Returned 96 matches (100 formulae, 97 docs)
    Lookup 14835.200 ms, Re-ranking 27194.714 ms
    Found 49419779 tuple postings, 13120194 formulae, 4618385 documents
[ formulas ] [ documents ] [ documents-by-formula ]

Doc 1
0.2008
-32.0000
10.0000
0.2008
testing/NTCIR/xhtml5/1/hep-th0004206/hep-th0004206_1_33.xhtml
A(u,v)=-13log(f(u)+g(v))+12log(f(u)g(v))+13(f(u)+g(v))2+a

Doc 2
0.1949
-41.0000
9.0000
0.1949
testing/NTCIR/xhtml5/4/math0606294/math0606294_1_133.xhtml
λjFn(λ,z)=fλnλj(hλ(z))+(fλn)(hλ(z))λjhλ(z)-λjhλ(z).

Doc 3
0.1826
-32.0000
9.0000
0.1826
testing/NTCIR/xhtml5/9/1212.1982/1212.1982_1_48.xhtml
p1(x,ξ)=-i2gjkxj(x)(ξk-Ak(x))-i2gjk(x)Akxj(x).

Doc 4
0.1725
-43.0000
7.0000
0.1725
testing/NTCIR/xhtml5/10/solv-int9904004/solv-int9904004_1_32.xhtml
Ωn(x,ϵ)=δJnδu(x)Pnu(x)-xPnux(x)+2x2Pnuxx(x)-

Doc 5
0.1668
-14.0000
7.0000
0.1668
testing/NTCIR/xhtml5/3/math0402201/math0402201_1_120.xhtml
ϕ(t,σ)=f0(t)+12(f1(t)+u(t,σ))σ2

Doc 6
0.1634
-28.0000
6.0000
0.1634
testing/NTCIR/xhtml5/6/0911.4990/0911.4990_1_91.xhtml
G2(t0,y,B1+ut0(1)(y))-t1(B1+ut0(1)(y))-yt2

Doc 7
0.1606
-22.0000
7.0000
0.1606
testing/NTCIR/xhtml5/6/0902.3116/0902.3116_1_201.xhtml
ft(φs,t(z))φs,tt(z)+ftt(φs,t(z))

Doc 8
0.1582
-37.0000
8.0000
0.1582
testing/NTCIR/xhtml5/10/hep-th9501047/hep-th9501047_1_4.xhtml
Gv(ψ)(z1,z2)=-1δ8(z1-z2)+14(ψ(z1)D¯2δ8(z1-z2))+O(Ψ¯)

Doc 9
0.1527
-31.0000
7.0000
0.1527
testing/NTCIR/xhtml5/3/hep-th0401023/hep-th0401023_1_32.xhtml
V(z|f,g)=duuA(f(u)uAg(u)-σ(f,g)g(u)uAf(u)).

Doc 10
0.1527
-33.0000
5.0000
0.1527
testing/NTCIR/xhtml5/8/1210.3231/1210.3231_1_189.xhtml
G(s,t)=f(𝐱)+fzi(𝐱)s+fzj(𝐱)t+2fzizj(𝐱)st.

Doc 11
0.1466
-19.0000
8.0000
0.1466
testing/NTCIR/xhtml5/2/math-ph0205032/math-ph0205032_1_23.xhtml
x(f(x)+g(y)+h(z))2=2(F1(x)-H2(z)),

Doc 12
0.1440
-36.0000
4.0000
0.1440
testing/NTCIR/xhtml5/6/0910.0658/0910.0658_1_148.xhtml
X2=f3(z2)z3,X1=g1(z1)z1+z2+g3(z1,z2)z3,

Doc 13
0.1440
-38.0000
6.0000
0.1440
testing/NTCIR/xhtml5/10/hep-th9705119/hep-th9705119_1_6.xhtml
T=N4πdσdxv(σ,σ)𝒢s(x){u(σ)σ(-2ix2)+u(σ)σ(-i6)+

Doc 14
0.1440
-49.0000
6.0000
0.2593
testing/NTCIR/xhtml5/6/1003.2275/1003.2275_1_20.xhtml
uε(x)=g(x)-1πΩaln|x-z|uε(z)νdσ(z)+ΩaRΩ(x,z)uε(z)νdσ(z)+Cε.
uε(x)=g(x)+ΩaNΩ(x,z)uε(z)νzdσ(z)+Cε, xΩ,

