tangent
Not Supported
f
μ
=
-
8
π
G
3
c
4
(
A
2
T
α
β
+
B
2
T
η
α
β
)
(
δ
ν
μ
+
u
μ
u
ν
)
u
α
x
ν
u
β
Search
Returned 97 matches (100 formulae, 105 docs)
Lookup 362.896 ms, Re-ranking 6270.764 ms
Found 5055622 tuple postings, 3404057 formulae, 1697845 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.2836
-12.0000
9.0000
0.2836
testing/NTCIR/xhtml5/6/0903.5264/0903.5264_1_103.xhtml
H
2
=
8
π
G
N
3
(
C
2
ϕ
˙
2
+
B
2
ϕ
2
+
Λ
)
,
Doc 2
0.2588
-10.0000
8.0000
0.2588
testing/NTCIR/xhtml5/3/hep-th0305207/hep-th0305207_1_10.xhtml
a
¨
a
=
-
κ
3
(
1
2
ρ
ϕ
+
3
2
p
ϕ
)
Doc 3
0.2523
-29.0000
5.0000
0.2523
testing/NTCIR/xhtml5/1/hep-th9704144/hep-th9704144_1_20.xhtml
(
1
2
g
μ
ν
-
u
μ
u
ν
)
ψ
∗
⋅
ψ
-
i
2
(
u
μ
ϵ
α
β
γ
ν
+
u
ν
ϵ
α
β
γ
μ
)
ψ
∗
α
ψ
β
u
γ
Doc 4
0.2453
-38.0000
5.0000
0.2453
testing/NTCIR/xhtml5/10/gr-qc9907027/gr-qc9907027_1_74.xhtml
τ
μ
ν
-
1
2
γ
μ
ν
γ
α
β
τ
α
β
=
(
δ
μ
α
δ
ν
β
+
1
2
γ
μ
ν
h
α
β
)
(
T
α
β
-
1
2
g
α
β
g
ρ
σ
T
ρ
σ
)
Doc 5
0.2447
-24.0000
7.0000
0.2447
testing/NTCIR/xhtml5/7/1010.3585/1010.3585_1_10.xhtml
G
α
β
≡
R
α
β
-
1
2
R
g
α
β
=
-
8
π
G
(
μ
)
(
T
α
β
+
ρ
Λ
(
μ
)
g
α
β
)
.
Doc 6
0.2376
-13.0000
8.0000
0.2376
testing/NTCIR/xhtml5/9/1401.3330/1401.3330_1_14.xhtml
u
t
+
u
u
x
=
-
∂
x
p
*
(
3
2
u
2
+
c
2
ρ
2
)
.
Doc 7
0.2292
-14.0000
7.0000
0.2292
testing/NTCIR/xhtml5/4/gr-qc0601002/gr-qc0601002_1_29.xhtml
G
A
B
=
e
m
c
2
(
d
d
s
F
α
β
)
u
(
A
)
α
u
(
B
)
β
Doc 8
0.2198
-15.0000
9.0000
0.2198
testing/NTCIR/xhtml5/5/0706.3215/0706.3215_1_53.xhtml
F
μ
ν
J
ν
+
1
τ
imp
(
δ
ν
μ
+
u
μ
u
ν
)
T
ν
γ
u
γ
.
