tangent
Not Supported
P
1
(
X
)
=
P
(
X
)
/
(
X
-
α
x0
)
Search
Returned 86 matches (100 formulae, 110 docs)
Lookup 225.009 ms, Re-ranking 254.657 ms
Found 3809967 tuple postings, 2626101 formulae, 1778085 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.6612
-3.0000
7.0000
0.6612
testing/NTCIR/xhtml5/2/math0011101/math0011101_1_21.xhtml
P
(
M
∗
)
=
P
(
M
)
/
(
1
+
t
)
Doc 2
0.6288
-2.0000
8.0000
0.6288
testing/NTCIR/xhtml5/5/0805.2694/0805.2694_1_52.xhtml
w
(
X
)
=
P
(
X
)
/
|
X
|
.
Doc 3
0.5860
-6.0000
9.0000
0.5860
testing/NTCIR/xhtml5/7/1007.3162/1007.3162_1_51.xhtml
P
M
(
X
)
=
P
M
0
(
X
)
P
M
1
(
X
)
Doc 4
0.5860
-9.0000
9.0000
0.5860
testing/NTCIR/xhtml5/4/math0610517/math0610517_1_118.xhtml
P
(
X
1
P
(
X
2
)
)
=
P
(
X
1
)
P
(
X
2
)
,
Doc 5
0.5545
0.0000
6.0000
0.5545
testing/NTCIR/xhtml5/5/0803.0900/0803.0900_1_19.xhtml
P
1
(
s
)
=
P
(
s
)
Doc 6
0.5545
0.0000
6.0000
0.5545
testing/NTCIR/xhtml5/2/hep-th0301105/hep-th0301105_1_53.xhtml
P
1
(
x
)
=
P
(
x
)
Doc 7
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/3/hep-th0409011/hep-th0409011_1_7.xhtml
P
1
(
n
)
=
P
2
(
n
)
Doc 8
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/9/1306.5415/1306.5415_1_7.xhtml
P
1
(
n
)
=
P
2
(
n
)
Doc 9
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/5/0809.0231/0809.0231_1_44.xhtml
P
1
(
x
)
=
P
2
(
x
)
Doc 10
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/10/hep-th9312181/hep-th9312181_1_180.xhtml
P
1
(
θ
)
=
P
2
(
θ
)
Doc 11
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/3/cs0403044/cs0403044_1_42.xhtml
P
1
(
s
)
=
P
2
(
s
)
Doc 12
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/9/1306.5478/1306.5478_1_42.xhtml
P
1
(
x
)
=
P
2
(
x
)
Doc 13
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/9/1306.5415/1306.5415_1_8.xhtml
P
1
(
n
)
=
P
2
(
n
)
Doc 14
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/9/1303.4878/1303.4878_1_364.xhtml
P
1
(
T
)
=
P
2
(
T
)
Doc 15
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/6/0901.1168/0901.1168_1_52.xhtml
P
1
(
r
)
=
P
3
(
r
)
Doc 16
0.5545
-1.0000
6.0000
0.5545
testing/NTCIR/xhtml5/3/hep-th0409011/hep-th0409011_1_8.xhtml
P
1
(
n
)
=
P
2
(
n
)
Doc 17
0.5545
-1.0000
5.0000
0.5545
testing/NTCIR/xhtml5/7/1105.1605/1105.1605_1_68.xhtml
P
2
(
B
)
=
P
1
(
B
)
Doc 18
0.5545
-3.0000
7.0000
0.5545
testing/NTCIR/xhtml5/1/math0003173/math0003173_1_83.xhtml
P
2
(
X
)
=
P
3
(
X
)
=
2
Doc 19
0.5545
-5.0000
7.0000
0.5545
testing/NTCIR/xhtml5/7/1104.4957/1104.4957_1_22.xhtml
P
2
~
(
X
)
=
P
2
(
X
)
-
t
X
Doc 20
0.5545
-5.0000
6.0000
0.5545
testing/NTCIR/xhtml5/1/hep-th0005233/hep-th0005233_1_99.xhtml
P
β
e
(
E
)
=
P
1
e
(
E
)
/
β
Doc 21
0.5545
-5.0000
6.0000
0.5545
testing/NTCIR/xhtml5/1/math0401086/math0401086_1_7.xhtml
P
^
n
(
z
)
=
P
n
(
z
)
/
α
n
Doc 22
0.5545
-8.0000
7.0000
0.9892
testing/NTCIR/xhtml5/5/0810.5041/0810.5041_1_16.xhtml
p
g
(
X
)
=
P
2
(
