tangent
Not Supported
P
x0
=
?x1
(
E
K
(
S
i
-
1
)
,
x
)
⊕
C
i
Search
Returned 84 matches (100 formulae, 164 docs)
Lookup 5642.790 ms, Re-ranking 240.486 ms
Found 108163593 tuple postings, 12551240 formulae, 4750790 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.3925
-1.0000
5.0000
0.3925
testing/NTCIR/xhtml5/4/cs0603059/cs0603059_1_53.xhtml
r
0
(
x
i
-
1
)
,
Doc 2
0.3925
-1.0000
5.0000
0.3925
testing/NTCIR/xhtml5/4/cs0603059/cs0603059_1_54.xhtml
r
1
(
x
i
-
1
)
,
Doc 3
0.3925
-4.0000
5.0000
0.3925
testing/NTCIR/xhtml5/10/math9803062/math9803062_1_170.xhtml
S
i
=
Cat
R
i
(
S
i
-
1
)
Doc 4
0.3925
-8.0000
6.0000
0.3925
testing/NTCIR/xhtml5/7/1106.3625/1106.3625_1_32.xhtml
t
i
=
Rank
(
S
i
)
-
Rank
(
S
i
-
1
)
,
Doc 5
0.3925
-10.0000
5.0000
0.3925
testing/NTCIR/xhtml5/7/1102.1747/1102.1747_1_40.xhtml
v
(
B
i
∪
C
i
-
1
)
-
v
(
C
i
-
1
)
,
Doc 6
0.3315
0.0000
5.0000
0.3315
testing/NTCIR/xhtml5/8/1210.7043/1210.7043_1_34.xhtml
CH
(
S
i
-
1
)
Doc 7
0.3315
-1.0000
5.0000
0.3315
testing/NTCIR/xhtml5/7/1106.3625/1106.3625_1_33.xhtml
𝖲𝗉𝖺𝗇
(
S
i
-
1
)
.
Doc 8
0.3315
-1.0000
5.0000
0.3315
testing/NTCIR/xhtml5/7/1106.3625/1106.3625_1_34.xhtml
𝖲𝗉𝖺𝗇
(
S
i
-
1
)
.
Doc 9
0.3315
-1.0000
5.0000
0.3315
testing/NTCIR/xhtml5/6/1002.2334/1002.2334_1_48.xhtml
V
i
(
S
i
-
1
)
Doc 10
0.3315
-1.0000
5.0000
0.3315
testing/NTCIR/xhtml5/1/1006.3515/1006.3515_1_18.xhtml
ω
(
S
i
-
1
1
)
Doc 11
0.3315
-1.0000
5.0000
0.3315
testing/NTCIR/xhtml5/1/1006.3515/1006.3515_1_19.xhtml
ω
(
S
i
-
1
)
1
Doc 12
0.3315
-1.0000
5.0000
0.3315
testing/NTCIR/xhtml5/6/0903.3589/0903.3589_1_39.xhtml
ℱ
i
(
S
i
-
1
)
Doc 13
0.3315
-2.0000
5.0000
0.3315
testing/NTCIR/xhtml5/3/math0312052/math0312052_1_53.xhtml
L
O
T
(
S
i
-
1
)
Doc 14
0.3315
-3.0000
4.0000
0.3315
testing/NTCIR/xhtml5/4/math0511033/math0511033_1_82.xhtml
M
(
S
i
-
1
,
S
i
)
Doc 15
0.3315
-3.0000
4.0000
0.3315
testing/NTCIR/xhtml5/5/0810.2613/0810.2613_1_183.xhtml
#
(
f
(
C
i
)
,
-
1
)
Doc 16
0.3315
-3.0000
2.0000
0.3315
testing/NTCIR/xhtml5/7/1010.5489/1010.5489_1_89.xhtml
P
i
=
ℙ
i
(
K
S
)
,
Doc 17
0.3315
-5.0000
5.0000
0.3315
testing/NTCIR/xhtml5/3/math0404505/math0404505_1_53.xhtml
(
f
(
S
i
)
,
S
i
)
i
≥
1
Doc 18
0.3315
-5.0000
4.0000
0.3315
testing/NTCIR/xhtml5/4/math0610053/math0610053_1_45.xhtml
d
(
S
i
-
1
,
S
i
)