Doc 9
0.2198
-34.0000
6.0000
0.2198
testing/NTCIR/xhtml5/7/1011.0548/1011.0548_1_41.xhtml
=
1
3
T
2
+
1
3
b
2
T
-
1
2
(
1
3
T
2
+
1
3
d
b
T
+
1
2
d
b
T
-
1
3
d
2
T
)
Doc 10
0.2093
-7.0000
6.0000
0.2093
testing/NTCIR/xhtml5/4/hep-th0612205/hep-th0612205_1_131.xhtml
V
(
|
T
|
)
=
-
m
2
T
2
+
λ
4
T
4
Doc 11
0.2093
-20.0000
7.0000
0.2093
testing/NTCIR/xhtml5/3/gr-qc0402047/gr-qc0402047_1_9.xhtml
ℱ
ν
:=
(
ρ
+
p
)
u
α
u
ν
;
α
+
(
δ
ν
α
+
u
α
u
ν
)
p
,
α
=
0
,
Doc 12
0.2093
-20.0000
7.0000
0.2093
testing/NTCIR/xhtml5/3/gr-qc0402047/gr-qc0402047_1_13.xhtml
ℱ
ν
=
(
ρ
+
p
)
u
α
u
ν
;
α
+
(
δ
ν
α
+
u
α
u
ν
)
p
,
α
=
0
,
Doc 13
0.2093
-27.0000
5.0000
0.2093
testing/NTCIR/xhtml5/9/hep-th9301106/hep-th9301106_1_18.xhtml
-
(
C
2
γ
Φ
+
1
Φ
)
(
∇
μ
Φ
)
∇
ν
+
R
2
δ
ν
μ
+
C
2
γ
Φ
(
∇
μ
∇
ν
Φ
)
Doc 14
0.2038
-10.0000
6.0000
0.2038
testing/NTCIR/xhtml5/3/math-ph0401026/math-ph0401026_1_9.xhtml
Γ
^
2
=
-
i
2
(
y
3
∂
∂
y
+
1
2
)
Doc 15
0.2038
-25.0000
7.0000
0.2038
testing/NTCIR/xhtml5/6/1001.1039/1001.1039_1_107.xhtml
1
α
(
3
w
2
+
R
2
)
(
w
2
-
R
2
)
u
μ
u
ν
+
(
w
2
+
R
2
)
2
δ
ν
μ
,
Doc 16
0.1947
-7.0000
6.0000
0.1947
testing/NTCIR/xhtml5/9/1212.6719/1212.6719_1_27.xhtml
ℒ
=
-
△
+
i
2
(
1
2
+
y
∂
y
)
Doc 17
0.1947
-7.0000
6.0000
0.1947
testing/NTCIR/xhtml5/1/hep-th0003109/hep-th0003109_1_15.xhtml
(
2
3
T
z
z
+
1
3
a
2
T
λ
λ
)
Doc 18
0.1947
-7.0000
5.0000
0.1947
testing/NTCIR/xhtml5/3/hep-th0411060/hep-th0411060_1_21.xhtml
T
′
+
k
2
(
1
2
ω
2
+
∂
ω
)
,
Doc 19
0.1947
-8.0000
6.0000
0.1947
testing/NTCIR/xhtml5/3/hep-th0303117/hep-th0303117_1_20.xhtml
L
2
=
-
8
π
G
(
b
3
+
b
′
2
)
,
Doc 20
0.1947
-10.0000
8.0000
0.1947
testing/NTCIR/xhtml5/2/hep-th0210142/hep-th0210142_1_18.xhtml
ρ
t
=
(
T
α
β
-
1
2
T
g
α
β
)
u
α
u
β
Doc 21
0.1947
-21.0000
4.0000
0.1947
testing/NTCIR/xhtml5/9/1303.0109/1303.0109_1_133.xhtml
[
A
i
,
H
r
]
=
-
4
3
T
i
+
r
+
5
3
(
i
2
-
r
)
H
i
+
r
,
Doc 22
0.1947
-22.0000
6.0000
0.1947
testing/NTCIR/xhtml5/7/1010.3585/1010.3585_1_8.xhtml
G
α
β
≡
R
α
β
-
1
2
R
g
α
β
=
-
8
π
G
(
T
α
β
+
ρ
Λ
g
α
β
)
,
Doc 23
0.1947
-33.0000
6.0000
0.1947
testing/NTCIR/xhtml5/7/1008.4193/1008.4193_1_31.xhtml
d
2
x
μ
d
s
2
+
Γ
α
β
μ
u
α
u
β
=
-
1
Λ
∇
ν
(
1
2
R
+
L
m
)
(
u
μ
u
ν
-
g
μ
ν
)
.
Doc 24
0.1924
-14.0000
5.0000
0.1924
testing/NTCIR/xhtml5/10/hep-th9511038/hep-th9511038_1_190.xhtml
1
2
(
δ
μ
κ
δ
ν
λ
+
1
2
ϵ
μ
ν
κ
λ
)
M
¯
σ
κ
λ
M
Doc 25
0.1858
-29.0000
4.0000
0.1858
testing/NTCIR/xhtml5/3/gr-qc0309058/gr-qc0309058_1_19.xhtml
R
α
β
γ
μ
u
α
u
β
N
γ
+
1
2
(
R
α
β
γ
;
δ
μ
-
R
γ
δ
α
;
β
μ
)
u
α
u
β
N
γ
N
δ
Doc 26
0.1858
-30.0000
5.0000
0.1858
testing/NTCIR/xhtml5/2/gr-qc0106064/gr-qc0106064_1_12.xhtml
-
1
2
(
T
¯
μ
ν
ψ
μ
ν
-
1
2
T
¯
ψ
)
u
¯
α
+
H
8
π
(
ϕ
|
α
+
u
¯
α
u
¯
μ
ϕ
|
μ
)
.
