tangent
Not Supported
[
A
]
t
=
-
k
t
+
[
A
]
0
Search
Returned 80 matches (100 formulae, 127 docs)
Lookup 301.191 ms, Re-ranking 111.649 ms
Found 7938189 tuple postings, 5603782 formulae, 3018896 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5217
-3.0000
4.0000
0.5217
testing/NTCIR/xhtml5/2/hep-th0110046/hep-th0110046_1_7.xhtml
W
[
A
]
=
-
ln
Z
[
A
]
Doc 2
0.5217
-3.0000
4.0000
0.5217
testing/NTCIR/xhtml5/2/hep-th0110046/hep-th0110046_1_5.xhtml
W
[
A
]
=
-
ln
Z
[
A
]
Doc 3
0.5217
-8.0000
5.0000
0.5217
testing/NTCIR/xhtml5/9/hep-th9111034/hep-th9111034_1_15.xhtml
Γ
ind
[
A
]
=
-
k
Γ
W
Z
W
[
A
]
,
Doc 4
0.4912
-4.0000
6.0000
0.4912
testing/NTCIR/xhtml5/10/hep-th9805192/hep-th9805192_1_23.xhtml
Δ
F
[
A
]
=
d
e
t
M
[
A
]
Doc 5
0.4912
-4.0000
6.0000
0.4912
testing/NTCIR/xhtml5/4/hep-th0512060/hep-th0512060_1_60.xhtml
Δ
F
[
A
]
=
d
e
t
M
[
A
]
Doc 6
0.4912
-5.0000
5.0000
0.4912
testing/NTCIR/xhtml5/2/hep-th0202145/hep-th0202145_1_9.xhtml
W
[
A
]
=
∫
d
3
x
K
0
[
A
]
Doc 7
0.4255
-7.0000
4.0000
0.4255
testing/NTCIR/xhtml5/10/hep-th9610006/hep-th9610006_1_35.xhtml
sign
[
A
j
]
=
-
sign
[
A
j
+
1
]
Doc 8
0.3288
-3.0000
3.0000
0.6575
testing/NTCIR/xhtml5/6/1003.4632/1003.4632_1_17.xhtml
[
A
]
ℱ
=
[
A
]
𝒢
[
A
]
ℱ
=
[
A
]
𝖫
Doc 9
0.3288
-3.0000
3.0000
0.6575
testing/NTCIR/xhtml5/6/1003.4632/1003.4632_1_11.xhtml
[
A
]
ℱ
=
[
A
]
𝒢
[
A
]
ℱ
=
[
A
]
𝖫
Doc 10
0.3288
-3.0000
3.0000
0.3288
testing/NTCIR/xhtml5/9/1302.6668/1302.6668_1_27.xhtml
[
A
t
]
i
j
=
0
Doc 11
0.3288
-3.0000
3.0000
0.3288
testing/NTCIR/xhtml5/6/1003.4632/1003.4632_1_104.xhtml
[
A
]
𝖫𝗂𝗉
=
[
A
]
𝖫
Doc 12
0.3288
-6.0000
3.0000
0.3288
testing/NTCIR/xhtml5/1/1107.1410/1107.1410_1_1.xhtml
[
A
]
ℋ
=
⋃
t
⩾
0
A
t
Doc 13
0.2581
-3.0000
3.0000
0.2581
testing/NTCIR/xhtml5/10/alg-geom9505010/alg-geom9505010_1_91.xhtml
A
=
B
∩
[
A
]
0
Doc 14
0.2581
-4.0000
3.0000
0.2581
testing/NTCIR/xhtml5/4/math0612339/math0612339_1_6.xhtml
B
[
A
]
=
A
t
B
A
Doc 15
0.2581
-4.0000
3.0000
0.2581
testing/NTCIR/xhtml5/10/hep-th9406025/hep-th9406025_1_14.xhtml
W
[
A
]
=
ln
Z
[
A
]
Doc 16
0.2581
-6.0000
3.0000
0.2581
testing/NTCIR/xhtml5/9/1311.1736/1311.1736_1_28.xhtml
[
A
]
=
∑
i
a
i
[
A
i
]
Doc 17
0.2581
-6.0000
3.0000
0.2581
testing/NTCIR/xhtml5/10/hep-th9803244/hep-th9803244_1_95.xhtml
Γ
E
[
A
]
=
ln
Z
E
[
A
]
Doc 18
0.2581
-6.0000
2.0000
0.2581
testing/NTCIR/xhtml5/3/math0411591/math0411591_1_81.xhtml
p
∈
[
A
0
]
2
⊂
[
A
]
2
Doc 19
0.2581
-8.0000
3.0000
0.2581
testing/NTCIR/xhtml5/8/1210.1742/1210.1742_1_2.xhtml
P
[
A
0
U
]
=
z
k
P
[
A
0
]
Doc 20
0.2581
-9.0000
3.0000
0.2581
testing/NTCIR/xhtml5/2/hep-th0205252/hep-th0205252_1_125.xhtml
X
[
A
(
N
)
]
=
N
+
X
[
A
(
0
)
]
Doc 21
0.2581
-9.0000
3.0000
0.2581
testing/NTCIR/xhtml5/9/hep-th9304020/hep-th9304020_1_13.xhtml
Γ
i
n
d
[
A
]
=
c
Γ
(
0
)
[
A
]
Doc 22
0.2581
-9.0000
2.0000
0.2581
testing/NTCIR/xhtml5/2/hep-th0205252/hep-th0205252_1_87.xhtml
Ψ
0
[
A
]
=
exp
(
i
P
𝒩
X
[
A
]
)
Doc 23
0.2581
-10.0000
3.0000
0.2581
testing/NTCIR/xhtml5/2/hep-th0110180/hep-th0110180_1_4.xhtml
