tangent
Not Supported
∑
n
∈
x0
d
|
ψ
(
t
,
n
)
|
2
|
n
|
≤
C
Search
Returned 86 matches (100 formulae, 112 docs)
Lookup 470.632 ms, Re-ranking 284.331 ms
Found 4354666 tuple postings, 1011004 formulae, 671656 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.6769
-3.0000
9.0000
0.6769
testing/NTCIR/xhtml5/1/math0003191/math0003191_1_25.xhtml
∑
n
∈
ℤ
d
|
f
(
t
,
n
)
|
p
<
∞
Doc 2
0.6408
-7.0000
7.0000
0.6408
testing/NTCIR/xhtml5/6/1003.4600/1003.4600_1_28.xhtml
∑
n
∈
ℤ
|
μ
^
(
n
)
|
2
|
n
|
α
-
1
<
∞
.
Doc 3
0.6007
-10.0000
7.0000
0.6007
testing/NTCIR/xhtml5/9/math9212207/math9212207_1_12.xhtml
∑
(
s
,
t
)
∈
E
×
F
|
ψ
(
s
,
t
)
|
2
≤
C
2
N
.
Doc 4
0.5475
-3.0000
5.0000
0.5475
testing/NTCIR/xhtml5/10/math9811146/math9811146_1_5.xhtml
∑
n
∈
Z
|
g
(
x
-
n
a
)
|
2
Doc 5
0.5475
-3.0000
5.0000
0.5475
testing/NTCIR/xhtml5/7/1103.4691/1103.4691_1_84.xhtml
∑
n
∈
ℤ
|
μ
^
(
x
+
n
)
|
2
Doc 6
0.5475
-7.0000
6.0000
0.5475
testing/NTCIR/xhtml5/11/math9911027/math9911027_1_60.xhtml
∑
n
∈
ℤ
|
g
(
t
-
n
a
)
|
2
≤
B
,
a.e.
Doc 7
0.5475
-8.0000
5.0000
0.5475
testing/NTCIR/xhtml5/2/math0211247/math0211247_1_89.xhtml
∑
n
∈
ℕ
|
s
n
(
g
)
|
2
≤
C
∥
g
∥
2
,
Doc 8
0.5475
-9.0000
6.0000
0.5475
testing/NTCIR/xhtml5/11/math9911026/math9911026_1_37.xhtml
∑
n
∈
ℤ
|
g
(
t
-
n
/
b
)
|
2
≤
B
,
a.e.
.
Doc 9
0.5475
-9.0000
5.0000
0.5475
testing/NTCIR/xhtml5/7/1103.4691/1103.4691_1_82.xhtml
0
<
A
≤
∑
n
∈
ℤ
|
μ
^
(
x
+
n
)
|
2
≤
1
Doc 10
0.5101
-5.0000
6.0000
0.5101
testing/NTCIR/xhtml5/3/math0407190/math0407190_1_84.xhtml
∑
n
∈
ℤ
|
a
n
|
|
n
|
3
2
<
∞
Doc 11
0.5101
-9.0000
6.0000
0.5101
testing/NTCIR/xhtml5/4/math0504559/math0504559_1_301.xhtml
∑
k
≥
1
|
ν
k
(
t
,
x
)
|
2
≤
C
ν
<
∞
,
Doc 12
0.4828
-2.0000
5.0000
0.4828
testing/NTCIR/xhtml5/5/0711.4035/0711.4035_1_85.xhtml
∑
n
∈
ℕ
|
u
η
(
n
)
|
2
Doc 13
0.4828
-3.0000
6.0000
0.4828
testing/NTCIR/xhtml5/7/1008.2244/1008.2244_1_57.xhtml
∑
|
μ
(
t
,
y
j
)
|
2
≤
1.
Doc 14
0.4828
-4.0000
6.0000
0.4828
testing/NTCIR/xhtml5/4/math0609784/math0609784_1_222.xhtml
∑
n
∈
ℤ
d
|
λ
n
|
2
<
∞
.
