tangent
Not Supported
P
x
=
P
-
{
a
∣
a
≥
x
}
Search
Returned 80 matches (100 formulae, 131 docs)
Lookup 220.502 ms, Re-ranking 106.794 ms
Found 2641503 tuple postings, 2185045 formulae, 1441667 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5217
-1.0000
5.0000
0.5217
testing/NTCIR/xhtml5/3/hep-th0408079/hep-th0408079_1_6.xhtml
P
p
=
P
-
{
p
}
Doc 2
0.4615
-3.0000
4.0000
0.4615
testing/NTCIR/xhtml5/10/math9902140/math9902140_1_33.xhtml
P
x
3
=
P
T
x
(
M
)
Doc 3
0.4615
-4.0000
4.0000
0.4615
testing/NTCIR/xhtml5/2/math-ph0203027/math-ph0203027_1_197.xhtml
P
x
=
P
/
(
I
x
⋅
P
)
Doc 4
0.4255
-1.0000
4.0000
0.4255
testing/NTCIR/xhtml5/1/math0204254/math0204254_1_40.xhtml
B
=
P
-
{
f
}
Doc 5
0.4255
-2.0000
4.0000
0.4255
testing/NTCIR/xhtml5/1/math0404082/math0404082_1_131.xhtml
X
=
P
′
-
{
p
}
Doc 6
0.4255
-3.0000
5.0000
0.4255
testing/NTCIR/xhtml5/3/math0305203/math0305203_1_58.xhtml
P
¯
=
P
-
{
0
^
}
Doc 7
0.4255
-5.0000
5.0000
0.7543
testing/NTCIR/xhtml5/5/0805.1585/0805.1585_1_22.xhtml
P
x
′
=
P
b
-
Q
-
P
P
x
=
P
a
Doc 8
0.3614
-2.0000
5.0000
0.3614
testing/NTCIR/xhtml5/1/0905.2249/0905.2249_1_24.xhtml
P
′
=
P
∖
{
a
}
Doc 9
0.3288
0.0000
4.0000
0.3288
testing/NTCIR/xhtml5/4/math0610017/math0610017_1_37.xhtml
P
x
=
P
Doc 10
0.3288
-1.0000
4.0000
0.6575
testing/NTCIR/xhtml5/4/math0512429/math0512429_1_369.xhtml
P
j
-
{
a
}
c
∈
P
i
-
{
a
}
Doc 11
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/7/1006.2500/1006.2500_1_17.xhtml
P
x
=
P
y
Doc 12
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/8/1202.2240/1202.2240_1_25.xhtml
P
x
=
P
y
Doc 13
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/4/math0609843/math0609843_1_131.xhtml
P
x
=
P
Ω
Doc 14
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math0101156/math0101156_1_118.xhtml
P
x
=
P
y
Doc 15
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/8/1202.2240/1202.2240_1_20.xhtml
P
x
=
P
y
Doc 16
0.3288
-1.0000
3.0000
0.3288
testing/NTCIR/xhtml5/8/1211.3222/1211.3222_1_52.xhtml
P
y
=
P
x
Doc 17
0.3288
-1.0000
3.0000
0.3288
testing/NTCIR/xhtml5/2/math0104032/math0104032_1_110.xhtml
P
Ω
=
P
x
Doc 18
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/3/math0303322/math0303322_1_58.xhtml
P
x
=
P
S
x
Doc 19
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/1/math-ph0003033/math-ph0003033_1_17.xhtml
P
x
=
P
x
†
Doc 20
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/6/0909.2249/0909.2249_1_60.xhtml
P
x
*
=
P
x
Doc 21
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/3/math-ph0306034/math-ph0306034_1_8.xhtml
P
x
+
=
P
x
Doc 22
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/1/1108.5601/1108.5601_1_4.xhtml
P
x
=
P
(
x
)
Doc 23
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math0111277/math0111277_1_85.xhtml
