tangent
Not Supported
α
(
d
)
≤
(
3
/
2
+
ε
)
d
Search
Returned 84 matches (100 formulae, 136 docs)
Lookup 1269.870 ms, Re-ranking 102.279 ms
Found 14962598 tuple postings, 9671795 formulae, 4494131 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.7385
-6.0000
7.0000
1.8147
testing/NTCIR/xhtml5/7/1010.0383/1010.0383_1_51.xhtml
f
r
(
d
)
≤
(
3
2
+
o
(
1
)
)
d
f
r
(
d
)
≤
(
c
+
o
(
1
)
)
d
f
r
(
d
)
≤
(
2
r
+
o
(
1
)
)
d
Doc 2
0.6885
-1.0000
7.0000
1.3770
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_5.xhtml
n
(
d
)
≤
(
2
-
ε
)
d
n
(
d
)
≥
(
2
+
ε
)
d
Doc 3
0.6885
-1.0000
7.0000
0.6885
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_6.xhtml
n
(
d
)
≤
(
2
-
ε
)
d
Doc 4
0.6885
-1.0000
7.0000
0.6885
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_7.xhtml
n
(
d
)
≥
(
2
+
ε
)
d
Doc 5
0.5638
-3.0000
5.0000
0.5638
testing/NTCIR/xhtml5/7/1101.4792/1101.4792_1_108.xhtml
ℓ
(
p
)
≤
(
p
+
1
)
2
Doc 6
0.5638
-4.0000
5.0000
0.5638
testing/NTCIR/xhtml5/6/0912.2116/0912.2116_1_41.xhtml
#
E
(
q
)
≤
(
q
+
1
)
2
Doc 7
0.5109
-4.0000
5.0000
0.5109
testing/NTCIR/xhtml5/3/math0407135/math0407135_1_40.xhtml
δ
(
C
)
≤
(
1
+
ε
)
π
/
2
Doc 8
0.5109
-4.0000
5.0000
0.5109
testing/NTCIR/xhtml5/3/math0407135/math0407135_1_144.xhtml
δ
(
C
)
≤
(
1
+
ε
)
π
/
2
Doc 9
0.5109
-4.0000
5.0000
0.5109
testing/NTCIR/xhtml5/3/math0407135/math0407135_1_35.xhtml
δ
(
C
)
≤
(
1
+
ε
)
π
/
2
Doc 10
0.5109
-5.0000
6.0000
0.9589
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_8.xhtml
n
(
d
)
≤
(
2
e
-
ε
)
d
n
(
d
)
≥
(
2
e
+
ε
)
d
Doc 11
0.4762
-8.0000
5.0000
0.4762
testing/NTCIR/xhtml5/9/1302.4677/1302.4677_1_22.xhtml
g
(
d
)
≤
(
2
d
2
d
+
1
)
d
2
d
Doc 12
0.4211
-3.0000
5.0000
0.4211
testing/NTCIR/xhtml5/8/1206.3581/1206.3581_1_31.xhtml
λ
=
exp
(
3
/
2
Φ
)
Doc 13
0.4211
-3.0000
5.0000
0.4211
testing/NTCIR/xhtml5/4/hep-th0609095/hep-th0609095_1_43.xhtml
H
∝
exp
(
3
/
2
ϕ
)
Doc 14
0.4211
-4.0000
5.0000
0.4211
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_10.xhtml
n
(
d
)
≤
(
2
-
ε
)
⋅
d
Doc 15
0.3883
-4.0000
4.0000
0.3883
testing/NTCIR/xhtml5/5/0807.0080/0807.0080_1_38.xhtml
T
d
(
t
)
≤
(
2
t
)
d
Doc 16
0.3883
-5.0000
4.0000
0.3883
testing/NTCIR/xhtml5/3/math0405342/math0405342_1_2.xhtml
S
(
n
)
≤
(
e
n
d
)
d
Doc 17
0.3883
-5.0000
4.0000
0.3883
testing/NTCIR/xhtml5/2/math0209326/math0209326_1_30.xhtml
D
(
𝒜
)
≤
(
d
s
)
d
/
2
Doc 18
0.3883
-8.0000
3.0000
0.3883
testing/NTCIR/xhtml5/3/math0310377/math0310377_1_17.xhtml
ν
(
O
)
≤
(
1
/
2
d
)
μ
(
ℝ
d
)
Doc 19
0.3297
-12.0000
5.0000
0.3297
testing/NTCIR/xhtml5/4/cs0504023/cs0504023_1_91.xhtml
(
1
+
ε
/
10
)
(
1
+
ε
/
2
)
≤
(
1
+
ε
)
Doc 20