P
0
[
A
]
=
∥
e
i
Γ
[
A
]
∥
2
.
Doc 24
0.2308
0.0000
3.0000
0.4615
testing/NTCIR/xhtml5/9/1308.4182/1308.4182_1_121.xhtml
[
A
]
0
[
A
]
0
=
ℤ
Doc 25
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1308.4182/1308.4182_1_119.xhtml
[
A
]
0
Doc 26
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0708.2591/0708.2591_1_36.xhtml
[
A
]
t
Doc 27
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0708.2591/0708.2591_1_33.xhtml
[
A
]
t
Doc 28
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/alg-geom9505010/alg-geom9505010_1_16.xhtml
[
A
]
0
Doc 29
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1308.4182/1308.4182_1_123.xhtml
[
A
]
0
Doc 30
0.2308
-1.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/alg-geom9505010/alg-geom9505010_1_23.xhtml
[
A
^
]
0
Doc 31
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0210350/math0210350_1_17.xhtml
[
A
]
=
[
A
′
]
Doc 32
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/0906.4334/0906.4334_1_70.xhtml
Ψ
A
[
A
]
=
0
Doc 33
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/math0311218/math0311218_1_18.xhtml
ℒ
0
[
A
]
=
A
Doc 34
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0504529/math0504529_1_28.xhtml
[
A
]
=
[
s
A
]
Doc 35
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1211.0443/1211.0443_1_66.xhtml
E
[
A
t
]
=
0
Doc 36
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0202167/math0202167_1_80.xhtml
[
A
]
=
[
A
′
]
Doc 37
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/0905.0795/0905.0795_1_91.xhtml
[
A
t
]
=
[
A
]
Doc 38
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/quant-ph0008052/quant-ph0008052_1_162.xhtml
T
0
[
A
]
=
A
Doc 39
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1006.2795/1006.2795_1_142.xhtml
[
A
↓
]
=
[
A
]
Doc 40
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0811.0958/0811.0958_1_55.xhtml
[
A
]
=
[
q
A
]
Doc 41
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0811.0958/0811.0958_1_53.xhtml
[
A
]
=
[
q
A
]
Doc 42
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/0906.4334/0906.4334_1_73.xhtml
Ψ
A
[
A
]
=
0
Doc 43
0.2308
-3.0000
2.0000
0.2308
testing/NTCIR/xhtml5/3/quant-ph0408151/quant-ph0408151_1_22.xhtml
[
A
]
≡
[
A
]
q
Doc 44
0.2308
-4.0000
3.0000
0.4615
testing/NTCIR/xhtml5/8/1207.4658/1207.4658_1_80.xhtml
[
A
]
+
[
A
]
=
0
[
A
1
]
+
[
A
2
]
=
0
Doc 45
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1207.5599/1207.5599_1_133.xhtml
Y
[
A
]
=
X
[
A
]
Doc 46
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/1110.2852/1110.2852_1_11.xhtml
[
A
]
⋅
[
A
]
=
0
Doc 47
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/1002.3881/1002.3881_1_2.xhtml
[
A
]
=
⋃
t
A
t
Doc 48
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0809.0353/0809.0353_1_23.xhtml
[
A
]
=
⋃
t
A
t
Doc 49
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0108197/math0108197_1_80.xhtml
[
A
0
]
=
[
A
1
]
Doc 50
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/0907.3097/0907.3097_1_1.xhtml
[
A
]
=
⋃
t
A
t
Doc 51
