tangent
Not Supported
D
(
G
,
H
)
=
∑
i
=
1
x0
|
F
i
(
G
)
-
F
x1
(
H
)
|
Search
Returned 82 matches (100 formulae, 123 docs)
Lookup 13006.800 ms, Re-ranking 703.555 ms
Found 108736492 tuple postings, 12975666 formulae, 4683867 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.7296
-11.0000
13.0000
1.4593
testing/NTCIR/xhtml5/6/0906.2558/0906.2558_1_61.xhtml
d
(
G
,
H
)
=
∑
i
=
1
n
|
g
(
n
)
-
h
(
n
)
|
+
d
(
G
n
,
H
n
)
d
(
G
,
H
)
=
∑
i
=
1
∞
|
g
(
n
)
-
h
(
n
)
|
=
|
Code
(
G
)
-
Code
(
H
)
|
Doc 2
0.6582
-4.0000
9.0000
0.6582
testing/NTCIR/xhtml5/8/1207.5439/1207.5439_1_47.xhtml
μ
(
X
,
ℱ
;
t
)
=
∑
i
=
1
m
-
t
|
B
i
|
Doc 3
0.6522
-5.0000
12.0000
0.6522
testing/NTCIR/xhtml5/4/math0602159/math0602159_1_2.xhtml
D
(
σ
,
π
)
=
∑
i
=
1
n
|
σ
(
i
)
-
π
(
i
)
|
.
Doc 4
0.6522
-5.0000
12.0000
0.6522
testing/NTCIR/xhtml5/9/1304.5798/1304.5798_1_1.xhtml
D
(
u
,
v
)
=
∑
i
=
1
n
|
u
(
i
)
-
v
(
i
)
|
.
Doc 5
0.6522
-5.0000
11.0000
0.6522
testing/NTCIR/xhtml5/6/0910.1191/0910.1191_1_54.xhtml
d
(
σ
,
τ
)
=
∑
i
=
1
n
|
σ
(
i
)
-
τ
(
i
)
|
.
Doc 6
0.6522
-5.0000
11.0000
0.6522
testing/NTCIR/xhtml5/5/0707.1051/0707.1051_1_23.xhtml
d
(
σ
,
τ
)
=
∑
i
=
1
n
|
σ
(
i
)
-
τ
(
i
)
|
.
Doc 7
0.6094
-3.0000
7.0000
0.6094
testing/NTCIR/xhtml5/9/1311.7566/1311.7566_1_57.xhtml
F
(
x
)
=
∑
i
=
1
|
x
|
|
f
(
x
i
)
|
.
Doc 8
0.6094
-4.0000
10.0000
0.6094
testing/NTCIR/xhtml5/2/math0101012/math0101012_1_10.xhtml
∑
i
=
1
N
|
F
(
x
i
)
-
F
(
y
i
)
|
<
ϵ
Doc 9
0.6094
-7.0000
9.0000
0.6094
testing/NTCIR/xhtml5/7/1102.4368/1102.4368_1_18.xhtml
+
∑
i
=
1
n
(
F
ε
(
x
+
Δ
i
)
-
F
ε
(
x
)
)
.