X
)
=
P
3
(
X
)
=
0
P
4
(
X
)
=
⋯
=
P
9
(
X
)
=
1
Doc 23
0.5545
-8.0000
7.0000
0.5545
testing/NTCIR/xhtml5/1/math0003173/math0003173_1_114.xhtml
p
g
(
X
)
=
P
2
(
X
)
=
P
3
(
X
)
=
0
Doc 24
0.5106
-2.0000
8.0000
0.5106
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_38.xhtml
S
(
X
)
=
P
(
X
)
T
(
X
)
Doc 25
0.5106
-2.0000
8.0000
0.5106
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_94.xhtml
S
(
X
)
=
P
(
X
)
B
(
X
)
Doc 26
0.5106
-2.0000
8.0000
0.5106
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_102.xhtml
S
(
X
)
=
P
(
X
)
B
(
X
)
Doc 27
0.5106
-2.0000
8.0000
0.5106
testing/NTCIR/xhtml5/9/1312.0877/1312.0877_1_90.xhtml
S
(
X
)
=
P
(
X
)
B
(
X
)
Doc 28
0.4800
-1.0000
7.0000
0.4800
testing/NTCIR/xhtml5/7/1010.1842/1010.1842_1_19.xhtml
P
(
X
)
=
P
(
X
)
¯
Doc 29
0.4800
-2.0000
7.0000
0.9600
testing/NTCIR/xhtml5/5/0712.4402/0712.4402_1_129.xhtml
P
(
X
|
T
)
=
P
(
X
)
P
(
X
|
T
A
)
=
P
(
X
|
A
)
Doc 30
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/2/math0301027/math0301027_1_94.xhtml
P
𝒞
(
X
)
=
P
𝒟
(
X
)
Doc 31
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/4/math0510140/math0510140_1_24.xhtml
P
′
(
X
)
=
P
′′
(
X
)
Doc 32
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/6/0911.2128/0911.2128_1_38.xhtml
P
A
(
X
)
=
P
B
(
X
)
Doc 33
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/4/math0510140/math0510140_1_173.xhtml
P
′′
(
X
)
=
P
′
(
X
)
Doc 34
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/8/1110.1116/1110.1116_1_11.xhtml
P
A
(
X
)
=
P
(
X
)
e
Doc 35
0.4800
-2.0000
7.0000
0.4800
testing/NTCIR/xhtml5/8/1110.1116/1110.1116_1_7.xhtml
P
A
(
X
)
=
P
B
(
X
)
Doc 36
0.4800
-2.0000
6.0000
0.4800
testing/NTCIR/xhtml5/10/hep-th9604199/hep-th9604199_1_72.xhtml
P
1
(
t
)
=
P
1
(
0
)
Doc 37
0.4800
-2.0000
5.0000
0.4800
testing/NTCIR/xhtml5/11/math9910114/math9910114_1_114.xhtml
P
(
λ
-
α
)
=
P
(
λ
)
Doc 38
0.4800
-2.0000
5.0000
0.4800
testing/NTCIR/xhtml5/4/math0611601/math0611601_1_141.xhtml
P
(
α
1
)
=
P
(
α
2
)
Doc 39
0.4800
-3.0000
7.0000
0.9600
testing/NTCIR/xhtml5/5/0805.3917/0805.3917_1_25.xhtml
P
^
(
X
)
2
=
P
^
(
X
)
V
P
(
X
)
=
P
′
(
X
)
V
Doc 40
0.4800
-3.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0805.3917/0805.3917_1_29.xhtml
P
^
(
X
)
2
=
P
^
(
X
)
Doc 41
0.4800
-3.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0805.3917/0805.3917_1_43.xhtml
V
P
(
X
)
=
P
′
(
X
)
V
Doc 42
0.4800
-3.0000
7.0000
0.4800
testing/NTCIR/xhtml5/10/alg-geom9605006/alg-geom9605006_1_14.xhtml
P
n
(
X
)
=
P
n
(
X
′
)
Doc 43
0.4800
-3.0000
7.0000
0.4800
testing/NTCIR/xhtml5/7/1107.3592/1107.3592_1_7.xhtml
P
(
X
)
P
(
X
)
=
P
(
X
)
Doc 44
0.4800
-4.0000
7.0000
0.4800
testing/NTCIR/xhtml5/6/0901.4176/0901.4176_1_26.xhtml
P
λ
/
0
(
X
)
=
P
λ
(
X
)
Doc 45
0.4800
-5.0000
7.0000
0.9600
testing/NTCIR/xhtml5/5/0807.2155/0807.2155_1_131.xhtml
P
b
(
X
)
*
=
P
b
(
X
-
1
)
P
b
(
X
-
1
)
=
