tangent
Not Supported
∑
n
∈
x0
d
|
ψ
(
t
,
n
)
|
2
|
n
|
≤
C
Search
Returned 81 matches (100 formulae, 100 docs)
Lookup 5536.400 ms, Re-ranking 252.497 ms
Found 108108595 tuple postings, 10711909 formulae, 4339707 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
∑
n
∈
ℤ
d
|
f
(
t
,
n
)
|
p
<
∞
Doc 1
0.6769, -3.0000, 9.0000, 0.6769
testing/NTCIR/xhtml5/1/math0003191/math0003191_1_25.xhtml
∑
n
∈
ℤ
|
μ
^
(
n
)
|
2
|
n
|
α
-
1
<
∞
.
Doc 2
0.6408, -7.0000, 7.0000, 0.6408
testing/NTCIR/xhtml5/6/1003.4600/1003.4600_1_28.xhtml
∑
n
∈
ℕ
|
s
n
(
g
)
|
2
≤
C
∥
g
∥
2
,
Doc 3
0.5475, -8.0000, 5.0000, 0.5475
testing/NTCIR/xhtml5/2/math0211247/math0211247_1_89.xhtml
∑
n
∈
ℤ
|
a
n
|
|
n
|
3
2
<
∞
Doc 4
0.5101, -5.0000, 6.0000, 0.5101
testing/NTCIR/xhtml5/3/math0407190/math0407190_1_84.xhtml
∑
n
=
0
N
|
a
n
(
t
,
k
)
|
2
=
1
Doc 5
0.5101, -6.0000, 7.0000, 0.5101
testing/NTCIR/xhtml5/10/hep-th9409087/hep-th9409087_1_78.xhtml
∑
|
μ
(
t
,
y
j
)
|
2
≤
1.
Doc 6
0.4828, -3.0000, 6.0000, 0.4828
testing/NTCIR/xhtml5/7/1008.2244/1008.2244_1_57.xhtml
∑
n
∈
ℤ
d
|
λ
n
|
2
<
∞
.
Doc 7
0.4828, -4.0000, 6.0000, 0.4828
testing/NTCIR/xhtml5/4/math0609784/math0609784_1_222.xhtml
∑
n
∈
N
|
g
j
(
n
)
|
2
≤
1
Doc 8
0.4828, -4.0000, 5.0000, 0.4828
testing/NTCIR/xhtml5/10/math9801069/math9801069_1_118.xhtml
∑
|
n
|
<
C
t
|
u
^
(
t
,
n
)
|
2
→
1
Doc 9
0.4828, -8.0000, 7.0000, 0.9655
testing/NTCIR/xhtml5/6/0908.2419/0908.2419_1_150.xhtml
∑
|
n
|
>
C
t
|
u
^
(
t
,
n
)
|
2
→
0
Doc 9
0.4828, -8.0000, 7.0000, 0.9655
testing/NTCIR/xhtml5/6/0908.2419/0908.2419_1_150.xhtml
∑
|
n
|
>
μ
(
t
)
|
u
^
n
(
t
,
k
)
|
2
Doc 10
0.4828, -8.0000, 6.0000, 0.4828
testing/NTCIR/xhtml5/9/1306.3178/1306.3178_1_2.xhtml
ψ
(
0
)
≥
1
-
δ
,
∑
n
∈
ℤ
|
n
|
|
ψ
(
n
)
|
2
≤
δ
.