Doc 10
0.5825
-5.0000
9.0000
0.5825
testing/NTCIR/xhtml5/8/1112.0544/1112.0544_1_107.xhtml
D
(
x
,
y
)
=
∑
i
=
1
n
(
x
i
-
y
i
)
2
Doc 11
0.5825
-5.0000
9.0000
0.5825
testing/NTCIR/xhtml5/8/1112.0544/1112.0544_1_106.xhtml
D
(
x
,
y
)
=
∑
i
=
1
n
(
x
i
-
y
i
)
2
Doc 12
0.5825
-8.0000
8.0000
0.5825
testing/NTCIR/xhtml5/9/1305.1592/1305.1592_1_49.xhtml
f
(
x
,
z
)
=
∑
i
=
1
m
[
z
i
+
h
(
F
i
(
x
)
)
]
Doc 13
0.5825
-8.0000
8.0000
0.5825
testing/NTCIR/xhtml5/9/1305.1592/1305.1592_1_50.xhtml
f
(
x
,
z
)
=
∑
i
=
1
m
[
z
i
+
h
(
F
i
(
x
)
)
]
Doc 14
0.5605
0.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1304.6465/1304.6465_1_3.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
Doc 15
0.5605
0.0000
8.0000
0.5605
testing/NTCIR/xhtml5/8/1203.1769/1203.1769_1_43.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
Doc 16
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/6/0909.4923/0909.4923_1_1.xhtml
\mathscr{E}
(
G
)
=
∑
i
=
1
n
|
λ
i
|
,
Doc 17
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/8/1112.3205/1112.3205_1_5.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
,
Doc 18
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1304.6465/1304.6465_1_14.xhtml
E
s
(
G
)
=
∑
i
=
1
n
|
λ
i
|
Doc 19
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/8/1205.4603/1205.4603_1_5.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
,
Doc 20
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/6/0906.4636/0906.4636_1_2.xhtml
\mathscr{E}_{\mathitL}
(
G
)
=
∑
i
=
1
n
|
ζ
i
|
,
Doc 21
0.5605
-2.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1304.6465/1304.6465_1_89.xhtml
S
L
E
(
G
)
=
∑
i
=
1
n
|
μ
i
|
Doc 22
0.5605
-3.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1304.6465/1304.6465_1_38.xhtml
S
L
E
(
G
)
=
∑
i
=
1
n
|
μ
i
|
,
Doc 23
0.5605
-6.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1308.2452/1308.2452_1_18.xhtml
f
(
P
,
p
)
=
∑
i
=
1
k
|
i
-
p
|
|
B
i
|
Doc 24
0.5605
-7.0000
9.0000
0.5605
testing/NTCIR/xhtml5/9/1212.6962/1212.6962_1_57.xhtml
∑
i
=
0
N
|
F
(
t
i
+
1
)
-
F
(
t
i
)
|
<
ε
Doc 25
0.5116
-4.0000
7.0000
0.5116
testing/NTCIR/xhtml5/10/math9902126/math9902126_1_33.xhtml
u
(
t
,
x
)
=
∑
i
=
1
N
f
i
(
x
)
Doc 26
0.5116
-7.0000
9.0000
0.5116
testing/NTCIR/xhtml5/6/0905.3281/0905.3281_1_17.xhtml
D
(
G
,
x
)
=
∑
i
=
1
n
d
(
G
,
i
)
x
i
Doc 27
0.5116
-7.0000
9.0000
0.5116
testing/NTCIR/xhtml5/6/0905.2251/0905.2251_1_45.xhtml
D
(
G
,
x
)
=
∑
i
=
1
n
d
(
G
,
i
)
x
i
Doc 28
0.5116
-7.0000
8.0000
0.5116
testing/NTCIR/xhtml5/7/1006.5488/1006.5488_1_27.xhtml
W
(
G
k
,
c
k
)
=
∑
i
=
1
k
f
(
c
i
)
.
Doc 29
0.5116
-7.0000
8.0000
0.5116
testing/NTCIR/xhtml5/8/1112.0838/1112.0838_1_94.xhtml
E
(
G
,
x
)
=
∑
i
=
1
m
e
(
G
,
i
)
x
i
Doc 30
0.5116
-9.0000
7.0000
0.5116
testing/NTCIR/xhtml5/9/1305.1592/1305.1592_1_48.xhtml
f
(
x
,
z
)
=
∑
i
=
1
m
exp
(
z
i
+
F
i
(
x
)
)
Doc 31
0.5116
-10.0000
9.0000
0.5116
testing/NTCIR/xhtml5/6/0908.3305/0908.3305_1_3.xhtml
D
(
G
,
x
)
=
∑
i
=
1
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 32
0.5116
-18.0000
9.0000
0.5116
testing/NTCIR/xhtml5/5/0809.2879/0809.2879_1_2.xhtml
d
s
(
G
,
H
)
=
∑
i
=
1
∞
1
2
i
|
p
G
(
α
i
)
-
p
H
(
α
i
)
|
.
