tangent
Not Supported
D
(
G
,
H
)
=
∑
i
=
1
x0
|
F
i
(
G
)
-
F
x1
(
H
)
|
Search
Returned 73 matches (100 formulae, 120 docs)
Lookup 404.914 ms, Re-ranking 733.396 ms
Found 4982563 tuple postings, 2777226 formulae, 1774136 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.7296
-11.0000
13.0000
1.4593
testing/NTCIR/xhtml5/6/0906.2558/0906.2558_1_61.xhtml
d
(
G
,
H
)
=
∑
i
=
1
n
|
g
(
n
)
-
h
(
n
)
|
+
d
(
G
n
,
H
n
)
d
(
G
,
H
)
=
∑
i
=
1
∞
|
g
(
n
)
-
h
(
n
)
|
=
|
Code
(
G
)
-
Code
(
H
)
|
Doc 2
0.6582
-11.0000
10.0000
0.6582
testing/NTCIR/xhtml5/9/1304.6175/1304.6175_1_41.xhtml
Mass
u
(
D
,
R
)
:=
Mass
(
G
,
U
)
=
∑
i
=
1
h
|
R
i
×
|
-
1
.
Doc 3
0.6522
-5.0000
12.0000
0.6522
testing/NTCIR/xhtml5/4/math0602159/math0602159_1_2.xhtml
D
(
σ
,
π
)
=
∑
i
=
1
n
|
σ
(
i
)
-
π
(
i
)
|
.
Doc 4
0.6522
-5.0000
12.0000
0.6522
testing/NTCIR/xhtml5/9/1304.5798/1304.5798_1_1.xhtml
D
(
u
,
v
)
=
∑
i
=
1
n
|
u
(
i
)
-
v
(
i
)
|
.
Doc 5
0.6522
-5.0000
11.0000
0.6522
testing/NTCIR/xhtml5/5/0707.1051/0707.1051_1_23.xhtml
d
(
σ
,
τ
)
=
∑
i
=
1
n
|
σ
(
i
)
-
τ
(
i
)
|
.
Doc 6
0.6522
-5.0000
11.0000
0.6522
testing/NTCIR/xhtml5/6/0910.1191/0910.1191_1_54.xhtml
d
(
σ
,
τ
)
=
∑
i
=
1
n
|
σ
(
i
)
-
τ
(
i
)
|
.
Doc 7
0.6094
-4.0000
10.0000
0.6094
testing/NTCIR/xhtml5/2/math0101012/math0101012_1_10.xhtml
∑
i
=
1
N
|
F
(
x
i
)
-
F
(
y
i
)
|
<
ϵ
Doc 8
0.6094
-7.0000
9.0000
0.6094
testing/NTCIR/xhtml5/7/1102.4368/1102.4368_1_18.xhtml
+
∑
i
=
1
n
(
F
ε
(
x
+
Δ
i
)
-
F
ε
(
x
)
)
.
Doc 9
0.6094
-11.0000
9.0000
0.6094
testing/NTCIR/xhtml5/5/0704.1415/0704.1415_1_20.xhtml
∑
i
=
1
n
(
F
0
(
X
i
:
k
)
-
F
0
(
X
i
-
1
:
k
)
)
2
Doc 10
0.5605
0.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1304.6465/1304.6465_1_3.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
Doc 11
0.5605
0.0000
8.0000
0.5605
testing/NTCIR/xhtml5/8/1203.1769/1203.1769_1_43.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
Doc 12
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/7/1104.4261/1104.4261_1_7.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
.
Doc 13
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/8/1112.3205/1112.3205_1_5.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
,
Doc 14
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/6/0909.4923/0909.4923_1_1.xhtml
\mathscr{E}
(
G
)
=
∑
i
=
1
n
|
λ
i
|
,
Doc 15
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/7/1104.1097/1104.1097_1_4.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
.
Doc 16
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1304.6465/1304.6465_1_14.xhtml
E
s
(
G
)
=
∑
i
=
1
n
|
λ
i
|
Doc 17
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/6/0906.4636/0906.4636_1_2.xhtml
\mathscr{E}_{\mathitL}
(
G
)
=
∑
i
=
1
n
|
ζ
i
|
,
Doc 18
0.5605
-1.0000
8.0000
0.5605
testing/NTCIR/xhtml5/8/1205.4603/1205.4603_1_5.xhtml
E
(
G
)
=
∑
i
=
1
n
|
λ
i
|
,
Doc 19
0.5605
-2.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1304.6465/1304.6465_1_89.xhtml
S
L
E
(
G
)
=
∑
i
=
1
n
|
μ
i
|
Doc 20
0.5605
-3.0000
8.0000
0.5605
testing/NTCIR/xhtml5/8/1108.6229/1108.6229_1_3.xhtml
ℰ
s
(
G
→
)
=
∑
i
=
1
n
|
λ
i
|
.