Doc 15
0.1440
-52.0000
6.0000
0.1440
testing/NTCIR/xhtml5/8/1204.1299/1204.1299_1_31.xhtml
(f(z1)-f(z2))μod(z1,z2)=(f(z1)+c)g(z1)+(f(z2)+c)g(z2)-12Q(f(z1))-12Q(f(z2)),

Doc 16
0.1386
-33.0000
7.0000
0.1386
testing/NTCIR/xhtml5/9/1307.7688/1307.7688_1_27.xhtml
μ2t2u(xp,t)=Δ2m(h)u(xp,t),Δ2m(h)up=-Vup,

Doc 17
0.1325
-14.0000
5.0000
0.1325
testing/NTCIR/xhtml5/8/1112.2937/1112.2937_1_41.xhtml
ft(z)t=-ft(z)zG(z,t).

Doc 18
0.1325
-14.0000
5.0000
0.1325
testing/NTCIR/xhtml5/8/1112.2937/1112.2937_1_3.xhtml
ft(z)t=-ft(z)zG(z,t).

Doc 19
0.1325
-21.0000
5.0000
0.1325
testing/NTCIR/xhtml5/9/1303.3381/1303.3381_1_47.xhtml
gt(x)=ut(x)vt(x)x-ut(x)xvt(x),

Doc 20
0.1297
-24.0000
6.0000
0.1297
testing/NTCIR/xhtml5/7/1009.0617/1009.0617_1_37.xhtml
V𝕊2(λ1,λ2)=12(g11(Wλ1)2+g22(Wλ2)2)

Doc 21
0.1297
-28.0000
6.0000
0.1297
testing/NTCIR/xhtml5/4/math-ph0701058/math-ph0701058_1_60.xhtml
12t(u0(x+t)+u0(x-t))+12(u1(x+t)-u1(x-t))

Doc 22
0.1244
-28.0000
6.0000
0.1244
testing/NTCIR/xhtml5/10/solv-int9510001/solv-int9510001_1_19.xhtml
r(z0,z1)=-12ln(f′′(z1)+2z0)+g(z1),  gC2(,).

Doc 23
0.1244
-28.0000
6.0000
0.1244
testing/NTCIR/xhtml5/10/solv-int9510001/solv-int9510001_1_15.xhtml
r(z0,z1)=-12ln(f′′(z1)+2z0)+g(z1),  gC2(,).

Doc 24
0.1244
-38.0000
5.0000
0.1244
testing/NTCIR/xhtml5/2/math0010232/math0010232_1_95.xhtml
=-j=1𝑛Ωaj(x,rsx)xj{g¯(x)[us(x)-hs(x)+gs(x)]}dx,

Doc 25
0.1244
-43.0000
7.0000
0.1244
testing/NTCIR/xhtml5/2/math0205106/math0205106_1_63.xhtml
aH(a,z)=-12f(z)¯f(a)1-f(z)¯f(a)-12alogf(z)-f(a)z-a.

Doc 26
0.1239
-25.0000
7.0000
0.1239
testing/NTCIR/xhtml5/1/0812.2769/0812.2769_1_43.xhtml
-x(A(x,y)ux)-y(A(x,y)uy)+B(x,y)ux=F,

Doc 27
0.1239
-27.0000
6.0000
0.3444
testing/NTCIR/xhtml5/4/math-ph0506004/math-ph0506004_1_13.xhtml
=-Hg=-g[12(f2+g2)-g(p+g2)+f(s-f2)]
=-Hf=-f[12(f2+g2)-g(p+g2)+f(s-f2)]
=Hp=p[12(f2+g2)-g(p+g2)+f(s-f2)]=-g
Doc 28
0.1198
-26.0000
7.0000
0.1198
testing/NTCIR/xhtml5/1/1005.5059/1005.5059_1_11.xhtml
V(q,t)=v+iu=1μ(t)Sq-i2μ(t)q(lnρ),

Doc 29
0.1198
-39.0000
4.0000
0.1198
testing/NTCIR/xhtml5/8/1204.1299/1204.1299_1_27.xhtml
(f(z1)-f(z2))μev(z1,z2)=g(z1)+g(z2)-12Q(f(z1))-12Q(f(z2)),

Doc 30
0.1185
-29.0000
3.0000
0.2089
testing/NTCIR/xhtml5/2/math0201313/math0201313_1_196.xhtml
+μ2z2(k0(𝐫+𝐦,z2)[z1-1(z2)2δ(z2z1)])
+μ2(z2)2(k0(𝐫+𝐦,z2)[z1-1z2δ(z2z1)])

Doc 31
0.1185
-33.0000
5.0000
0.1185
testing/NTCIR/xhtml5/8/1112.2937/1112.2937_1_64.xhtml
ft(z)t=-ft(z)zz1+k(t)z1-k(t)z, t[0,-lnA).