Doc 33
0.4627
-2.0000
8.0000
0.4627
testing/NTCIR/xhtml5/8/1110.0807/1110.0807_1_23.xhtml
=
∑
i
=
1
n
|
σ
(
i
)
-
i
|
Doc 34
0.4627
-3.0000
8.0000
0.4627
testing/NTCIR/xhtml5/9/1309.6506/1309.6506_1_69.xhtml
n
1
=
∑
i
=
1
j
|
V
(
G
i
)
|
Doc 35
0.4627
-4.0000
7.0000
0.4627
testing/NTCIR/xhtml5/8/1203.1243/1203.1243_1_58.xhtml
A
=
∑
i
=
1
L
n
|
ℤ
n
(
B
i
)
|
Doc 36
0.4627
-4.0000
7.0000
0.4627
testing/NTCIR/xhtml5/8/1203.1243/1203.1243_1_56.xhtml
A
=
∑
i
=
1
L
n
|
ℤ
n
(
B
i
)
|
Doc 37
0.4627
-9.0000
6.0000
0.8975
testing/NTCIR/xhtml5/1/1111.3517/1111.3517_1_27.xhtml
≥
∑
i
=
1
γ
(
G
)
(
γ
R
(
H
)
-
|
Y
0
(
i
)
|
)
=
γ
(
G
)
γ
R
(
H
)
-
∑
i
=
1
γ
(
G
)
|
Y
0
(
i
)
|
.
Doc 38
0.4627
-9.0000
5.0000
0.4627
testing/NTCIR/xhtml5/7/1004.3530/1004.3530_1_38.xhtml
e
x
(
H
)
=
∑
i
=
1
n
(
|
h
i
|
-
1
)
-
|
H
|
Doc 39
0.4627
-10.0000
8.0000
0.4627
testing/NTCIR/xhtml5/9/1401.2092/1401.2092_1_7.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
n
d
(
G
,
i
)
x
i
Doc 40
0.4627
-10.0000
8.0000
0.4627
testing/NTCIR/xhtml5/6/0905.3281/0905.3281_1_5.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
n
d
(
G
,
i
)
x
i
Doc 41
0.4627
-10.0000
8.0000
0.4627
testing/NTCIR/xhtml5/6/0905.2251/0905.2251_1_5.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
n
d
(
G
,
i
)
x
i
Doc 42
0.4627
-10.0000
7.0000
0.4627
testing/NTCIR/xhtml5/8/1112.0838/1112.0838_1_97.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
Doc 43
0.4627
-10.0000
7.0000
0.4627
testing/NTCIR/xhtml5/1/1312.7506/1312.7506_1_25.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
Doc 44
0.4627
-10.0000
7.0000
0.4627
testing/NTCIR/xhtml5/1/1312.7506/1312.7506_1_14.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
Doc 45
0.4627
-10.0000
7.0000
0.4627
testing/NTCIR/xhtml5/1/1312.7506/1312.7506_1_6.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
Doc 46
0.4627
-11.0000
7.0000
0.4627
testing/NTCIR/xhtml5/1/1312.7506/1312.7506_1_9.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
,
Doc 47
0.4627
-13.0000
8.0000
0.4627
testing/NTCIR/xhtml5/6/0905.3281/0905.3281_1_8.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 48
0.4627
-13.0000
8.0000
0.4627
testing/NTCIR/xhtml5/9/1401.2092/1401.2092_1_10.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 49
0.4627
-13.0000
8.0000
0.4627
testing/NTCIR/xhtml5/6/0905.2251/0905.2251_1_15.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 50
0.4627
-13.0000
8.0000
0.4627
testing/NTCIR/xhtml5/8/1112.0838/1112.0838_1_16.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 51
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/5/0704.0720/0704.0720_1_22.xhtml
|
δ