Doc 21
0.5605
-3.0000
8.0000
0.5605
testing/NTCIR/xhtml5/9/1304.6465/1304.6465_1_38.xhtml
S
L
E
(
G
)
=
∑
i
=
1
n
|
μ
i
|
,
Doc 22
0.5605
-7.0000
9.0000
0.5605
testing/NTCIR/xhtml5/9/1212.6962/1212.6962_1_57.xhtml
∑
i
=
0
N
|
F
(
t
i
+
1
)
-
F
(
t
i
)
|
<
ε
Doc 23
0.5532
-12.0000
10.0000
0.5532
testing/NTCIR/xhtml5/6/0903.5292/0903.5292_1_30.xhtml
D
^
n
=
1
M
∑
j
=
1
M
|
F
n
(
y
j
)
-
F
(
y
j
)
|
2
.
Doc 24
0.5333
-3.0000
8.0000
0.5333
testing/NTCIR/xhtml5/6/0910.1191/0910.1191_1_98.xhtml
d
(
τ
)
=
∑
i
=
1
n
|
τ
(
i
)
-
i
|
Doc 25
0.5116
-4.0000
7.0000
0.5116
testing/NTCIR/xhtml5/5/0712.3112/0712.3112_1_7.xhtml
g
(
G
,
λ
)
=
∑
i
=
0
n
a
i
λ
i
Doc 26
0.5116
-4.0000
7.0000
0.5116
testing/NTCIR/xhtml5/6/0812.1364/0812.1364_1_110.xhtml
g
(
G
,
λ
)
=
∑
i
=
0
n
a
i
λ
i
Doc 27
0.5116
-4.0000
7.0000
0.5116
testing/NTCIR/xhtml5/4/math0510246/math0510246_1_95.xhtml
q
(
G
,
x
)
=
∑
i
=
0
n
a
i
x
i
Doc 28
0.5116
-7.0000
9.0000
0.5116
testing/NTCIR/xhtml5/6/0905.3281/0905.3281_1_17.xhtml
D
(
G
,
x
)
=
∑
i
=
1
n
d
(
G
,
i
)
x
i
Doc 29
0.5116
-7.0000
9.0000
0.5116
testing/NTCIR/xhtml5/6/0905.2251/0905.2251_1_45.xhtml
D
(
G
,
x
)
=
∑
i
=
1
n
d
(
G
,
i
)
x
i
Doc 30
0.5116
-7.0000
8.0000
0.5116
testing/NTCIR/xhtml5/1/1210.3144/1210.3144_1_6.xhtml
D
(
G
,
λ
)
=
∑
i
=
0
n
d
(
G
,
i
)
λ
i
Doc 31
0.5116
-7.0000
8.0000
0.5116
testing/NTCIR/xhtml5/7/1006.5488/1006.5488_1_27.xhtml
W
(
G
k
,
c
k
)
=
∑
i
=
1
k
f
(
c
i
)
.
Doc 32
0.5116
-7.0000
8.0000
0.5116
testing/NTCIR/xhtml5/8/1112.0838/1112.0838_1_94.xhtml
E
(
G
,
x
)
=
∑
i
=
1
m
e
(
G
,
i
)
x
i
Doc 33
0.5116
-8.0000
8.0000
0.5116
testing/NTCIR/xhtml5/7/1006.5488/1006.5488_1_55.xhtml
W
(
G
¯
k
,
t
k
)
=
∑
i
=
1
k
g
(
t
i
)
.
Doc 34
0.5116
-9.0000
7.0000
0.5116
testing/NTCIR/xhtml5/9/1305.1592/1305.1592_1_48.xhtml
f
(
x
,
z
)
=
∑
i
=
1
m
exp
(
z
i
+
F
i
(
x
)
)
Doc 35
0.5116
-10.0000
9.0000
0.5116
testing/NTCIR/xhtml5/6/0908.3305/0908.3305_1_3.xhtml
D
(
G
,
x
)
=
∑
i
=
1
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 36
0.5116
-18.0000
9.0000
0.5116
testing/NTCIR/xhtml5/5/0809.2879/0809.2879_1_2.xhtml
d
s
(
G
,
H
)
=
∑
i
=
1
∞
1
2
i
|
p
G
(
α
i
)
-
p
H
(
α
i
)
|
.