Doc 15
0.4828
-4.0000
5.0000
0.4828
testing/NTCIR/xhtml5/10/math9801069/math9801069_1_118.xhtml
∑
n
∈
N
|
g
j
(
n
)
|
2
≤
1
Doc 16
0.4828
-4.0000
5.0000
0.4828
testing/NTCIR/xhtml5/5/0711.4035/0711.4035_1_80.xhtml
∑
n
∈
I
~
k
|
u
η
(
n
)
|
2
Doc 17
0.4828
-8.0000
7.0000
0.9655
testing/NTCIR/xhtml5/6/0908.2419/0908.2419_1_150.xhtml
∑
|
n
|
>
C
t
|
u
^
(
t
,
n
)
|
2
→
0
∑
|
n
|
<
C
t
|
u
^
(
t
,
n
)
|
2
→
1
Doc 18
0.4828
-14.0000
6.0000
0.4828
testing/NTCIR/xhtml5/7/1009.0913/1009.0913_1_56.xhtml
ψ
(
0
)
≥
1
-
δ
,
∑
n
∈
ℤ
|
n
|
|
ψ
(
n
)
|
2
≤
δ
.
Doc 19
0.4444
-3.0000
6.0000
0.4444
testing/NTCIR/xhtml5/11/math-ph9910009/math-ph9910009_1_4.xhtml
|
ψ
(
t
,
q
)
|
2
Δ
t
Δ
q
Doc 20
0.4444
-3.0000
6.0000
0.4444
testing/NTCIR/xhtml5/6/0911.4312/0911.4312_1_28.xhtml
|
ψ
(
t
,
x
)
|
2
d
v
o
l
Doc 21
0.4444
-4.0000
6.0000
0.4444
testing/NTCIR/xhtml5/3/math0309040/math0309040_1_54.xhtml
|
ψ
h
(
t
,
x
)
|
2
d
t
d
x
Doc 22
0.4444
-8.0000
6.0000
0.4444
testing/NTCIR/xhtml5/8/1209.6104/1209.6104_1_12.xhtml
∑
n
∈
ℤ
|
n
|
2
σ
|
c
n
(
f
)
|
2
<
∞
Doc 23
0.4444
-9.0000
5.0000
0.4444
testing/NTCIR/xhtml5/9/1303.3298/1303.3298_1_43.xhtml
|
∑
n
∈
S
N
|
w
n
|
2
-
2
N
E
|
≤
C
.
Doc 24
0.4179
-1.0000
6.0000
0.4179
testing/NTCIR/xhtml5/7/1108.0777/1108.0777_1_142.xhtml
|
ψ
k
(
t
,
ξ
)
|
2
Doc 25
0.4179
-1.0000
6.0000
0.4179
testing/NTCIR/xhtml5/7/1108.0777/1108.0777_1_141.xhtml
|
ψ
k
(
t
,
ξ
)
|
2
Doc 26
0.4179
-1.0000
4.0000
0.4179
testing/NTCIR/xhtml5/9/1212.1249/1212.1249_1_82.xhtml
∑
n
∈
𝐙
|
B
(
n
)
|
Doc 27
0.4179
-1.0000
4.0000
0.4179
testing/NTCIR/xhtml5/9/1212.1249/1212.1249_1_80.xhtml
∑
n
∈
𝐙
|
B
(
n
)
|
Doc 28
0.4179
-2.0000
6.0000
0.8358
testing/NTCIR/xhtml5/11/math-ph9910009/math-ph9910009_1_1.xhtml
|
ψ
(
t
,
q
)
|
2
Δ
q
∫
|
ψ
(
t
,
q
)
|
2
d
q
=
1
,
Doc 29
0.4179
-2.0000
6.0000
0.4179
testing/NTCIR/xhtml5/5/0806.4476/0806.4476_1_6.xhtml
𝒒
↦
|
ψ
(
t
,
𝒒
)
|
2
Doc 30
0.4179
-2.0000
6.0000
0.4179
testing/NTCIR/xhtml5/11/math-ph9910009/math-ph9910009_1_23.xhtml
|
ψ
n
±
(
t
,
x
)
|
2
Doc 31
0.4179
-2.0000
5.0000
0.4179
testing/NTCIR/xhtml5/5/0711.4035/0711.4035_1_81.xhtml
∑
n
∈
V
k
|
u
η
|
2
Doc 32
0.4179
-3.0000
6.0000
0.4179
testing/NTCIR/xhtml5/6/1003.3302/1003.3302_1_75.xhtml
|
ψ
j
(
n
)
(
t
,
u
)
|
2
Doc 33
0.4179
-3.0000
5.0000
0.4179
testing/NTCIR/xhtml5/4/math0603322/math0603322_1_2.xhtml
∑
n
∈
𝕀
|
x
n
|
2
<
∞
Doc 34
0.4179
-3.0000
5.0000
0.4179
testing/NTCIR/xhtml5/5/0810.3641/0810.3641_1_1.xhtml
∑
n
∈
ℕ
|
α
n
|
2
<
∞
Doc 35
0.4179
-4.0000
5.0000
0.4179
testing/NTCIR/xhtml5/2/math-ph0105004/math-ph0105004_1_23.xhtml
∑
n
∈
Z
Z
|
h
n
|
2
=
1.