P
x
′
=
P
x
Doc 24
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/5/0704.0511/0704.0511_1_25.xhtml
P
x
2
=
P
x
Doc 25
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math0204293/math0204293_1_54.xhtml
P
x
=
P
λ
x
Doc 26
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/6/0902.3348/0902.3348_1_88.xhtml
P
x
=
P
x
B
Doc 27
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/8/1208.3976/1208.3976_1_73.xhtml
P
x
′
=
P
x
Doc 28
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/5/0704.0511/0704.0511_1_34.xhtml
P
x
2
=
P
x
Doc 29
0.3288
-3.0000
4.0000
0.5595
testing/NTCIR/xhtml5/4/math0511385/math0511385_1_29.xhtml
P
x
=
P
∩
E
x
P
x
=
ker
T
x
Doc 30
0.3288
-3.0000
4.0000
0.5595
testing/NTCIR/xhtml5/2/math0210103/math0210103_1_23.xhtml
P
x
=
P
∩
E
x
P
x
=
ker
T
x
Doc 31
0.3288
-3.0000
4.0000
0.3288
testing/NTCIR/xhtml5/6/0903.2016/0903.2016_1_66.xhtml
{
a
∣
a
ℓ
=
1
}
Doc 32
0.3288
-3.0000
4.0000
0.3288
testing/NTCIR/xhtml5/4/math0610962/math0610962_1_63.xhtml
{
a
i
∣
a
i
is a cusp form
}
Doc 33
0.3288
-3.0000
4.0000
0.3288
testing/NTCIR/xhtml5/8/1202.2240/1202.2240_1_22.xhtml
P
x
=
P
x
+
v
Doc 34
0.3288
-3.0000
4.0000
0.3288
testing/NTCIR/xhtml5/1/0905.1798/0905.1798_1_242.xhtml
P
x
=
P
y
=
0
Doc 35
0.3288
-3.0000
4.0000
0.3288
testing/NTCIR/xhtml5/7/1103.1764/1103.1764_1_69.xhtml
P
x
=
P
x
(
G
)
Doc 36
0.3288
-3.0000
4.0000
0.3288
testing/NTCIR/xhtml5/8/1202.3673/1202.3673_1_111.xhtml
P
x
γ
=
P
x
κ
Doc 37
0.3288
-3.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math0102225/math0102225_1_63.xhtml
P
x
y
=
P
y
x
Doc 38
0.3288
-3.0000
3.0000
0.3288
testing/NTCIR/xhtml5/1/math0006086/math0006086_1_129.xhtml
P
=
P
I
-
{
a
}
Doc 39
0.3288
-4.0000
4.0000
0.3288
testing/NTCIR/xhtml5/5/0710.2611/0710.2611_1_24.xhtml
P
x
j
2
=
P
x
j
Doc 40
0.3288
-4.0000
4.0000
0.3288
testing/NTCIR/xhtml5/10/hep-th9807030/hep-th9807030_1_8.xhtml
P
x
1
2
=
P
x
1
Doc 41
0.3288
-4.0000
4.0000
0.3288
testing/NTCIR/xhtml5/3/math0403319/math0403319_1_25.xhtml
P
x
θ
=
P
x
-
1
Doc 42
0.3288
-4.0000
2.0000
0.3288
testing/NTCIR/xhtml5/9/1401.0422/1401.0422_1_28.xhtml
V
x
-
{
v
i
,
x
}
Doc 43
0.3288
-5.0000
4.0000
0.3288
testing/NTCIR/xhtml5/3/math0403319/math0403319_1_14.xhtml
P
x
-
1
=
P
x
-
1
Doc 44
0.3288
-5.0000
3.0000
0.3288
testing/NTCIR/xhtml5/9/1305.4882/1305.4882_1_8.xhtml
P
ρ
(
h
)
⋅
x
=
P
x
Doc 45
0.3288
-6.0000
4.0000
0.3288
testing/NTCIR/xhtml5/8/1112.2219/1112.2219_1_14.xhtml
P
x
^
=
P
|
X
×
x
^
Doc 46
0.3288
-6.0000
4.0000
0.3288
testing/NTCIR/xhtml5/5/0704.3251/0704.3251_1_51.xhtml
P
x
s
=
P
x
∩
S
q
~
Doc 47
0.3288
-7.0000
4.0000
0.3288
testing/NTCIR/xhtml5/10/cond-mat9709208/cond-mat9709208_1_68.xhtml
P
x
=
P
x
+
+
P
x
-
.
