tangent
Not Supported
{
z
∈
H
:
|
z
|
>
1
,
|
?x0
(
z
)
|
<
1
2
}
Search
Returned 73 matches (100 formulae, 116 docs)
Lookup 1944.460 ms, Re-ranking 153.795 ms
Found 32923416 tuple postings, 14294925 formulae, 5022737 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.6567
-20.0000
10.0000
0.6567
testing/NTCIR/xhtml5/8/1205.3971/1205.3971_1_122.xhtml
A
τ
=
{
z
∈
ℛ
:
|
z
|
<
k
5
/
(
k
3
ρ
(
2
)
)
,
|
arg
(
z
)
-
τ
|
<
δ
π
2
}
Doc 2
0.6484
-5.0000
13.0000
0.6484
testing/NTCIR/xhtml5/3/math-ph0309022/math-ph0309022_1_18.xhtml
F
=
{
z
∈
H
:
|
z
|
≥
1
,
|
ν
|
≤
1
2
}
Doc 3
0.6484
-6.0000
12.0000
0.6484
testing/NTCIR/xhtml5/8/1208.6159/1208.6159_1_9.xhtml
ℱ
=
{
z
∈
C
:
|
z
|
≥
1
,
|
Re
z
|
≤
1
2
}
Doc 4
0.6484
-6.0000
12.0000
0.6484
testing/NTCIR/xhtml5/7/1105.6133/1105.6133_1_12.xhtml
ℱ
=
{
z
∈
ℋ
:
|
z
|
≥
1
,
|
Re
z
|
≤
1
2
}
Doc 5
0.6484
-9.0000
12.0000
0.6484
testing/NTCIR/xhtml5/8/1207.1174/1207.1174_1_49.xhtml
Σ
α
,
δ
=
{
z
∈
ℂ
:
|
z
|
>
δ
,
|
Arg
(
z
)
|
<
α
}
,
Doc 6
0.5699
-9.0000
12.0000
0.5699
testing/NTCIR/xhtml5/6/0912.2236/0912.2236_1_11.xhtml
ℱ
q
=
{
z
∈
ℍ
∣
|
z
|
≥
1
,
|
Re
(
z
)
|
≤
λ
q
2
}
Doc 7
0.5673
-8.0000
10.0000
0.5673
testing/NTCIR/xhtml5/5/0712.1391/0712.1391_1_36.xhtml
ℱ
=
{
z
∈
ℍ
∣
|
z
|
>
1
,
|
ℜ
𝔢
(
z
)
|
<
2
}
Doc 8
0.5422
-10.0000
9.0000
0.5422
testing/NTCIR/xhtml5/9/1312.1927/1312.1927_1_29.xhtml
D
^
=
{
z
∈
ℂ
:
|
z
|
>
a
>
0
,
|
arg
z
|
<
π
}
Doc 9
0.5422
-16.0000
9.0000
0.5422
testing/NTCIR/xhtml5/3/math0305396/math0305396_1_47.xhtml
F
=
{
z
∈
ℂ
:
|
z
|
>
1
,
ℑ
(
z
)
>
0
and
|
ℜ
(
z
)
|
<
1
2
}
Doc 10
0.5096
-6.0000
8.0000
0.5096
testing/NTCIR/xhtml5/9/1306.2778/1306.2778_1_10.xhtml
{
z
∈
ℂ
;
z
≠
0
,
|
arg
z
|
<
π
2
}
Doc 11
0.5096
-7.0000
9.0000
0.5096
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_177.xhtml
{
z
∈
ℋ
:
|
z
|
⩾
1
,
|
Re
z
|
⩽
1
/
2
}
Doc 12
0.5096
-7.0000
9.0000
0.5096
testing/NTCIR/xhtml5/8/1204.0502/1204.0502_1_5.xhtml
{
z
∈
ℋ
:
|
z
|
⩾
1
,
|
Re
z
|
⩽
1
/
2
}
Doc 13
0.4730
-6.0000
9.0000
0.4730
testing/NTCIR/xhtml5/4/math0508315/math0508315_1_18.xhtml
{
z
∈
ℂ
∣
|
z
|
>
r
0
,
|
arg
z
|
<
β
}
Doc 14
0.4730
-12.0000
9.0000
0.4730
testing/NTCIR/xhtml5/9/1301.6211/1301.6211_1_28.xhtml
Ω
=
{
z
∈
ℍ
|
|
z
|
>
1
,
0
<
Re
(
z
)
<
1
/
2
}
.