|
=
∑
i
=
1
k
|
δ
i
|
Doc 52
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/5/0805.0342/0805.0342_1_3.xhtml
|
x
|
=
∑
i
=
1
d
|
x
i
|
Doc 53
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/8/1109.3327/1109.3327_1_41.xhtml
|
k
|
=
∑
i
=
1
n
|
k
i
|
Doc 54
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/7/1102.2523/1102.2523_1_58.xhtml
|
γ
|
=
∑
i
=
1
3
|
γ
i
|
Doc 55
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/5/0805.2652/0805.2652_1_3.xhtml
|
x
|
=
∑
i
=
1
d
|
x
i
|
Doc 56
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/6/0903.0692/0903.0692_1_63.xhtml
|
X
|
=
∑
i
=
1
n
|
X
i
|
Doc 57
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/4/math-ph0608066/math-ph0608066_1_12.xhtml
|
n
|
=
∑
i
=
1
d
|
n
i
|
Doc 58
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/2/math0210347/math0210347_1_57.xhtml
|
v
|
=
∑
i
=
1
d
|
v
i
|
Doc 59
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/9/1212.2403/1212.2403_1_2.xhtml
|
γ
|
=
∑
i
=
1
n
|
γ
i
|
Doc 60
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/7/1004.1382/1004.1382_1_41.xhtml
|
α
|
=
∑
i
=
1
n
|
α
i
|
Doc 61
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/3/math-ph0312032/math-ph0312032_1_4.xhtml
|
ξ
|
=
∑
i
=
1
d
|
ξ
i
|
Doc 62
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/6/0909.3560/0909.3560_1_2.xhtml
|
x
|
=
∑
i
=
1
d
|
x
i
|
Doc 63
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/4/math0508446/math0508446_1_3.xhtml
|
x
|
=
∑
i
=
1
d
|
x
i
|
Doc 64
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/5/0810.4218/0810.4218_1_3.xhtml
|
x
|
=
∑
i
=
1
d
|
x
i
|
Doc 65
0.4348
-1.0000
7.0000
0.4348
testing/NTCIR/xhtml5/5/0704.0720/0704.0720_1_21.xhtml
|
δ
|
=
∑
i
=
1
k
|
δ
i
|
Doc 66
0.4348
-10.0000
6.0000
0.4348
testing/NTCIR/xhtml5/4/math0610491/math0610491_1_32.xhtml
|
F
(
x
)
-
F
(
y
)
|
≤
∑
i
=
1
d
|
x
i
-
y
i
|
Doc 67
0.4348
-10.0000
6.0000
0.4348
testing/NTCIR/xhtml5/4/math0612258/math0612258_1_22.xhtml
|
F
(
x
)
-
F
(
y
)
|
≤
∑
i
=
1
n
|
x
i
-
y
i
|
Doc 68
0.4348
-10.0000
6.0000
0.4348
testing/NTCIR/xhtml5/4/math0610489/math0610489_1_48.xhtml
|
F
(
x
)
-
F
(
y
)
|
≤
∑
i
=
1
d
|
x
i
-
y
i
|
Doc 69
0.4138
-1.0000
6.0000
0.4138
testing/NTCIR/xhtml5/8/1210.0947/1210.0947_1_92.xhtml
∑
i
=
1
n
|
μ
(
F
i
)
|
Doc 70
0.4138
-2.0000
6.0000
0.4138
testing/NTCIR/xhtml5/9/1309.2987/1309.2987_1_15.xhtml
|
F
m
(
x
)
-
F
m
(
x
i
)
|
Doc 71
0.4138
-3.0000
7.0000
0.4138
testing/NTCIR/xhtml5/10/dg-ga9707011/dg-ga9707011_1_257.xhtml
β
=
∑
i
=
1
∞
|
H
i
|
-
1
Doc 72
0.4138
-3.0000
6.0000
0.4138
testing/NTCIR/xhtml5/5/0707.1733/0707.1733_1_15.xhtml
|
λ
|
=
∑
i
=
1