P
ς
(
b
)
(
X
)
Doc 46
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0704.2470/0704.2470_1_85.xhtml
P
A
(
X
)
=
P
A
λ
(
X
+
λ
)
Doc 47
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0807.2155/0807.2155_1_150.xhtml
P
ς
b
(
X
)
=
P
b
(
X
-
1
)
Doc 48
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/7/1009.4451/1009.4451_1_119.xhtml
P
A
p
(
X
)
=
P
r
,
p
(
X
)
Doc 49
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/2/math0011042/math0011042_1_99.xhtml
P
m
(
X
)
=
P
2
m
(
X
)
=
1
Doc 50
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/2/math0011042/math0011042_1_21.xhtml
P
m
(
X
)
=
P
2
m
(
X
)
=
1
Doc 51
0.4800
-5.0000
7.0000
0.4800
testing/NTCIR/xhtml5/3/math0306222/math0306222_1_25.xhtml
P
n
0
k
(
X
)
=
P
n
k
(
X
)
Doc 52
0.4800
-6.0000
7.0000
0.9600
testing/NTCIR/xhtml5/3/math0407281/math0407281_1_81.xhtml
P
(
X
t
ends block with
A
)
=
P
(
X
t
ends block with
B
B
B
)
fragments
P
fragments
normal-(
subscript
X
t
ends block with AAA
normal-)
P
fragments
normal-(
subscript
X
t
ends block with BBB
normal-)
P(X_{t}\ \mbox{ends block with $A$})\ =\ P(X_{t}\ \mbox{ends block with $B$})
P
(
X
t
starts block with
A
)
=
P
(
X
t
starts block with
B
B
B
)
fragments
P
fragments
normal-(
subscript
X
t
starts block with AAA
normal-)
P
fragments
normal-(
subscript
X
t
starts block with BBB
normal-)
P(X_{t}\ \mbox{starts block with $A$})\ =\ P(X_{t}\ \mbox{starts block with $B% $})
Doc 53
0.4800
-6.0000
7.0000
0.9600
testing/NTCIR/xhtml5/3/math0407281/math0407281_1_82.xhtml
P
(
X
t
ends block with
A
)
=
P
(
X
t
ends block with
B
B
B
)
fragments
P
fragments
normal-(
subscript
X
t
ends block with AAA
normal-)
P
fragments
normal-(
subscript
X
t
ends block with BBB
normal-)
P(X_{t}\ \mbox{ends block with $A$})\ =\ P(X_{t}\ \mbox{ends block with $B$})
P
(
X
t
starts block with
A
)
=
P
(
X
t
starts block with
B
B
B
)
fragments
P
fragments
normal-(
subscript
X
t
starts block with AAA
normal-)
P
fragments
normal-(
subscript
X
t
starts block with BBB
normal-)
P(X_{t}\ \mbox{starts block with $A$})\ =\ P(X_{t}\ \mbox{starts block with $B% $})
Doc 54
0.4800
-6.0000
7.0000
0.9600
testing/NTCIR/xhtml5/7/1004.4264/1004.4264_1_89.xhtml
P
(
X
⊕
Y
)
=
P
(
X
)
+
P
(
Y
)
P
(
X
⊗
Y
)
=
P
(
X
)
⋅
P
(
Y
)
Doc 55
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/1/math0003173/math0003173_1_58.xhtml
P
m
(
X
)
=
P
m
+
1
(
X
)
=
2
Doc 56
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/9/1307.5597/1307.5597_1_39.xhtml
P
(
X
+
Y
∈
B
)
=
P
(
X
∈
B
)
Doc 57
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/4/math0611664/math0611664_1_45.xhtml
P
(
X
c
d
≥
c
)
=
P
(
X
≥
c
)
Doc 58
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/5/0807.2155/0807.2155_1_157.xhtml
P
b
(
X
-
1
)
=
P
ς
(
b
)
(
X
)
Doc 59
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/4/math0510240/math0510240_1_26.xhtml
P
(
X
>
1
)
=
P
(
X
<
-
1
)
.