Doc 36
0.4179
-4.0000
5.0000
0.4179
testing/NTCIR/xhtml5/8/1207.4031/1207.4031_1_3.xhtml
∑
n
∈
ℤ
|
a
n
|
2
<
∞
.
Doc 37
0.4179
-4.0000
5.0000
0.4179
testing/NTCIR/xhtml5/6/0812.3422/0812.3422_1_77.xhtml
∑
n
∈
N
|
f
n
|
2
<
∞
.
Doc 38
0.4179
-4.0000
5.0000
0.4179
testing/NTCIR/xhtml5/10/funct-an9701013/funct-an9701013_1_57.xhtml
∑
n
∈
Z
Z
|
h
n
|
2
<
∞
Doc 39
0.4179
-5.0000
6.0000
0.4179
testing/NTCIR/xhtml5/4/math0509545/math0509545_1_3.xhtml
∫
|
ψ
(
t
,
x
)
|
2
d
x
=
const.
Doc 40
0.4179
-5.0000
5.0000
0.4179
testing/NTCIR/xhtml5/9/1212.1988/1212.1988_1_50.xhtml
M
(
I
)
:=
∑
n
∈
I
|
a
n
|
2
Doc 41
0.4179
-5.0000
5.0000
0.4179
testing/NTCIR/xhtml5/6/0904.0203/0904.0203_1_35.xhtml
∑
n
∈
ℕ
|
ϵ
n
c
n
|
2
=
∞
Doc 42
0.4179
-6.0000
6.0000
0.4179
testing/NTCIR/xhtml5/11/math9910041/math9910041_1_88.xhtml
n
(
t
,
x
)
=
|
ψ
(
t
,
x
)
|
2
Doc 43
0.4179
-8.0000
6.0000
0.4179
testing/NTCIR/xhtml5/7/1009.4160/1009.4160_1_8.xhtml
M
:=
∫
ℝ
d
|
ψ
(
t
,
x
)
|
2
d
x
,
Doc 44
0.4179
-10.0000
4.0000
0.4179
testing/NTCIR/xhtml5/5/0807.2388/0807.2388_1_110.xhtml
∑
n
∈
C
j
|
x
q
n
*
(
x
)
|
≤
C
∥
x
∥
Doc 45
0.4179
-16.0000
6.0000
0.4179
testing/NTCIR/xhtml5/7/1009.4160/1009.4160_1_38.xhtml
I
(
t
)
:=
1
2
∫
ℝ
d
|
x
|
2
|
ψ
(
t
,
x
)
|
2
d
x
.
Doc 46
0.4179
-20.0000
6.0000
1.5690
testing/NTCIR/xhtml5/5/0711.2134/0711.2134_1_66.xhtml
lim
t
1
→
∞
∑
n
∈
ℤ
ψ
a
(
t
1
,
n
)
|
v
1
(
t
1
,
n
)
|
2
=
0.