r
|
λ
(
i
)
|
Doc 73
0.4138
-4.0000
6.0000
0.4138
testing/NTCIR/xhtml5/7/1008.4250/1008.4250_1_24.xhtml
ω
(
G
)
=
∑
i
=
1
p
ω
(
G
i
)
Doc 74
0.4138
-4.0000
5.0000
0.7495
testing/NTCIR/xhtml5/3/math0406024/math0406024_1_50.xhtml
f
(
H
)
=
∑
i
=
1
t
f
(
G
i
)
f
(
H
)
≤
∑
i
=
1
t
f
(
G
i
)
Doc 75
0.4138
-4.0000
5.0000
0.4138
testing/NTCIR/xhtml5/7/1107.2193/1107.2193_1_20.xhtml
F
(
t
)
=
∑
i
=
1
p
F
i
(
t
)
Doc 76
0.4138
-5.0000
6.0000
0.4138
testing/NTCIR/xhtml5/1/1102.1144/1102.1144_1_6.xhtml
s
α
(
G
)
=
∑
i
=
1
h
μ
i
α
,
Doc 77
0.4138
-6.0000
7.0000
0.4138
testing/NTCIR/xhtml5/4/cs0604095/cs0604095_1_39.xhtml
2
k
≥
∑
i
=
1
r
-
2
|
V
(
G
i
)
|
Doc 78
0.4138
-6.0000
6.0000
0.4138
testing/NTCIR/xhtml5/8/1204.3686/1204.3686_1_4.xhtml
E
E
(
G
)
=
∑
i
=
1
n
e
λ
i
(
G
)
Doc 79
0.4138
-6.0000
6.0000
0.4138
testing/NTCIR/xhtml5/8/1204.3686/1204.3686_1_1.xhtml
E
E
(
G
)
=
∑
i
=
1
n
e
λ
i
(
G
)
Doc 80
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/5/0711.2800/0711.2800_1_151.xhtml
I
(
H
)
=
∑
i
=
1
l
m
i
I
(
A
i
)
Doc 81
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/math0309410/math0309410_1_51.xhtml
F
(
x
)
=
∑
i
=
1
n
A
i
F
i
(
x
)
Doc 82
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/math-ph0501040/math-ph0501040_1_16.xhtml
Δ
q
(
N
)
(
H
)
=
∑
i
=
1
N
H
i
,
Doc 83
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/math0309410/math0309410_1_139.xhtml
F
(
x
)
=
∑
i
=
1
n
A
i
F
i
(
x
)
Doc 84
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/math0309410/math0309410_1_49.xhtml
F
(
x
)
=
∑
i
=
1
n
A
i
F
i
(
x
)
Doc 85
0.4138
-7.0000
5.0000
0.4138
testing/NTCIR/xhtml5/9/1311.7566/1311.7566_1_45.xhtml
F
~
(
𝐱
)
=
∑
i
=
1
|
x
|
F
(
x
i
)
,
Doc 86
0.4138
-7.0000
5.0000
0.4138
testing/NTCIR/xhtml5/9/hep-th9212156/hep-th9212156_1_23.xhtml
F
(
x
)
=
∑
i
=
1
∞
F
i
(
1
-
x
)
i
Doc 87
0.4138
-8.0000
5.0000
0.4138
testing/NTCIR/xhtml5/10/math9901031/math9901031_1_86.xhtml
g
2
*
(
H
2
¯
)
=
∑
i
=
1
a
2
F
i
,
Doc 88
0.4138
-8.0000
5.0000
0.4138
testing/NTCIR/xhtml5/7/1101.3818/1101.3818_1_140.xhtml
F
S
(
A
)
=
∑
i
=
1
i
=
n
F
σ
i
(
A
)
Doc 89
0.4138
-8.0000
5.0000
0.4138
testing/NTCIR/xhtml5/4/math0506579/math0506579_1_231.xhtml
F
j
(
x
)
=
∑
i
=
1
n
F
i
j
(
x
)
ξ
i
Doc 90
0.4138
-8.0000
5.0000
0.4138
testing/NTCIR/xhtml5/8/1208.6397/1208.6397_1_77.xhtml
n
(
λ
)
=
∑
i
=
1
k
ν
i
(
|
F
i
|
2
)
,
Doc 91
0.4138
-9.0000
7.0000
0.4138
testing/NTCIR/xhtml5/8/1209.4510/1209.4510_1_102.xhtml
t
=
∑
i
=
1
4
|
M
i
|
=
4
3
|
E
(
G
)
|
Doc 92
0.4138
-14.0000
4.0000
0.4138
testing/NTCIR/xhtml5/6/1002.4338/1002.4338_1_10.xhtml
T
(
G
)
-
T
(
H
)
=
∑
r
=
1
∞
T
r
(
G
,
H
)
/
r
!