Doc 15
0.4516
-4.0000
8.0000
0.4516
testing/NTCIR/xhtml5/3/math0502039/math0502039_1_42.xhtml
{
z
∈
ℂ
:
|
z
|
≤
1
,
z
≠
1
}
Doc 16
0.4516
-9.0000
8.0000
0.4516
testing/NTCIR/xhtml5/7/1006.4323/1006.4323_1_10.xhtml
D
+
:=
{
z
∈
ℂ
:
|
z
|
<
1
,
Re
(
z
)
>
0
}
Doc 17
0.3934
-13.0000
7.0000
0.3934
testing/NTCIR/xhtml5/5/math0703340/math0703340_1_54.xhtml
F
:=
{
z
∈
ℍ
:
|
Re
(
z
)
|
<
1
/
2
,
|
z
|
>
1
}
.
Doc 18
0.3934
-16.0000
7.0000
0.3934
testing/NTCIR/xhtml5/8/1110.0764/1110.0764_1_70.xhtml
{
z
∈
ℂ
|
ℜ
z
∈
(
-
1
2
,
1
2
)
,
|
z
|
>
1
2
}
Doc 19
0.3700
-9.0000
5.0000
0.3700
testing/NTCIR/xhtml5/9/1305.3461/1305.3461_1_48.xhtml
U
=
{
z
∈
ℂ
:
|
z
|
<
1
2
}
⋐
𝔻
.
Doc 20
0.3700
-10.0000
5.0000
0.3700
testing/NTCIR/xhtml5/8/1209.4260/1209.4260_1_90.xhtml
𝔻
1
/
2
=
{
z
∈
ℂ
:
|
z
|
<
1
2
}
.
Doc 21
0.3700
-11.0000
7.0000
0.6248
testing/NTCIR/xhtml5/2/hep-th0210179/hep-th0210179_1_76.xhtml
D
=
{
z
|
|
z
|
>
1
,
|
Re
z
|
<
1
2
}
.
|
Re
z
|
<
1
2
Doc 22
0.3700
-11.0000
5.0000
0.3700
testing/NTCIR/xhtml5/8/1203.0190/1203.0190_1_80.xhtml
sing
(
f
-
1
)
⊂
{
z
∈
ℂ
:
|
z
|
<
1
2
}
,
Doc 23
0.3700
-14.0000
6.0000
0.3700
testing/NTCIR/xhtml5/8/1205.3971/1205.3971_1_104.xhtml
{
z
∈
ℛ
:
|
arg
(
z
)
-
σ
|
<
δ
π
2
,
|
z
|
small
}
.
Doc 24
0.3349
-1.0000
6.0000
0.3349
testing/NTCIR/xhtml5/4/hep-th0504204/hep-th0504204_1_44.xhtml
|
q
(
x
)
|
<
1
2
Doc 25
0.3349
-1.0000
6.0000
0.3349
testing/NTCIR/xhtml5/9/1309.1222/1309.1222_1_150.xhtml
|
α
(
t
)
|
<
1
2
Doc 26
0.3349
-1.0000
6.0000
0.3349
testing/NTCIR/xhtml5/6/0910.2453/0910.2453_1_29.xhtml
|
f
(
x
)
|
<
1
2
Doc 27
0.3349
-2.0000
7.0000
0.3349
testing/NTCIR/xhtml5/9/1303.0502/1303.0502_1_20.xhtml
|
g
(
z
)
|
<
1
2
α
Doc 28
0.3349
-5.0000
7.0000
0.3349
testing/NTCIR/xhtml5/7/1103.2285/1103.2285_1_13.xhtml
|
arg
(
z
)
|
<
1
2
α
π
-
ε
Doc 29
0.3349
-6.0000
6.0000
0.3349
testing/NTCIR/xhtml5/7/1101.4937/1101.4937_1_72.xhtml
|
τ
|
>
1
,
|
Re
(
τ
)
|
<
1
2
Doc 30
0.3349
-8.0000
7.0000
0.3349
testing/NTCIR/xhtml5/3/math0311229/math0311229_1_30.xhtml
|
f
(
z
1
)
-
f
(
z
2
)
|
<
1
2
s
Doc 31
0.3349
-12.0000
6.0000
0.3349
testing/NTCIR/xhtml5/4/math0702051/math0702051_1_27.xhtml
f
(
z
)
=
1
,
sup
w
∈
M
~
|
f
(
w
)
|
<
1
2
Doc 32
0.3125
-3.0000
5.0000
0.3125
testing/NTCIR/xhtml5/3/math-ph0312040/math-ph0312040_1_23.xhtml
{
z
∈
𝐂
,
|
z
|
<
ℛ
}
Doc 33
0.3125
-3.0000
5.0000
0.3125
testing/NTCIR/xhtml5/5/0806.1826/0806.1826_1_5.xhtml
{
z
∈
ℂ
,
|