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/8/1208.5639/1208.5639_1_52.xhtml
u
(
d
)
≤
m
(
d
)
Doc 21
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/8/1208.5639/1208.5639_1_51.xhtml
m
(
d
)
≤
z
(
d
)
Doc 22
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/4/math0612148/math0612148_1_17.xhtml
f
(
d
)
≤
g
(
d
)
Doc 23
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/8/1210.6196/1210.6196_1_24.xhtml
ρ
(
d
)
≤
δ
(
d
)
Doc 24
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/4/math0611339/math0611339_1_23.xhtml
L
(
d
)
≤
log
(
d
)
Doc 25
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/1/1202.0153/1202.0153_1_15.xhtml
χ
(
d
)
≤
κ
(
d
)
Doc 26
0.3000
-4.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/math0511129/math0511129_1_80.xhtml
Q
=
(
n
+
ε
)
2
Doc 27
0.3000
-4.0000
3.0000
0.3000
testing/NTCIR/xhtml5/5/0707.2156/0707.2156_1_175.xhtml
c
(
d
)
≤
12
d
-
2
Doc 28
0.3000
-5.0000
3.0000
0.3000
testing/NTCIR/xhtml5/6/1002.4202/1002.4202_1_115.xhtml
log
(
d
2
)
≤
log
(
d
1
)
Doc 29
0.3000
-5.0000
3.0000
0.3000
testing/NTCIR/xhtml5/2/quant-ph0105017/quant-ph0105017_1_90.xhtml
w
(
d
1
)
≤
w
(
d
2
)
Doc 30
0.3000
-7.0000
4.0000
0.3000
testing/NTCIR/xhtml5/8/1203.1763/1203.1763_1_48.xhtml
α
(
d
n
+
1
)
≤
α
(
d
n
)
Doc 31
0.3000
-7.0000
3.0000
0.3000
testing/NTCIR/xhtml5/7/1007.5318/1007.5318_1_6.xhtml
α
(
ε
)
≤
exp
(
-
2
ε
2
d
)
Doc 32
0.3000
-7.0000
3.0000
0.3000
testing/NTCIR/xhtml5/3/math0311393/math0311393_1_18.xhtml
n
(
d
)
≤
2
(
τ
k
-
ε
)
d
Doc 33
0.3000
-8.0000
2.0000
0.3000
testing/NTCIR/xhtml5/8/1109.2316/1109.2316_1_8.xhtml
p
(
n
)
≤
c
(
d
)
n
-
3
/
2
Doc 34
0.3000
-10.0000
2.0000
0.3000
testing/NTCIR/xhtml5/8/1204.4403/1204.4403_1_28.xhtml
λ
d
(
A
)
≤
β
d
(
diam
(
A
)
/
2
)
d
Doc 35
0.3000
-11.0000
2.0000
0.3000
testing/NTCIR/xhtml5/9/1309.0880/1309.0880_1_380.xhtml
mc
(
p
)
≤
1
2
d
3
/
2
+
O
(
d
)
Doc 36
0.2532
-6.0000
4.0000
0.2532
testing/NTCIR/xhtml5/4/math0506627/math0506627_1_157.xhtml
∥
s
∥
≤
(
1
+
ε
)
1
/
2
Doc 37
0.2353
-3.0000
3.0000
0.2353
testing/NTCIR/xhtml5/6/0907.5477/0907.5477_1_95.xhtml
(
1
+
ε
)
i
/
2
Doc 38
0.2353
-4.0000
4.0000
0.2353
testing/NTCIR/xhtml5/2/math0207013/math0207013_1_11.xhtml
δ
≤
(
1
+
ε
)
/
2
Doc 39
0.2105
0.0000
3.0000
0.4211
testing/NTCIR/xhtml5/9/1307.7624/1307.7624_1_192.xhtml
α
(
d
)
b
:=
L
2
d
α
(
d
)
Doc 40
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/10/hep-th9903015/hep-th9903015_1_23.xhtml
α
(
d
)
Doc 41
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/10/hep-th9805180/hep-th9805180_1_54.xhtml
α
(
d
)
Doc 42
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/0905.0163/0905.0163_1_52.xhtml
α
(
d
)
Doc 43
