tangent
Not Supported
∂
f
∂
x
=
f
x
=
∂
x
f
.
Search
Returned 87 matches (100 formulae, 184 docs)
Lookup 582.675 ms, Re-ranking 137.039 ms
Found 6515270 tuple postings, 4032068 formulae, 2389871 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5185
-3.0000
7.0000
0.5185
testing/NTCIR/xhtml5/6/0911.0776/0911.0776_1_2.xhtml
∂
f
∂
x
α
=
f
|
α
Doc 2
0.4969
-6.0000
8.0000
0.9349
testing/NTCIR/xhtml5/5/0806.2362/0806.2362_1_103.xhtml
∂
x
f
=
∂
f
∂
x
+
f
⋅
∂
x
∂
f
∂
x
1
=
∂
f
∂
x
,
Doc 3
0.4698
-4.0000
7.0000
0.4698
testing/NTCIR/xhtml5/4/math-ph0601066/math-ph0601066_1_29.xhtml
x
∂
f
∂
x
-
f
=
ϕ
,
Doc 4
0.4698
-6.0000
7.0000
0.4698
testing/NTCIR/xhtml5/3/math0310053/math0310053_1_41.xhtml
∂
f
∂
x
=
0
=
∂
f
∂
y
Doc 5
0.4698
-10.0000
7.0000
0.4698
testing/NTCIR/xhtml5/4/math0606304/math0606304_1_28.xhtml
f
x
=
∂
f
∂
x
,
f
y
=
∂
f
∂
y
Doc 6
0.4380
0.0000
6.0000
0.4380
testing/NTCIR/xhtml5/4/math0512461/math0512461_1_18.xhtml
f
x
=
∂
x
f
Doc 7
0.4380
0.0000
6.0000
0.4380
testing/NTCIR/xhtml5/7/1004.0098/1004.0098_1_35.xhtml
f
x
=
∂
x
f
Doc 8
0.4380
-1.0000
6.0000
0.8759
testing/NTCIR/xhtml5/2/math0111326/math0111326_1_290.xhtml
∂
f
∂
x
=
v
∂
f
′
∂
x
=
v
′
Doc 9
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0206016/math0206016_1_7.xhtml
∂
f
∂
x
=
v
Doc 10
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0204343/math0204343_1_5.xhtml
∂
f
∂
x
=
v
Doc 11
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0111111/math0111111_1_67.xhtml
∂
f
∂
x
=
v
Doc 12
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0111326/math0111326_1_6.xhtml
∂
f
∂
x
=
v
Doc 13
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0210337/math0210337_1_44.xhtml
∂
f
∂
x
=
0
Doc 14
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0111324/math0111324_1_168.xhtml
∂
f
∂
x
=
v
Doc 15
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0111324/math0111324_1_8.xhtml
∂
f
∂
x
=
v
Doc 16
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0204343/math0204343_1_83.xhtml
∂
f
∂
x
=
v
Doc 17
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0111324/math0111324_1_169.xhtml
∂
f
∂
x
=
v
Doc 18
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0105108/math0105108_1_189.xhtml
∂
f
∂
x
=
0
Doc 19
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0206016/math0206016_1_57.xhtml
∂
f
∂
x
=
v
Doc 20
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0105108/math0105108_1_184.xhtml
∂
f
∂
x
=
0
Doc 21
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0206016/math0206016_1_58.xhtml
∂
f
∂
x
=
v
Doc 22
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0111326/math0111326_1_57.xhtml