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1102.0856/1102.0856_1_247.xhtml
Y
[
A
]
=
X
[
A
]
Doc 52
0.2308
-4.0000
2.0000
0.2308
testing/NTCIR/xhtml5/8/1207.4983/1207.4983_1_78.xhtml
[
Ψ
(
A
)
]
=
[
A
]
Doc 53
0.2308
-4.0000
2.0000
0.2308
testing/NTCIR/xhtml5/10/dg-ga9711004/dg-ga9711004_1_69.xhtml
[
γ
(
A
)
]
=
[
A
]
Doc 54
0.2308
-4.0000
2.0000
0.2308
testing/NTCIR/xhtml5/1/math0003212/math0003212_1_196.xhtml
[
t
n
A
]
=
[
A
]
Doc 55
0.2308
-4.0000
2.0000
0.2308
testing/NTCIR/xhtml5/2/math0211181/math0211181_1_92.xhtml
A
[
I
t
]
0
=
A
Doc 56
0.2308
-5.0000
3.0000
0.6923
testing/NTCIR/xhtml5/7/1104.3950/1104.3950_1_24.xhtml
r
↾
[
A
]
=
id
[
A
]
s
↾
[
A
]
=
id
[
A
]
s
V
↾
[
A
]
=
id
[
A
]
Doc 57
0.2308
-5.0000
3.0000
0.3598
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_127.xhtml
[
A
]
+
=
[
A
𝒞
]
+
[
A
]
≠
[
A
𝒞
]
Doc 58
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_154.xhtml
[
A
]
+
=
[
A
𝒞
]
+
Doc 59
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9502083/hep-th9502083_1_20.xhtml
Δ
[
A
h
]
=
Δ
[
A
]
Doc 60
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9502083/hep-th9502083_1_6.xhtml
Δ
[
A
]
=
Δ
[
A
g
]
Doc 61
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1309.4623/1309.4623_1_207.xhtml
ν
[
A
]
=
μ
*
[
A
]
Doc 62
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1212.4102/1212.4102_1_38.xhtml
W
[
A
U
]
=
W
[
A
]
Doc 63
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0602497/math0602497_1_154.xhtml
[
A
i
]
=
[
A
~
i
]
Doc 64
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0602497/math0602497_1_157.xhtml
[
A
i
]
=
[
A
~
i
]
Doc 65
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0808.2436/0808.2436_1_5.xhtml
F
[
A
θ
]
=
F
[
A
]
Doc 66
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0602497/math0602497_1_155.xhtml
[
A
i
]
=
[
A
~
i
]
Doc 67
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0602497/math0602497_1_150.xhtml
[
A
i
]
=
[
A
~
i
]
Doc 68
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/hep-th9610221/hep-th9610221_1_17.xhtml
S
[
A
g
]
=
S
[
A
]
Doc 69
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/0904.3490/0904.3490_1_15.xhtml
G
~
[
A
]
=
G
[
A
]
Doc 70
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/hep-lat0412041/hep-lat0412041_1_28.xhtml
Δ
[
A
ω
]
=
Δ
[
A
]
Doc 71
0.2308
-5.0000
2.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9505144/hep-th9505144_1_22.xhtml
ψ
[
T
A
]
=
ψ
[
A
]
Doc 72
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/math0003212/math0003212_1_80.xhtml
[
A
n
]
=
[
A
l
,
n
]
Doc 73
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9606156/hep-th9606156_1_17.xhtml
[
A
]
[
A
]
[
A
]
=
[
A
]
Doc 74
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/hep-th0702155/hep-th0702155_1_63.xhtml
S
c
l
[
A
]
=
W
[
A
]
Doc 75
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1309.4623/1309.4623_1_208.xhtml
μ
*
[
A
]
=
μ
[
A
^
]
Doc 76
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-ph9408346/hep-ph9408346_1_51.xhtml
[
A
]
±
†