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/0709.3568/0709.3568_1_10.xhtml
α
(
d
)
Doc 44
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/10/hep-th9903108/hep-th9903108_1_11.xhtml
α
(
d
)
Doc 45
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/hep-th9308104/hep-th9308104_1_118.xhtml
α
(
d
)
Doc 46
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/1305.6540/1305.6540_1_24.xhtml
α
(
d
)
Doc 47
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/hep-th9308104/hep-th9308104_1_115.xhtml
α
(
d
)
Doc 48
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/0905.0163/0905.0163_1_53.xhtml
α
(
d
)
Doc 49
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/0905.0163/0905.0163_1_56.xhtml
α
(
d
)
Doc 50
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0610787/math0610787_1_145.xhtml
α
(
d
)
Doc 51
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/1002.4220/1002.4220_1_76.xhtml
α
(
d
)
Doc 52
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/0905.0163/0905.0163_1_54.xhtml
α
(
d
)
Doc 53
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1203.0560/1203.0560_1_131.xhtml
α
(
d
)
Doc 54
0.2105
0.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1103.1468/1103.1468_1_346.xhtml
α
(
d
)
Doc 55
0.2105
-2.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/0910.1676/0910.1676_1_10.xhtml
(
P
d
)
d
Doc 56
0.2105
-3.0000
3.0000
0.4211
testing/NTCIR/xhtml5/9/1212.3823/1212.3823_1_87.xhtml
Θ
(
d
3
/
2
)
Θ
(
d
1
/
2
)
Doc 57
0.2105
-3.0000
3.0000
0.4211
testing/NTCIR/xhtml5/4/math0511343/math0511343_1_87.xhtml
O
(
d
3
/
2
)
O
(
m
d
/
s
)
=
O
(
d
3
/
2
)
Doc 58
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/10/math9905077/math9905077_1_146.xhtml
𝒪
(
ε
3
/
2
)
Doc 59
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1209.0483/1209.0483_1_99.xhtml
O
(
ε
3
/
2
)
Doc 60
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/gr-qc0512160/gr-qc0512160_1_137.xhtml
(
3
/
2
)
2
Doc 61
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/0709.3384/0709.3384_1_6.xhtml
(
3
/
2
+
ε
)
Doc 62
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/3/math0405148/math0405148_1_64.xhtml
3
+
3
/
2
Doc 63
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/1002.1439/1002.1439_1_55.xhtml
u
2
≥
α
(
d
)
Doc 64
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/quant-ph0703201/quant-ph0703201_1_22.xhtml
O
(
ε
3
/
2
)
Doc 65
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/3/gr-qc0411129/gr-qc0411129_1_35.xhtml
(
3
/
2
)
2
Doc 66
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1204.1503/1204.1503_1_58.xhtml
O
(
ε
3
/
2
)
Doc 67
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0511343/math0511343_1_89.xhtml
O
(