∂
f
∂
x
=
v
Doc 23
0.4380
-1.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0108088/math0108088_1_290.xhtml
∂
f
∂
x
=
v
Doc 24
0.4380
-2.0000
6.0000
0.4380
testing/NTCIR/xhtml5/1/hep-th0007074/hep-th0007074_1_6.xhtml
f
x
x
=
∂
x
2
f
Doc 25
0.4380
-2.0000
6.0000
0.4380
testing/NTCIR/xhtml5/5/0706.0888/0706.0888_1_80.xhtml
∂
f
∂
x
j
=
0
Doc 26
0.4380
-2.0000
6.0000
0.4380
testing/NTCIR/xhtml5/3/math0312405/math0312405_1_148.xhtml
∂
f
∂
x
i
=
0
Doc 27
0.4380
-2.0000
6.0000
0.4380
testing/NTCIR/xhtml5/3/math0312405/math0312405_1_147.xhtml
∂
f
∂
x
i
=
0
Doc 28
0.4380
-3.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0111326/math0111326_1_225.xhtml
∂
f
a
∂
x
=
v
a
Doc 29
0.4380
-3.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0111326/math0111326_1_215.xhtml
∂
f
a
∂
x
=
v
a
Doc 30
0.4380
-3.0000
6.0000
0.4380
testing/NTCIR/xhtml5/9/1312.1618/1312.1618_1_179.xhtml
∂
f
∂
x
i
=
C
i
Doc 31
0.4380
-3.0000
6.0000
0.4380
testing/NTCIR/xhtml5/3/math0407064/math0407064_1_66.xhtml
∂
f
i
∂
x
i
=
0
Doc 32
0.4380
-3.0000
6.0000
0.4380
testing/NTCIR/xhtml5/10/hep-th9607152/hep-th9607152_1_9.xhtml
∂
f
3
∂
x
2
=
0.
Doc 33
0.4380
-3.0000
6.0000
0.4380
testing/NTCIR/xhtml5/9/1302.6655/1302.6655_1_115.xhtml
∂
f
∂
x
ν
=
g
ν
Doc 34
0.4380
-3.0000
5.0000
0.4380
testing/NTCIR/xhtml5/4/math0608351/math0608351_1_33.xhtml
∂
x
i
∂
z
=
f
i
Doc 35
0.4380
-3.0000
5.0000
0.4380
testing/NTCIR/xhtml5/10/gr-qc9807024/gr-qc9807024_1_131.xhtml
∂
f
∂
t
=
L
f
.
Doc 36
0.4380
-4.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0201107/math0201107_1_70.xhtml
∂
f
∂
x
¯
=
μ
J
x
Doc 37
0.4380
-4.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0205039/math0205039_1_59.xhtml
∂
f
∂
x
¯
=
μ
J
x
Doc 38
0.4380
-4.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0210189/math0210189_1_322.xhtml
∂
f
∂
x
¯
=
μ
J
x
Doc 39
0.4380
-4.0000
5.0000
0.4380
testing/NTCIR/xhtml5/1/0912.1535/0912.1535_1_10.xhtml
∂
f
∂
t
=
∇
2
f
.
Doc 40
0.4380
-4.0000
5.0000
0.4380
testing/NTCIR/xhtml5/1/0808.2351/0808.2351_1_10.xhtml
∂
f
∂
t
=
∇
2
f
.
Doc 41
0.4380
-4.0000
5.0000
0.4380
testing/NTCIR/xhtml5/3/cond-mat0308488/cond-mat0308488_1_60.xhtml
∂
f
N
∂
t
=
L
f
.
Doc 42
0.4380
-4.0000
5.0000
0.4380
testing/NTCIR/xhtml5/5/0808.2717/0808.2717_1_8.xhtml
∂
f
∂
t
=
∇
2
f
.
Doc 43
0.4380
-4.0000
5.0000
0.4380
testing/NTCIR/xhtml5/6/0902.0143/0902.0143_1_7.xhtml
∂
f
∂
t
=
∇
2
f
.
Doc 44
0.4380
-6.0000
6.0000
0.4380
testing/NTCIR/xhtml5/4/math0612337/math0612337_1_31.xhtml
σ
t
∂
f
∂
x
=
σ
~
t
.
Doc 45
0.4380
-6.0000
6.0000
0.4380
testing/NTCIR/xhtml5/4/math0609527/math0609527_1_26.xhtml
∂
f
∂
x
=
∂
g
∂
y
.