Doc 60
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/1/math0003173/math0003173_1_59.xhtml
P
m
-
1
(
X
)
=
P
m
(
X
)
=
2
Doc 61
0.4800
-6.0000
7.0000
0.4800
testing/NTCIR/xhtml5/9/1309.0880/1309.0880_1_142.xhtml
v
:
W
0
→
P
(
X
ν
)
=
P
(
X
)
Doc 62
0.4800
-10.0000
7.0000
0.4800
testing/NTCIR/xhtml5/7/1107.3592/1107.3592_1_13.xhtml
(
X
⊗
X
)
P
(
X
)
=
P
(
X
)
(
X
⊗
X
)
=
0
Doc 63
0.4800
-10.0000
7.0000
0.4800
testing/NTCIR/xhtml5/4/math0510140/math0510140_1_172.xhtml
P
′′
(
X
)
=
P
′
(
X
)
=
P
(
X
)
∩
C
(
X
)
Doc 64
0.4800
-11.0000
7.0000
0.4800
testing/NTCIR/xhtml5/9/1401.7498/1401.7498_1_25.xhtml
P
u
(
X
|
v
|
-
1
)
=
P
v
(
X
|
u
|
-
1
)
.
Doc 65
0.4800
-11.0000
7.0000
0.4800
testing/NTCIR/xhtml5/9/1306.5103/1306.5103_1_29.xhtml
P
n
(
X
)
=
P
m
(
X
)
+
P
J
(
m
,
n
)
(
X
)
Doc 66
0.4348
-2.0000
7.0000
0.4348
testing/NTCIR/xhtml5/3/math0310387/math0310387_1_52.xhtml
P
1
(
X
)
,
P
2
(
X
)
Doc 67
0.4348
-2.0000
6.0000
0.4348
testing/NTCIR/xhtml5/9/1304.1794/1304.1794_1_111.xhtml
y
(
X
)
=
(
X
-
α
)
i
Doc 68
0.4348
-4.0000
6.0000
0.4348
testing/NTCIR/xhtml5/5/0805.2694/0805.2694_1_76.xhtml
Q
2
(
X
)
=
P
2
(
X
-
W
)
Doc 69
0.4348
-4.0000
6.0000
0.4348
testing/NTCIR/xhtml5/9/1303.5390/1303.5390_1_33.xhtml
P
(
X
)
=
(
X
-
λ
)
Q
(
X
)
Doc 70
0.4348
-5.0000
6.0000
0.4348
testing/NTCIR/xhtml5/9/1308.0954/1308.0954_1_49.xhtml
J
(
X
)
=
Div
0
(
X
)
/
P
(
X
)
Doc 71
0.4348
-8.0000
7.0000
0.4348
testing/NTCIR/xhtml5/3/math0310387/math0310387_1_89.xhtml
A
(
X
)
=
(
P
1
(
X
)
|
…
|
P
ν
(
X
)
)
Doc 72
0.4348
-10.0000
7.0000
0.4348
testing/NTCIR/xhtml5/6/0908.1084/0908.1084_1_147.xhtml
P
ℓ
*
(
X
)
=
(
X
-
α
12
)
(
X
-
β
12
)
.