Doc 48
0.3288
-7.0000
4.0000
0.3288
testing/NTCIR/xhtml5/6/0904.0379/0904.0379_1_8.xhtml
P
^
†
=
P
^
x
-
i
P
^
y
Doc 49
0.3288
-7.0000
3.0000
0.3288
testing/NTCIR/xhtml5/7/1009.0502/1009.0502_1_38.xhtml
P
′
=
(
P
-
{
x
}
)
∪
x
A
Doc 50
0.3288
-8.0000
4.0000
0.3288
testing/NTCIR/xhtml5/3/hep-th0406210/hep-th0406210_1_29.xhtml
P
x
=
P
e
i
∮
d
x
A
x
.
Doc 51
0.3288
-9.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math0104032/math0104032_1_140.xhtml
P
Ω
∼
∩
P
x
=
P
Ω
∼
∪
{
x
}
Doc 52
0.2581
-3.0000
3.0000
0.2581
testing/NTCIR/xhtml5/3/math0412220/math0412220_1_67.xhtml
[
x
]
=
x
-
{
x
}
Doc 53
0.2581
-3.0000
3.0000
0.2581
testing/NTCIR/xhtml5/9/1303.5486/1303.5486_1_266.xhtml
{
a
x
∣
x
∈
J
}
Doc 54
0.2581
-3.0000
3.0000
0.2581
testing/NTCIR/xhtml5/3/math0306034/math0306034_1_17.xhtml
[
x
]
=
x
-
{
x
}
Doc 55
0.2581
-3.0000
3.0000
0.2581
testing/NTCIR/xhtml5/3/math0306034/math0306034_1_16.xhtml
[
x
]
=
x
-
{
x
}
Doc 56
0.2581
-3.0000
3.0000
0.2581
testing/NTCIR/xhtml5/3/math0306034/math0306034_1_6.xhtml
[
x
]
=
x
-
{
x
}
Doc 57
0.2581
-3.0000
3.0000
0.2581
testing/NTCIR/xhtml5/5/0712.1069/0712.1069_1_123.xhtml
{
a
x
∣
x
∈
J
}
Doc 58
0.2581
-3.0000
3.0000
0.2581
testing/NTCIR/xhtml5/8/1204.3795/1204.3795_1_94.xhtml
[
x
]
=
x
-
{
x
}
Doc 59
0.2581
-4.0000
4.0000
0.2581
testing/NTCIR/xhtml5/5/0705.0373/0705.0373_1_14.xhtml
Π
x
=
P
x
-
A
x
Doc 60
0.2581
-4.0000
3.0000
0.2581
testing/NTCIR/xhtml5/4/math0605455/math0605455_1_92.xhtml
{
a
⊗
a
∣
a
∈
A
}
Doc 61
0.2581
-4.0000
3.0000
0.2581
testing/NTCIR/xhtml5/2/math0204037/math0204037_1_29.xhtml
{
-
x
}
=
1
-
{
x
}
Doc 62
0.2581
-4.0000
3.0000
0.2581
testing/NTCIR/xhtml5/4/math0505167/math0505167_1_65.xhtml
{
-
x
}
=
1
-
{
x
}
Doc 63
0.2581
-4.0000
3.0000
0.2581
testing/NTCIR/xhtml5/3/math-ph0412098/math-ph0412098_1_170.xhtml
{
-
x
}
=
1
-
{
x
}
Doc 64
0.2581
-4.0000
2.0000
0.2581
testing/NTCIR/xhtml5/6/0902.0349/0902.0349_1_231.xhtml
y
∈
{
x
}
¯
-
{
x
}
Doc 65
0.2581
-4.0000
2.0000
0.2581
testing/NTCIR/xhtml5/6/0902.0349/0902.0349_1_233.xhtml
y
∈
{
x
}
¯
-
{
x
}
Doc 66
0.2581
-5.0000
2.0000
0.2581
testing/NTCIR/xhtml5/8/1209.5482/1209.5482_1_61.xhtml
Y
⊆
R
N
(
x
)
-
{
x
}
Doc 67
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0810.3538/0810.3538_1_67.xhtml
a
≥
x
Doc 68
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1305.1815/1305.1815_1_11.xhtml
a
≥
x
Doc 69
0.2308
-1.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1308.1487/1308.1487_1_4.xhtml
P
=
P
x
Doc 70
0.2308
-1.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/math0005168/math0005168_1_24.xhtml
P
=
P
x
Doc 71
0.2308
-2.0000
3.0000
0.4615
testing/NTCIR/xhtml5/7/1006.3883/1006.3883_1_51.xhtml