,
Doc 93
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/8/1112.0099/1112.0099_1_94.xhtml
|
F
ϵ
(
x
)
-
F
(
x
)
|
Doc 94
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0905.4334/0905.4334_1_2.xhtml
|
F
n
(
t
)
-
F
(
t
)
|
Doc 95
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/9/1212.6353/1212.6353_1_67.xhtml
|
F
n
(
x
)
-
F
(
x
)
|
Doc 96
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0906.2989/0906.2989_1_120.xhtml
|
F
ℓ
(
x
)
-
F
(
x
)
|
Doc 97
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/8/1210.6924/1210.6924_1_55.xhtml
∑
i
=
1
4
|
E
(
i
)
|
Doc 98
0.3648
-2.0000
7.0000
0.3648
testing/NTCIR/xhtml5/7/1007.0795/1007.0795_1_75.xhtml
∑
i
=
1
n
|
F
i
|
=
n
Doc 99
0.3648
-3.0000
7.0000
0.3648
testing/NTCIR/xhtml5/9/1301.1521/1301.1521_1_19.xhtml
∑
i
=
1
s
|
F
i
|
=
4
s
Doc 100
0.3648
-3.0000
7.0000
0.3648
testing/NTCIR/xhtml5/9/1301.1521/1301.1521_1_21.xhtml
∑
i
=
1
s
|
F
i
|
=
4
s
Doc 101
0.3648
-3.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0911.2931/0911.2931_1_179.xhtml
|
F
n
(
x
)
-
F
(
x
)
|
=
1
Doc 102
0.3648
-5.0000
5.0000
0.3648
testing/NTCIR/xhtml5/9/1312.7495/1312.7495_1_82.xhtml
|
F
3
(
G
)
|
=
∑
i
=
1
k
t
i
Doc 103
0.3648
-6.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0906.2558/0906.2558_1_60.xhtml
d
(
G
,
H
)
=
|
Code
(
G
)
-
Code
(
H
)
|
Doc 104
0.3357
-6.0000
4.0000
0.3357
testing/NTCIR/xhtml5/9/1308.3530/1308.3530_1_32.xhtml
ψ
(
H
)
-
∑
i
=
1
d
deg
H
1
(
i
)
Doc 105
0.3357
-7.0000
4.0000
0.3357
testing/NTCIR/xhtml5/6/0812.4624/0812.4624_1_50.xhtml
F
Σ
(
j
)
≡
∑
i
=
1
j
F
(
i
)
,
Doc 106
0.3357
-12.0000
5.0000
0.3357
testing/NTCIR/xhtml5/7/1010.5079/1010.5079_1_180.xhtml
R
(
G
,
H
)
=
(
χ
(
H
)
-
1
)
(
n
-
1
)
+
σ
(
H
)
Doc 107
0.3158
-14.0000
5.0000
0.3158
testing/NTCIR/xhtml5/4/math0605283/math0605283_1_35.xhtml
F
n
(
x
)
-
F
(
x
)
=
1
n
∑
i
=
1
n
X
i
(
x
)
Doc 108
0.2857
-14.0000
5.0000
0.2857
testing/NTCIR/xhtml5/7/1010.5079/1010.5079_1_9.xhtml
R
(
G
,
H
)
=
(
χ
(
H
)
-
1
)
(
|
G
|
-
1
)
+
σ
(
H
)
Doc 109
0.2667
-3.0000
6.0000
0.2667
testing/NTCIR/xhtml5/1/1212.2178/1212.2178_1_33.xhtml
F
(
G
a
)
-
F
(
G
1
)
Doc 110
0.2667
-3.0000
5.0000
0.2667
testing/NTCIR/xhtml5/5/0801.0743/0801.0743_1_52.xhtml
=
∑
i
=
1
16
G
i
,
Doc 111
0.2667
-6.0000
5.0000
0.2667
testing/NTCIR/xhtml5/4/math0601580/math0601580_1_53.xhtml
ϵ
(
G
,
H
)
=
#
𝔒
G
k
(
G
)
Doc 112
0.2667
-9.0000
5.0000
0.5333
testing/NTCIR/xhtml5/7/1005.1726/1005.1726_1_47.xhtml
=
∑
i
=
1
n
q
i
(
G
,
F
)
x
i
.