=
1
Doc 19
0.3315
-5.0000
4.0000
0.3315
testing/NTCIR/xhtml5/4/math0610053/math0610053_1_47.xhtml
d
(
S
i
-
1
,
S
i
)
=
1
Doc 20
0.3315
-5.0000
3.0000
0.6630
testing/NTCIR/xhtml5/8/1209.0307/1209.0307_1_47.xhtml
=
⋃
i
E
i
-
1
(
P
A
)
,
⊂
⋂
i
E
i
-
1
(
P
A
)
,
Doc 21
0.3315
-6.0000
4.0000
0.3315
testing/NTCIR/xhtml5/3/math0406110/math0406110_1_285.xhtml
f
(
x
i
-
1
)
>
f
(
x
i
)
,
Doc 22
0.3315
-6.0000
4.0000
0.3315
testing/NTCIR/xhtml5/3/math-ph0303010/math-ph0303010_1_229.xhtml
f
(
x
i
-
1
)
>
f
(
x
i
)
,
Doc 23
0.3315
-6.0000
4.0000
0.3315
testing/NTCIR/xhtml5/3/math-ph0303010/math-ph0303010_1_233.xhtml
f
(
x
i
-
1
)
>
f
(
x
i
)
,
Doc 24
0.3315
-6.0000
4.0000
0.3315
testing/NTCIR/xhtml5/3/math0406110/math0406110_1_295.xhtml
f
(
x
i
-
1
)
>
f
(
x
i
)
,
Doc 25
0.3315
-6.0000
4.0000
0.3315
testing/NTCIR/xhtml5/3/math0406110/math0406110_1_289.xhtml
f
(
x
i
-
1
)
>
f
(
x
i
)
,
Doc 26
0.3315
-6.0000
3.0000
0.3315
testing/NTCIR/xhtml5/7/1007.1365/1007.1365_1_180.xhtml
C
i
=
Span
(
x
i
-
1
,
x
i
)
Doc 27
0.3315
-6.0000
3.0000
0.3315
testing/NTCIR/xhtml5/7/1007.1365/1007.1365_1_172.xhtml
C
i
=
Span
(
x
i
-
1
,
x
i
)
Doc 28
0.3315
-6.0000
3.0000
0.3315
testing/NTCIR/xhtml5/7/1007.1365/1007.1365_1_171.xhtml
C
i
=
Span
(
x
i
-
1
,
x
i
)
Doc 29
0.3315
-6.0000
3.0000
0.3315
testing/NTCIR/xhtml5/7/1007.1365/1007.1365_1_188.xhtml
C
i
=
Span
(
x
i
-
1
,
x
i
)
Doc 30
0.3315
-6.0000
3.0000
0.3315
testing/NTCIR/xhtml5/7/1007.1365/1007.1365_1_139.xhtml
C
i
=
Span
(
x
i
-
1
,
x
i
)
Doc 31
0.3315
-6.0000
3.0000
0.3315
testing/NTCIR/xhtml5/7/1007.1365/1007.1365_1_177.xhtml
C
i
=
Span
(
x
i
-
1
,
x
i
)
Doc 32
0.3315
-6.0000
3.0000
0.3315
testing/NTCIR/xhtml5/7/1007.1365/1007.1365_1_191.xhtml
C
i
=
Span
(
x
i
-
1
,
x
i
)
Doc 33
0.3315
-8.0000
5.0000
0.3315
testing/NTCIR/xhtml5/3/math0401214/math0401214_1_127.xhtml
Hom
C
(
E
(
S
j
)
,
E
(
S
i
)
)
=
0
Doc 34
0.2927
-7.0000
1.0000
0.2927
testing/NTCIR/xhtml5/5/0810.4778/0810.4778_1_3.xhtml
p
i
=
K
(
x
i
-
x
i
-
1
)
,
Doc 35
0.2927
-7.0000
1.0000
0.2927
testing/NTCIR/xhtml5/6/1001.1167/1001.1167_1_23.xhtml
s
i
=
max
(
S
i
)
-
(
i
-
1
)
m
Doc 36
0.2927
-8.0000
2.0000
0.5854
testing/NTCIR/xhtml5/8/1201.3114/1201.3114_1_9.xhtml
P
i
=
D
π
→
(
C
i
⊕
C
i
-
1
)
C
i
=
E
π
→
(
P
i
⊕
C
i
-
1
)
Doc 37
0.2703
-1.0000
5.0000
0.2703