z
|
<
θ
}
Doc 34
0.3125
-11.0000
5.0000
0.3125
testing/NTCIR/xhtml5/3/math0407297/math0407297_1_15.xhtml
D
s
=
{
z
∈
ℂ
:
ℑ
z
<
0
,
|
z
|
>
1
}
Doc 35
0.3125
-15.0000
6.0000
0.3125
testing/NTCIR/xhtml5/6/0911.5266/0911.5266_1_38.xhtml
z
∈
ℂ
∖
[
-
1
,
1
]
⊃
{
z
:
|
z
|
>
1
,
z
∈
ℂ
}
Doc 36
0.2759
-2.0000
6.0000
0.2759
testing/NTCIR/xhtml5/9/1308.6704/1308.6704_1_37.xhtml
|
Im
(
z
)
|
<
h
2
Doc 37
0.2759
-2.0000
6.0000
0.2759
testing/NTCIR/xhtml5/9/1308.6704/1308.6704_1_35.xhtml
|
Im
(
z
)
|
<
h
2
Doc 38
0.2759
-2.0000
6.0000
0.2759
testing/NTCIR/xhtml5/9/1308.6704/1308.6704_1_27.xhtml
|
Im
(
z
)
|
<
h
2
Doc 39
0.2759
-6.0000
6.0000
0.2759
testing/NTCIR/xhtml5/9/1303.3035/1303.3035_1_66.xhtml
|
σ
(
z
)
-
τ
(
z
)
|
<
δ
2
Doc 40
0.2759
-20.0000
5.0000
0.2759
testing/NTCIR/xhtml5/3/math0304318/math0304318_1_122.xhtml
ℛ
φ
=
{
z
∈
ℂ
:
1
2
<
|
z
|
<
1
,
φ
<
|
arg
(
1
-
z
)
|
}
,
Doc 41
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1111.6198/1111.6198_1_62.xhtml
|
z
|
<
1
2
Doc 42
0.2548
-1.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/math0310474/math0310474_1_150.xhtml
|
z
|
<
1
2
Doc 43
0.2548
-2.0000
4.0000
0.2548
testing/NTCIR/xhtml5/2/math-ph0110042/math-ph0110042_1_18.xhtml
ℜ
(
z
)
<
1
2
Doc 44
0.2548
-2.0000
4.0000
0.2548
testing/NTCIR/xhtml5/1/math0202166/math0202166_1_45.xhtml
Re
(
z
)
<
1
2
Doc 45
0.2548
-2.0000
4.0000
0.2548
testing/NTCIR/xhtml5/7/1107.0418/1107.0418_1_99.xhtml
w
(
z
)
<
1
2
Doc 46
0.2548
-2.0000
4.0000
0.2548
testing/NTCIR/xhtml5/2/math0111175/math0111175_1_51.xhtml
Re
(
z
)
<
1
2
Doc 47
0.2548
-2.0000
4.0000
0.2548
testing/NTCIR/xhtml5/1/math0202166/math0202166_1_44.xhtml
Re
(
z
)
<
1
2
Doc 48
0.2548
-2.0000
4.0000
0.2548
testing/NTCIR/xhtml5/1/math0202166/math0202166_1_43.xhtml
Re
(
z
)
<
1
2
Doc 49
0.2548
-3.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1207.5930/1207.5930_1_17.xhtml
|
z
-
2
|
<
1
2
Doc 50
0.2548
-3.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/math0206018/math0206018_1_93.xhtml
|
ℜ
z
j
|
<
1
2
Doc 51
0.2548
-3.0000
5.0000
0.2548
testing/NTCIR/xhtml5/5/0707.0771/0707.0771_1_129.xhtml
0
<
|
z
|
<
1
2
Doc 52
0.2548
-3.0000
5.0000
0.2548
testing/NTCIR/xhtml5/2/math0206018/math0206018_1_85.xhtml
|
ℜ
z
j
|
<
1
2
Doc 53
0.2548
-3.0000
4.0000
0.2548
testing/NTCIR/xhtml5/6/0911.1203/0911.1203_1_68.xhtml
ℜ
𝔢
(
z
)
<
1
2
Doc 54
0.2548
-3.0000
4.0000
0.2548
testing/NTCIR/xhtml5/4/math0701567/math0701567_1_101.xhtml