=
±
[
A
]
±
Doc 77
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/cs0404024/cs0404024_1_214.xhtml
e
1
[
A
]
=
e
2
[
A
]
Doc 78
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9712132/hep-th9712132_1_9.xhtml
I
[
A
]
=
I
C
S
[
A
]
Doc 79
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/gr-qc0207066/gr-qc0207066_1_64.xhtml
Tr
[
A
¯
]
=
Tr
[
A
]
*
Doc 80
0.2308
-6.0000
2.0000
0.2308
testing/NTCIR/xhtml5/7/1006.1132/1006.1132_1_75.xhtml
φ
[
E
[
A
]
]
=
φ
[
A
]
Doc 81
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1203.3344/1203.3344_1_7.xhtml
[
A
∐
B
]
=
[
A
]
+
[
B
]
Doc 82
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0108197/math0108197_1_121.xhtml
[
A
]
=
[
A
1
]
+
[
A
2
]
Doc 83
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1401.6167/1401.6167_1_20.xhtml
Z
spin
[
A
0
]
=
W
[
A
0
]
Doc 84
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1301.0885/1301.0885_1_318.xhtml
[
A
]
[
A
]
t
=
I
s
×
s
Doc 85
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/hep-th0106136/hep-th0106136_1_47.xhtml
S
B
[
A
]
=
S
C
S
[
A
]
Doc 86
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0803.3708/0803.3708_1_7.xhtml
[
A
∐
B
]
=
[
A
]
+
[
B
]
Doc 87
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0201099/math0201099_1_171.xhtml
[
A
0
]
=
[
A
2
]
+
[
A
]
Doc 88
0.2308
-8.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1401.6167/1401.6167_1_4.xhtml
Z
spin
[
A
0
]
=
W
R
[
A
0
]
Doc 89
0.2308
-8.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1401.6167/1401.6167_1_22.xhtml
Z
spin
[
A
0
]
=
W
R
[
A
0
]
Doc 90
0.2308
-8.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/1002.0394/1002.0394_1_102.xhtml
E
¯
x
[
A
t
]
=
E
x
[
A
t
]
Doc 91
0.2308
-8.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0301246/math0301246_1_169.xhtml
[
A
k
+
1
]
=
[
A
]
+
[
F
]
Doc 92
0.2308
-8.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9809102/hep-th9809102_1_91.xhtml
Ψ
[
A
]
=
e
i
S
C
S
[
A
]
Doc 93
0.2308
-9.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/hep-ph0212035/hep-ph0212035_1_70.xhtml
V
eff
[
A
0
]
=
V
eff
[
A
′
0
]
Doc 94
0.1463
-3.0000
3.0000
0.1463
testing/NTCIR/xhtml5/6/0903.2807/0903.2807_1_184.xhtml
k
[
A
]
⊗
[
A
]
Doc 95
0.1463
-3.0000
2.0000
0.1463
testing/NTCIR/xhtml5/7/1009.4599/1009.4599_1_13.xhtml
𝒥
[
A
]
K
[
A
]
Doc 96
0.1463
-5.0000
2.0000
0.1463
testing/NTCIR/xhtml5/10/gr-qc9612033/gr-qc9612033_1_16.xhtml
C
S
[
A
]
+
B
[
A
]
Doc 97
0.1290
-4.0000
2.0000
0.2581
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_232.xhtml
[
A
1
)
[
A
0
]
[
A
0
)
[
A
1
]
Doc 98
0.1290
-4.0000
2.0000
0.2581
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_228.xhtml
[
A
1
)
[
A
0
]
[
A
0
)
[
A
1
]
Doc 99
0.1290
-4.0000
2.0000
0.2581
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_217.xhtml
[
A
1
)
[
A
0
]
[
A
0
)
[
A
1
]
Doc 100
0.1290
-4.0000
2.0000
0.2581
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_214.xhtml
[
A
1
)
[
A
0
]
[
A
0
)
[
A
1
]
Doc 101
0.1290
-4.0000
2.0000
0.2581