Doc 27
0.1845
-6.0000
8.0000
0.1845
testing/NTCIR/xhtml5/7/1010.1861/1010.1861_1_34.xhtml
P
⟂
ν
μ
=
δ
ν
μ
+
u
μ
u
ν
Doc 28
0.1845
-7.0000
6.0000
0.1845
testing/NTCIR/xhtml5/1/hep-th0003115/hep-th0003115_1_108.xhtml
s
1
=
-
(
π
2
)
(
δ
l
+
δ
r
)
,
Doc 29
0.1845
-15.0000
6.0000
0.1845
testing/NTCIR/xhtml5/8/1111.0720/1111.0720_1_31.xhtml
I
instanton
=
S
E
=
-
8
π
2
ℓ
2
κ
2
(
1
+
β
2
3
)
,
Doc 30
0.1845
-17.0000
5.0000
0.1845
testing/NTCIR/xhtml5/2/hep-th0011225/hep-th0011225_1_8.xhtml
1
8
π
G
5
R
5
=
5
-
1
3
T
μ
+
μ
2
3
T
5
5
Doc 31
0.1845
-18.0000
8.0000
0.1845
testing/NTCIR/xhtml5/5/math-ph0703052/math-ph0703052_1_46.xhtml
Γ
α
β
ρ
=
Γ
̊
α
β
ρ
+
1
2
T
α
β
ρ
+
1
2
S
α
β
ρ
,
Doc 32
0.1845
-18.0000
8.0000
0.1845
testing/NTCIR/xhtml5/5/0712.3067/0712.3067_1_88.xhtml
𝐋
α
β
ρ
=
𝐋
̊
α
β
ρ
+
1
2
T
α
β
ρ
+
1
2
S
α
β
ρ
,
Doc 33
0.1845
-29.0000
7.0000
0.1845
testing/NTCIR/xhtml5/2/hep-th0301051/hep-th0301051_1_21.xhtml
Γ
BI
=
-
∫
d
p
+
1
σ
{
1
2
T
2
+
1
2
T
2
F
+
1
4
(
1
2
T
2
2
+
T
4
)
Doc 34
0.1782
-15.0000
6.0000
0.3478
testing/NTCIR/xhtml5/3/hep-th0408106/hep-th0408106_1_67.xhtml
(
y
2
-
1
)
(
C
3
(
x
+
y
)
+
B
2
)
-
A
(
y
+
1
)
,
(
x
2
-
1
)
(
C
3
(
x
+
y
)
+
B
2
)
.
Doc 35
0.1705
-29.0000
4.0000
0.1705
testing/NTCIR/xhtml5/5/0711.3749/0711.3749_1_9.xhtml
d
Q
T
=
-
i
2
(
∂
α
u
β
+
∂
β
u
α
-
η
α
β
∂
λ
u
λ
)
(
2
a
t
α
β
+
b
η
α
β
t
μ
μ
)
Doc 36
0.1696
-7.0000
6.0000
0.1696
testing/NTCIR/xhtml5/2/hep-th0202069/hep-th0202069_1_27.xhtml
P
ν
μ
=
1
2
(
δ
ν
μ
+
R
ν
μ
)
Doc 37
0.1696
-8.0000
6.0000
0.1696
testing/NTCIR/xhtml5/2/hep-th0202069/hep-th0202069_1_15.xhtml
P
ν
μ
=
1
2
(
δ
ν
μ
+
R
ν
μ
)
,
Doc 38
0.1696
-15.0000
5.0000
0.1696
testing/NTCIR/xhtml5/10/hep-th9708113/hep-th9708113_1_34.xhtml
c
=
-
1
2
(
γ
2
N
c
)
3
(
1
-
4
3
l
+
l
2
)
Doc 39
0.1696
-17.0000
7.0000
0.1696
testing/NTCIR/xhtml5/5/0802.0623/0802.0623_1_20.xhtml
=
-
1
3
H
(
1
γ
V
′
-
(
γ
+
1
)
(
γ
-
1
)
2
T
′
)
Doc 40
0.1696
-33.0000
6.0000
0.3044
testing/NTCIR/xhtml5/2/hep-th0301051/hep-th0301051_1_22.xhtml
1
2
T
2
+
1
4
(
1
2
T
2
2
+
T
4
)
+
1
2
(
T
2
3
24
+
T
24
11
4
+
T
6
3
)
.