{
Re
(
z
)
<
1
2
}
Doc 55
0.2548
-4.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1109.2967/1109.2967_1_69.xhtml
{
0
<
|
z
|
<
1
2
}
Doc 56
0.2548
-4.0000
4.0000
0.2548
testing/NTCIR/xhtml5/5/0705.0814/0705.0814_1_108.xhtml
{
z
∈
ℂ
,
|
z
|
≤
1
}
Doc 57
0.2548
-4.0000
4.0000
0.2548
testing/NTCIR/xhtml5/5/0707.2159/0707.2159_1_159.xhtml
{
z
∈
ℂ
,
|
z
|
>
L
}
Doc 58
0.2548
-4.0000
4.0000
0.2548
testing/NTCIR/xhtml5/8/1203.3111/1203.3111_1_81.xhtml
0
<
Re
(
z
)
<
1
2
Doc 59
0.2548
-4.0000
4.0000
0.2548
testing/NTCIR/xhtml5/3/math0412159/math0412159_1_31.xhtml
{
z
∈
ℂ
,
|
z
|
≤
1
}
Doc 60
0.2548
-5.0000
4.0000
0.2548
testing/NTCIR/xhtml5/9/1306.6362/1306.6362_1_43.xhtml
|
Δ
t
2
(
z
)
|
<
1
3
Doc 61
0.2548
-7.0000
5.0000
0.2548
testing/NTCIR/xhtml5/8/1201.4075/1201.4075_1_32.xhtml
{
z
:
|
z
-
λ
n
|
<
1
2
}
Doc 62
0.2548
-7.0000
4.0000
0.2548
testing/NTCIR/xhtml5/8/1205.5201/1205.5201_1_279.xhtml
{
z
∈
𝔤
:
p
(
z
)
<
1
2
}
Doc 63
0.2548
-9.0000
5.0000
0.2548
testing/NTCIR/xhtml5/10/hep-th9406120/hep-th9406120_1_66.xhtml
|
z
|
<
1
2
,
|
z
′
|
<
1
2
Doc 64
0.2548
-17.0000
5.0000
0.2548
testing/NTCIR/xhtml5/3/math0412039/math0412039_1_9.xhtml
ℱ
:=
{
z
|
|
z
|
>
1
,
-
1
2
<
ℜ
(
z
)
≤
1
2
}
Doc 65
0.2308
-2.0000
6.0000
0.2308
testing/NTCIR/xhtml5/5/0705.1926/0705.1926_1_56.xhtml
|
h
(
z
)
|
≤
1
2
Doc 66
0.2308
-2.0000
6.0000
0.2308
testing/NTCIR/xhtml5/6/0904.0473/0904.0473_1_63.xhtml
|
r
(
z
)
|
⩽
1
2
Doc 67
0.2308
-2.0000
6.0000
0.2308
testing/NTCIR/xhtml5/9/1303.5096/1303.5096_1_69.xhtml
|
s
(
z
)
|
≥
1
2
Doc 68
0.2308
-2.0000
6.0000
0.2308
testing/NTCIR/xhtml5/5/0705.1926/0705.1926_1_58.xhtml
|
h
(
z
)
|
≤
1
2
Doc 69
0.2308
-2.0000
6.0000
0.2308
testing/NTCIR/xhtml5/9/1303.5096/1303.5096_1_73.xhtml
|
s
(
z
)
|
≥
1
2
Doc 70
0.2308
-4.0000
6.0000
0.2308
testing/NTCIR/xhtml5/4/math0503614/math0503614_1_40.xhtml
|
φ
a
(
z
)
|
2
>
1
2
Doc 71
0.2158
-8.0000
5.0000
0.2158
testing/NTCIR/xhtml5/8/1109.1616/1109.1616_1_14.xhtml
{
z
:
|
z
|
<
1
,
|
arg
z
|
<
π
}
Doc 72
0.2158
-8.0000
5.0000
0.2158
testing/NTCIR/xhtml5/6/0907.3307/0907.3307_1_4.xhtml
{
z
:
|
z
|
<
1
,
h
(
z
)
≠
0
}
Doc 73
0.2158
-9.0000
5.0000
0.2158
testing/NTCIR/xhtml5/5/math0703452/math0703452_1_6.xhtml
{
z
:
|
z
|
<
1
,
|
z
-
1
|
>
ϵ
}
Doc 74
0.2158
-9.0000
5.0000
0.2158
testing/NTCIR/xhtml5/1/math-ph0008002/math-ph0008002_1_356.xhtml
D
1
:=
{
z
:
|
z
|
<
1
,
z
∈
ℂ
}
Doc 75
0.2158
-11.0000