Doc 32
0.1153
-18.0000
7.0000
0.1153
testing/NTCIR/xhtml5/4/hep-th0510107/hep-th0510107_1_51.xhtml
g(x)xgx(x,w)-gx(x,w)xg(x),

Doc 33
0.1153
-32.0000
6.0000
0.1153
testing/NTCIR/xhtml5/1/0812.2769/0812.2769_1_48.xhtml
-x(aux)-y(auy)-z(auz)+dux+euy+fuz=0,

Doc 34
0.1153
-45.0000
7.0000
0.1153
testing/NTCIR/xhtml5/8/1204.1299/1204.1299_1_32.xhtml
(nμod(z1,z2)+g(z2)-g(z1)+12b2(f(z1)-f(z2)))(ϕ(z1)ψ(z2)-ψ(z1)ϕ(z2))

Doc 35
0.1153
-65.0000
8.0000
0.1153
testing/NTCIR/xhtml5/7/1103.2539/1103.2539_1_22.xhtml
D^t=-D^z1V1-D^z2V2-(z1v1+z2v2+v3)+k(g1(D^f1+g1-D^V1)+g2(D^f2+g2-D^V2))

Doc 36
0.1121
-51.0000
7.0000
0.1121
testing/NTCIR/xhtml5/7/1103.2539/1103.2539_1_35.xhtml
D^t=-D^z1(f1+ΓHSg1)-D^z2(f2+ΓHSg2)-(z1v1+z2v2+v3)+k(1-D^ΓHS).

Doc 37
0.1102
-18.0000
4.0000
0.1102
testing/NTCIR/xhtml5/3/math0312276/math0312276_1_13.xhtml
g(u0(0))=u0+x(0)-u0-x(0),

Doc 38
0.1102
-25.0000
5.0000
0.1102
testing/NTCIR/xhtml5/9/1304.5645/1304.5645_1_26.xhtml
ΔK=1fK2(χ)χ(fK2(χ)χ)+1fK2(χ)Δ,

Doc 39
0.1102
-29.0000
4.0000
0.1102
testing/NTCIR/xhtml5/10/dg-ga9411011/dg-ga9411011_1_46.xhtml
ui(x)=0    gii(x)uixj(x)+gjj(x)ujxi(x)=0,

Doc 40
0.1102
-29.0000
3.0000
0.1102
testing/NTCIR/xhtml5/10/hep-th9412230/hep-th9412230_1_31.xhtml
N2G2c(z1,z2)=2z1z2Log(u(z1)-u(z2)z1-z2)

Doc 41
0.1102
-29.0000
3.0000
0.1102
testing/NTCIR/xhtml5/10/hep-th9412230/hep-th9412230_1_10.xhtml
N2G2c(z1,z2)=2z1z2Log[u(z1)-u(z2)z1-z2]

Doc 42
0.1102
-49.0000
4.0000
0.1102
testing/NTCIR/xhtml5/3/math0408227/math0408227_1_105.xhtml
(φ,u¯δδδ)=-φt-(A(x)(φ+u¯δδδ))x+(B(x)(φx+u¯xδδδ)x-u¯δδδ˙

Doc 43
0.1088
-40.0000
5.0000
0.1088
testing/NTCIR/xhtml5/2/math0012228/math0012228_1_55.xhtml
(fg)x(y)=fx(y)gx(y)+ϵi,j=1dαxij(y)fx(y)yigx(y)yj+

Doc 44
0.1051
-21.0000
6.0000
0.1051
testing/NTCIR/xhtml5/3/nlin0304033/nlin0304033_1_75.xhtml
F(z1,z2)=12(F(z1)+F(z2)-(z12-z22)2)

Doc 45
0.1051
-24.0000
4.0000
0.1051
testing/NTCIR/xhtml5/6/0912.4712/0912.4712_1_33.xhtml
V(ϕ,χ)=12(Wϕ)2+12(Wχ)2-13W2.