(
1
+
1
2
T
2
+
1
4
(
T
2
2
2
+
T
4
)
)
F
=
0
,
Doc 41
0.1597
-7.0000
7.0000
0.1597
testing/NTCIR/xhtml5/6/0901.1512/0901.1512_1_89.xhtml
\mathrm{Id}
=
1
2
T
2
+
1
2
T
-
2
Doc 42
0.1597
-7.0000
6.0000
0.1597
testing/NTCIR/xhtml5/4/hep-th0506076/hep-th0506076_1_40.xhtml
V
=
-
1
2
T
2
+
1
8
T
4
Doc 43
0.1597
-7.0000
6.0000
0.1597
testing/NTCIR/xhtml5/4/hep-th0506076/hep-th0506076_1_31.xhtml
V
=
-
1
2
T
2
+
1
8
T
4
Doc 44
0.1597
-9.0000
6.0000
0.1597
testing/NTCIR/xhtml5/2/hep-th0207107/hep-th0207107_1_101.xhtml
V
=
-
1
2
T
2
+
27
3
64
T
3
Doc 45
0.1597
-9.0000
5.0000
0.1597
testing/NTCIR/xhtml5/2/hep-th0102055/hep-th0102055_1_66.xhtml
=
-
1
3
T
8
+
2
2
3
T
9
.
Doc 46
0.1597
-17.0000
5.0000
0.1597
testing/NTCIR/xhtml5/7/1007.3837/1007.3837_1_58.xhtml
=
-
i
2
π
(
F
1
+
F
2
)
+
1
2
T
1
+
π
i
6
.
Doc 47
0.1597
-21.0000
4.0000
0.1597
testing/NTCIR/xhtml5/10/hep-th9706041/hep-th9706041_1_82.xhtml
-
h
k
-
c
3
=
-
1
2
(
(
c
-
3
3
)
(
k
+
3
2
)
+
2
)
.
Doc 48
0.1593
-16.0000
2.0000
0.1593
testing/NTCIR/xhtml5/4/hep-th0504132/hep-th0504132_1_30.xhtml
Λ
ν
μ
≃
δ
ν
μ
+
ω
2
(
δ
α
μ
g
β
ν
-
δ
β
μ
g
α
ν
)
Doc 49
0.1593
-21.0000
5.0000
0.1593
testing/NTCIR/xhtml5/10/hep-th9705138/hep-th9705138_1_12.xhtml
P
7
μ
ν
α
β
=
1
4
(
δ
[
μ
α
δ
ν
]
β
+
1
2
ϕ
μ
ν
α
β
)
.
Doc 50
0.1593
-33.0000
3.0000
0.1593
testing/NTCIR/xhtml5/4/gr-qc0512037/gr-qc0512037_1_23.xhtml
Γ
α
β
μ
=
γ
α
β
μ
+
1
2
(
u
α
f
β
μ
+
u
β
f
α
μ
)
-
1
2
u
μ
(
u
α
|
β
+
u
β
|
α
)
.
Doc 51
0.1593
-33.0000
3.0000
0.1593
testing/NTCIR/xhtml5/4/hep-th0505268/hep-th0505268_1_7.xhtml
Γ
α
β
μ
=
γ
α
β
μ
+
1
2
(
u
α
f
β
μ
+
u
β
f
α
μ
)
-
1
2
u
μ
(
u
α
|
β
+
u
β
|
α
)
.