5.0000
0.2158
testing/NTCIR/xhtml5/7/1104.1604/1104.1604_1_38.xhtml
Λ
1
=
{
z
:
|
z
|
=
1
,
ℑ
(
z
)
≥
δ
}
Doc 76
0.2158
-11.0000
5.0000
0.2158
testing/NTCIR/xhtml5/5/0710.3570/0710.3570_1_190.xhtml
Ω
=
{
z
:
|
z
|
<
1
,
|
1
-
z
|
<
1
}
Doc 77
0.1538
-2.0000
4.0000
0.1538
testing/NTCIR/xhtml5/4/hep-th0507056/hep-th0507056_1_76.xhtml
|
z
|
>
1
2
Doc 78
0.1538
-3.0000
4.0000
0.1538
testing/NTCIR/xhtml5/8/1109.2967/1109.2967_1_70.xhtml
{
|
z
|
>
1
2
}
Doc 79
0.1538
-3.0000
4.0000
0.1538
testing/NTCIR/xhtml5/10/math9804057/math9804057_1_75.xhtml
|
z
i
|
>
1
2
Doc 80
0.1538
-6.0000
4.0000
0.1538
testing/NTCIR/xhtml5/3/math0411657/math0411657_1_66.xhtml
|
d
ρ
ϵ
(
z
)
|
>
1
2
Doc 81
0.1538
-8.0000
4.0000
0.1538
testing/NTCIR/xhtml5/7/1106.0632/1106.0632_1_48.xhtml
H
(
z
)
=
0
⇔
|
z
|
≤
1
2
Doc 82
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/9/1305.3896/1305.3896_1_9.xhtml
ψ
1
2
(
z
)
Doc 83
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/9/1305.3896/1305.3896_1_8.xhtml
ψ
1
2
(
z
)
Doc 84
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/10/math9807059/math9807059_1_25.xhtml
exp
1
2
(
z
)
Doc 85
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/7/1105.0453/1105.0453_1_82.xhtml
W
1
2
(
z
)
Doc 86
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/4/cond-mat0602375/cond-mat0602375_1_28.xhtml
L
(
z
1
2
)
Doc 87
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/10/hep-th9606188/hep-th9606188_1_56.xhtml
ψ
1
2
(
z
)
Doc 88
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/10/hep-th9501090/hep-th9501090_1_23.xhtml
f
1
2
(
z
)
Doc 89
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/3/hep-th0310089/hep-th0310089_1_16.xhtml
χ
1
2
(
z
)
Doc 90
0.1379
-3.0000
3.0000
0.1379
testing/NTCIR/xhtml5/1/hep-th9904201/hep-th9904201_1_5.xhtml
d
(
z
1
2
)
Doc 91
0.1379
-4.0000
3.0000
0.1379
testing/NTCIR/xhtml5/9/hep-th9202049/hep-th9202049_1_51.xhtml
O
-
1
2
(
z
)
Doc 92
0.1379
-4.0000
3.0000
0.1379
testing/NTCIR/xhtml5/10/hep-th9505154/hep-th9505154_1_80.xhtml
K
-
1
2
(
z
)
Doc 93
0.1379
-4.0000
3.0000
0.1379
testing/NTCIR/xhtml5/8/1201.2447/1201.2447_1_184.xhtml
{
1
,
α
1
2
}
Doc 94
0.1379
-4.0000
3.0000
0.1379
testing/NTCIR/xhtml5/10/hep-th9805157/hep-th9805157_1_78.xhtml
V
-
1
2
(
z
)
Doc 95
0.1379
-5.0000
3.0000
0.2759
testing/NTCIR/xhtml5/7/1004.4175/1004.4175_1_45.xhtml
J
l
+
1
2
(
z
)
Y
l
+
1
2
(
z
)
Doc 96
0.1379
-5.0000
3.0000
0.2759