testing/NTCIR/xhtml5/8/1210.7697/1210.7697_1_11.xhtml
(
E
(
S
)
,
≤
)
Doc 38
0.2703
-1.0000
5.0000
0.2703
testing/NTCIR/xhtml5/6/0911.2863/0911.2863_1_3.xhtml
(
E
(
S
)
,
≤
)
Doc 39
0.2703
-1.0000
5.0000
0.2703
testing/NTCIR/xhtml5/9/1212.6462/1212.6462_1_111.xhtml
(
E
(
S
)
,
≤
)
Doc 40
0.2703
-1.0000
5.0000
0.2703
testing/NTCIR/xhtml5/6/0911.2863/0911.2863_1_4.xhtml
(
E
(
S
)
,
≤
)
Doc 41
0.2703
-1.0000
5.0000
0.2703
testing/NTCIR/xhtml5/3/math0406392/math0406392_1_2.xhtml
(
S
i
-
1
)
)
Doc 42
0.2703
-2.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1211.1313/1211.1313_1_53.xhtml
H
α
-
1
(
S
)
,
Doc 43
0.2703
-2.0000
3.0000
0.2703
testing/NTCIR/xhtml5/10/alg-geom9402011/alg-geom9402011_1_27.xhtml
ψ
d
-
1
(
S
i
)
Doc 44
0.2703
-2.0000
3.0000
0.2703
testing/NTCIR/xhtml5/9/1308.6812/1308.6812_1_18.xhtml
π
U
(
S
)
-
1
,
Doc 45
0.2703
-2.0000
2.0000
0.2703
testing/NTCIR/xhtml5/3/math0408019/math0408019_1_6.xhtml
P
i
-
1
(
z
)
,
Doc 46
0.2703
-2.0000
2.0000
0.2703
testing/NTCIR/xhtml5/3/math0312353/math0312353_1_357.xhtml
P
i
-
1
(
z
)
,
Doc 47
0.2703
-2.0000
2.0000
0.2703
testing/NTCIR/xhtml5/3/math0408019/math0408019_1_59.xhtml
P
i
-
1
(
z
)
,
Doc 48
0.2703
-2.0000
2.0000
0.2703
testing/NTCIR/xhtml5/3/math0408019/math0408019_1_22.xhtml
P
i
-
1
(
z
)
,
Doc 49
0.2703
-2.0000
2.0000
0.2703
testing/NTCIR/xhtml5/3/math0408019/math0408019_1_36.xhtml
P
i
-
1
(
z
)
,
Doc 50
0.2703
-2.0000
2.0000
0.2703
testing/NTCIR/xhtml5/3/math0408019/math0408019_1_33.xhtml
P
i
-
1
(
z
)
,
Doc 51
0.2703
-3.0000
4.0000
0.4790
testing/NTCIR/xhtml5/4/math0612696/math0612696_1_43.xhtml
{
S
i
-
1
,
S
i
}
{
x
i
}
=
S
i
-
1
△
S
i
Doc 52
0.2703
-3.0000
4.0000
0.2703
testing/NTCIR/xhtml5/4/math0610053/math0610053_1_140.xhtml
{
S
i
-
1
,
S
i
}
Doc 53
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/3/math0304012/math0304012_1_140.xhtml
[
x
i
-
1
,
x
i
]
Doc 54
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/5/0710.5305/0710.5305_1_13.xhtml
[
x
i
-
1
,
x
i
]
Doc 55
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1205.4455/1205.4455_1_52.xhtml
[
x
i
-
1
,
x
i
]
Doc 56
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/3/math0306357/math0306357_1_5.xhtml
[
x
i
-
1
,
x
i
]
Doc 57
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/7/1008.1275/1008.1275_1_15.xhtml