Doc 52
0.1524
-15.0000
3.0000
0.1524
testing/NTCIR/xhtml5/10/hep-th9903055/hep-th9903055_1_6.xhtml
=
-
i
2
(
u
ν
,
μ
+
u
μ
,
ν
-
η
μ
ν
u
α
,
α
)
Doc 53
0.1524
-21.0000
5.0000
0.1524
testing/NTCIR/xhtml5/6/0812.2994/0812.2994_1_3.xhtml
R
=
4
Λ
-
8
π
G
T
-
κ
5
4
4
(
T
α
β
T
α
β
-
1
3
T
2
)
.
Doc 54
0.1524
-35.0000
6.0000
0.1524
testing/NTCIR/xhtml5/5/0809.3847/0809.3847_1_32.xhtml
R
μ
ν
=
8
π
G
(
T
α
β
(
m
)
+
T
α
β
(
ϕ
)
+
T
α
β
(
u
)
)
(
δ
μ
α
δ
ν
β
-
1
2
g
μ
ν
g
α
β
)
.
Doc 55
0.1524
-35.0000
5.0000
0.1524
testing/NTCIR/xhtml5/4/gr-qc0604071/gr-qc0604071_1_13.xhtml
K
ν
μ
+
β
ℓ
2
3
(
9
2
J
ν
μ
-
J
δ
ν
μ
-
3
P
α
ν
β
μ
K
α
β
+
P
α
ρ
β
ρ
K
α
β
δ
ν
μ
)
Doc 56
0.1524
-35.0000
4.0000
0.1524
testing/NTCIR/xhtml5/3/hep-th0303203/hep-th0303203_1_33.xhtml
π
μ
ν
=
-
1
4
T
μ
λ
T
λ
ν
+
1
12
T
T
μ
ν
+
1
8
g
μ
ν
(
T
α
β
T
α
β
-
1
3
T
2
)
.
Doc 57
0.1524
-35.0000
4.0000
0.1524
testing/NTCIR/xhtml5/2/hep-th0205188/hep-th0205188_1_2.xhtml
π
μ
ν
=
-
1
4
T
μ
λ
T
λ
ν
+
1
12
T
T
μ
ν
+
1
8
g
μ
ν
(
T
α
β
T
α
β
-
1
3
T
2
)
.
Doc 58
0.1443
-12.0000
5.0000
0.1443
testing/NTCIR/xhtml5/9/1401.3018/1401.3018_1_15.xhtml
G
α
β
+
1
𝓂
C
α
β
=
-
κ
2
2
T
α
β
Doc 59
0.1443
-13.0000
5.0000
0.1443
testing/NTCIR/xhtml5/10/gr-qc9611023/gr-qc9611023_1_49.xhtml
R
α
β
+
1
2
η
α
β
R
=
-
8
π
G
T
α
β
.
Doc 60
0.1443
-13.0000
3.0000
0.1443
testing/NTCIR/xhtml5/4/gr-qc0604071/gr-qc0604071_1_15.xhtml
=
-
κ
5
2
2
(
T
ν
μ
-
1
3
T
δ
ν
μ
)
,
Doc 61
0.1443
-17.0000
6.0000
0.1443
testing/NTCIR/xhtml5/3/hep-th0307083/hep-th0307083_1_31.xhtml
L
=
Tr
[
1
2
(
d
T
d
t
)
2
+
1
2
T
2
+
…
.
]
,
Doc 62
0.1443
-23.0000
5.0000
0.1443
testing/NTCIR/xhtml5/7/1006.1552/1006.1552_1_8.xhtml
R
0
0
=
-
1
2
A
B
(
∇
2
B
-
B
′
2
(
A
′
A
+
B
′
B
)
)
,
Doc 63
0.1443
-36.0000
5.0000
0.1443
testing/NTCIR/xhtml5/4/hep-th0605122/hep-th0605122_1_37.xhtml
=
-
κ
5
2
2
(
T
ν
μ
-
1
3
T
δ
ν
μ
)
+
α
2
κ
5
2
κ
4
2
(
R
ν
μ
-
1
6
R
δ
ν
μ
)
,
Doc 64
0.1443
-36.0000
4.0000
0.1443
testing/NTCIR/xhtml5/3/hep-th0312106/hep-th0312106_1_6.xhtml
π
μ
ν
=
-
1
4
T
μ
λ
T
λ
+
ν
1
12
T
T
μ
ν
+
1
8
g
μ
ν
(
T
α
β
T
α
β
-
1
3
T
2
)
.
