tangent
Not Supported
Θ
∧
(
d
Θ
)
x0
≠
0
Search
Returned 32 matches (100 formulae, 184 docs)
Lookup 2073.860 ms, Re-ranking 78.658 ms
Found 106021924 tuple postings, 2129469 formulae, 1830924 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
1.0000
0.0000
7.0000
1.0000
testing/NTCIR/xhtml5/7/1101.4494/1101.4494_1_8.xhtml
Θ
∧
(
d
Θ
)
n
≠
0
Doc 2
1.0000
0.0000
7.0000
1.0000
testing/NTCIR/xhtml5/8/1111.5056/1111.5056_1_6.xhtml
Θ
∧
(
d
Θ
)
n
≠
0
Doc 3
1.0000
0.0000
7.0000
1.0000
testing/NTCIR/xhtml5/8/1205.3481/1205.3481_1_32.xhtml
Θ
∧
(
d
Θ
)
n
≠
0
Doc 4
1.0000
0.0000
7.0000
1.0000
testing/NTCIR/xhtml5/8/1201.5337/1201.5337_1_28.xhtml
Θ
∧
(
d
Θ
)
n
≠
0
Doc 5
1.0000
0.0000
5.0000
1.7317
testing/NTCIR/xhtml5/9/1302.3650/1302.3650_1_3.xhtml
η
∧
(
d
η
)
p
≠
0
(
d
η
)
p
≠
0
Doc 6
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0805.0193/0805.0193_1_27.xhtml
α
∧
(
d
α
)
k
≠
0
Doc 7
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0801.4222/0801.4222_1_11.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 8
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/11/math9910079/math9910079_1_27.xhtml
η
∧
(
d
η
)
m
≠
0
Doc 9
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1312.1721/1312.1721_1_57.xhtml
ω
∧
(
d
ω
)
p
≠
0
Doc 10
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0402361/math0402361_1_151.xhtml
ϕ
∧
(
d
ϕ
)
n
≠
0
Doc 11
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math0203048/math0203048_1_21.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 12
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/1/1212.0833/1212.0833_1_10.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 13
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math0104080/math0104080_1_6.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 14
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/1/1212.0833/1212.0833_1_29.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 15
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0405256/math0405256_1_11.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 16
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/1/math0008178/math0008178_1_52.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 17
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/10/math9810071/math9810071_1_16.xhtml
α
∧
(
d
α
)
2
≠
0
Doc 18
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1309.3483/1309.3483_1_16.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 19
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0706.0028/0706.0028_1_113.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 20
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/10/dg-ga9709004/dg-ga9709004_1_37.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 21
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/1003.1416/1003.1416_1_11.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 22
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/1/hep-th0006169/hep-th0006169_1_81.xhtml
Ω
∧
(
d
Ω
)
n
≠
0
Doc 23
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1302.5075/1302.5075_1_1.xhtml
θ
∧
(
d
θ
)
n
≠
0
Doc 24
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/4/math0612503/math0612503_1_16.xhtml
ω
∧
(
d
ω
)
n
≠
0
Doc 25
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/0906.2215/0906.2215_1_13.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 26
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1302.2139/1302.2139_1_2.xhtml
η
∧
(
d
η
)
m
≠
0
Doc 27
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/8/1207.2046/1207.2046_1_3.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 28
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0802.0123/0802.0123_1_19.xhtml
θ
∧
(
d
θ
)
n
≠
0
Doc 29
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/1003.1417/1003.1417_1_33.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 30
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/alg-geom9302005/alg-geom9302005_1_41.xhtml
θ
∧
(
d
θ
)
n
≠
0
Doc 31
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0401169/math0401169_1_1.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 32
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0708.1999/0708.1999_1_44.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 33
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/8/1210.1268/1210.1268_1_34.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 34
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/4/math0505451/math0505451_1_1.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 35
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0706.0707/0706.0707_1_14.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 36