Doc 46
0.4380
-7.0000
6.0000
0.4380
testing/NTCIR/xhtml5/4/math0610752/math0610752_1_88.xhtml
∂
f
∂
x
=
-
2
x
z
+
4
x
Doc 47
0.4380
-7.0000
6.0000
0.4380
testing/NTCIR/xhtml5/2/math0103243/math0103243_1_60.xhtml
f
k
=
f
x
k
=
∂
f
/
∂
x
k
Doc 48
0.4380
-8.0000
5.0000
0.4380
testing/NTCIR/xhtml5/2/math0110111/math0110111_1_7.xhtml
∂
f
∂
t
=
-
∂
u
∂
x
f
.
Doc 49
0.4380
-8.0000
5.0000
0.4380
testing/NTCIR/xhtml5/2/hep-th0211207/hep-th0211207_1_17.xhtml
∂
ψ
∂
x
=
A
-
f
x
′
f
.
Doc 50
0.4380
-8.0000
4.0000
0.4380
testing/NTCIR/xhtml5/7/1010.5817/1010.5817_1_7.xhtml
f
i
=
∂
i
f
=
∂
f
∂
x
i
.
Doc 51
0.4380
-9.0000
6.0000
0.4380
testing/NTCIR/xhtml5/4/math0612337/math0612337_1_25.xhtml
σ
(
t
,
x
)
∂
f
∂
x
=
σ
~
t
.
Doc 52
0.4380
-9.0000
5.0000
0.4380
testing/NTCIR/xhtml5/2/math0108063/math0108063_1_3.xhtml
∂
f
∂
t
=
A
(
x
)
∂
f
∂
x
.
Doc 53
0.4380
-12.0000
6.0000
0.4380
testing/NTCIR/xhtml5/6/0812.3862/0812.3862_1_33.xhtml
∂
f
∂
x
=
∂
g
∂
x
⋅
∂
f
∂
g
.
Doc 54
0.3871
-6.0000
5.0000
0.3871
testing/NTCIR/xhtml5/4/hep-th0610123/hep-th0610123_1_5.xhtml
∂
x
f
0
=
0
=
∂
p
f
0
.
Doc 55
0.3871
-6.0000
5.0000
0.3871
testing/NTCIR/xhtml5/4/hep-th0508173/hep-th0508173_1_6.xhtml
∂
x
f
0
=
0
=
∂
p
f
0
.
Doc 56
0.3871
-6.0000
5.0000
0.3871
testing/NTCIR/xhtml5/4/hep-th0508236/hep-th0508236_1_5.xhtml
∂
x
f
0
=
0
=
∂
p
f
0
.
Doc 57
0.3571
0.0000
5.0000
0.7143
testing/NTCIR/xhtml5/5/0709.4587/0709.4587_1_43.xhtml
∂
f
∂
x
=
ν
f
-
Q
(
x
)
∂
f
∂
x
.
Doc 58
0.3571
0.0000
5.0000
0.7143
testing/NTCIR/xhtml5/2/math0111324/math0111324_1_181.xhtml
∂
f
∂
x
∂
f
′
∂
x
Doc 59
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/4/cs0509065/cs0509065_1_49.xhtml
∂
f
∂
x
Doc 60
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/4/cs0509065/cs0509065_1_68.xhtml
∂
f
∂
x
Doc 61
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/4/cs0509065/cs0509065_1_67.xhtml
∂
f
∂
x
Doc 62
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1110.3224/1110.3224_1_290.xhtml
∂
f
∂
x
Doc 63
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1006.3542/1006.3542_1_42.xhtml
∂
f
∂
x
Doc 64
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1204.0244/1204.0244_1_47.xhtml
∂
f
∂
x
Doc 65
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1210.2543/1210.2543_1_56.xhtml
∂
f
∂
x
Doc 66
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0706.3500/0706.3500_1_63.xhtml
∂
f
∂
x
Doc 67
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0904.2582/0904.2582_1_38.xhtml
∂
f
∂
x
Doc 68
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0910.2886/0910.2886_1_52.xhtml
∂
f
∂
x
Doc 69
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/3/math-ph0306065/math-ph0306065_1_96.xhtml
∂
f
∂
x
Doc 70
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1106.4580/1106.4580_1_97.xhtml
∂
f
∂
x
Doc 71
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1209.5047/1209.5047_1_20.xhtml
∂
f
∂
x
Doc 72
0.3571
0.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0706.3500/0706.3500_1_56.xhtml
∂
f
∂
x
Doc 73
0.3571
-1.0000
5.0000
0.7143
testing/NTCIR/xhtml5/4/cs0509065/cs0509065_1_54.xhtml
x
∂
f
∂
x
y
∂
f
∂
x
Doc 74
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0901.2337/0901.2337_1_115.xhtml
∂
f
∂
x
i
Doc 75
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/4/math0603317/math0603317_1_36.xhtml
∂
f
∂
x
′
Doc 76
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0706.3500/0706.3500_1_58.xhtml
|
∂
f
∂
x
|
Doc 77
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0706.3500/0706.3500_1_28.xhtml
|
∂
f
∂
x
|
Doc 78
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1312.1618/1312.1618_1_190.xhtml
∂
f
∂
x
i
Doc 79