Doc 46
0.1051
-26.0000
4.0000
0.1051
testing/NTCIR/xhtml5/6/0901.3543/0901.3543_1_35.xhtml
V(ϕ,χ)=18(Wϕ)2+18(Wχ)2-13G(5)W2

Doc 47
0.1045
-16.0000
5.0000
0.1045
testing/NTCIR/xhtml5/6/0912.3041/0912.3041_1_47.xhtml
f(z0, z1)=ez0(z1g1(z1)+g1(0))

Doc 48
0.1045
-20.0000
4.0000
0.1045
testing/NTCIR/xhtml5/6/0906.3548/0906.3548_1_92.xhtml
m0=ωu(z1,z¯1)=u11¯(0)+μ.

Doc 49
0.1045
-22.0000
5.0000
0.1045
testing/NTCIR/xhtml5/9/1303.3381/1303.3381_1_41.xhtml
gt(x)=-ft(x)x,ht(x)=2ft(x)x2

Doc 50
0.1045
-22.0000
4.0000
0.1045
testing/NTCIR/xhtml5/9/1306.3483/1306.3483_1_32.xhtml
fxy(q)=lix(q)ly(q)+liylx(q).

Doc 51
0.1045
-24.0000
5.0000
0.1045
testing/NTCIR/xhtml5/3/math0306172/math0306172_1_133.xhtml
(1,1f2)(z1,z2)=f1(z1)-f1(z2)z1-z2.

Doc 52
0.1045
-25.0000
4.0000
0.1045
testing/NTCIR/xhtml5/6/0910.1851/0910.1851_1_86.xhtml
m0=χu(z1,z¯1)=u11¯(0)+χ11¯(0).

Doc 53
0.1045
-30.0000
6.0000
0.1045
testing/NTCIR/xhtml5/4/math0611906/math0611906_1_15.xhtml
-glk(xi(fhjl)+xj(fhil)-xl(fhij)).

Doc 54
0.1045
-30.0000
5.0000
0.1045
testing/NTCIR/xhtml5/8/1211.2067/1211.2067_1_26.xhtml
q=-θ¯y(wx+uz)+(v+fx,θ)(x,z).

Doc 55
0.1045
-30.0000
3.0000
0.1045
testing/NTCIR/xhtml5/8/1206.3926/1206.3926_1_105.xhtml
cij(x)=-12[fiuj(x,U(x))+fjui(x,U(x))]

Doc 56
0.1045
-34.0000
6.0000
0.1045
testing/NTCIR/xhtml5/6/0901.2639/0901.2639_1_19.xhtml
Pn(λ;z)λ=kn(λ)λ(z-z0)n+Qn-1(λ,z0;z)λ.

Doc 57
0.1045
-42.0000
4.0000
0.1045
testing/NTCIR/xhtml5/2/hep-th0211283/hep-th0211283_1_16.xhtml
Nf(z1,z2)=ln(f(0)z1-z2(1(f(0)-f(z2-1))-1(f(0)-f(z1-1)))),

Doc 58
0.1045
-48.0000
3.0000
0.2090
testing/NTCIR/xhtml5/2/math0010232/math0010232_1_106.xhtml
j=1𝑛Ω[aj(x,u0x)-fj(x)]g(x)xjdx-Ωc(x,f(x)-u0(x))g(x)dx=0
j=1𝑛Ω[aj(x,u0x)-fj(x)]g(x)xjdx-Ωc(x,f(x)-u0(x))g(x)dx0.

Doc 59
0.0960
-27.0000
6.0000
0.0960
testing/NTCIR/xhtml5/2/hep-th0202192/hep-th0202192_1_13.xhtml
dθf(θ)θg(θ)=-(-1)ε(f)dθf(θ)g(θ)θ,

Doc 60
0.0960
-27.0000
4.0000
0.0960
testing/NTCIR/xhtml5/7/1009.3151/1009.3151_1_26.xhtml
+g(ux)-g(vx)ux-vxf(u)+f(v)2(ux-vx)

Doc 61
0.0960
-30.0000
5.0000
0.1777
testing/NTCIR/xhtml5/6/1003.1820/1003.1820_1_4.xhtml
(uut)t-ut2-xi(uaijuxj)+uxiaij(x)uxj+u6
t(uut)-xi(uaijuxj)+|gu|g2+u6-ut2.