testing/NTCIR/xhtml5/2/hep-th0211289/hep-th0211289_1_112.xhtml
J
ν
-
1
2
(
z
)
Y
ν
-
1
2
(
z
)
Doc 97
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/5/0704.0013/0704.0013_1_66.xhtml
H
r
+
1
2
(
z
)
Doc 98
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/6/1001.5181/1001.5181_1_21.xhtml
H
r
+
1
2
(
z
)
Doc 99
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/6/1001.5181/1001.5181_1_20.xhtml
H
r
+
1
2
(
z
)
Doc 100
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/10/hep-th9601048/hep-th9601048_1_26.xhtml
K
N
+
1
2
(
z
)
Doc 101
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/6/1001.5181/1001.5181_1_42.xhtml
Φ
k
+
1
2
(
z
)
Doc 102
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/6/1001.5181/1001.5181_1_36.xhtml
Φ
k
+
1
2
(
z
)
Doc 103
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/7/1103.1246/1103.1246_1_11.xhtml
J
l
+
1
2
(
z
)
Doc 104
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/7/1012.4171/1012.4171_1_183.xhtml
x
∈
{
1
,
1
2
}
Doc 105
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/2/math-ph0212040/math-ph0212040_1_26.xhtml
W
0
,
1
2
(
z
)
Doc 106
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/7/1101.4894/1101.4894_1_7.xhtml
K
n
+
1
2
(
z
)
Doc 107
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/7/1008.0765/1008.0765_1_21.xhtml
u
m
,
1
2
(
z
)
Doc 108
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/7/1101.4894/1101.4894_1_28.xhtml
K
n
+
1
2
(
z
)
Doc 109
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/1/hep-th0007057/hep-th0007057_1_19.xhtml
Φ
j
=
1
2
(
z
)
Doc 110
0.1379
-5.0000
3.0000
0.1379
testing/NTCIR/xhtml5/5/0704.0013/0704.0013_1_25.xhtml
H
r
+
1
2
(
z
)
Doc 111
0.1379
-6.0000
3.0000
0.1379
testing/NTCIR/xhtml5/8/1111.1298/1111.1298_1_4.xhtml
(
|
z
|
ln
1
2
(
|
z
|
)
)
Doc 112
0.1379
-8.0000
3.0000
0.1379
testing/NTCIR/xhtml5/2/hep-ph0207251/hep-ph0207251_1_26.xhtml
w
(
z
)
:=
v
(
ω
1
2
z
)
Doc 113
0.1379
-8.0000
3.0000
0.1379
testing/NTCIR/xhtml5/2/hep-ph0207251/hep-ph0207251_1_42.xhtml
w
(
z
)
=
v
(
ω
1
2
z
)
Doc 114
0.1379
-9.0000
3.0000
0.1379
testing/NTCIR/xhtml5/2/hep-ph0207251/hep-ph0207251_1_99.xhtml
w
(
z
)
=
v
(
ω
-
1
2
z
)
Doc 115
0.1379
-10.0000
3.0000
0.1379
testing/NTCIR/xhtml5/2/math0012186/math0012186_1_20.xhtml
max
|
z
|
≤
4
+
1
2
|
f
(
z
)
|
Doc 116
0.0870
-8.0000
3.0000
0.0870
testing/NTCIR/xhtml5/5/math0703680/math0703680_1_16.xhtml
|
D
2
ϕ
(
z
)
|
≃
1
|
z
|