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/1003.1417/1003.1417_1_10.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 37
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/1/math0008233/math0008233_1_23.xhtml
λ
∧
(
d
λ
)
n
≠
0
Doc 38
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/10/math9907043/math9907043_1_11.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 39
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0710.1042/0710.1042_1_8.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 40
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/0903.5534/0903.5534_1_12.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 41
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math0112241/math0112241_1_9.xhtml
ω
∧
(
d
ω
)
n
≠
0
Doc 42
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/1003.1416/1003.1416_1_33.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 43
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/1003.2200/1003.2200_1_67.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 44
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0706.0888/0706.0888_1_3.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 45
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/0903.5534/0903.5534_1_19.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 46
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0405256/math0405256_1_10.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 47
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0405256/math0405256_1_12.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 48
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/0911.0340/0911.0340_1_30.xhtml
θ
∧
(
d
θ
)
n
≠
0
Doc 49
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0708.1999/0708.1999_1_4.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 50
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/0911.0340/0911.0340_1_28.xhtml
θ
∧
(
d
θ
)
n
≠
0
Doc 51
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0708.1999/0708.1999_1_5.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 52
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/8/1112.2951/1112.2951_1_20.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 53
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math0205042/math0205042_1_162.xhtml
β
∧
(
d
β
)
k
≠
0
Doc 54
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1312.5395/1312.5395_1_5.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 55
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1302.4428/1302.4428_1_7.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 56
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0706.0888/0706.0888_1_8.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 57
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1303.2491/1303.2491_1_14.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 58
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0404519/math0404519_1_17.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 59
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/4/math0509452/math0509452_1_10.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 60
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/7/1012.4139/1012.4139_1_66.xhtml
μ
∧
(
d
μ
)
n
≠
0
Doc 61
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1312.5400/1312.5400_1_5.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 62
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0705.2884/0705.2884_1_21.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 63
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math-ph0201019/math-ph0201019_1_27.xhtml
ω
∧
(
d
ω
)
n
≠
0
Doc 64
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/8/1209.0653/1209.0653_1_10.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 65
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/7/1008.1903/1008.1903_1_8.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 66
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1401.6429/1401.6429_1_12.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 67
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/8/1202.5835/1202.5835_1_6.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 68
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/7/1104.3439/1104.3439_1_86.xhtml
η
∧
(
d
η
)
m
≠
0
Doc 69
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1401.6429/1401.6429_1_7.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 70
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0407441/math0407441_1_7.xhtml
α
∧
(
d
α
)
k
≠
0
Doc 71
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1306.1008/1306.1008_1_6.xhtml
η