Doc 62
0.0904
-22.0000
5.0000
0.1808
testing/NTCIR/xhtml5/5/0805.2220/0805.2220_1_13.xhtml
+12(f(r)g(r)+f(r)g(r))S0r=0,
+12(f(r)g(r)+f(r)g(r))S1r=0,

Doc 63
0.0904
-24.0000
5.0000
0.1808
testing/NTCIR/xhtml5/7/1005.3651/1005.3651_1_22.xhtml
=ρa¨(t)+(xig(z))f(z)+g(z)xif(z)
+(xig(z))Cij=2mf(z)γj+g(z)xi(j=2mf(z)γj)+ρFi(t)

Doc 64
0.0904
-28.0000
3.0000
0.0904
testing/NTCIR/xhtml5/4/math0510438/math0510438_1_15.xhtml
F(λ,t)=L(t,u(t)+λv(t),ut(t)+λvt(t))

Doc 65
0.0904
-32.0000
3.0000
0.0904
testing/NTCIR/xhtml5/6/0910.0658/0910.0658_1_114.xhtml
X1=g1(z1)z1+g2(z1)z2+g3(z1,z2)z3,

Doc 66
0.0904
-36.0000
5.0000
0.0904
testing/NTCIR/xhtml5/7/1011.5807/1011.5807_1_49.xhtml
[f,g](z)=(-1)εAϵ(f)zA(f(z)ωABzBg(z))-2fΔg(z),

Doc 67
0.0904
-38.0000
3.0000
0.0904
testing/NTCIR/xhtml5/8/1209.5581/1209.5581_1_86.xhtml
bije,s(x)=-12(fiuj(|x|,U(x))+fiuj(|x|,Uσe(x)))

Doc 68
0.0904
-38.0000
3.0000
0.0904
testing/NTCIR/xhtml5/8/1209.5581/1209.5581_1_88.xhtml
bije,s(x)=-12(fiuj(|x|,U(x))+fiuj(|x|,Uσe(x)))

Doc 69
0.0904
-41.0000
4.0000
0.0904
testing/NTCIR/xhtml5/6/0906.3305/0906.3305_1_94.xhtml
ρ(1|2)(z1,z2)=(z2z2+12)ρ(1|1)(z1)-ρ(1|1)(z2)z1-z2

Doc 70
0.0901
-28.0000
7.0000
0.0901
testing/NTCIR/xhtml5/5/0803.0261/0803.0261_1_12.xhtml
ut-utxx=-32x(u2)-12x(ux2)+12x3(u2)

Doc 71
0.0901
-47.0000
3.0000
0.0901
testing/NTCIR/xhtml5/7/1107.5856/1107.5856_1_20.xhtml
𝒜4(0,0)=0,  𝒜4Ψx=c2(ρ¯+)-u¯+22u¯+(x0),  𝒜4Ψ=-au¯-2a(x0).

Doc 72
0.0862
-29.0000
5.0000
0.0862
testing/NTCIR/xhtml5/3/math0407210/math0407210_1_5.xhtml
ut+kAk(x)uxk+B(x)u=0,  u(0,x)=u0(x),

Doc 73
0.0862
-30.0000
4.0000
0.0862
testing/NTCIR/xhtml5/10/math9906021/math9906021_1_29.xhtml
WS[f,g]=S(f(t)gn(t)-fn(t)g(t))dσ(t),

Doc 74
0.0862
-56.0000
3.0000
0.0862
testing/NTCIR/xhtml5/4/nlin0507062/nlin0507062_1_38.xhtml
uxt=12{ux(x),H-2}2=-12(ux)2-uuxx-12ρ2ρt=12{ρ(x),H-2}2=-(uρ)x

Doc 75
0.0817
-15.0000
5.0000
0.0817
testing/NTCIR/xhtml5/4/hep-th0605191/hep-th0605191_1_30.xhtml
gxx(uh)+gxx(uh)(u-uh)+,

Doc 76
0.0817
-16.0000
3.0000
0.0817
testing/NTCIR/xhtml5/4/math0701150/math0701150_1_77.xhtml
xuN(x,t)=uj+1(t)-uj(t)h.

Doc 77
0.0817
-17.0000
5.0000
0.0817
testing/NTCIR/xhtml5/7/1011.1650/1011.1650_1_11.xhtml
ϕzk(z)+ϕ(z)Φ(z)Φzk(z)

Doc 78
0.0817
-21.0000
6.0000
0.0817
testing/NTCIR/xhtml5/7/1007.0199/1007.0199_1_35.xhtml
=αζ(0,p)Vp(y)-Vx(y)+p.