Doc 37
0.4841
-8.0000
9.0000
0.4841
testing/NTCIR/xhtml5/10/quant-ph9812058/quant-ph9812058_1_22.xhtml
∑
i
=
1
40
|
G
(
v
i
;
𝐘
)
-
F
(
v
i
)
|
2
,
Doc 38
0.4841
-28.0000
8.0000
0.9377
testing/NTCIR/xhtml5/8/1109.0141/1109.0141_1_18.xhtml
≤
∑
i
=
1
n
|
p
i
(
m
)
-
1
n
|
∫
-
∞
∞
|
F
i
:
n
(
x
)
-
F
n
-
i
+
1
:
n
(
x
)
|
d
x
c
n
=
∑
i
=
1
n
∫
-
∞
∞
|
F
i
:
n
(
x
)
-
F
n
-
i
+
1
:
n
(
x
)
|
d
x
.
Doc 39
0.4627
-2.0000
8.0000
0.4627
testing/NTCIR/xhtml5/8/1110.0807/1110.0807_1_23.xhtml
=
∑
i
=
1
n
|
σ
(
i
)
-
i
|
Doc 40
0.4627
-3.0000
8.0000
0.4627
testing/NTCIR/xhtml5/9/1309.6506/1309.6506_1_69.xhtml
n
1
=
∑
i
=
1
j
|
V
(
G
i
)
|
Doc 41
0.4627
-10.0000
8.0000
0.4627
testing/NTCIR/xhtml5/6/0905.2251/0905.2251_1_5.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
n
d
(
G
,
i
)
x
i
Doc 42
0.4627
-10.0000
8.0000
0.4627
testing/NTCIR/xhtml5/9/1401.2092/1401.2092_1_7.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
n
d
(
G
,
i
)
x
i
Doc 43
0.4627
-10.0000
8.0000
0.4627
testing/NTCIR/xhtml5/6/0905.3281/0905.3281_1_5.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
n
d
(
G
,
i
)
x
i
Doc 44
0.4627
-10.0000
7.0000
0.4627
testing/NTCIR/xhtml5/1/1312.7506/1312.7506_1_6.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
Doc 45
0.4627
-10.0000
7.0000
0.4627
testing/NTCIR/xhtml5/1/1312.7506/1312.7506_1_25.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
Doc 46
0.4627
-10.0000
7.0000
0.4627
testing/NTCIR/xhtml5/1/1312.7506/1312.7506_1_14.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
Doc 47
0.4627
-10.0000
7.0000
0.4627
testing/NTCIR/xhtml5/8/1112.0838/1112.0838_1_97.xhtml
E
(
G
,
x
)
=
∑
i
=
ρ
(
G
)
m
e
(
G
,
i
)
x
i
Doc 48
0.4627
-13.0000
8.0000
0.4627
testing/NTCIR/xhtml5/6/0905.2251/0905.2251_1_15.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 49
0.4627
-13.0000
8.0000
0.4627
testing/NTCIR/xhtml5/6/0905.3281/0905.3281_1_8.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 50
0.4627
-13.0000
8.0000
0.4627
testing/NTCIR/xhtml5/9/1401.2092/1401.2092_1_10.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 51
0.4627
-13.0000
8.0000
0.4627
testing/NTCIR/xhtml5/8/1112.0838/1112.0838_1_16.xhtml
D
(
G
,
x
)
=
∑
i
=
γ
(
G
)
|
V
(
G
)
|
d
(
G
,
i
)
x
i
Doc 52
0.4348
-10.0000
6.0000
0.4348
testing/NTCIR/xhtml5/4/math0610491/math0610491_1_32.xhtml
|
F
(
x
)
-
F
(
y
)
|
≤
∑
i
=
1
d
|
x
i
-
y
i
|
Doc 53
0.4348
-10.0000
6.0000
0.4348
testing/NTCIR/xhtml5/4/math0610489/math0610489_1_48.xhtml
|
F
(
x
)
-
F
(
y
)
|
≤
∑
i
=
1
d
|
x
i
-
y
i
|
Doc 54
0.4348
-10.0000
6.0000
0.4348
testing/NTCIR/xhtml5/4/math0612258/math0612258_1_22.xhtml
|
F
(
x
)
-
F
(
y
)
|
≤
∑
i
=
1
n
|
x
i
-
y
i
|
Doc 55
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/5/0711.1343/0711.1343_1_94.xhtml
s
=
∑
i
=
1
m
|
h
i
|
Doc 56
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/6/0901.2196/0901.2196_1_76.xhtml
a
=
∑
i
=
1
m
|
a
i
|
Doc 57
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/9/1302.4434/1302.4434_1_57.xhtml
l
=
∑
i
=
1
n
|
m
i
|
Doc 58
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/7/1006.1117/1006.1117_1_5.xhtml
n
=
∑
i
=
1
m
|
S
i
|
Doc 59