∧
(
d
η
)
n
≠
0
Doc 72
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/math-ph0703061/math-ph0703061_1_43.xhtml
α
∧
(
d
α
)
n
≠
0
Doc 73
1.0000
0.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0710.3668/0710.3668_1_158.xhtml
η
∧
(
d
η
)
m
≠
0
Doc 74
1.0000
0.0000
4.0000
1.0000
testing/NTCIR/xhtml5/2/math0208032/math0208032_1_17.xhtml
η
∧
(
δ
η
)
n
≠
0
Doc 75
1.0000
-1.0000
5.0000
1.0000
testing/NTCIR/xhtml5/4/math0602233/math0602233_1_36.xhtml
η
∧
(
d
η
)
n
≠
0
,
Doc 76
1.0000
-2.0000
7.0000
1.0000
testing/NTCIR/xhtml5/8/1205.3544/1205.3544_1_17.xhtml
Θ
∧
(
d
Θ
)
∧
n
≠
0
,
Doc 77
1.0000
-2.0000
7.0000
1.0000
testing/NTCIR/xhtml5/5/0801.2279/0801.2279_1_7.xhtml
Θ
M
∧
(
d
Θ
M
)
3
≠
0
Doc 78
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1312.2725/1312.2725_1_22.xhtml
η
∧
(
d
η
)
n
-
1
≠
0
Doc 79
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/0812.3939/0812.3939_1_217.xhtml
α
∧
(
d
α
)
n
-
1
≠
0
Doc 80
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/5/0810.2156/0810.2156_1_154.xhtml
ω
m
∧
(
d
ω
m
)
ℓ
≠
0
Doc 81
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math-ph0205025/math-ph0205025_1_62.xhtml
α
x
∧
(
d
α
)
x
n
≠
0
Doc 82
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/8/1207.1552/1207.1552_1_26.xhtml
ω
∧
(
d
ω
)
n
-
1
≠
0
Doc 83
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/1/math0004037/math0004037_1_2.xhtml
λ
∧
(
d
λ
)
n
-
1
≠
0
Doc 84
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math-ph0205025/math-ph0205025_1_63.xhtml
α
x
∧
(
d
α
)
x
n
≠
0
Doc 85
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1303.2491/1303.2491_1_24.xhtml
η
~
∧
(
d
η
~
)
n
≠
0
Doc 86
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0403044/math0403044_1_26.xhtml
θ
∧
(
d
θ
)
n
-
1
≠
0
Doc 87
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/1/math0004035/math0004035_1_4.xhtml
λ
∧
(
d
λ
)
n
-
1
≠
0
Doc 88
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/6/0905.2656/0905.2656_1_66.xhtml
γ
i
∧
(
d
γ
i
)
n
≠
0
Doc 89
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0309258/math0309258_1_4.xhtml
λ
∧
(
d
λ
)
n
-
1
≠
0
Doc 90
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/4/math0612145/math0612145_1_12.xhtml
ϑ
∧
(
d
ϑ
+
ω
)
n
≠
0
Doc 91
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1312.2725/1312.2725_1_2.xhtml
η
∧
(
d
η
)
n
-
1
≠
0
Doc 92
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math0205290/math0205290_1_4.xhtml
α
+
∧
(
d
α
+
)
p
≠
0
Doc 93
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1312.2725/1312.2725_1_3.xhtml
η
∧
(
d
η
)
n
-
1
≠
0
Doc 94
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/10/dg-ga9709004/dg-ga9709004_1_44.xhtml
γ
∧
(
d
γ
)
n
-
1
≠
0
Doc 95
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/7/1106.5254/1106.5254_1_64.xhtml
α
∧
(
d
α
)
n
-
2
≠
0
Doc 96
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/9/1312.2725/1312.2725_1_1.xhtml
η
∧
(
d
η
)
n
-
1
≠
0
Doc 97
1.0000
-2.0000
5.0000
1.0000
testing/NTCIR/xhtml5/2/math0107228/math0107228_1_28.xhtml
ω
0
∧
(
d
ω
0
)
n
≠
0
Doc 98
1.0000
-4.0000
7.0000
1.0000
testing/NTCIR/xhtml5/4/physics0604164/physics0604164_1_4.xhtml
Θ
G
∧
(
d
Θ
G
)
n
≠
0
Doc 99
1.0000
-4.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0409160/math0409160_1_21.xhtml
α
∧
(
d
α
)
∧
(
n
-
1
)
≠
0
Doc 100
1.0000
-4.0000
5.0000
1.0000
testing/NTCIR/xhtml5/3/math0409160/math0409160_1_19.xhtml
α
∧
(
d
α
)
∧
(
n
-
1
)
≠
0
Doc 101
0.7317
0.0000
4.0000
0.7317
testing/NTCIR/xhtml5/2/math0112241/math0112241_1_17.xhtml
(
d
ω
)
n
≠
0
Doc 102
0.7317
0.0000
4.0000
0.7317
testing/NTCIR/xhtml5/10/dg-ga9709004/dg-ga9709004_1_39.xhtml
(
d
α
)
n
≠
0
Doc 103
0.7317
0.0000
4.0000
0.7317
testing/NTCIR/xhtml5/9/1309.7076/1309.7076_1_45.xhtml
(
d
x
)
k
≠
0
Doc 104
0.7317
0.0000
4.0000
0.7317
testing/NTCIR/xhtml5/9/1312.1721/1312.1721_1_41.xhtml
(
d
ω
)
p
≠
0
Doc 105
0.7317
0.0000
4.0000
0.7317
testing/NTCIR/xhtml5/9/1312.1721/1312.1721_1_46.xhtml
(
d
ω
)
k
≠
0
Doc 106
0.7317
0.0000
4.0000
0.7317
testing/NTCIR/xhtml5/2/math0111209/math0111209_1_95.xhtml
(
d
β
)
q
≠
0
Doc 107
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/1/1301.2835/1301.2835_1_19.xhtml
(
a
R
)
m
≠
0
Doc 108
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/2/math0206265/math0206265_1_20.xhtml
(
ad
e
)
m
≠
0
Doc 109
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/2/math0206265/math0206265_1_3.xhtml
(
ad
x
)
m
≠
0
Doc 110
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/7/1103.4184/1103.4184_1_118.xhtml
(
D
r
)
2
≠
0
Doc 111
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/9/1302.3232/1302.3232_1_18.xhtml
(
D
r
)
2
≠
0
Doc 112