[
x
i
-
1
,
x
i
]
Doc 58
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/9/1308.2888/1308.2888_1_77.xhtml
[
x
i
-
1
,
x
i
]
Doc 59
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1201.3997/1201.3997_1_6.xhtml
[
x
i
-
1
,
x
i
]
Doc 60
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1202.0249/1202.0249_1_5.xhtml
[
x
i
-
1
,
x
i
]
Doc 61
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/5/0806.3904/0806.3904_1_51.xhtml
[
x
i
-
1
,
x
i
]
Doc 62
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/4/math0603058/math0603058_1_27.xhtml
[
x
i
-
1
,
x
i
]
Doc 63
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/7/1009.2060/1009.2060_1_37.xhtml
(
m
i
-
1
,
x
i
)
Doc 64
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/7/1009.2060/1009.2060_1_24.xhtml
(
m
i
-
1
,
x
i
)
Doc 65
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/7/1009.1540/1009.1540_1_199.xhtml
[
x
i
-
1
,
x
i
]
Doc 66
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1202.0249/1202.0249_1_29.xhtml
[
x
i
-
1
,
x
i
]
Doc 67
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/9/1301.0505/1301.0505_1_134.xhtml
[
x
i
-
1
,
x
i
]
Doc 68
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1202.0249/1202.0249_1_17.xhtml
[
x
i
-
1
,
x
i
]
Doc 69
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1210.1068/1210.1068_1_27.xhtml
[
x
i
-
1
,
x
i
]
Doc 70
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1210.1068/1210.1068_1_20.xhtml
[
x
i
-
1
,
x
i
]
Doc 71
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/3/math0304012/math0304012_1_145.xhtml
[
x
i
-
1
,
x
i
]
Doc 72
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/7/1009.2059/1009.2059_1_16.xhtml
(
m
i
-
1
,
x
i
)
Doc 73
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/4/math0612852/math0612852_1_41.xhtml
[
x
i
-
1
,
x
i
]
Doc 74
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/3/math0304012/math0304012_1_65.xhtml
[
x
i
-
1
,
x
i
]
Doc 75
0.2703
-3.0000
3.0000
0.2703
testing/NTCIR/xhtml5/7/1009.2059/1009.2059_1_29.xhtml
(
m
i
-
1
,
x
i
)
Doc 76
0.2703
-5.0000
4.0000
0.2703
testing/NTCIR/xhtml5/5/math0703036/math0703036_1_18.xhtml
A
d
(
S
i
)
(
F
i
-
1
)
Doc 77
0.2703
-5.0000
3.0000
0.2703
testing/NTCIR/xhtml5/3/math0309060/math0309060_1_139.xhtml
min
{
D
i
-
1
,
S
i
}
.