=
∑
i
=
1
n
r
i
(
G
,
F
)
x
i
.
Doc 113
0.2667
-11.0000
5.0000
0.2667
testing/NTCIR/xhtml5/5/0711.3242/0711.3242_1_16.xhtml
∑
i
=
1
n
1
n
F
(
p
i
)
-
F
(
p
¯
)
Doc 114
0.2667
-11.0000
5.0000
0.2667
testing/NTCIR/xhtml5/5/0711.3242/0711.3242_1_13.xhtml
∑
i
=
1
n
1
n
F
(
p
i
)
-
F
(
p
¯
)
Doc 115
0.2667
-12.0000
5.0000
0.2667
testing/NTCIR/xhtml5/9/1401.2620/1401.2620_1_124.xhtml
φ
=
∑
i
=
1
∞
f
i
⊗
g
i
∈
Γ
(
G
,
G
)
Doc 116
0.2667
-12.0000
5.0000
0.2667
testing/NTCIR/xhtml5/9/1401.2620/1401.2620_1_37.xhtml
h
=
∑
i
=
1
∞
f
i
⊗
g
i
∈
Γ
(
G
,
G
)
Doc 117
0.2667
-17.0000
5.0000
0.2667
testing/NTCIR/xhtml5/4/math0504574/math0504574_1_44.xhtml
|
Irr
(
G
V
)
|
=
∑
i
=
1
n
(
G
,
V
)
k
(
C
G
(
μ
i
)
)
Doc 118
0.2174
-4.0000
4.0000
0.2174
testing/NTCIR/xhtml5/6/0911.2172/0911.2172_1_74.xhtml
∑
i
=
1
k
λ
i
(
G
)
Doc 119
0.2174
-7.0000
4.0000
0.2174
testing/NTCIR/xhtml5/1/1111.3517/1111.3517_1_99.xhtml
≥
∑
i
=
1
γ
(
G
)
γ
R
(
H
)
Doc 120
0.2174
-10.0000
4.0000
0.2174
testing/NTCIR/xhtml5/2/math0010294/math0010294_1_91.xhtml
-
∑
i
=
1
m
μ
(
H
i
)
log
μ
(
H
i
)
Doc 121
0.1967
-9.0000
4.0000
0.1967
testing/NTCIR/xhtml5/8/1210.2873/1210.2873_1_38.xhtml
R
G
(
G
,
(
H
i
)
)
=
β
1
(
2
)
(
G
)
Doc 122
0.1678
-9.0000
4.0000
0.1678
testing/NTCIR/xhtml5/9/1312.7495/1312.7495_1_56.xhtml
|
F
(
H
G
)
|
=
|
F
≥
4
(
G
′
)
|
Doc 123
0.1678
-9.0000
4.0000
0.1678
testing/NTCIR/xhtml5/9/1312.7495/1312.7495_1_54.xhtml
|
F
(
H
G
)
|
=
|
F
≥
4
(
G
′
)
|