d
3
/
2
)
Doc 68
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1204.1503/1204.1503_1_61.xhtml
O
(
ε
3
/
2
)
Doc 69
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/0708.2534/0708.2534_1_27.xhtml
𝒪
(
ε
3
/
2
)
Doc 70
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/0708.2534/0708.2534_1_13.xhtml
𝒪
(
ε
3
/
2
)
Doc 71
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/10/math9905077/math9905077_1_145.xhtml
𝒪
(
ε
3
/
2
)
Doc 72
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/9/hep-th9308104/hep-th9308104_1_76.xhtml
A
1
/
2
(
d
)
Doc 73
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/6/0911.3389/0911.3389_1_194.xhtml
1
/
2
O
(
d
)
Doc 74
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/6/0911.3389/0911.3389_1_193.xhtml
1
/
2
O
(
d
)
Doc 75
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/9/hep-th9308104/hep-th9308104_1_72.xhtml
A
1
/
2
(
d
)
Doc 76
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/2/math0206128/math0206128_1_56.xhtml
V
=
M
(
d
)
d
Doc 77
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/9/1212.3823/1212.3823_1_20.xhtml
O
(
d
n
/
2
)
Doc 78
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/6/0911.3389/0911.3389_1_187.xhtml
1
/
2
O
(
d
)
Doc 79
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/6/0911.3389/0911.3389_1_191.xhtml
1
/
2
O
(
d
)
Doc 80
0.2105
-3.0000
2.0000
0.2105
testing/NTCIR/xhtml5/6/0911.3389/0911.3389_1_188.xhtml
1
/
2
O
(
d
)
Doc 81
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1107.5445/1107.5445_1_55.xhtml
L
3
/
2
(
Ω
)
d
Doc 82
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0610787/math0610787_1_147.xhtml
β
(
d
)
≻
α
(
d
)
Doc 83
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1004.5285/1004.5285_1_46.xhtml
𝒪
~
(
d
3
/
2
)
Doc 84
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0510506/math0510506_1_111.xhtml
1
-
(
3
/
2
)
Doc 85
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/1312.6350/1312.6350_1_90.xhtml
O
(
ε
-
3
/
2
)
Doc 86
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/3/math-ph0401012/math-ph0401012_1_14.xhtml
𝒪
(
ε
-
3
/
2
)
Doc 87
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/1312.6350/1312.6350_1_92.xhtml
O
(
ε
-
3
/
2
)
Doc 88
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0609189/math0609189_1_164.xhtml
O
(
ε
-
3
/
2
)
Doc 89
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0610787/math0610787_1_208.xhtml
α
(
d
)
≺
β
(
d
)
Doc 90
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/0707.1215/0707.1215_1_10.xhtml
𝒪
(
ε
-
3
/
2
)
Doc 91
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/1312.6350/1312.6350_1_98.xhtml
O
(
ε
-
3
/
2
)
Doc 92