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/3/math0404256/math0404256_1_169.xhtml
K
=
∑
i
=
1
s
|
r
i
|
Doc 60
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/1/1208.3798/1208.3798_1_80.xhtml
m
=
∑
i
=
1
k
|
S
i
|
Doc 61
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/3/hep-th0408014/hep-th0408014_1_12.xhtml
L
=
∑
i
=
1
3
|
J
i
|
Doc 62
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/9/1302.4193/1302.4193_1_82.xhtml
m
=
∑
i
=
1
n
|
m
i
|
Doc 63
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/7/1006.1231/1006.1231_1_103.xhtml
X
=
∑
i
=
1
M
|
X
i
|
Doc 64
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/5/0707.1501/0707.1501_1_197.xhtml
n
=
∑
i
=
1
k
|
a
i
|
Doc 65
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/9/1302.4193/1302.4193_1_75.xhtml
l
=
∑
i
=
1
n
|
m
i
|
Doc 66
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/5/0710.0436/0710.0436_1_208.xhtml
E
=
∑
i
=
1
m
|
E
i
|
Doc 67
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/9/1304.5809/1304.5809_1_23.xhtml
m
=
∑
i
=
1
n
|
A
i
|
Doc 68
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/6/1001.0296/1001.0296_1_34.xhtml
S
=
∑
i
=
1
T
|
B
i
|
Doc 69
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/9/1304.1225/1304.1225_1_43.xhtml
s
=
∑
i
=
1
l
|
r
i
|
Doc 70
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/5/0812.0377/0812.0377_1_101.xhtml
C
=
∑
i
=
1
s
|
β
i
|
Doc 71
0.4138
-1.0000
7.0000
0.4138
testing/NTCIR/xhtml5/3/math0404256/math0404256_1_141.xhtml
K
=
∑
i
=
1
s
|
r
i
|
Doc 72
0.4138
-1.0000
6.0000
0.4138
testing/NTCIR/xhtml5/8/1210.0947/1210.0947_1_92.xhtml
∑
i
=
1
n
|
μ
(
F
i
)
|
Doc 73
0.4138
-1.0000
6.0000
0.4138
testing/NTCIR/xhtml5/4/math0505168/math0505168_1_46.xhtml
|
F
k
(
x
)
-
F
m
(
x
)
|
Doc 74
0.4138
-1.0000
6.0000
0.4138
testing/NTCIR/xhtml5/4/math0602538/math0602538_1_137.xhtml
(
F
i
(
w
)
-
F
j
(
w
)
)
Doc 75
0.4138
-4.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/math0406024/math0406024_1_50.xhtml
f
(
H
)
=
∑
i
=
1
t
f
(
G
i
)
Doc 76
0.4138
-4.0000
5.0000
0.4138
testing/NTCIR/xhtml5/7/1107.2193/1107.2193_1_20.xhtml
F
(
t
)
=
∑
i
=
1
p
F
i
(
t
)
Doc 77
0.4138
-5.0000
5.0000
0.4138
testing/NTCIR/xhtml5/10/math9808026/math9808026_1_51.xhtml
F
τ
(
T
)
=
∑
i
=
1
l
T
n
i
.
Doc 78
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/math0309410/math0309410_1_139.xhtml
F
(
x
)
=
∑
i
=
1
n
A
i
F
i
(
x
)
Doc 79
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/7/1004.1333/1004.1333_1_126.xhtml
τ
(
e
1
)
=
∑
i
=
1
N
F
i
+
G
,
Doc 80
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/math0309410/math0309410_1_51.xhtml
F
(
x
)
=
∑
i
=
1
n
A
i
F
i
(
x
)
Doc 81
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/5/math0703020/math0703020_1_35.xhtml
F
n
(
β
)
=
∑
i
=
1
n
e
-
β
c
i
Doc 82
0.4138
-6.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/math0309410/math0309410_1_49.xhtml
F
(
x
)
=
∑
i
=
1
n
A
i
F
i
(
x
)
Doc 83
0.4138
-7.0000
5.0000
0.4138
testing/NTCIR/xhtml5/9/hep-th9212156/hep-th9212156_1_23.xhtml
F
(
x
)
=
∑
i
=
1
∞
F
i
(
1
-
x
)
i
Doc 84
0.4138
-8.0000
5.0000
0.4138
testing/NTCIR/xhtml5/3/hep-th0312328/hep-th0312328_1_333.xhtml
F
(
p
¯
)
=
∑
i
=
1
3
exp
F
i
(
p
¯
)
.