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/11/math9909100/math9909100_1_46.xhtml
∂
f
∂
x
ν
Doc 80
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1211.0994/1211.0994_1_31.xhtml
f
′
=
∂
x
f
Doc 81
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1204.0244/1204.0244_1_45.xhtml
∂
f
k
∂
x
Doc 82
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1204.0244/1204.0244_1_46.xhtml
∂
f
k
∂
x
Doc 83
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/3/math0406486/math0406486_1_30.xhtml
∂
f
∂
x
j
Doc 84
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/10/alg-geom9702006/alg-geom9702006_1_62.xhtml
∂
f
∂
x
n
Doc 85
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1212.2066/1212.2066_1_34.xhtml
∂
f
∂
x
j
Doc 86
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/3/math0406486/math0406486_1_25.xhtml
∂
f
∂
x
j
Doc 87
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1212.2066/1212.2066_1_31.xhtml
∂
f
∂
x
j
Doc 88
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0908.2135/0908.2135_1_82.xhtml
∂
f
∂
x
i
Doc 89
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1304.0050/1304.0050_1_37.xhtml
∂
f
∂
x
i
Doc 90
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/1/1204.6131/1204.6131_1_1.xhtml
∂
f
∂
x
i
Doc 91
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0910.1053/0910.1053_1_20.xhtml
∂
f
∂
x
i
Doc 92
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/11/math9910184/math9910184_1_66.xhtml
∂
f
∂
x
1
Doc 93
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1102.1196/1102.1196_1_112.xhtml
∂
f
∂
x
1
Doc 94
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0909.5250/0909.5250_1_17.xhtml
x
∂
f
∂
x
Doc 95
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/4/math0612275/math0612275_1_72.xhtml
∂
f
∂
x
1
Doc 96
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0809.4044/0809.4044_1_18.xhtml
∂
f
∂
x
i
Doc 97
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0201114/math0201114_1_45.xhtml
∂
f
∂
x
1
Doc 98
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/3/math0410046/math0410046_1_40.xhtml
∂
f
∂
x
i
Doc 99
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0802.0959/0802.0959_1_45.xhtml
∂
f
∂
x
j
Doc 100
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/3/math0410220/math0410220_1_167.xhtml
∂
f
∂
x
i
Doc 101
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0706.4113/0706.4113_1_143.xhtml
∂
f
∂
x
n
Doc 102
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0709.2987/0709.2987_1_33.xhtml
∂
f
∂
x
j
Doc 103
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1211.0994/1211.0994_1_18.xhtml
f
′
=
∂
x
f
Doc 104
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0808.1046/0808.1046_1_100.xhtml
∂
f
∂
x
j
Doc 105
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0206137/math0206137_1_269.xhtml
∂
f
∂
x
i
Doc 106
0.3571
-1.0000
5.0000
0.3571
testing/NTCIR/xhtml5/10/math9807047/math9807047_1_26.xhtml
∂
f
∂
x
i
Doc 107
0.3571
-1.0000
4.0000
0.3571
testing/NTCIR/xhtml5/1/1001.3821/1001.3821_1_15.xhtml
∂
f
x
∂
t
Doc 108
0.3571
-1.0000
4.0000
0.3571
testing/NTCIR/xhtml5/1/1001.3821/1001.3821_1_10.xhtml
∂
f
x
∂
t
Doc 109
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0204343/math0204343_1_189.xhtml
v
=
∂
f
∂
x
Doc 110
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0204343/math0204343_1_368.xhtml
v
=
∂
f
∂
x
Doc 111
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/hep-th0208206/hep-th0208206_1_15.xhtml
∂
f
∂
x
→
0
Doc 112
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1208.2196/1208.2196_1_140.xhtml
D
f
=
∂
x
1
f
Doc 113
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1301.5605/1301.5605_1_49.xhtml
A
f
=
∂
x
α
f
Doc 114