Doc 11
0.4828, -14.0000, 6.0000, 0.4828
testing/NTCIR/xhtml5/7/1009.0913/1009.0913_1_56.xhtml
|
ψ
(
t
,
x
)
|
2
d
v
o
l
Doc 12
0.4444, -3.0000, 6.0000, 0.4444
testing/NTCIR/xhtml5/6/0911.4312/0911.4312_1_28.xhtml
|
ψ
(
t
,
q
)
|
2
Δ
t
Δ
q
Doc 13
0.4444, -3.0000, 6.0000, 0.4444
testing/NTCIR/xhtml5/11/math-ph9910009/math-ph9910009_1_4.xhtml
|
ψ
h
(
t
,
x
)
|
2
d
t
d
x
Doc 14
0.4444, -4.0000, 6.0000, 0.4444
testing/NTCIR/xhtml5/3/math0309040/math0309040_1_54.xhtml
∑
n
∈
ℤ
|
n
|
2
σ
|
c
n
(
f
)
|
2
<
∞
Doc 15
0.4444, -8.0000, 6.0000, 0.4444
testing/NTCIR/xhtml5/8/1209.6104/1209.6104_1_12.xhtml
|
ψ
k
(
t
,
ξ
)
|
2
Doc 16
0.4179, -1.0000, 6.0000, 0.4179
testing/NTCIR/xhtml5/7/1108.0777/1108.0777_1_141.xhtml
Doc 17
0.4179, -1.0000, 6.0000, 0.4179
testing/NTCIR/xhtml5/7/1108.0777/1108.0777_1_142.xhtml
𝒒
↦
|
ψ
(
t
,
𝒒
)
|
2
Doc 19
0.4179, -2.0000, 6.0000, 0.4179
testing/NTCIR/xhtml5/5/0806.4476/0806.4476_1_6.xhtml
|
ψ
n
±
(
t
,
x
)
|
2
Doc 20
0.4179, -2.0000, 6.0000, 0.4179
testing/NTCIR/xhtml5/11/math-ph9910009/math-ph9910009_1_23.xhtml
|
ψ
(
t
,
q
)
|
2
Δ
q
Doc 18
0.4179, -2.0000, 6.0000, 0.8358
testing/NTCIR/xhtml5/11/math-ph9910009/math-ph9910009_1_1.xhtml
|
ψ
j
(
n
)
(
t
,
u
)
|
2
Doc 21
0.4179, -3.0000, 6.0000, 0.4179
testing/NTCIR/xhtml5/6/1003.3302/1003.3302_1_75.xhtml
∫
|
ψ
(
t
,
x
)
|
2
d
x
=
const.
Doc 22
0.4179, -5.0000, 6.0000, 0.4179
testing/NTCIR/xhtml5/4/math0509545/math0509545_1_3.xhtml
∑
n
∈
ℕ
|
ϵ
n
c
n
|
2
=
∞
Doc 23
0.4179, -5.0000, 5.0000, 0.4179
testing/NTCIR/xhtml5/6/0904.0203/0904.0203_1_35.xhtml
∫
|
ψ
(
t
,
q
)
|
2
d
q
=
1
,
Doc 18
0.4179, -2.0000, 6.0000, 0.8358
testing/NTCIR/xhtml5/11/math-ph9910009/math-ph9910009_1_1.xhtml
M
:=
∫
ℝ
d
|
ψ
(
t
,
x
)
|
2
d
x
,
Doc 24
0.4179, -8.0000, 6.0000, 0.4179
testing/NTCIR/xhtml5/7/1009.4160/1009.4160_1_8.xhtml
lim
t
1
→
∞
∑
n
∈
ℤ
ψ
a
(
t
1
,
n
)
|
v
1
(
t
1
,
n
)
|
2
=
0.
Doc 25
0.4179, -20.0000, 6.0000, 1.5690
testing/NTCIR/xhtml5/5/0711.2134/0711.2134_1_66.xhtml
∑
(
m
,
n
)
∈
S
|
n
|
|
I
n
,
m
|
2
Doc 26
0.3784, -8.0000, 4.0000, 0.3784
testing/NTCIR/xhtml5/8/1110.2449/1110.2449_1_137.xhtml
Doc 27
0.3784, -8.0000, 4.0000, 0.3784
testing/NTCIR/xhtml5/5/0802.1955/0802.1955_1_136.xhtml
|
ψ
h
(
t
,
⋅
)
|
2
Doc 28
0.3529, -2.0000, 6.0000, 0.3529
testing/NTCIR/xhtml5/5/0712.1006/0712.1006_1_1.xhtml
Doc 29
0.3529, -2.0000, 6.0000, 0.3529
testing/NTCIR/xhtml5/5/0712.1006/0712.1006_1_2.xhtml
|
ψ
(
ξ
,
η
)
|
≤
C
Doc 31
0.3529, -2.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/7/1101.5472/1101.5472_1_44.xhtml
Doc 32
0.3529, -2.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/7/1101.5472/1101.5472_1_45.xhtml
|
ψ
(
x
,
z
)
|
≤
C
Doc 36