Doc 85
0.4138
-8.0000
5.0000
0.4138
testing/NTCIR/xhtml5/7/1101.3818/1101.3818_1_140.xhtml
F
S
(
A
)
=
∑
i
=
1
i
=
n
F
σ
i
(
A
)
Doc 86
0.4138
-8.0000
5.0000
0.4138
testing/NTCIR/xhtml5/4/math0506579/math0506579_1_231.xhtml
F
j
(
x
)
=
∑
i
=
1
n
F
i
j
(
x
)
ξ
i
Doc 87
0.4138
-11.0000
5.0000
0.4138
testing/NTCIR/xhtml5/4/math0601434/math0601434_1_36.xhtml
F
~
(
θ
)
=
∑
i
=
1
k
f
i
(
θ
)
F
~
i
(
θ
)
,
Doc 88
0.4138
-14.0000
4.0000
0.4138
testing/NTCIR/xhtml5/6/1002.4338/1002.4338_1_10.xhtml
T
(
G
)
-
T
(
H
)
=
∑
r
=
1
∞
T
r
(
G
,
H
)
/
r
!
,
Doc 89
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/8/1112.0099/1112.0099_1_94.xhtml
|
F
ϵ
(
x
)
-
F
(
x
)
|
Doc 90
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0905.4334/0905.4334_1_2.xhtml
|
F
n
(
t
)
-
F
(
t
)
|
Doc 91
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/9/1212.6353/1212.6353_1_67.xhtml
|
F
n
(
x
)
-
F
(
x
)
|
Doc 92
0.3648
-1.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0906.2989/0906.2989_1_120.xhtml
|
F
ℓ
(
x
)
-
F
(
x
)
|
Doc 93
0.3648
-2.0000
7.0000
0.3648
testing/NTCIR/xhtml5/7/1007.0795/1007.0795_1_75.xhtml
∑
i
=
1
n
|
F
i
|
=
n
Doc 94
0.3648
-2.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0906.5185/0906.5185_1_170.xhtml
n
=
∑
i
=
1
k
|
𝝂
i
|
Doc 95
0.3648
-2.0000
6.0000
0.3648
testing/NTCIR/xhtml5/5/0810.3150/0810.3150_1_57.xhtml
m
=
∑
i
=
1
n
|
S
i
|
Doc 96
0.3648
-3.0000
7.0000
0.3648
testing/NTCIR/xhtml5/9/1301.1521/1301.1521_1_19.xhtml
∑
i
=
1
s
|
F
i
|
=
4
s
Doc 97
0.3648
-3.0000
7.0000
0.3648
testing/NTCIR/xhtml5/9/1301.1521/1301.1521_1_21.xhtml
∑
i
=
1
s
|
F
i
|
=
4
s
Doc 98
0.3648
-3.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0911.2931/0911.2931_1_179.xhtml
|
F
n
(
x
)
-
F
(
x
)
|
=
1
Doc 99
0.3648
-5.0000
5.0000
0.3648
testing/NTCIR/xhtml5/9/1312.7495/1312.7495_1_82.xhtml
|
F
3
(
G
)
|
=
∑
i
=
1
k
t
i
Doc 100
0.3648
-6.0000
6.0000
0.3648
testing/NTCIR/xhtml5/3/math0408144/math0408144_1_77.xhtml
∑
i
=
1
k
|
w
i
|
=
F
(
k
)
-
k
Doc 101
0.3648
-6.0000
6.0000
0.3648
testing/NTCIR/xhtml5/6/0906.2558/0906.2558_1_60.xhtml
d
(
G
,
H
)
=
|
Code
(
G
)
-
Code
(
H
)
|
Doc 102
0.3648
-14.0000
5.0000
0.3648
testing/NTCIR/xhtml5/7/1011.4192/1011.4192_1_60.xhtml
∑
i
=
1
k
∥
F
ω
R
(
Q
i
)
-
F
~
R
(
Γ
ω
[
Q
i
]
)
∥
Doc 103
0.3648
-15.0000
6.0000
0.3648
testing/NTCIR/xhtml5/8/1201.5768/1201.5768_1_71.xhtml
∑
n
=
1
±
∞
|
n
|
|
F
±
(
n
±
2
)
-
F
±
(
n
)
|
<
∞
.