Doc 65
0.1443
-41.0000
2.0000
0.1443
testing/NTCIR/xhtml5/1/hep-th9711147/hep-th9711147_1_3.xhtml
(
R
ν
μ
-
1
2
δ
ν
μ
R
)
+
m
g
2
2
(
δ
ν
μ
+
g
μ
α
γ
α
ν
-
1
2
δ
ν
μ
g
α
β
γ
α
β
)
=
8
π
T
ν
μ
Doc 66
0.1374
-31.0000
6.0000
0.1374
testing/NTCIR/xhtml5/5/0811.1272/0811.1272_1_10.xhtml
Q
ν
μ
=
-
λ
δ
ν
μ
+
1
ℓ
2
[
(
q
-
1
)
μ
α
g
α
ν
-
1
2
(
q
-
1
)
α
β
g
α
β
δ
ν
μ
]
Doc 67
0.1348
-16.0000
4.0000
0.1348
testing/NTCIR/xhtml5/5/0810.5664/0810.5664_1_5.xhtml
□
f
R
=
8
π
G
3
T
+
1
3
(
2
f
-
f
R
R
)
.
Doc 68
0.1348
-16.0000
4.0000
0.1348
testing/NTCIR/xhtml5/5/0807.2503/0807.2503_1_6.xhtml
□
f
R
=
8
π
G
3
T
+
1
3
(
2
f
-
f
R
R
)
.
Doc 69
0.1348
-17.0000
4.0000
0.1348
testing/NTCIR/xhtml5/5/0812.0161/0812.0161_1_47.xhtml
T
α
β
(
Ω
2
m
)
-
T
μ
μ
(
Ω
2
m
)
2
η
α
β
,
Doc 70
0.1348
-18.0000
5.0000
0.1348
testing/NTCIR/xhtml5/7/1011.0548/1011.0548_1_37.xhtml
=
1
6
T
2
+
1
3
b
2
T
=
T
3
(
T
2
+
b
2
)
Doc 71
0.1348
-28.0000
5.0000
0.1348
testing/NTCIR/xhtml5/2/hep-th0111167/hep-th0111167_1_26.xhtml
ϕ
~
S
α
β
μ
=
8
π
Σ
α
β
μ
+
1
2
(
δ
α
μ
ϕ
~
,
β
-
δ
β
μ
ϕ
~
,
α
)
,
Doc 72
0.1348
-28.0000
5.0000
0.1348
testing/NTCIR/xhtml5/7/1006.4834/1006.4834_1_12.xhtml
-
Λ
δ
ν
μ
+
8
π
G
[
(
ρ
+
p
)
u
μ
u
ν
+
p
δ
ν
μ
]
≡
-
Λ
δ
ν
μ
+
T
ν
μ
,
Doc 73
0.1348
-38.0000
5.0000
0.1348
testing/NTCIR/xhtml5/6/0902.4833/0902.4833_1_42.xhtml
x
=
-
7
50
T
3
+
5
2
(
U
-
U
c
)
3
+
…
=
x
c
+
625
128
T
3
(
ξ
2
-
ξ
c
2
2
)
3
/
2
+
…
Doc 74
0.1261
-14.0000
6.0000
0.1261
testing/NTCIR/xhtml5/3/hep-th0501076/hep-th0501076_1_31.xhtml
R
α
β
=
-
8
π
G
(
T
α
β
-
1
2
g
α
β
T
)
,
Doc 75
0.1261
-14.0000
4.0000
0.1261
testing/NTCIR/xhtml5/2/gr-qc0101126/gr-qc0101126_1_10.xhtml
T
^
α
β
=
(
ρ
+
p
c
2
)
u
^
α
u
^
β
-
p
g
^
α
β
,
Doc 76
0.1261
-14.0000
4.0000
0.1261
testing/NTCIR/xhtml5/3/gr-qc0304058/gr-qc0304058_1_7.xhtml
T
^
α
β
=
(
ρ
+
p
c
2
)
u
^
α
u
^
β
-
p
g
^
α
β
,
Doc 77
0.1261
-14.0000
4.0000
0.1261
testing/NTCIR/xhtml5/2/astro-ph0203164/astro-ph0203164_1_9.xhtml
T
^
α
β
=
(
ρ
+
p
c
2
)
u
^
α
u
^
β
-
p
g
^
α
β
,
Doc 78
0.1261
-14.0000
2.0000
0.1261
testing/NTCIR/xhtml5/3/hep-th0303203/hep-th0303203_1_10.xhtml
-
κ
2
2
σ
(
φ
)
δ
ν
μ
+
κ
2
2
T
μ
ν
,
Doc 79
0.1261
-22.0000
2.0000
0.1261
testing/NTCIR/xhtml5/9/1401.3018/1401.3018_1_16.xhtml
G
α
β
(
1
)
+
1
𝓂
C
α
β
(
1
)
=
-
κ
2
2
(
T
α
β
+
t
𝓂
α
β
)
Doc 80
0.1261
-39.0000
3.0000
0.2523
testing/NTCIR/xhtml5/4/gr-qc0608071/gr-qc0608071_1_10.xhtml
d
2
ξ
a
d
s
2
+
8
π
G
N
(
n
-
4
)
(
T
¯
μ
ν
u
μ
u
ν
+
1
2
T
¯
)
ξ
a
+
K
¯
α
β
a
u
α
u
β
=
0.