Doc 78
0.2703
-5.0000
3.0000
0.2703
testing/NTCIR/xhtml5/3/math0411105/math0411105_1_4.xhtml
M
′
=
μ
-
1
(
S
x
)
,
Doc 79
0.2703
-6.0000
3.0000
0.5405
testing/NTCIR/xhtml5/3/cs0310033/cs0310033_1_85.xhtml
return
E
K
(
P
m
⊕
C
m
-
1
)
C
i
←
E
K
1
(
P
i
⊕
C
i
-
1
)
Doc 80
0.2703
-6.0000
3.0000
0.2703
testing/NTCIR/xhtml5/2/math0105075/math0105075_1_78.xhtml
P
i
=
[
P
i
-
1
,
p
i
]
Doc 81
0.2703
-6.0000
3.0000
0.2703
testing/NTCIR/xhtml5/2/math0105076/math0105076_1_39.xhtml
P
i
=
[
P
i
-
1
,
p
i
]
Doc 82
0.2703
-6.0000
3.0000
0.2703
testing/NTCIR/xhtml5/2/math0105075/math0105075_1_68.xhtml
P
i
=
[
P
i
-
1
,
p
i
]
Doc 83
0.2703
-6.0000
3.0000
0.2703
testing/NTCIR/xhtml5/2/math0105075/math0105075_1_41.xhtml
P
i
=
[
P
i
-
1
,
p
i
]
Doc 84
0.2703
-6.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1210.5736/1210.5736_1_64.xhtml
[
P
i
-
1
,
x
d
]
≤
P
i
Doc 85
0.2703
-6.0000
2.0000
0.2703
testing/NTCIR/xhtml5/2/math0210350/math0210350_1_45.xhtml
p
i
t
j
P
p
-
1
(
K
)
,
Doc 86
0.2703
-7.0000
5.0000
0.2703
testing/NTCIR/xhtml5/8/1110.5084/1110.5084_1_110.xhtml
Γ
-
(
S
i
-
1
∪
S
i
∪
K
)
Doc 87
0.2703
-7.0000
4.0000
0.4790
testing/NTCIR/xhtml5/2/math0110014/math0110014_1_61.xhtml
f
-
1
(
S
i
)
,
i
=
1
,
2
y
∈
f
-
1
(
S
i
)
Doc 88
0.2703
-7.0000
4.0000
0.2703
testing/NTCIR/xhtml5/7/1010.1024/1010.1024_1_33.xhtml
M
[
k
/
2
i
-
1
]
(
S
i
)
,
Doc 89
0.2703
-7.0000
4.0000
0.2703
testing/NTCIR/xhtml5/5/0710.1324/0710.1324_1_65.xhtml
∑
h
reflection
vol
m
-
1
(
S
i
h
)
,
Doc 90
0.2703
-7.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1112.0601/1112.0601_1_47.xhtml
:
=
σ
ℏ
(
P
i
(
i
-
1
)
)
,
Doc 91
0.2703
-7.0000
3.0000
0.2703
testing/NTCIR/xhtml5/8/1112.0601/1112.0601_1_44.xhtml
:
=
σ
ℏ
(
P
i
(
i
-
1
)
)
,
Doc 92
0.2703
-7.0000
1.0000
0.2703
testing/NTCIR/xhtml5/6/1002.2090/1002.2090_1_18.xhtml
d
G
(
x
i
,
x
i
-
1
)
≤
C
Doc 93
0.2703
-7.0000
1.0000
0.2703
testing/NTCIR/xhtml5/4/math0701725/math0701725_1_90.xhtml
d
G
(
x
i
,
S
i
-
1
)
=
1
Doc 94
0.2703
-7.0000
1.0000
0.2703
testing/NTCIR/xhtml5/4/math0701725/math0701725_1_89.xhtml
d
G
(
x
i
,
x
i
-
1
)
≤
C
Doc 95
0.2703
-7.0000
1.0000
0.2703
testing/NTCIR/xhtml5/6/1002.0996/1002.0996_1_130.xhtml
d
G
(
x
i
,
S
i
-
1
)
=
1
Doc 96
0.2703
-8.0000
5.0000
0.2703
testing/NTCIR/xhtml5/8/1201.1135/1201.1135_1_167.xhtml
U
i
=
{
S
i
,
(
S
i
-
1
)
∁
}
Doc 97
0.2703
-8.0000
2.0000
0.5405
testing/NTCIR/xhtml5/6/0908.1956/0908.1956_1_24.xhtml
:
C
i
(
X
)
→
C
i
-
1
(
X
)
,
:
C
i
-
1
(
X
)
→
C
i
(
X
)
,
Doc 98
0.2703
-9.0000
4.0000
0.2703