P
x
=
Q
x
P
=
P
x
P
y
Doc 72
0.2308
-2.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math-ph0104025/math-ph0104025_1_19.xhtml
P
x
=
∂
x
Doc 73
0.2308
-2.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0803.3957/0803.3957_1_12.xhtml
P
1
=
P
x
Doc 74
0.2308
-2.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1006.3883/1006.3883_1_55.xhtml
P
x
=
Q
x
Doc 75
0.2308
-2.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1006.3883/1006.3883_1_54.xhtml
P
x
=
Q
x
Doc 76
0.2308
-2.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0802.2478/0802.2478_1_11.xhtml
P
x
x
=
0
Doc 77
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/math9902103/math9902103_1_170.xhtml
P
x
=
x
α
max
Doc 78
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/q-alg9612004/q-alg9612004_1_16.xhtml
P
^
x
=
∂
x
Doc 79
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0210103/math0210103_1_25.xhtml
P
x
=
ker
T
x
Doc 80
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1302.1754/1302.1754_1_15.xhtml
P
0
x
=
P
x
Doc 81
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0511385/math0511385_1_32.xhtml
P
x
=
ker
T
x
Doc 82
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0511385/math0511385_1_33.xhtml
P
x
=
ker
T
x
Doc 83
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1006.3883/1006.3883_1_52.xhtml
P
=
P
x
P
y
Doc 84
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1302.1754/1302.1754_1_21.xhtml
P
1
x
=
P
x
Doc 85
0.2308
-3.0000
2.0000
0.2308
testing/NTCIR/xhtml5/3/math0307251/math0307251_1_171.xhtml
P
x
M
-
{
0
}
Doc 86
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0603202/math0603202_1_53.xhtml
P
x
=
ℋ
x
(
1
)
Doc 87
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0609843/math0609843_1_147.xhtml
N
∩
P
x
=
N
x
Doc 88
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/0907.4771/0907.4771_1_49.xhtml
P
=
P
x
+
P
y
Doc 89
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/math0407054/math0407054_1_33.xhtml
P
x
=
ℙ
(
E
x
)
Doc 90
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0209116/math0209116_1_84.xhtml
P
x
=
U
x
N
x
Doc 91
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/math0407054/math0407054_1_20.xhtml
P
x
=
ℙ
(
ℋ
x
)
Doc 92
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0609843/math0609843_1_72.xhtml
P
x
=
N
x
U
x
Doc 93
0.2308
-4.0000
2.0000
0.2308
testing/NTCIR/xhtml5/7/1006.0851/1006.0851_1_109.xhtml
B
ρ
(
x
)
-
{
x
}
Doc 94
0.2308
-4.0000
2.0000
0.2308
testing/NTCIR/xhtml5/9/math9211215/math9211215_1_156.xhtml
T
n
(
x
)
-
{
x
}
Doc 95
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1010.0136/1010.0136_1_87.xhtml
A
=
P
x
-
P
y
.