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0204343/math0204343_1_89.xhtml
v
=
∂
f
∂
x
Doc 115
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/4/math-ph0606016/math-ph0606016_1_56.xhtml
η
x
∂
f
∂
x
Doc 116
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0204343/math0204343_1_329.xhtml
v
=
∂
f
∂
x
Doc 117
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1301.5605/1301.5605_1_32.xhtml
A
f
=
∂
x
α
f
Doc 118
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0204343/math0204343_1_348.xhtml
v
=
∂
f
∂
x
Doc 119
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1301.5605/1301.5605_1_33.xhtml
A
f
=
∂
x
α
f
Doc 120
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0204343/math0204343_1_353.xhtml
v
=
∂
f
∂
x
Doc 121
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0111324/math0111324_1_167.xhtml
v
=
∂
f
∂
x
Doc 122
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0111326/math0111326_1_77.xhtml
v
=
∂
f
∂
x
Doc 123
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0111326/math0111326_1_300.xhtml
v
=
∂
f
∂
x
Doc 124
0.3571
-2.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0206016/math0206016_1_61.xhtml
v
=
∂
f
∂
x
Doc 125
0.3571
-3.0000
5.0000
0.7143
testing/NTCIR/xhtml5/3/math0402252/math0402252_1_143.xhtml
f
x
=
∂
f
∂
x
f
x
x
=
∂
2
f
∂
x
2
Doc 126
0.3571
-3.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1211.4912/1211.4912_1_6.xhtml
f
x
=
∂
f
/
∂
x
Doc 127
0.3571
-3.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1104.2258/1104.2258_1_78.xhtml
∂
t
f
=
∂
x
2
f
Doc 128
0.3571
-3.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1303.1297/1303.1297_1_22.xhtml
f
′
=
∂
f
∂
x
Doc 129
0.3571
-3.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1401.6189/1401.6189_1_18.xhtml
∂
f
∂
x
i
(
x
)
Doc 130
0.3571
-3.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0903.3677/0903.3677_1_29.xhtml
∂
f
∂
x
i
(
x
)
Doc 131
0.3571
-3.0000
5.0000
0.3571
testing/NTCIR/xhtml5/4/math0610121/math0610121_1_44.xhtml
f
x
=
∂
f
/
∂
x
Doc 132
0.3571
-3.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0712.2147/0712.2147_1_38.xhtml
∂
f
∂
x
i
(
x
)
Doc 133
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1201.3198/1201.3198_1_67.xhtml
f
∂
x
+
∂
f
∂
x
Doc 134
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1302.3257/1302.3257_1_23.xhtml
f
i
=
∂
f
∂
x
i
Doc 135
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0704.3383/0704.3383_1_64.xhtml
f
α
=
∂
f
∂
x
α
Doc 136
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1010.5817/1010.5817_1_20.xhtml
f
i
=
∂
f
∂
x
i
Doc 137
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1012.5490/1012.5490_1_18.xhtml
f
i
=
∂
f
∂
x
i
Doc 138
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/3/math0402252/math0402252_1_62.xhtml
f
j
=
∂
f
∂
x
j
Doc 139
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0912.1141/0912.1141_1_88.xhtml
f
i
=
∂
f
∂
x
i
Doc 140
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0704.3383/0704.3383_1_63.xhtml
f
α
=
∂
f
∂
x
α
Doc 141
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1312.1618/1312.1618_1_214.xhtml
f
i
=
∂
f
∂
x
i
Doc 142
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0704.3379/0704.3379_1_62.xhtml
f
α
=
∂
f
∂
x
α
Doc 143
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1103.0203/1103.0203_1_179.xhtml
f
i
=
∂
f
∂
x
i
Doc 144
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0804.2071/0804.2071_1_24.xhtml
f
′
=
∂
f
∂
x
1
Doc 145
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1103.0203/1103.0203_1_151.xhtml
f
i
=
∂
f
∂
x
i
Doc 146
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/10/hep-th9607152/hep-th9607152_1_7.xhtml
-
∂
f
0
∂
x
3
.