testing/NTCIR/xhtml5/3/cs0310033/cs0310033_1_89.xhtml
C
i
←
E
K
1
(
P
i
⊕
C
i
-
1
)
Doc 99
0.2703
-11.0000
2.0000
0.2703
testing/NTCIR/xhtml5/7/1104.1674/1104.1674_1_112.xhtml
24
=
5
χ
(
S
i
)
+
8
(
g
(
C
i
)
-
1
)
Doc 100
0.2290
-3.0000
2.0000
0.2290
testing/NTCIR/xhtml5/4/gr-qc0504147/gr-qc0504147_1_74.xhtml
P
S
=
Π
-
1
(
S
)
Doc 101
0.2290
-7.0000
2.0000
0.2290
testing/NTCIR/xhtml5/9/1301.2841/1301.2841_1_63.xhtml
S
(
v
i
,
r
i
)
∖
S
i
-
1
Doc 102
0.2290
-8.0000
1.0000
0.2290
testing/NTCIR/xhtml5/1/1003.3665/1003.3665_1_58.xhtml
d
(
S
i
,
X
-
C
i
-
1
)
>
r
Doc 103
0.2290
-9.0000
2.0000
0.2290
testing/NTCIR/xhtml5/1/0912.4164/0912.4164_1_45.xhtml
S
i
=
dom
(
C
i
+
1
,
C
i
-
1
)
Doc 104
0.2087
0.0000
4.0000
0.2087
testing/NTCIR/xhtml5/10/math9802024/math9802024_1_119.xhtml
(
S
i
)
,
Doc 105
0.2087
0.0000
4.0000
0.2087
testing/NTCIR/xhtml5/6/1001.4606/1001.4606_1_18.xhtml
E
(
S
i
)
Doc 106
0.2087
0.0000
4.0000
0.2087
testing/NTCIR/xhtml5/6/1001.4606/1001.4606_1_57.xhtml
E
(
S
i
)
Doc 107
0.2087
0.0000
4.0000
0.2087
testing/NTCIR/xhtml5/4/math0606158/math0606158_1_76.xhtml
E
(
S
i
)
Doc 108
0.2087
0.0000
4.0000
0.2087
testing/NTCIR/xhtml5/6/1001.4606/1001.4606_1_45.xhtml
E
(
S
i
)
Doc 109
0.2087
-2.0000
3.0000
0.4174
testing/NTCIR/xhtml5/1/math0207210/math0207210_1_66.xhtml
β
-
1
(
S
i
)
W
-
β
-
1
(
S
i
)
Doc 110
0.2087
-2.0000
3.0000
0.2087
testing/NTCIR/xhtml5/2/math0010113/math0010113_1_45.xhtml
π
-
1
(
S
i
)
Doc 111
0.2087
-2.0000
3.0000
0.2087
testing/NTCIR/xhtml5/5/0707.0664/0707.0664_1_44.xhtml
ϕ
-
1
(
S
i
)
Doc 112
0.2087
-2.0000
3.0000
0.2087
testing/NTCIR/xhtml5/11/math9910107/math9910107_1_186.xhtml
π
-
1
(
S
i
)
Doc 113
0.2087
-2.0000
3.0000
0.2087
testing/NTCIR/xhtml5/10/alg-geom9709011/alg-geom9709011_1_115.xhtml
f
-
1
(
S
i
)
Doc 114
0.2087
-2.0000
3.0000
0.2087
testing/NTCIR/xhtml5/4/math0609569/math0609569_1_182.xhtml
F
-
1
(
S
i
)
Doc 115
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0902.4348/0902.4348_1_615.xhtml
P
i
=
P
i
-
1
Doc 116
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0902.4348/0902.4348_1_714.xhtml
P
i
=
P
i
-
1
Doc 117
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/1/1002.1065/1002.1065_1_22.xhtml
κ
i
-
1
(
S
i
)
Doc 118
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/1/1002.1065/1002.1065_1_17.xhtml
κ
i
-
1
(
S
i
)
Doc 119
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/3/math0408279/math0408279_1_191.xhtml
Θ
-
1
(
S
^
i
)
Doc 120
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0902.4348/0902.4348_1_99.xhtml
P
i
=