ψ
a
(
t
,
n
)
ψ
~
a
(
t
,
n
)
d
d
t
∑
n
∈
ℤ
ψ
a
(
t
,
n
)
h
(
t
,
n
)
d
d
t
∑
n
∈
ℤ
ψ
a
(
t
,
n
)
h
(
t
,
n
)
≤
Doc 47
0.3784
-4.0000
6.0000
0.3784
testing/NTCIR/xhtml5/9/1310.4676/1310.4676_1_3.xhtml
∑
𝐤
∈
ℤ
d
|
ψ
𝐤
|
2
<
∞
Doc 48
0.3784
-7.0000
5.0000
0.3784
testing/NTCIR/xhtml5/7/1104.2365/1104.2365_1_57.xhtml
∑
n
∈
ℤ
|
n
|
|
s
^
k
(
n
)
|
<
∞
Doc 49
0.3784
-7.0000
5.0000
0.3784
testing/NTCIR/xhtml5/7/1104.2365/1104.2365_1_63.xhtml
∑
n
∈
ℤ
|
n
|
|
s
^
k
(
n
)
|
<
∞
Doc 50
0.3784
-11.0000
4.0000
0.3784
testing/NTCIR/xhtml5/5/math-ph0703046/math-ph0703046_1_115.xhtml
|
u
(
t
,
x
)
|
≤
C
e
d
|
x
|
,
x
∈
ℝ
n
,
Doc 51
0.3784
-19.0000
5.0000
0.3784
testing/NTCIR/xhtml5/6/1002.2790/1002.2790_1_5.xhtml
g
(
t
)
=
∑
n
∈
ℤ
g
n
t
n
,
∑
n
∈
ℤ
|
n
|
|
g
n
|
2
<
∞
.
Doc 52
0.3529
0.0000
5.0000
0.3529
testing/NTCIR/xhtml5/6/0905.0062/0905.0062_1_8.xhtml
|
ψ
(
t
,
x
)
|
Doc 53
0.3529
0.0000
5.0000
0.3529
testing/NTCIR/xhtml5/7/1009.5820/1009.5820_1_14.xhtml
|
ψ
(
t
,
x
)
|
Doc 54
0.3529
0.0000
5.0000
0.3529
testing/NTCIR/xhtml5/6/0905.0062/0905.0062_1_17.xhtml
|
ψ
(
t
,
x
)
|
Doc 55
0.3529
-1.0000
4.0000
0.3529
testing/NTCIR/xhtml5/9/1312.1161/1312.1161_1_57.xhtml
∑
n
∈
ℤ
|
c
n
|
Doc 56
0.3529
-1.0000
4.0000
0.3529
testing/NTCIR/xhtml5/6/0909.3923/0909.3923_1_12.xhtml
∑
n
∈
ℕ
|
A
n
|
Doc 57
0.3529
-2.0000
6.0000
0.3529
testing/NTCIR/xhtml5/5/0712.1006/0712.1006_1_2.xhtml
|
ψ
h
(
t
,
⋅
)
|
2
Doc 58
0.3529
-2.0000
6.0000
0.3529
testing/NTCIR/xhtml5/5/0712.1006/0712.1006_1_1.xhtml
|
ψ
h
(
t
,
⋅
)
|
2
Doc 59
0.3529
-2.0000
5.0000
0.3529
testing/NTCIR/xhtml5/8/1111.4670/1111.4670_1_85.xhtml
|
ψ
(
t
,
x
)
|
→
1
Doc 60
0.3529
-2.0000
4.0000
0.3529
testing/NTCIR/xhtml5/7/1101.5472/1101.5472_1_45.xhtml
|
ψ
(
ξ
,
η
)
|
≤
C
Doc 61
0.3529
-2.0000
4.0000
0.3529
testing/NTCIR/xhtml5/7/1101.5472/1101.5472_1_44.xhtml
|
ψ
(
ξ
,
η
)
|
≤
C
Doc 62
0.3529
-2.0000
4.0000
0.3529
testing/NTCIR/xhtml5/6/1001.0632/1001.0632_1_60.xhtml
|
E
(
t
,
x
)
|
≤
C
Doc 63
0.3529
-4.0000
4.0000
0.3529
testing/NTCIR/xhtml5/5/0811.4321/0811.4321_1_11.xhtml
∑
n
∈
ℤ
|
h
n
|
≤
M
.