Doc 147
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/10/hep-th9607152/hep-th9607152_1_10.xhtml
-
∂
f
0
∂
x
3
.
Doc 148
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0810.5417/0810.5417_1_8.xhtml
f
i
=
∂
f
∂
x
i
Doc 149
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1103.0203/1103.0203_1_182.xhtml
f
i
=
∂
f
∂
x
i
Doc 150
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1103.0203/1103.0203_1_82.xhtml
f
i
=
∂
f
∂
x
i
Doc 151
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0808.3790/0808.3790_1_137.xhtml
∂
f
∂
x
(
x
,
x
)
Doc 152
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0704.3379/0704.3379_1_63.xhtml
f
α
=
∂
f
∂
x
α
Doc 153
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0204162/math0204162_1_16.xhtml
f
i
=
∂
f
∂
x
i
Doc 154
0.3571
-4.0000
5.0000
0.3571
testing/NTCIR/xhtml5/9/1312.1390/1312.1390_1_59.xhtml
f
i
=
∂
f
∂
x
i
Doc 155
0.3571
-5.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0902.3810/0902.3810_1_3.xhtml
f
x
i
=
∂
f
∂
x
i
Doc 156
0.3571
-5.0000
5.0000
0.3571
testing/NTCIR/xhtml5/8/1202.3854/1202.3854_1_3.xhtml
f
x
j
=
∂
f
/
∂
x
j
Doc 157
0.3571
-5.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0810.5417/0810.5417_1_4.xhtml
f
i
=
∂
f
∂
x
i
.
Doc 158
0.3571
-5.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0811.1734/0811.1734_1_1.xhtml
f
x
i
:=
∂
f
∂
x
i
Doc 159
0.3571
-5.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1008.3099/1008.3099_1_222.xhtml
∂
j
f
=
∂
f
∂
x
j
Doc 160
0.3571
-5.0000
5.0000
0.3571
testing/NTCIR/xhtml5/7/1006.0851/1006.0851_1_70.xhtml
∂
i
f
=
∂
f
∂
x
i
Doc 161
0.3571
-7.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0202045/math0202045_1_201.xhtml
f
x
j
i
=
∂
f
i
∂
x
j
Doc 162
0.3571
-7.0000
5.0000
0.3571
testing/NTCIR/xhtml5/3/math-ph0408054/math-ph0408054_1_12.xhtml
T
f
≡
∂
f
∂
x
-
κ
f
.
Doc 163
0.3571
-7.0000
5.0000
0.3571
testing/NTCIR/xhtml5/10/physics9612015/physics9612015_1_87.xhtml
d
f
=
∂
f
∂
x
μ
d
x
μ
Doc 164
0.3571
-8.0000
5.0000
0.3571
testing/NTCIR/xhtml5/2/math0108218/math0108218_1_30.xhtml
v
+
f
=
∂
f
∂
x
i
x
i
.
Doc 165
0.3571
-8.0000
5.0000
0.3571
testing/NTCIR/xhtml5/10/hep-th9604142/hep-th9604142_1_135.xhtml
d
f
=
∂
f
∂
x
i
d
x
i
.