P
i
-
1
Doc 121
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/7/1103.5673/1103.5673_1_61.xhtml
S
i
=
P
i
-
1
Doc 122
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/3/math0408279/math0408279_1_187.xhtml
Θ
-
1
(
S
^
i
)
Doc 123
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0906.0044/0906.0044_1_75.xhtml
[
0
,
C
i
-
1
]
Doc 124
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/3/math0408279/math0408279_1_199.xhtml
Θ
-
1
(
S
^
i
)
Doc 125
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0906.0044/0906.0044_1_74.xhtml
[
0
,
C
i
-
1
]
Doc 126
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0902.4348/0902.4348_1_695.xhtml
P
i
=
P
i
-
1
Doc 127
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0902.4348/0902.4348_1_711.xhtml
P
i
=
P
i
-
1
Doc 128
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/3/math0408279/math0408279_1_195.xhtml
Θ
-
1
(
S
^
i
)
Doc 129
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/5/0809.2626/0809.2626_1_12.xhtml
ψ
i
-
1
(
S
i
)
Doc 130
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0902.4348/0902.4348_1_378.xhtml
P
i
=
P
i
-
1
Doc 131
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0902.4348/0902.4348_1_704.xhtml
P
i
=
P
i
-
1
Doc 132
0.2087
-3.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0902.4348/0902.4348_1_102.xhtml
P
i
=
P
i
-
1
Doc 133
0.2087
-4.0000
4.0000
0.2087
testing/NTCIR/xhtml5/7/1004.2605/1004.2605_1_169.xhtml
τ
(
i
)
∈
S
i
-
1
Doc 134
0.2087
-4.0000
4.0000
0.2087
testing/NTCIR/xhtml5/7/1004.2605/1004.2605_1_156.xhtml
τ
(
i
)
∈
S
i
-
1
Doc 135
0.2087
-4.0000
4.0000
0.2087
testing/NTCIR/xhtml5/6/1001.1055/1001.1055_1_23.xhtml
w
i
=
v
S
i
-
1
Doc 136
0.2087
-4.0000
4.0000
0.2087
testing/NTCIR/xhtml5/7/1004.2605/1004.2605_1_161.xhtml
τ
(
i
)
∈
S
i
-
1
Doc 137
0.2087
-4.0000
3.0000
0.2087
testing/NTCIR/xhtml5/2/math0010114/math0010114_1_230.xhtml
F
:=
ν
-
1
(
S
i
)
Doc 138
0.2087
-4.0000
3.0000
0.2087
testing/NTCIR/xhtml5/9/1301.7689/1301.7689_1_98.xhtml
χ
(
S
i
*
)
≤
-
1
Doc 139
0.2087
-4.0000
3.0000
0.2087
testing/NTCIR/xhtml5/8/1211.0745/1211.0745_1_39.xhtml
(
x
i
,
x
i
-
1
)
Doc 140
0.2087
-4.0000
3.0000
0.2087
testing/NTCIR/xhtml5/8/1108.1025/1108.1025_1_95.xhtml
(
C
i
,
C
i
-
1
)
Doc 141
0.2087
-4.0000
3.0000
0.2087
testing/NTCIR/xhtml5/10/math9903145/math9903145_1_2.xhtml
C
∞
(
S
n
-
1
)
,
Doc 142
0.2087
-4.0000
3.0000
0.2087
testing/NTCIR/xhtml5/9/1306.1197/1306.1197_1_122.xhtml
[
x
i
,
x
i
-
1
)
Doc 143
0.2087
-5.0000
4.0000
0.2087
testing/NTCIR/xhtml5/10/alg-geom9712008/alg-geom9712008_1_53.xhtml