Doc 104
0.3357
-7.0000
4.0000
0.3357
testing/NTCIR/xhtml5/6/0812.4624/0812.4624_1_50.xhtml
F
Σ
(
j
)
≡
∑
i
=
1
j
F
(
i
)
,
Doc 105
0.3357
-7.0000
4.0000
0.3357
testing/NTCIR/xhtml5/4/math0506336/math0506336_1_63.xhtml
F
(
𝐲
)
-
∑
i
=
1
m
F
(
y
i
𝐞
i
)
Doc 106
0.3158
-14.0000
5.0000
0.3158
testing/NTCIR/xhtml5/4/math0605283/math0605283_1_35.xhtml
F
n
(
x
)
-
F
(
x
)
=
1
n
∑
i
=
1
n
X
i
(
x
)
Doc 107
0.2667
-3.0000
5.0000
0.2667
testing/NTCIR/xhtml5/5/0801.0743/0801.0743_1_52.xhtml
=
∑
i
=
1
16
G
i
,
Doc 108
0.2667
-3.0000
5.0000
0.2667
testing/NTCIR/xhtml5/5/0710.0403/0710.0403_1_149.xhtml
F
=
∑
i
=
1
N
F
i
Doc 109
0.2667
-4.0000
5.0000
0.2667
testing/NTCIR/xhtml5/3/hep-th0411063/hep-th0411063_1_63.xhtml
F
t
=
∑
i
=
1
N
F
i
Doc 110
0.2667
-4.0000
5.0000
0.2667
testing/NTCIR/xhtml5/3/math0409518/math0409518_1_172.xhtml
E
k
=
∑
i
=
1
k
F
i
Doc 111
0.2667
-4.0000
5.0000
0.2667
testing/NTCIR/xhtml5/7/1006.1339/1006.1339_1_10.xhtml
F
n
=
∑
i
=
1
n
c
i
Doc 112
0.2667
-4.0000
5.0000
0.2667
testing/NTCIR/xhtml5/3/math0310023/math0310023_1_32.xhtml
y
=
∑
i
=
1
n
y
F
i
Doc 113
0.2667
-7.0000
5.0000
0.2667
testing/NTCIR/xhtml5/2/hep-th0105020/hep-th0105020_1_22.xhtml
F
a
=
∑
i
=
1
n
a
i
F
i
.
Doc 114
0.2667
-7.0000
5.0000
0.2667
testing/NTCIR/xhtml5/2/math-ph0204050/math-ph0204050_1_21.xhtml
F
a
=
∑
i
=
1
n
a
i
F
i
.
Doc 115
0.2667
-7.0000
5.0000
0.2667
testing/NTCIR/xhtml5/10/hep-th9902142/hep-th9902142_1_16.xhtml
F
a
=
∑
i
=
1
n
a
i
F
i
.
Doc 116
0.2667
-9.0000
5.0000
0.5333
testing/NTCIR/xhtml5/7/1005.1726/1005.1726_1_47.xhtml
=
∑
i
=
1
n
q
i
(
G
,
F
)
x
i
.
=
∑
i
=
1
n
r
i
(
G
,
F
)
x
i
.
Doc 117
0.2667
-11.0000
5.0000
0.2667
testing/NTCIR/xhtml5/5/0711.3242/0711.3242_1_16.xhtml
∑
i
=
1
n
1
n
F
(
p
i
)
-
F
(
p
¯
)
Doc 118
0.2667
-11.0000
5.0000
0.2667
testing/NTCIR/xhtml5/5/0711.3242/0711.3242_1_13.xhtml
∑
i
=
1
n
1
n
F
(
p
i
)
-
F
(
p
¯
)
Doc 119
0.2174
-9.0000
4.0000
0.2174
testing/NTCIR/xhtml5/10/math9811145/math9811145_1_48.xhtml
>
∑
i
=
1
∞
F
k
(
i
)
-
1
+
δ
Doc 120
0.2174
-10.0000
4.0000
0.2174
testing/NTCIR/xhtml5/4/math0607191/math0607191_1_135.xhtml
d
(
∑
i
=
1
k
n
i
+
1
)
-
F
(
d
)