Doc 73
0.4348
-11.0000
7.0000
0.4348
testing/NTCIR/xhtml5/1/0801.3396/0801.3396_1_14.xhtml
Q
(
X
)
=
P
v
0
(
X
)
P
w
0
(
F
(
X
)
)
-
1
Doc 74
0.4054
-1.0000
6.0000
0.8108
testing/NTCIR/xhtml5/9/1309.7560/1309.7560_1_5.xhtml
P
(
X
)
=
P
(
0
)
Q
(
X
)
=
P
(
X
)
-
P
(
0
)
Doc 75
0.4054
-1.0000
6.0000
0.4054
testing/NTCIR/xhtml5/3/math0403512/math0403512_1_113.xhtml
K
(
X
)
=
P
(
X
)
Doc 76
0.4054
-1.0000
6.0000
0.4054
testing/NTCIR/xhtml5/10/dg-ga9708008/dg-ga9708008_1_14.xhtml
P
1
(
X
)
=
P
X
Doc 77
0.4054
-1.0000
6.0000
0.4054
testing/NTCIR/xhtml5/9/1309.0880/1309.0880_1_141.xhtml
P
(
X
)
=
P
(
Y
)
Doc 78
0.4054
-2.0000
6.0000
0.4054
testing/NTCIR/xhtml5/6/0903.2593/0903.2593_1_229.xhtml
R
O
(
X
)
=
P
(
X
)
Doc 79
0.4054
-2.0000
6.0000
0.4054
testing/NTCIR/xhtml5/3/cs0501008/cs0501008_1_15.xhtml
P
(
X
)
=
P
X
(
x
)
Doc 80
0.4054
-2.0000
5.0000
0.4054
testing/NTCIR/xhtml5/4/math0508417/math0508417_1_44.xhtml
P
(
α
)
=
P
(
-
α
)
Doc 81
0.4054
-2.0000
5.0000
0.4054
testing/NTCIR/xhtml5/4/math0508418/math0508418_1_16.xhtml
P
(
α
)
=
P
(
-
α
)
Doc 82
0.4054
-2.0000
5.0000
0.4054
testing/NTCIR/xhtml5/4/math0512228/math0512228_1_25.xhtml
P
(
α
)
=
P
(
-
α
)
Doc 83
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/5/0810.5041/0810.5041_1_145.xhtml
χ
m
(
X
)
=
P
m
(
X
)
Doc 84
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/7/1004.5344/1004.5344_1_48.xhtml
χ
ϕ
∗
(
X
)
=
P
(
X
)
Doc 85
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/5/0810.3816/0810.3816_1_111.xhtml
P
(
λ
)
=
P
(
X
λ
)
.
Doc 86
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/2/math0201117/math0201117_1_249.xhtml
Q
(
X
)
=
P
(
X
)
+
1
Doc 87
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/2/math0103140/math0103140_1_36.xhtml
k
(
X
)
=
P
(
X
×
B
)
Doc 88
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/3/math0408256/math0408256_1_11.xhtml
π
k
(
X
)
=
P
k
(
X
)
Doc 89
0.4054
-3.0000
6.0000
0.4054
testing/NTCIR/xhtml5/4/hep-th0503246/hep-th0503246_1_24.xhtml
P
1
(
1
)
=
P
2
(
0
)
Doc 90
0.4054
-3.0000
5.0000
0.4054
testing/NTCIR/xhtml5/5/math-ph0703049/math-ph0703049_1_10.xhtml
P
(
z
)
=
P
1
(
i
z
)
Doc 91
0.4054
-6.0000
6.0000
0.4054
testing/NTCIR/xhtml5/7/1004.4601/1004.4601_1_98.xhtml
g
(
X
)
=
P
E
(
X
)
⋅
h
(
X
)
Doc 92
0.4054
-7.0000
6.0000
0.4054