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/3/quant-ph0310061/quant-ph0310061_1_43.xhtml
I
d
/
d
3
/
2
Doc 93
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1209.0183/1209.0183_1_70.xhtml
α
(
d
)
≠
β
(
d
)
Doc 94
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/0911.3895/0911.3895_1_35.xhtml
t
3
/
2
α
(
1
)
Doc 95
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1004.5285/1004.5285_1_48.xhtml
𝒪
~
(
d
3
/
2
)
Doc 96
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0610787/math0610787_1_148.xhtml
α
(
d
)
,
β
(
d
)
Doc 97
0.2105
-4.0000
2.0000
0.2105
testing/NTCIR/xhtml5/8/1207.7207/1207.7207_1_81.xhtml
(
d
t
)
-
1
/
2
Doc 98
0.2105
-4.0000
2.0000
0.2105
testing/NTCIR/xhtml5/8/1201.4886/1201.4886_1_3.xhtml
O
(
d
-
1
/
2
)
Doc 99
0.2105
-4.0000
2.0000
0.2105
testing/NTCIR/xhtml5/3/math0302349/math0302349_1_71.xhtml
O
(
d
-
1
/
2
)
Doc 100
0.2105
-4.0000
2.0000
0.2105
testing/NTCIR/xhtml5/8/1202.4427/1202.4427_1_39.xhtml
(
d
log
d
)
1
/
2
Doc 101
0.2105
-5.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/0709.3526/0709.3526_1_138.xhtml
O
(
d
ℋ
n
3
/
2
)
Doc 102
0.2105
-5.0000
2.0000
0.2105
testing/NTCIR/xhtml5/5/0709.4147/0709.4147_1_69.xhtml
(
2
n
d
1
/
2
)
d
Doc 103
0.2105
-6.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1208.0919/1208.0919_1_59.xhtml
g
(
d
)
≪
d
-
3
/
2
Doc 104
0.2105
-6.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0610787/math0610787_1_149.xhtml
β
(
d
2
)
▷
α
(
d
2
)
Doc 105
0.2105
-6.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1208.0919/1208.0919_1_60.xhtml
g
(
d
)
≪
d
-
3
/
2
Doc 106
0.2105
-6.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1009.2022/1009.2022_1_35.xhtml
(
x
+
d
+
3
/
2
)
d
Doc 107
0.2105
-6.0000
2.0000
0.2105
testing/NTCIR/xhtml5/1/1007.1786/1007.1786_1_108.xhtml
A
(
d
)
d
=
π
+
ε
Doc 108
0.2105
-6.0000
2.0000
0.2105
testing/NTCIR/xhtml5/4/math0511186/math0511186_1_71.xhtml
(
11
d
ε
d
)
m
1
/
2
Doc 109
0.2105
-7.0000
3.0000
0.2105
testing/NTCIR/xhtml5/2/math0111159/math0111159_1_31.xhtml
O
(
d
3
/
2
(
log
d
)
3
)
Doc 110
0.2105
-7.0000
3.0000
0.2105
testing/NTCIR/xhtml5/2/math0111159/math0111159_1_70.xhtml
O
(
d
3
/
2
(
log
d
)
4
)
Doc 111
0.2105
-7.0000
3.0000
0.2105
testing/NTCIR/xhtml5/2/math0111159/math0111159_1_30.xhtml
O
(
d
3
/
2
(
log
d
)
10
)
Doc 112
0.2105
-7.0000
3.0000
0.2105
testing/NTCIR/xhtml5/2/math0111159/math0111159_1_32.xhtml
O
(
d
3
/
2
(
log
d
)
10
)
Doc 113
0.2105
-7.0000
3.0000
0.2105
testing/NTCIR/xhtml5/2/math0111159/math0111159_1_4.xhtml
O
(
d
3
/
2
(
log
d
)
10
)
Doc 114
0.2105
-7.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0506627/math0506627_1_320.xhtml
α
(
d
)
=
E
2
(
θ
(
d
)
)