Doc 96
0.2308
-6.0000
3.0000
0.3771
testing/NTCIR/xhtml5/1/math0309393/math0309393_1_37.xhtml
U
=
P
x
U
P
x
=
0
ℋ
x
=
P
x
ℋ
G
Doc 97
0.2308
-6.0000
2.0000
0.2308
testing/NTCIR/xhtml5/6/0909.2801/0909.2801_1_75.xhtml
Δ
(
P
x
l
)
-
{
x
l
}
Doc 98
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1209.0665/1209.0665_1_84.xhtml
P
¯
=
P
x
1
+
P
x
2
Doc 99
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1209.0665/1209.0665_1_96.xhtml
P
¯
=
P
x
1
+
P
x
2
Doc 100
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0206281/math0206281_1_39.xhtml
P
¯
=
P
x
1
+
P
x
2
Doc 101
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0206281/math0206281_1_45.xhtml
P
¯
=
P
x
1
+
P
x
2
Doc 102
0.2308
-8.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/math0307236/math0307236_1_50.xhtml
P
x
=
{
v
-
x
:
v
≥
x
}
Doc 103
0.2308
-8.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/math0307236/math0307236_1_52.xhtml
P
x
=
{
v
-
x
:
v
≥
x
}
Doc 104
0.2308
-8.0000
2.0000
0.2308
testing/NTCIR/xhtml5/9/1306.2774/1306.2774_1_59.xhtml
I
x
=
{
a
∈
A
∣
a
<
x
}
Doc 105
0.1463
-2.0000
3.0000
0.1463
testing/NTCIR/xhtml5/7/1104.1647/1104.1647_1_49.xhtml
Ω
x
=
P
x
Doc 106
0.1463
-2.0000
3.0000
0.1463
testing/NTCIR/xhtml5/7/1104.1647/1104.1647_1_43.xhtml
Ω
x
=
P
x
Doc 107
0.1463
-2.0000
3.0000
0.1463
testing/NTCIR/xhtml5/1/math0309393/math0309393_1_65.xhtml
L
x
=
P
x
Doc 108
0.1463
-2.0000
2.0000
0.1463
testing/NTCIR/xhtml5/10/math9512214/math9512214_1_4.xhtml
P
x
≠
{
x
}
Doc 109
0.1463
-4.0000
3.0000
0.1463
testing/NTCIR/xhtml5/2/math0209116/math0209116_1_86.xhtml
G
=
P
x
N
P
x
Doc 110
0.1463
-4.0000
3.0000
0.1463
testing/NTCIR/xhtml5/2/math0109047/math0109047_1_159.xhtml
w
x
=
P
{
𝒟
x
}
Doc 111
0.1463
-5.0000
2.0000
0.1463
testing/NTCIR/xhtml5/9/1308.1497/1308.1497_1_34.xhtml
V
(
x
)
∩
P
=
{
x
}
Doc 112
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/5/0804.3756/0804.3756_1_58.xhtml
P
x
x
Doc 113
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/5/0804.3756/0804.3756_1_104.xhtml
P
x
x
Doc 114
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/5/0804.3756/0804.3756_1_55.xhtml
P
x
x
Doc 115
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/7/1103.5610/1103.5610_1_20.xhtml
P
x
-
Doc 116
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/5/0804.3756/0804.3756_1_53.xhtml
P
x
x
Doc 117
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/5/0804.3756/0804.3756_1_52.xhtml
P
x
x
Doc 118
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/5/0804.3756/0804.3756_1_7.xhtml
P
x
x
Doc 119
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/9/1311.3458/1311.3458_1_93.xhtml
P
x
-
Doc 120
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/9/1311.3458/1311.3458_1_51.xhtml
P
x
-
Doc 121
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/9/1311.3458/1311.3458_1_50.xhtml
P
x
-
Doc 122
0.1290
-1.0000
2.0000
0.1290
testing/NTCIR/xhtml5/6/0903.2408/0903.2408_1_14.xhtml
P
x
-
Doc 123
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/9/1304.0613/1304.0613_1_103.xhtml
ϕ
(
x
)
=
P
x
Doc 124
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/3/math0410449/math0410449_1_25.xhtml
ρ
(
x
)
=
P
x
Doc 125
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/3/math0303322/math0303322_1_61.xhtml
τ
(
P
x
)
=
P
x
Doc 126
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/1/math0008130/math0008130_1_125.xhtml
π
x
(
P
)
=
P
x
Doc 127
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/8/1209.1633/1209.1633_1_68.xhtml
{
a
1
=
P
=
0
}
Doc 128
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/3/math0410449/math0410449_1_37.xhtml
τ
(
P
x
)
=
P
x
Doc 129
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/3/math0501087/math0501087_1_18.xhtml
ℋ
(
x
)
=
P
x
ℋ
Doc 130
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/3/math0403319/math0403319_1_15.xhtml
φ
(
L
x
)
=
P
x
Doc 131
0.1290
-6.0000
2.0000
0.1290
testing/NTCIR/xhtml5/6/0907.0955/0907.0955_1_129.xhtml
1
-
{
-
x
}
=
{
x
}