0.3529, -2.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/9/1401.5484/1401.5484_1_140.xhtml
|
u
(
t
,
ω
)
|
≤
C
Doc 30
0.3529, -2.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/8/1210.0006/1210.0006_1_80.xhtml
|
E
(
t
,
x
)
|
≤
C
Doc 34
0.3529, -2.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/6/1001.0632/1001.0632_1_60.xhtml
|
b
(
t
,
ψ
)
|
≤
C
Doc 33
0.3529, -2.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/9/1306.0590/1306.0590_1_41.xhtml
|
ω
(
t
,
s
)
|
≤
C
Doc 35
0.3529, -2.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/1/math-ph0007005/math-ph0007005_1_61.xhtml
|
p
Y
(
t
,
y
)
|
≤
C
Doc 40
0.3529, -3.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/7/1004.4526/1004.4526_1_47.xhtml
|
Ψ
E
(
t
,
P
)
|
≤
C
Doc 37
0.3529, -3.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/6/0907.3901/0907.3901_1_50.xhtml
Doc 38
0.3529, -3.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/6/0907.3901/0907.3901_1_49.xhtml
(
D
(
t
,
n
)
)
t
∈
T
Doc 39
0.3529, -3.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/1/math0004104/math0004104_1_70.xhtml
(
Π
(
t
,
n
)
,
n
∈
N
)
Doc 41
0.3529, -4.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/3/math0409545/math0409545_1_63.xhtml
∑
-
∞
∞
|
n
|
|
a
n
|
2
≤
32
C
,
Doc 42
0.3529, -8.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/6/1003.5747/1003.5747_1_25.xhtml
≤
∑
n
∈
ℤ
|
∂
θ
ϕ
^
(
r
,
n
)
|
2
Doc 43
0.3529, -9.0000, 5.0000, 0.3529
testing/NTCIR/xhtml5/6/1002.2407/1002.2407_1_241.xhtml
|
F
(
t
,
x
)
|
≤
C
1
|
x
|
2
+
C
2
Doc 44
0.3529, -9.0000, 4.0000, 0.3529
testing/NTCIR/xhtml5/9/1307.8002/1307.8002_1_8.xhtml
∑
|
n
|
|
a
n
|
2
<
∞
Doc 46
0.3117, -3.0000, 3.0000, 0.3117
testing/NTCIR/xhtml5/6/1003.5747/1003.5747_1_33.xhtml
∑
|
n
|
|
u
n
|
2
<
∞
Doc 45
0.3117, -3.0000, 3.0000, 0.3117
testing/NTCIR/xhtml5/10/hep-th9310051/hep-th9310051_1_137.xhtml
∑
n
∈
ℤ
|
n
|
ω
n
<
∞
Doc 47
0.3117, -4.0000, 4.0000, 0.3117
testing/NTCIR/xhtml5/7/1008.4617/1008.4617_1_302.xhtml
ψ
a
(
t
,
n
)
Doc 25
0.4179, -20.0000, 6.0000, 1.5690
testing/NTCIR/xhtml5/5/0711.2134/0711.2134_1_66.xhtml
ψ
~
a
(
t
,
n
)
Doc 25
0.4179, -20.0000, 6.0000, 1.5690
testing/NTCIR/xhtml5/5/0711.2134/0711.2134_1_66.xhtml
h
d
k
(
t
,
n
)
Doc 48
0.2878, -2.0000, 4.0000, 0.5755
testing/NTCIR/xhtml5/7/1010.4613/1010.4613_1_22.xhtml
h
d
2
(
t
,
n
)
Doc 48
0.2878, -2.0000, 4.0000, 0.5755
testing/NTCIR/xhtml5/7/1010.4613/1010.4613_1_22.xhtml
∑
n
|
F
n
|
2
,
Doc 49
0.2878, -2.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/10/hep-ph9807278/hep-ph9807278_1_418.xhtml
∑
n
|
A
n
|
2
≤
1
Doc 54
0.2878, -3.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/8/1108.5294/1108.5294_1_95.xhtml