d
2
ξ
a
d
s
¯
2
+
8
π
G
N
(
n
-
4
)
(
T
¯
μ
ν
u
¯
μ
u
¯
ν
+
1
2
T
¯
)
ξ
a
+
K
¯
α
β
a
u
¯
α
u
¯
β
=
0
,
Doc 81
0.1188
-10.0000
4.0000
0.1188
testing/NTCIR/xhtml5/3/math0303063/math0303063_1_42.xhtml
δ
3
>
2
δ
2
+
1
2
(
3
2
-
α
)
Doc 82
0.1188
-10.0000
4.0000
0.1188
testing/NTCIR/xhtml5/3/math0303063/math0303063_1_44.xhtml
δ
3
>
2
δ
2
+
1
2
(
3
2
-
α
)
Doc 83
0.1188
-10.0000
3.0000
0.1188
testing/NTCIR/xhtml5/7/1007.3992/1007.3992_1_34.xhtml
f
α
β
=
-
A
α
β
,
λ
+
f
2
=
B
Doc 84
0.1188
-10.0000
3.0000
0.1188
testing/NTCIR/xhtml5/3/hep-th0309223/hep-th0309223_1_14.xhtml
T
α
β
=
1
2
(
δ
α
β
+
R
α
β
)
.
Doc 85
0.1188
-14.0000
4.0000
0.1188
testing/NTCIR/xhtml5/3/hep-th0303258/hep-th0303258_1_16.xhtml
R
α
β
-
1
2
g
α
β
R
=
-
8
π
G
N
T
α
β
Doc 86
0.1188
-19.0000
5.0000
0.1188
testing/NTCIR/xhtml5/3/hep-th0412028/hep-th0412028_1_27.xhtml
π
=
3
2
(
1
+
u
u
¯
)
-
3
(
u
μ
u
¯
μ
)
1
2
u
¯
˙
.
Doc 87
0.1188
-23.0000
4.0000
0.1188
testing/NTCIR/xhtml5/1/gr-qc0412122/gr-qc0412122_1_7.xhtml
L
3
=
-
8
π
G
p
-
1
2
m
g
2
[
1
-
1
2
(
1
U
+
1
V
)
]
Doc 88
0.1188
-27.0000
5.0000
0.1188
testing/NTCIR/xhtml5/3/hep-th0311086/hep-th0311086_1_44.xhtml
i
f
j
k
i
λ
α
j
λ
β
k
=
1
2
T
α
β
D
δ
i
n
+
1
2
ψ
α
β
γ
λ
γ
i
Doc 89
0.1188
-27.0000
0.0000
0.1188
testing/NTCIR/xhtml5/7/1105.4750/1105.4750_1_20.xhtml
1
D
-
2
(
δ
ν
μ
T
α
β
-
δ
β
μ
T
ν
α
-
g
α
ν
T
β
μ
+
g
α
β
T
ν
μ
)
Doc 90
0.1188
-34.0000
3.0000
0.1188
testing/NTCIR/xhtml5/2/gr-qc0106064/gr-qc0106064_1_13.xhtml
u
¯
α
B
α
=
-
5
2
H
u
¯
α
u
¯
β
ψ
α
β
-
1
4
H
ψ
-
3
2
H
ϕ
+
1
3
H
ϕ
|
α
|
α
.