(
S
i
/
S
i
-
1
)
*
Doc 144
0.2087
-5.0000
4.0000
0.2087
testing/NTCIR/xhtml5/1/1203.5448/1203.5448_1_20.xhtml
C
i
∩
S
i
-
1
≠
∅
Doc 145
0.2087
-5.0000
3.0000
0.2087
testing/NTCIR/xhtml5/10/math9811085/math9811085_1_66.xhtml
τ
P
i
=
γ
P
i
-
1
Doc 146
0.2087
-5.0000
3.0000
0.2087
testing/NTCIR/xhtml5/1/math0005257/math0005257_1_133.xhtml
q
(
S
i
)
=
g
i
-
1
Doc 147
0.2087
-6.0000
4.0000
0.2087
testing/NTCIR/xhtml5/8/1109.5886/1109.5886_1_568.xhtml
ϕ
-
1
(
(
S
i
)
i
,
X
)
Doc 148
0.2087
-7.0000
4.0000
0.2087
testing/NTCIR/xhtml5/4/math0603198/math0603198_1_62.xhtml
c
(
S
i
n
-
S
i
-
1
n
)
Doc 149
0.2087
-7.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0906.0044/0906.0044_1_133.xhtml
[
A
C
i
-
1
,
C
i
′
]
Doc 150
0.2087
-7.0000
3.0000
0.2087
testing/NTCIR/xhtml5/6/0906.0044/0906.0044_1_174.xhtml
[
A
C
i
-
1
,
C
i
′
]
Doc 151
0.2087
-7.0000
3.0000
0.2087
testing/NTCIR/xhtml5/9/1301.4093/1301.4093_1_34.xhtml
P
i
=
[
P
i
,
P
i
-
1
]
Doc 152
0.2087
-7.0000
3.0000
0.2087
testing/NTCIR/xhtml5/2/hep-th0212010/hep-th0212010_1_40.xhtml
{
α
i
,
C
i
-
C
i
-
1
}
Doc 153
0.2087
-7.0000
3.0000
0.2087
testing/NTCIR/xhtml5/9/1301.4093/1301.4093_1_40.xhtml
P
i
=
[
P
i
,
P
i
-
1
]
Doc 154
0.2087
-7.0000
3.0000
0.2087
testing/NTCIR/xhtml5/4/hep-th0606164/hep-th0606164_1_7.xhtml
(
C
i
1
…
i
n
-
1
a
)
,
Doc 155
0.2087
-7.0000
3.0000
0.2087
testing/NTCIR/xhtml5/1/1208.3177/1208.3177_1_31.xhtml
P
i
=
[
P
i
,
P
i
-
1
]
Doc 156
0.2087
-8.0000
4.0000
0.2087
testing/NTCIR/xhtml5/5/0807.2192/0807.2192_1_37.xhtml
cov
(
S
i
-
S
i
-
1
)
=
κ
I
Doc 157
0.2087
-8.0000
4.0000
0.2087
testing/NTCIR/xhtml5/5/0807.2192/0807.2192_1_13.xhtml
cov
(
S
i
-
S
i
-
1
)
=
κ
I
Doc 158
0.2087
-10.0000
3.0000
0.2087
testing/NTCIR/xhtml5/3/math0402244/math0402244_1_69.xhtml
gr
C
=
⊕
i
≥
i
C
i
/
C
i
-
1
Doc 159
0.2087
-10.0000
3.0000
0.2087
testing/NTCIR/xhtml5/2/math0102028/math0102028_1_33.xhtml
gr
C
=
⊕
i
≥
0
C
i
/
C
i
-
1
Doc 160
0.1633
-6.0000
1.0000
0.1633
testing/NTCIR/xhtml5/2/math0205034/math0205034_1_42.xhtml
P
i
⊗
k
𝒦
i
-
1
(
S
)
Doc 161
0.1633
-8.0000
2.0000
0.1633
testing/NTCIR/xhtml5/4/math0605163/math0605163_1_201.xhtml
V
⊂
Hom
(
E
,
𝒪
C
i
(
-
1
)
)
Doc 162
0.1463
-4.0000
3.0000
0.1463
testing/NTCIR/xhtml5/2/hep-th0206152/hep-th0206152_1_30.xhtml
(
S
-
1
)
i
j
,
Doc 163
0.1463
-5.0000
3.0000
0.1463
testing/NTCIR/xhtml5/1/0709.2813/0709.2813_1_18.xhtml
P
i
=
P
τ
i
-
1
Doc 164
0.1463
-5.0000
2.0000
0.1463
testing/NTCIR/xhtml5/10/hep-ph9709437/hep-ph9709437_1_144.xhtml
P
B
=
(
-
1
)
r
,