∑
n
|
a
n
|
2
≤
1
Doc 53
0.2878, -3.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/9/1304.1477/1304.1477_1_38.xhtml
∑
n
∈
ℤ
|
n
|
z
n
Doc 52
0.2878, -3.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/6/1002.2551/1002.2551_1_49.xhtml
h
d
(
t
,
n
)
∈
ℕ
Doc 51
0.2878, -3.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/7/1010.4613/1010.4613_1_20.xhtml
D
(
t
,
n
)
∈
ℳ
n
Doc 50
0.2878, -3.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/1/math0004104/math0004104_1_53.xhtml
P
=
∑
n
|
ψ
n
|
2
,
Doc 55
0.2878, -4.0000, 5.0000, 0.2878
testing/NTCIR/xhtml5/9/1312.7818/1312.7818_1_10.xhtml
k
∈
D
π
^
(
t
,
n
)
Doc 56
0.2878, -4.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/10/math9309204/math9309204_1_52.xhtml
v
n
∈
𝕍
(
t
,
x
n
)
Doc 60
0.2878, -4.0000, 3.0000, 0.2878
testing/NTCIR/xhtml5/5/0807.1592/0807.1592_1_13.xhtml
α
n
∈
L
2
(
t
,
T
)
Doc 59
0.2878, -4.0000, 3.0000, 0.2878
testing/NTCIR/xhtml5/7/1012.2581/1012.2581_1_52.xhtml
u
n
(
t
,
x
)
∈
C
2
Doc 61
0.2878, -4.0000, 3.0000, 0.2878
testing/NTCIR/xhtml5/3/math0403402/math0403402_1_83.xhtml
b
n
(
t
,
x
)
∈
ℝ
d
Doc 58
0.2878, -4.0000, 3.0000, 0.2878
testing/NTCIR/xhtml5/7/1107.3058/1107.3058_1_140.xhtml
s
∈
B
(
t
n
,
r
n
)
Doc 57
0.2878, -4.0000, 3.0000, 0.2878
testing/NTCIR/xhtml5/8/1202.5792/1202.5792_1_21.xhtml
|
ψ
2
(
t
2
,
𝟎
)
|
≤
C
Doc 62
0.2878, -5.0000, 5.0000, 0.2878
testing/NTCIR/xhtml5/8/1210.0007/1210.0007_1_114.xhtml
𝒵
(
t
)
=
∑
n
w
(
t
,
n
)
Doc 63
0.2878, -6.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/4/hep-th0608148/hep-th0608148_1_65.xhtml
d
n
d
t
n
w
(
t
,
ξ
)
Doc 65
0.2878, -6.0000, 3.0000, 0.2878
testing/NTCIR/xhtml5/4/math0503128/math0503128_1_70.xhtml
sup
x
∈
ℝ
d
B
n
(
t
,
x
)
Doc 64
0.2878, -6.0000, 3.0000, 0.2878
testing/NTCIR/xhtml5/4/math0610769/math0610769_1_53.xhtml
𝐮
n
∈
ℒ
2
(
ℝ
d
,
ϱ
n
)
Doc 66
0.2878, -6.0000, 2.0000, 0.2878
testing/NTCIR/xhtml5/5/0807.3573/0807.3573_1_20.xhtml
h
d
(
t
,
n
)
≤
h
(
t
,
n
)
Doc 67
0.2878, -7.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/7/1010.4613/1010.4613_1_21.xhtml
∑
n
|
ϵ
n
+
1
-
ϵ
n
|
2
≤
C
,
Doc 68
0.2878, -9.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/9/1303.4161/1303.4161_1_96.xhtml
d
d
t
∑
n
∈
ℤ
ψ
a
(
t
,
n
)
h
(
t
,
n
)
Doc 25
0.4179, -20.0000, 6.0000, 1.5690
testing/NTCIR/xhtml5/5/0711.2134/0711.2134_1_66.xhtml
d
d
t
∑
n
∈
ℤ
ψ
a
(
t
,
n
)
h
(
t
,
n
)
≤
Doc 25
0.4179, -20.0000, 6.0000, 1.5690
testing/NTCIR/xhtml5/5/0711.2134/0711.2134_1_66.xhtml
d
d
t
∑
n
∈
ℤ
ψ
a
(
t
,
n
)
h
1
(
t
,
n
)
Doc 69
0.2878, -15.0000, 5.0000, 0.2878
testing/NTCIR/xhtml5/5/0711.2134/0711.2134_1_52.xhtml
e
|
t
|
ℝ
|
n
|
ℝ
d
≤
C
σ
j
(
t
,
n
)
,
(
t
,
n
)
∈
G
.