Doc 79
0.0817
-23.0000
5.0000
0.0817
testing/NTCIR/xhtml5/6/0912.0832/0912.0832_1_41.xhtml
cos(v(z))vz1(z)+sin(v(z))vz2(z)=0,

Doc 80
0.0817
-33.0000
3.0000
0.0817
testing/NTCIR/xhtml5/8/1211.3280/1211.3280_1_15.xhtml
ςm(gs(z),gs(z)¯)=ςm(z,z¯)gs(z)z+gs(z)qm.

Doc 81
0.0817
-37.0000
2.0000
0.0817
testing/NTCIR/xhtml5/7/1009.0196/1009.0196_1_80.xhtml
(z1(f,gx)wz2az3)+Lg¯g((z1(f¯X)z2az3)-(z1(f¯X)z2az3))

Doc 82
0.0777
-26.0000
4.0000
0.0777
testing/NTCIR/xhtml5/3/math0310474/math0310474_1_154.xhtml
ΔReu1(z)=(ddJcz1)y(z)(ux(z),Jux(z)).

Doc 83
0.0777
-34.0000
3.0000
0.0777
testing/NTCIR/xhtml5/3/math0410286/math0410286_1_49.xhtml
ddτ(Lq˙j)-Lqj=fjie(τ)+fjce(τ)+fjde(τ,𝒒e)

Doc 84
0.0763
-13.0000
4.0000
0.0763
testing/NTCIR/xhtml5/6/0910.5331/0910.5331_1_133.xhtml
(-ρz2(a),ρz1(a))

Doc 85
0.0763
-13.0000
4.0000
0.0763
testing/NTCIR/xhtml5/7/1009.2414/1009.2414_1_55.xhtml
(-ρz2(a),ρz1(a))

Doc 86
0.0763
-16.0000
3.0000
0.0763
testing/NTCIR/xhtml5/6/0902.4531/0902.4531_1_53.xhtml
u0η(x)=u0(x)gη(x,0)

Doc 87
0.0763
-16.0000
3.0000
0.0763
testing/NTCIR/xhtml5/6/0902.4531/0902.4531_1_55.xhtml
u0η(x)=u0(x)gη(x,0)

Doc 88
0.0763
-17.0000
3.0000
0.0763
testing/NTCIR/xhtml5/6/0912.0832/0912.0832_1_31.xhtml
uz1(z)+u(z)uz2(z)=0,

Doc 89
0.0763
-24.0000
3.0000
0.0763
testing/NTCIR/xhtml5/10/gr-qc9710100/gr-qc9710100_1_6.xhtml
-(flCasV)β=-14πr2(flCas(r)r)β,

Doc 90
0.0763
-37.0000
4.0000
0.0763
testing/NTCIR/xhtml5/4/math-ph0606063/math-ph0606063_1_5.xhtml
β(2uux2-u2uxx)+βγux(-1u)+γ22(-2u)2-u42]x.

Doc 91
0.0763
-37.0000
3.0000
0.0763
testing/NTCIR/xhtml5/3/math0502388/math0502388_1_144.xhtml
DH2f(z)=(N+𝟏)-1(fz1(z),fzd(z))=(N+𝟏)-1f(z)

Doc 92
0.0763
-44.0000
4.0000
0.0763
testing/NTCIR/xhtml5/2/math0112065/math0112065_1_135.xhtml
z¯2(u1z1+u2z2)=z1(u1z¯2-u2z¯1)+f2.

Doc 93
0.0713
-30.0000
5.0000
0.0713
testing/NTCIR/xhtml5/1/0812.2769/0812.2769_1_35.xhtml
-(D(x,y)ux)x-(D(x,y)uy)y+aux+buy=1,

Doc 94
0.0672
-16.0000
4.0000
0.0672
testing/NTCIR/xhtml5/5/math0703698/math0703698_1_16.xhtml
R(1)=R+uyux-uxuy,

Doc 95
0.0672
-25.0000
3.0000
0.0672
testing/NTCIR/xhtml5/1/math0606723/math0606723_1_21.xhtml
2v1y2=u¨1(gy)2+u˙1(2gy2)

Doc 96
0.0672
-25.0000
3.0000
0.0672
testing/NTCIR/xhtml5/1/math0606723/math0606723_1_19.xhtml
2v1x2=u¨1(gx)2+u˙1(2gx2)

Doc 97
0.0622
-28.0000
3.0000
0.0622
testing/NTCIR/xhtml5/5/0803.0387/0803.0387_1_9.xhtml
-u(uxxA2)uxutx+-(uxA5)utx=0,