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_234.xhtml
[
A
1
)
[
A
0
]
[
A
0
)
[
A
1
]
Doc 102
0.1290
-4.0000
2.0000
0.2581
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_229.xhtml
[
A
1
)
[
A
0
]
[
A
0
)
[
A
1
]
Doc 103
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/10/dg-ga9711004/dg-ga9711004_1_147.xhtml
[
A
0
]
,
[
A
]
Doc 104
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_235.xhtml
[
A
1
)
[
A
0
]
Doc 105
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/7/1007.0822/1007.0822_1_74.xhtml
[
A
1
]
⊂
[
A
]
Doc 106
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/10/hep-th9612176/hep-th9612176_1_20.xhtml
[
A
]
,
[
A
˙
]
Doc 107
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/4/math0507125/math0507125_1_119.xhtml
[
A
σ
]
[
A
ω
]
Doc 108
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_233.xhtml
[
A
0
)
[
A
1
]
Doc 109
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_54.xhtml
[
A
]
≠
[
A
′
]
Doc 110
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/3/math-ph0405036/math-ph0405036_1_87.xhtml
[
A
a
]
[
A
b
]
Doc 111
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/4/math0507125/math0507125_1_157.xhtml
[
A
]
↦
[
A
op
]
Doc 112
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/7/1009.2316/1009.2316_1_120.xhtml
[
A
]
,
[
A
or
]
Doc 113
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/6/0912.1425/0912.1425_1_280.xhtml
[
A
0
A
1
t
]
Doc 114
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_237.xhtml
[
A
1
)
[
A
0
]
Doc 115
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/4/math0507125/math0507125_1_117.xhtml
[
A
σ
]
[
A
ω
]
Doc 116
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/2/math0012241/math0012241_1_77.xhtml
[
A
]
↦
[
A
∞
]
Doc 117
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/2/math0012241/math0012241_1_72.xhtml
[
A
]
↦
[
A
∞
]
Doc 118
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/10/hep-th9704036/hep-th9704036_1_59.xhtml
[
A
]
,
[
A
˙
]
Doc 119
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/7/1010.1042/1010.1042_1_236.xhtml
[
A
1
)
[
A
0
]
Doc 120
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/10/hep-th9704036/hep-th9704036_1_64.xhtml
𝒟
[
A
]
[
A
˙
]
Doc 121
0.1290
-4.0000
2.0000
0.1290
testing/NTCIR/xhtml5/10/hep-th9704036/hep-th9704036_1_19.xhtml
[
A
]
,
[
A
˙
]
Doc 122
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/9/1309.0760/1309.0760_1_166.xhtml
[
A
]
↦
[
A
g
t
]
Doc 123
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/6/0903.2807/0903.2807_1_120.xhtml
k
[
A
]
⊗
k
[
A
]
Doc 124
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/1/math0008085/math0008085_1_34.xhtml
[
A
0
]
,
[
A
1
]
Doc 125
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/6/0903.2807/0903.2807_1_145.xhtml
k
[
A
]
⊗
k
[
A
]
Doc 126
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/6/0903.2807/0903.2807_1_187.xhtml
k
[
A
]
⊗
k
[
A
]
Doc 127
0.1290
-5.0000
2.0000
0.1290
testing/NTCIR/xhtml5/1/0712.3444/0712.3444_1_43.xhtml
M
[
A
]
→
M
[
A
]