Doc 91
0.1099
-6.0000
4.0000
0.1099
testing/NTCIR/xhtml5/5/0705.3475/0705.3475_1_2.xhtml
G
α
β
=
-
8
π
G
T
α
β
Doc 92
0.1099
-8.0000
5.0000
0.1099
testing/NTCIR/xhtml5/10/hep-th9712246/hep-th9712246_1_19.xhtml
C
2
=
-
1
2
T
α
β
T
α
β
Doc 93
0.1099
-11.0000
5.0000
0.1099
testing/NTCIR/xhtml5/6/0912.0074/0912.0074_1_202.xhtml
[
T
-
1
2
T
0
,
T
+
1
2
T
0
]
Doc 94
0.1099
-20.0000
3.0000
0.1099
testing/NTCIR/xhtml5/9/hep-th9303021/hep-th9303021_1_11.xhtml
Ω
/
T
4
=
-
8
π
2
3
1
15
+
3
g
2
2
(
1
3
)
2
Doc 95
0.1099
-29.0000
4.0000
0.2091
testing/NTCIR/xhtml5/9/1308.5182/1308.5182_1_57.xhtml
=
-
1
2
u
0
u
α
+
-
1
2
(
1
2
+
1
2
e
-
u
+
|
∂
u
|
2
)
u
α
.
=
-
1
2
u
0
u
α
+
-
1
2
(
1
-
v
0
)
u
α
Doc 96
0.0992
-17.0000
5.0000
0.0992
testing/NTCIR/xhtml5/6/0901.1639/0901.1639_1_15.xhtml
+
B
2
(
B
r
B
)
2
-
B
2
B
r
B
A
r
A
.
Doc 97
0.0992
-18.0000
2.0000
0.1653
testing/NTCIR/xhtml5/2/gr-qc0202023/gr-qc0202023_1_20.xhtml
T
α
β
(
2
)
u
α
u
β
=
1
8
π
(
F
01
)
2
h
1
1
h
1
1
T
α
β
u
α
u
β
Doc 98
0.0929
-18.0000
5.0000
0.0929
testing/NTCIR/xhtml5/9/1308.5182/1308.5182_1_38.xhtml
=
(
1
2
+
1
2
ϕ
)
(
|
D
α
β
|
2
+
|
E
α
β
¯
|
2
)
Doc 99
0.0929
-18.0000
5.0000
0.0929
testing/NTCIR/xhtml5/9/1308.5182/1308.5182_1_26.xhtml
=
(
1
2
+
1
2
ϕ
)
(
|
D
α
β
|
2
+
|
E
α
β
¯
|
2
)
Doc 100
0.0929
-18.0000
2.0000
0.0929
testing/NTCIR/xhtml5/5/0708.2639/0708.2639_1_11.xhtml
k
G
[
g
α
β
+
(
1
+
e
-
4
ϕ
)
u
α
u
β
]
T
~
α
β
,
Doc 101
0.0848
-12.0000
4.0000
0.0848
testing/NTCIR/xhtml5/9/1212.3335/1212.3335_1_5.xhtml
T
(
α
β
)
=
1
2
(
T
α
β
+
T
β
α
)
Doc 102
0.0848
-12.0000
4.0000
0.0848
testing/NTCIR/xhtml5/4/gr-qc0608053/gr-qc0608053_1_9.xhtml
T
(
α
β
)
≡
1
2
(
T
α
β
+
T
β
α
)
Doc 103
0.0848
-21.0000
4.0000
0.0848
testing/NTCIR/xhtml5/5/0812.0161/0812.0161_1_80.xhtml
-
1
m
+
+
m
-
(
A
α
β
m
+
+
B
α
β
m
-
)
Doc 104
0.0661
-3.0000
1.0000
0.0661
testing/NTCIR/xhtml5/9/1305.3390/1305.3390_1_1.xhtml
T
α
β
u
α
u
β
Doc 105
0.0661
-3.0000
1.0000
0.0661
testing/NTCIR/xhtml5/5/0807.0082/0807.0082_1_1.xhtml
T
α
β
u
α
u
β