Doc 70
0.2878, -19.0000, 4.0000, 0.2878
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_118.xhtml
∑
|
n
|
≠
k
|
d
n
|
2
≤
2
K
Doc 71
0.2609, -6.0000, 3.0000, 0.2609
testing/NTCIR/xhtml5/5/0805.1331/0805.1331_1_57.xhtml
∑
n
|
n
|
|
b
n
|
2
<
∞
Doc 72
0.2439, -5.0000, 4.0000, 0.4878
testing/NTCIR/xhtml5/6/0911.3714/0911.3714_1_42.xhtml
∑
n
|
n
|
|
a
n
|
2
<
∞
Doc 72
0.2439, -5.0000, 4.0000, 0.4878
testing/NTCIR/xhtml5/6/0911.3714/0911.3714_1_42.xhtml
∑
n
∈
𝔽
p
min
(
t
,
r
(
n
)
)
Doc 73
0.2439, -7.0000, 3.0000, 0.2439
testing/NTCIR/xhtml5/9/1302.4622/1302.4622_1_157.xhtml
(
t
i
,
n
)
Doc 76
0.2222, -1.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/8/1203.2383/1203.2383_1_67.xhtml
Doc 77
0.2222, -1.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/8/1203.2383/1203.2383_1_73.xhtml
(
t
1
,
n
)
Doc 75
0.2222, -1.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/8/1203.2383/1203.2383_1_74.xhtml
T
(
t
,
n
)
Doc 74
0.2222, -1.0000, 4.0000, 0.4444
testing/NTCIR/xhtml5/3/math0312013/math0312013_1_116.xhtml
(
t
,
n
)
∈
T
Doc 74
0.2222, -1.0000, 4.0000, 0.4444
testing/NTCIR/xhtml5/3/math0312013/math0312013_1_116.xhtml
(
t
,
n
)
∈
J
Doc 80
0.2222, -2.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/8/1207.0054/1207.0054_1_165.xhtml
(
t
,
n
)
∈
G
Doc 78
0.2222, -2.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_116.xhtml
Doc 79
0.2222, -2.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/6/0910.4419/0910.4419_1_34.xhtml
(
t
n
,
n
∈
S
)
Doc 81
0.2222, -3.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/5/0709.2999/0709.2999_1_22.xhtml
(
t
n
,
n
∈
ℕ
)
Doc 82
0.2222, -3.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/7/1101.5619/1101.5619_1_24.xhtml
Doc 83
0.2222, -3.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/7/1101.5619/1101.5619_1_44.xhtml
Doc 84
0.2222, -3.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/7/1101.5619/1101.5619_1_23.xhtml
t
∈
(
t
n
,
s
n
)
Doc 85
0.2222, -4.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/8/1112.5551/1112.5551_1_125.xhtml
x
∈
(
t
n
,
x
n
)
Doc 87
0.2222, -4.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/9/1309.1222/1309.1222_1_57.xhtml
t
∈
(
t
n
,
a
n
)
Doc 89
0.2222, -4.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/8/1207.0918/1207.0918_1_173.xhtml
T
n
∈
(
t
n
,
∞
)
Doc 86
0.2222, -4.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/9/1303.4222/1303.4222_1_51.xhtml
ψ
n
∈
(
t
,
δ
n
)
Doc 88
0.2222, -4.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/7/1004.5031/1004.5031_1_126.xhtml
(
t
n
,
n
∈
S
⊂
ℕ
)
Doc 90
0.2222, -5.0000, 4.0000, 0.5339
testing/NTCIR/xhtml5/5/0709.2999/0709.2999_1_21.xhtml
(
t
n
,
Δ
n
)
n
∈
ℕ
Doc 91
0.2222, -5.0000, 3.0000, 0.4444
testing/NTCIR/xhtml5/8/1206.3515/1206.3515_1_58.xhtml
(
t
n
,
x
n
)
n
∈
ℕ
Doc 93
0.2222, -5.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/9/1211.6173/1211.6173_1_130.xhtml
Doc 94
0.2222, -5.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/9/1211.6173/1211.6173_1_129.xhtml
Doc 95
0.2222, -5.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/9/1211.6173/1211.6173_1_134.xhtml
∀
s
∈
(
t
n
,
s
n
)
Doc 92
0.2222, -5.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/6/1003.4051/1003.4051_1_47.xhtml
(
t
n
,
n
∈
S
⊂
ℕ
)
.
Doc 96
0.2222, -6.0000, 4.0000, 0.2222
testing/NTCIR/xhtml5/5/0709.2999/0709.2999_1_19.xhtml
(
t
n
,
Δ
n
±
)
n
∈
ℕ
Doc 91
0.2222, -5.0000, 3.0000, 0.4444
testing/NTCIR/xhtml5/8/1206.3515/1206.3515_1_58.xhtml
n
∈
ℕ
0
d
,
|
n
|
≤
m
Doc 97
0.2222, -6.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/6/0905.0944/0905.0944_1_201.xhtml
(
t
n
,
x
n
)
∈
ℝ
×
ℝ
d
Doc 98
0.2222, -7.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/5/0811.1849/0811.1849_1_26.xhtml
Doc 99
0.2222, -7.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/6/1001.1474/1001.1474_1_201.xhtml
ω
=
(
t
n
,
v
n
)
n
∈
ℤ
Doc 100
0.2222, -7.0000, 3.0000, 0.2222
testing/NTCIR/xhtml5/4/math-ph0607029/math-ph0607029_1_8.xhtml
(
t
n
ψ
,
n
∈
S
)
Doc 90
0.2222, -5.0000, 4.0000, 0.5339
testing/NTCIR/xhtml5/5/0709.2999/0709.2999_1_21.xhtml
(
t
n
φ
,
n
∈
S
)
Doc 90
0.2222, -5.0000, 4.0000, 0.5339
testing/NTCIR/xhtml5/5/0709.2999/0709.2999_1_21.xhtml