Doc 64
0.3529
-4.0000
4.0000
0.3529
testing/NTCIR/xhtml5/3/math0409545/math0409545_1_63.xhtml
(
Π
(
t
,
n
)
,
n
∈
N
)
Doc 65
0.3529
-4.0000
4.0000
0.3529
testing/NTCIR/xhtml5/5/math0703892/math0703892_1_185.xhtml
∑
n
∈
ℕ
0
|
γ
n
|
≤
1
Doc 66
0.3529
-4.0000
4.0000
0.3529
testing/NTCIR/xhtml5/5/math0703892/math0703892_1_183.xhtml
∑
n
∈
ℕ
0
|
γ
n
|
≤
1
Doc 67
0.3529
-6.0000
4.0000
0.3529
testing/NTCIR/xhtml5/7/1010.3113/1010.3113_1_33.xhtml
|
b
1
(
t
,
ξ
)
|
≤
C
|
ξ
|
2
Doc 68
0.3529
-7.0000
5.0000
0.3529
testing/NTCIR/xhtml5/1/math0004104/math0004104_1_78.xhtml
sup
n
∈
𝐍
|
D
(
t
,
n
)
|
p
<
∞
Doc 69
0.3529
-8.0000
5.0000
0.3529
testing/NTCIR/xhtml5/5/0707.2663/0707.2663_1_35.xhtml
|
ψ
i
(
t
,
x
)
|
≤
C
(
1
+
|
x
|
)
Doc 70
0.3529
-8.0000
5.0000
0.3529
testing/NTCIR/xhtml5/11/math9911182/math9911182_1_105.xhtml
C
3.19
(
φ
)
=
∑
n
∈
ℤ
|
n
|
|
c
n
|
Doc 71
0.3529
-8.0000
5.0000
0.3529
testing/NTCIR/xhtml5/5/0707.2663/0707.2663_1_33.xhtml
|
ψ
i
(
t
,
x
)
|
≤
C
(
1
+
|
x
|
)
Doc 72
0.3529
-8.0000
5.0000
0.3529
testing/NTCIR/xhtml5/5/0710.0908/0710.0908_1_25.xhtml
|
ψ
i
(
t
,
x
)
|
≤
C
(
1
+
|
x
|
)
Doc 73
0.3117
-4.0000
4.0000
0.3117
testing/NTCIR/xhtml5/7/1008.4617/1008.4617_1_302.xhtml
∑
n
∈
ℤ
|
n
|
ω
n
<
∞
Doc 74
0.2878
-2.0000
4.0000
0.2878
testing/NTCIR/xhtml5/7/1010.4613/1010.4613_1_16.xhtml
h
(
t
,
n
)
∈
ℕ
Doc 75
0.2878
-2.0000
4.0000
0.2878
testing/NTCIR/xhtml5/9/1312.5461/1312.5461_1_56.xhtml
ψ
(
t
,
x
)
∈
ℂ
Doc 76
0.2878
-2.0000
4.0000
0.2878
testing/NTCIR/xhtml5/9/1312.5461/1312.5461_1_59.xhtml
ψ
(
t
,
x
)
∈
ℂ
Doc 77
0.2878
-2.0000
4.0000
0.2878
testing/NTCIR/xhtml5/6/0906.3392/0906.3392_1_27.xhtml
ψ
(
t
,
u
)
∈
𝒰
Doc 78
0.2878
-3.0000
4.0000
0.2878
testing/NTCIR/xhtml5/2/math-ph0212024/math-ph0212024_1_43.xhtml
ψ
(
t
,
x
)
∈
H
1
Doc 79
0.2878
-3.0000
4.0000
0.2878
testing/NTCIR/xhtml5/6/1002.2551/1002.2551_1_49.xhtml
∑
n
∈
ℤ
|
n
|
z
n
Doc 80
0.2878
-3.0000
4.0000
0.2878
testing/NTCIR/xhtml5/9/1304.1477/1304.1477_1_38.xhtml
∑
n
|
a
n
|
2
≤
1
Doc 81
0.2878
-3.0000
4.0000
0.2878
testing/NTCIR/xhtml5/9/1312.5461/1312.5461_1_52.xhtml
ψ
(
t
,
x
)
∈
ℂ
N
Doc 82
0.2878
-3.0000
4.0000
0.2878
testing/NTCIR/xhtml5/8/1108.5294/1108.5294_1_95.xhtml
∑
n
|
A
n
|
2
≤
1
Doc 83
0.2878
-3.0000
3.0000
0.2878
testing/NTCIR/xhtml5/3/math0306431/math0306431_1_77.xhtml
v
(
t
,
x
)
∈
ℝ
d
Doc 84
0.2878
-5.0000
5.0000
0.2878
testing/NTCIR/xhtml5/8/1210.0007/1210.0007_1_114.xhtml
|
ψ
2
(
t
2
,
𝟎
)
|
≤
C
Doc 85
0.2878
-7.0000
4.0000
0.2878
testing/NTCIR/xhtml5/4/math-ph0510067/math-ph0510067_1_104.xhtml
∑
n
∈
Z
Z
-
{
0
}
|
n
|
-
z
Doc 86
0.2878
-9.0000
4.0000
0.2878
testing/NTCIR/xhtml5/8/1202.1642/1202.1642_1_49.xhtml
∑
:=
∑
n
∈
ℤ
d
=
∑
|
n
|
≤
N
;
Doc 87
0.2878
-15.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/0711.2134/0711.2134_1_52.xhtml
d
d
t
∑
n
∈
ℤ
ψ
a
(
t
,
n
)
h
1
(
t
,
n
)
Doc 88
0.2878
-19.0000
4.0000
0.2878
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_118.xhtml
e
|
t
|
ℝ
|
n
|
ℝ
d
≤
C
σ
j
(
t
,
n
)
,
(
t
,
n
)
∈
G
.