testing/NTCIR/xhtml5/11/math9911091/math9911091_1_165.xhtml
P
(
X
)
⊗
P
(
Y
)
=
P
(
X
×
Y
)
Doc 93
0.4054
-8.0000
6.0000
0.4054
testing/NTCIR/xhtml5/8/1206.1649/1206.1649_1_82.xhtml
Amp
¯
(
X
)
=
Mov
¯
(
X
)
=
P
(
X
)
¯
Doc 94
0.4054
-8.0000
6.0000
0.4054
testing/NTCIR/xhtml5/8/1206.1649/1206.1649_1_11.xhtml
Amp
¯
(
X
)
=
Mov
¯
(
X
)
=
P
(
X
)
¯
Doc 95
0.4054
-8.0000
6.0000
0.4054
testing/NTCIR/xhtml5/8/1206.1649/1206.1649_1_10.xhtml
Amp
¯
(
X
)
=
Mov
¯
(
X
)
=
P
(
X
)
¯
Doc 96
0.4054
-9.0000
6.0000
0.4054
testing/NTCIR/xhtml5/5/0801.3840/0801.3840_1_38.xhtml
Φ
r
(
X
)
=
(
X
r
-
1
)
/
(
X
-
1
)
Doc 97
0.4054
-10.0000
6.0000
0.4054
testing/NTCIR/xhtml5/6/0904.2762/0904.2762_1_25.xhtml
W
(
X
)
=
P
(
X
)
(
P
(
X
)
-
1
W
(
X
)
)
Doc 98
0.3582
-5.0000
6.0000
0.3582
testing/NTCIR/xhtml5/3/math0303340/math0303340_1_40.xhtml
P
(
X
)
=
∏
j
(
X
-
α
j
)
Doc 99
0.3582
-8.0000
6.0000
0.3582
testing/NTCIR/xhtml5/7/1004.4601/1004.4601_1_96.xhtml
P
E
(
X
)
=
∏
i
∈
E
(
X
-
α
i
)
Doc 100
0.3582
-12.0000
6.0000
0.3582
testing/NTCIR/xhtml5/6/0908.1084/0908.1084_1_99.xhtml
P
(
r
)
(
X
)
=
∏
i
=
1
n
(
X
-
α
i
r
)
.
Doc 101
0.3306
-4.0000
5.0000
0.3306
testing/NTCIR/xhtml5/8/1110.6676/1110.6676_1_68.xhtml
p
(
exp
(
X
)
)
=
P
(
X
)
Doc 102
0.3306
-4.0000
4.0000
0.3306
testing/NTCIR/xhtml5/4/math0605684/math0605684_1_91.xhtml
P
(
b
ˇ
)
=
P
-
α
n
Doc 103
0.3306
-4.0000
4.0000
0.3306
testing/NTCIR/xhtml5/4/math0605684/math0605684_1_88.xhtml
P
(
b
ˇ
)
=
P
-
α
1
Doc 104
0.3306
-8.0000
5.0000
0.3306
testing/NTCIR/xhtml5/5/0803.3224/0803.3224_1_27.xhtml
P
(
X
∪
Y
)
/
(
P
(
X
)
P
(
Y
)
)
Doc 105
0.3306
-8.0000
5.0000
0.3306
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_46.xhtml
P
(
A
)
(
X
+
n
)
=
P
(
A
)
(
X
)
Doc 106
0.3306
-9.0000
5.0000
0.3306
testing/NTCIR/xhtml5/9/1302.4124/1302.4124_1_10.xhtml
C
(
X
)
=
(
X
×
𝕀
)
/
(
X
×
{
1
}
)
Doc 107
0.2804
-9.0000
4.0000
0.2804
testing/NTCIR/xhtml5/2/math-ph0104024/math-ph0104024_1_80.xhtml
P
i
(
X
)
=
1
l
i
(
X
)
P
*
(
X
)
Doc 108
0.2553
-3.0000
4.0000
0.2553
testing/NTCIR/xhtml5/3/math0408404/math0408404_1_87.xhtml
P
(
X
)
=
X
-
α
Doc 109
0.2553
-5.0000
4.0000
0.2553
testing/NTCIR/xhtml5/3/math0410597/math0410597_1_119.xhtml
P
(
X
)
=
⋃
P
R
(
X
)
Doc 110
0.2553
-7.0000
4.0000
0.2553
testing/NTCIR/xhtml5/9/1305.3580/1305.3580_1_58.xhtml
P
(
X
)
=
X
f
1
P
1
(
X
)