Doc 115
0.2105
-7.0000
2.0000
0.2105
testing/NTCIR/xhtml5/5/0707.4102/0707.4102_1_160.xhtml
(
ω
(
d
)
[
ω
(
d
)
/
2
]
)
Doc 116
0.2105
-8.0000
3.0000
0.2105
testing/NTCIR/xhtml5/10/hep-lat9806030/hep-lat9806030_1_20.xhtml
α
,
α
1
(
d
)
,
α
2
(
d
)
Doc 117
0.2105
-8.0000
2.0000
0.2105
testing/NTCIR/xhtml5/7/1005.2893/1005.2893_1_215.xhtml
(
2
k
+
2
A
d
1
/
2
)
d
Doc 118
0.2105
-8.0000
2.0000
0.2105
testing/NTCIR/xhtml5/1/1009.0392/1009.0392_1_79.xhtml
C
(
d
)
(
k
log
k
)
d
2
/
2
Doc 119
0.2105
-8.0000
2.0000
0.2105
testing/NTCIR/xhtml5/3/math0311393/math0311393_1_43.xhtml
n
~
(
d
)
≥
2
(
α
+
ε
)
d
Doc 120
0.2105
-8.0000
2.0000
0.2105
testing/NTCIR/xhtml5/3/math0311393/math0311393_1_44.xhtml
n
~
(
d
)
≥
2
(
α
+
ε
)
d
Doc 121
0.2105
-8.0000
2.0000
0.2105
testing/NTCIR/xhtml5/3/math0311393/math0311393_1_19.xhtml
n
(
d
)
≥
2
(
τ
k
+
ε
)
d
Doc 122
0.2105
-9.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1102.4879/1102.4879_1_69.xhtml
+
O
(
d
k
-
3
/
2
+
ε
)
,
Doc 123
0.2105
-9.0000
3.0000
0.2105
testing/NTCIR/xhtml5/1/math0006036/math0006036_1_77.xhtml
r
≤
d
2
-
d
+
3
/
2
Doc 124
0.2105
-9.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/1306.5433/1306.5433_1_199.xhtml
n
d
/
(
n
-
1
)
d
<
3
/
2
Doc 125
0.2105
-10.0000
2.0000
0.2105
testing/NTCIR/xhtml5/9/1312.0813/1312.0813_1_5.xhtml
α
(
H
)
≥
n
d
1
/
2
ω
(
d
)
Doc 126
0.2105
-11.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/hep-th9308104/hep-th9308104_1_101.xhtml
α
(
d
)
≡
-
A
(
d
)
3
/
2
(
>
0
)
Doc 127
0.2105
-12.0000
2.0000
0.2105
testing/NTCIR/xhtml5/1/hep-th0001060/hep-th0001060_1_6.xhtml
a
d
=
1
/
(
2
π
)
d
Γ
(
d
/
2
)
Doc 128
0.2105
-12.0000
2.0000
0.2105
testing/NTCIR/xhtml5/1/hep-th9811151/hep-th9811151_1_5.xhtml
Ω
d
=
2
/
(
Γ
(
d
/
2
)
(
4
π
)
d
)
Doc 129
0.1333
-6.0000
3.0000
0.1333
testing/NTCIR/xhtml5/8/1203.1140/1203.1140_1_147.xhtml
C
d
(
2
ρ
2
ε
k
)
d
Doc 130
0.1333
-6.0000
3.0000
0.1333
testing/NTCIR/xhtml5/8/1203.1140/1203.1140_1_148.xhtml
C
d
(
2
ρ
2
ε
k
)
d
Doc 131
0.1176
-3.0000
2.0000
0.1176
testing/NTCIR/xhtml5/8/1112.3920/1112.3920_1_10.xhtml
≤
(
d
1
)
2
Doc 132
0.1176
-4.0000
2.0000
0.1176
testing/NTCIR/xhtml5/10/hep-th9712019/hep-th9712019_1_14.xhtml
C
d
/
2
(
d
)
Doc 133
0.1176
-5.0000
2.0000
0.1176
testing/NTCIR/xhtml5/4/math-ph0503001/math-ph0503001_1_29.xhtml
x
∈
(
𝐙
/
2
)
d
Doc 134
0.1176
-5.0000
2.0000
0.1176
testing/NTCIR/xhtml5/6/0908.1052/0908.1052_1_17.xhtml
N
max
≤
(
d
/
2
)
Doc 135
0.1176
-6.0000
2.0000
0.1176
testing/NTCIR/xhtml5/4/math-ph0510079/math-ph0510079_1_92.xhtml
M
d
=
(
N
/
2
)
d
Doc 136
0.1176
-7.0000
2.0000
0.1176
testing/NTCIR/xhtml5/3/cs0409043/cs0409043_1_135.xhtml
(
d
/
2
O
(
log
d
)
)