Doc 166
0.3571
-9.0000
4.0000
0.3571
testing/NTCIR/xhtml5/9/1212.3298/1212.3298_1_99.xhtml
∂
∂
f
=
∂
x
∂
f
∂
∂
x
Doc 167
0.3571
-10.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0711.4519/0711.4519_1_217.xhtml
D
x
F
=
∂
f
∂
x
(
x
,
k
x
)
.
Doc 168
0.3571
-12.0000
5.0000
0.3571
testing/NTCIR/xhtml5/6/0901.2888/0901.2888_1_203.xhtml
∂
x
1
∂
x
1
-
1
f
=
∂
x
1
0
f
=
f
Doc 169
0.3571
-14.0000
5.0000
0.3571
testing/NTCIR/xhtml5/5/0804.2208/0804.2208_1_167.xhtml
div
f
=
∂
f
∂
x
1
+
…
+
∂
f
∂
x
n
.
Doc 170
0.3030
-1.0000
5.0000
0.3030
testing/NTCIR/xhtml5/9/1309.5017/1309.5017_1_40.xhtml
f
x
≡
∂
x
f
Doc 171
0.3030
-8.0000
5.0000
0.3030
testing/NTCIR/xhtml5/7/1010.2442/1010.2442_1_222.xhtml
∂
f
=
∇
x
1
f
×
∂
x
2
f
.
Doc 172
0.2759
-4.0000
4.0000
0.5517
testing/NTCIR/xhtml5/7/1102.0939/1102.0939_1_11.xhtml
f
x
=
∂
∂
x
f
f
x
x
=
∂
2
∂
x
2
f
Doc 173
0.2759
-4.0000
4.0000
0.2759
testing/NTCIR/xhtml5/7/1010.1681/1010.1681_1_6.xhtml
u
=
∂
x
f
=
f
x
Doc 174
0.2759
-5.0000
4.0000
0.2759
testing/NTCIR/xhtml5/4/math-ph0602043/math-ph0602043_1_35.xhtml
f
=
f
(
x
)
∂
∂
x
Doc 175
0.2759
-6.0000
4.0000
0.2759
testing/NTCIR/xhtml5/8/1208.2166/1208.2166_1_38.xhtml
f
x
~
=
∂
∂
x
~
f
Doc 176
0.2759
-6.0000
4.0000
0.2759
testing/NTCIR/xhtml5/3/math0310189/math0310189_1_105.xhtml
∂
=
∂
x
=
x
∂
∂
x
Doc 177
0.2759
-7.0000
4.0000
0.2759
testing/NTCIR/xhtml5/1/0910.0211/0910.0211_1_12.xhtml
(
∂
x
)
2
f
=
∂
x
∂
x
f
Doc 178
0.2759
-11.0000
4.0000
0.2759
testing/NTCIR/xhtml5/11/hep-th9911128/hep-th9911128_1_16.xhtml
δ
∂
f
=
∂
δ
f
-
(
∂
a
)
∂
x
f
.
Doc 179
0.2162
-2.0000
4.0000
0.2162
testing/NTCIR/xhtml5/8/1203.0447/1203.0447_1_91.xhtml
f
~
x
=
f
x
Doc 180
0.2162
-2.0000
4.0000
0.2162
testing/NTCIR/xhtml5/8/1203.0447/1203.0447_1_90.xhtml
f
¯
x
=
f
x
Doc 181
0.1935
-1.0000
3.0000
0.1935
testing/NTCIR/xhtml5/2/hep-th0011153/hep-th0011153_1_30.xhtml
∂
x
f
x
Doc 182
0.1935
-5.0000
3.0000
0.1935
testing/NTCIR/xhtml5/6/0909.2232/0909.2232_1_4.xhtml
∂
x
k
f
=
f
x
k
Doc 183
0.1935
-7.0000
3.0000
0.1935
testing/NTCIR/xhtml5/11/math-ph9908016/math-ph9908016_1_8.xhtml
∂
x
f
=
f
x
+
f
∂
x
Doc 184
0.1935
-8.0000
3.0000
0.1935
testing/NTCIR/xhtml5/10/q-alg9503007/q-alg9503007_1_39.xhtml
2
∂
X
f
=
f
+
2
∂
x
f