(
X
)
=
(
X
-
X
*
)
/
(
2
i
)
Doc 89
0.3582
-8.0000
5.0000
0.3582
testing/NTCIR/xhtml5/6/0901.3393/0901.3393_1_28.xhtml
f
(
X
)
=
∏
i
=
1
n
(
X
-
α
i
)
Doc 90
0.3582
-9.0000
5.0000
0.3582
testing/NTCIR/xhtml5/8/1211.3107/1211.3107_1_78.xhtml
h
m
(
X
)
=
(
X
m
-
1
)
/
ϕ
m
(
X
)
Doc 91
0.3582
-10.0000
6.0000
0.3582
testing/NTCIR/xhtml5/7/1101.1627/1101.1627_1_218.xhtml
X
M
=
P
1
(
X
M
)
⊕
…
⊕
P
n
(
X
M
)
Doc 92
0.3582
-10.0000
6.0000
0.3582
testing/NTCIR/xhtml5/7/1101.1627/1101.1627_1_230.xhtml
X
M
=
P
1
(
X
M
)
⊕
…
⊕
P
n
(
X
M
)
Doc 93
0.3582
-10.0000
6.0000
0.3582
testing/NTCIR/xhtml5/7/1101.1627/1101.1627_1_222.xhtml
X
M
=
P
1
(
X
M
)
⊕
…
⊕
P
n
(
X
M
)
Doc 94
0.3582
-10.0000
6.0000
0.3582
testing/NTCIR/xhtml5/7/1101.1627/1101.1627_1_220.xhtml
X
M
=
P
1
(
X
M
)
⊕
…
⊕
P
n
(
X
M
)
Doc 95
0.3582
-12.0000
6.0000
0.3582
testing/NTCIR/xhtml5/6/0908.1084/0908.1084_1_99.xhtml
P
(
r
)
(
X
)
=
∏
i
=
1
n
(
X
-
α
i
r
)
.
Doc 96
0.3306
-4.0000
5.0000
0.3306
testing/NTCIR/xhtml5/8/1110.6676/1110.6676_1_68.xhtml
p
(
exp
(
X
)
)
=
P
(
X
)
Doc 97
0.3306
-6.0000
5.0000
0.3306
testing/NTCIR/xhtml5/8/1208.0790/1208.0790_1_50.xhtml
P
1
(
X
)
=
∫
X
p
1
(
X
)
Doc 98
0.3306
-9.0000
5.0000
0.3306
testing/NTCIR/xhtml5/9/1302.4124/1302.4124_1_10.xhtml
C
(
X
)
=
(
X
×
𝕀
)
/
(
X
×
{
1
}
)
Doc 99
0.2553
-3.0000
4.0000
0.2553
testing/NTCIR/xhtml5/2/math0112036/math0112036_1_72.xhtml
𝒞
0
=
P
1
(
X
)
Doc 100
0.2553
-3.0000
4.0000
0.2553
testing/NTCIR/xhtml5/2/math0112036/math0112036_1_75.xhtml
𝒞
0
=
P
1
(
X
)
Doc 101
0.2553
-5.0000
4.0000
0.2553
testing/NTCIR/xhtml5/3/math0410597/math0410597_1_119.xhtml
P
(
X
)
=
⋃
P
R
(
X
)
Doc 102
0.2553
-7.0000
4.0000
0.2553
testing/NTCIR/xhtml5/9/1305.3580/1305.3580_1_58.xhtml
P
(
X
)
=
X
f
1
P
1
(
X
)
Doc 103
0.2553
-7.0000
4.0000
0.2553
testing/NTCIR/xhtml5/3/math0310387/math0310387_1_53.xhtml
a
(
X
)
=
∥
P
1
(
X
)
∥
2
Doc 104
0.2553
-8.0000
3.0000
0.2553
testing/NTCIR/xhtml5/8/1202.0211/1202.0211_1_18.xhtml
Φ
(
X
)
=
1
/
(
X
+
Φ
(
X
)
)
Doc 105
0.2553
-9.0000
4.0000
0.2553
testing/NTCIR/xhtml5/9/1309.0877/1309.0877_1_35.xhtml
P
(
X
)
=
∑
k
=
1
N
P
k
(
X
)
Doc 106
0.2553
-9.0000
4.0000
0.2553
testing/NTCIR/xhtml5/9/1309.0877/1309.0877_1_178.xhtml
P
(
X
)
=
∑
i
=
1
N
P
i
(
X
)
Doc 107
0.2553
-9.0000
4.0000
0.2553
testing/NTCIR/xhtml5/9/1309.0877/1309.0877_1_142.xhtml
P
(
X
)
=
∑
i
=
1
N
P
i
(
X
)