Doc 89
0.2439
-5.0000
4.0000
0.4878
testing/NTCIR/xhtml5/6/0911.3714/0911.3714_1_42.xhtml
∑
n
|
n
|
|
a
n
|
2
<
∞
∑
n
|
n
|
|
b
n
|
2
<
∞
Doc 90
0.2439
-7.0000
3.0000
0.2439
testing/NTCIR/xhtml5/9/1302.4622/1302.4622_1_157.xhtml
∑
n
∈
𝔽
p
min
(
t
,
r
(
n
)
)
Doc 91
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_116.xhtml
(
t
,
n
)
∈
G
Doc 92
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/math0312013/math0312013_1_116.xhtml
(
t
,
n
)
∈
T
Doc 93
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4419/0910.4419_1_34.xhtml
(
t
,
n
)
∈
G
Doc 94
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/8/1207.0054/1207.0054_1_165.xhtml
(
t
,
n
)
∈
J
Doc 95
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/7/1101.5619/1101.5619_1_44.xhtml
(
t
n
,
n
∈
ℕ
)
Doc 96
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/7/1101.5619/1101.5619_1_24.xhtml
(
t
n
,
n
∈
ℕ
)
Doc 97
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/0709.2999/0709.2999_1_22.xhtml
(
t
n
,
n
∈
S
)
Doc 98
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/10/alg-geom9701012/alg-geom9701012_1_109.xhtml
(
t
,
n
)
∈
E
′
Doc 99
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/7/1101.5619/1101.5619_1_23.xhtml
(
t
n
,
n
∈
ℕ
)
Doc 100
0.2222
-3.0000
3.0000
0.2222
testing/NTCIR/xhtml5/7/1005.5705/1005.5705_1_63.xhtml
{
t
n
,
n
∈
ℕ
}
Doc 101
0.2222
-3.0000
3.0000
0.2222
testing/NTCIR/xhtml5/4/math-ph0606059/math-ph0606059_1_14.xhtml
(
t
,
r
)
∈
ℝ
d
Doc 102
0.2222
-3.0000
3.0000
0.2222
testing/NTCIR/xhtml5/5/0808.0727/0808.0727_1_7.xhtml
{
t
n
,
n
∈
ℤ
}
Doc 103
0.2222
-3.0000
3.0000
0.2222
testing/NTCIR/xhtml5/6/0909.5291/0909.5291_1_33.xhtml
{
t
n
,
n
∈
ℕ
}
Doc 104
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/10/math9407205/math9407205_1_25.xhtml
(
t
,
n
)
∈
ℙ
∩
G
Doc 105
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_22.xhtml
g
=
(
t
,
n
)
∈
G
Doc 106
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_40.xhtml
g
=
(
t
,
n
)
∈
G
Doc 107
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_39.xhtml
g
=
(
t
,
n
)
∈
G
Doc 108
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_30.xhtml
g
=
(
t
,
n
)
∈
G
Doc 109
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1002.2185/1002.2185_1_34.xhtml
g
=
(
t
,
n
)
∈
G
Doc 110
0.2222
-5.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/0709.2999/0709.2999_1_21.xhtml
(
t
n
,
n
∈
S
⊂
ℕ
)
Doc 111
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/0709.2999/0709.2999_1_19.xhtml
(
t
n
,
n
∈
S
⊂
ℕ
)
.
Doc 112
0.2222
-6.0000
3.0000
0.2222
testing/NTCIR/xhtml5/6/0905.0944/0905.0944_1_201.xhtml
n
∈
ℕ
0
d
,
|
n
|
≤
m