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/7/1103.4184/1103.4184_1_53.xhtml
(
D
r
)
2
≠
0
Doc 113
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/5/0709.1199/0709.1199_1_36.xhtml
(
D
r
)
2
≠
0
Doc 114
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/7/1103.4184/1103.4184_1_51.xhtml
(
D
r
)
2
≠
0
Doc 115
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/7/1103.4184/1103.4184_1_120.xhtml
(
D
r
)
2
≠
0
Doc 116
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/5/0709.1199/0709.1199_1_33.xhtml
(
D
r
)
2
≠
0
Doc 117
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/5/0709.1199/0709.1199_1_34.xhtml
(
D
r
)
2
≠
0
Doc 118
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/7/1103.4184/1103.4184_1_55.xhtml
(
D
r
)
2
≠
0
Doc 119
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/4/math0510372/math0510372_1_91.xhtml
(
x
y
)
m
≠
0
Doc 120
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/6/1001.4132/1001.4132_1_14.xhtml
(
a
R
)
2
≠
0
Doc 121
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/7/1009.5184/1009.5184_1_40.xhtml
(
ℜ
χ
)
⟂
≠
0
Doc 122
0.7317
0.0000
3.0000
0.7317
testing/NTCIR/xhtml5/7/1004.0917/1004.0917_1_58.xhtml
(
D
r
)
2
≠
0
Doc 123
0.7317
-2.0000
4.0000
0.7317
testing/NTCIR/xhtml5/9/1305.4623/1305.4623_1_48.xhtml
(
d
α
)
r
+
1
≠
0
Doc 124
0.7317
-2.0000
4.0000
0.7317
testing/NTCIR/xhtml5/2/math0205290/math0205290_1_126.xhtml
(
d
α
2
p
)
p
≠
0
Doc 125
0.7317
-5.0000
3.0000
1.1932
testing/NTCIR/xhtml5/9/1312.1721/1312.1721_1_5.xhtml
(
ω
∧
(
d
ω
)
p
)
(
x
)
≠
0
(
d
ω
)
p
(
x
)
≠
0
Doc 126
0.7317
-5.0000
3.0000
0.7317
testing/NTCIR/xhtml5/9/1312.1721/1312.1721_1_6.xhtml
(
ω
∧
(
d
ω
)
p
)
(
x
)
≠
0
Doc 127
0.5970
0.0000
3.0000
0.5970
testing/NTCIR/xhtml5/7/1104.4165/1104.4165_1_25.xhtml
(
V
)
H
≠
0
Doc 128
0.5970
-1.0000
4.0000
0.5970
testing/NTCIR/xhtml5/10/hep-th9612027/hep-th9612027_1_10.xhtml
π
(
d
α
)
≠
0
Doc 129
0.5970
-1.0000
4.0000
0.5970
testing/NTCIR/xhtml5/3/math0402211/math0402211_1_292.xhtml
∧
2
(
N
)
≠
0
Doc 130
0.5970
-1.0000
4.0000
0.5970
testing/NTCIR/xhtml5/3/math0405533/math0405533_1_112.xhtml
(
d
τ
)
x
≠
0
Doc 131
0.5970
-1.0000
4.0000
0.5970
testing/NTCIR/xhtml5/5/0810.0853/0810.0853_1_49.xhtml
∧
2
(
A
)
≠
0
Doc 132
0.5970
-1.0000
4.0000
0.5970
testing/NTCIR/xhtml5/3/math0303078/math0303078_1_78.xhtml
σ
(
d
g
)
≠
0
Doc 133
0.5970
-1.0000
4.0000
0.5970
testing/NTCIR/xhtml5/6/0908.3293/0908.3293_1_41.xhtml
(
d
F
)
x
≠
0
Doc 134
0.5970
-1.0000
3.0000
1.1940
testing/NTCIR/xhtml5/1/1006.4290/1006.4290_1_130.xhtml
Z
(
B
)
2
≠
0
Z
(
R
)
2
≠
0
Doc 135
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/3/math0309350/math0309350_1_133.xhtml
J
(
W
)
G
≠
0
Doc 136
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/9/1310.7656/1310.7656_1_63.xhtml
Δ
(
t
)
F
≠
0
Doc 137
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/4/math0504225/math0504225_1_56.xhtml
σ
(
D
)
2
≠
0
Doc 138
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/7/1008.2937/1008.2937_1_39.xhtml
u
(
b
)
t
≠
0
Doc 139
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/9/1310.7656/1310.7656_1_65.xhtml
Δ
(
t
)
F
≠
0
Doc 140
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/9/1310.7656/1310.7656_1_74.xhtml
Δ
(
t
)
F
≠
0
Doc 141
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/3/math0402211/math0402211_1_293.xhtml
W
(
N
)
2
≠
0
Doc 142
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/3/math0408404/math0408404_1_25.xhtml
Π
(
V
)
*
≠
0
Doc 143
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/5/0802.3648/0802.3648_1_35.xhtml
h
(
F
)
2
≠
0
Doc 144
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/4/math0509427/math0509427_1_60.xhtml
e
(
α
)
n
≠
0
Doc 145
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/5/0804.0922/0804.0922_1_152.xhtml
J
(
B
)
N
≠
0
Doc 146
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/2/math0204111/math0204111_1_102.xhtml
H
(
π
)
∞
≠
0
Doc 147
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/10/gr-qc9406024/gr-qc9406024_1_24.xhtml
q
(
L
)
2
≠
0
Doc 148
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/3/math0310208/math0310208_1_62.xhtml
R
(
L
)
′
≠
0
Doc 149
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/7/1008.2937/1008.2937_1_42.xhtml
u
(
b
)
t
≠
0
Doc 150
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/8/1109.4774/1109.4774_1_132.xhtml
δ
(
Ω
)
3
≠
0
Doc 151
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/8/1109.4774/1109.4774_1_131.xhtml
δ
(
Ω
)
3
≠
0
Doc 152
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/3/hep-th0309243/hep-th0309243_1_18.xhtml
u
(
z
)
p
≠
0
Doc 153
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/9/1310.7656/1310.7656_1_70.xhtml
Δ
(
t
)
E
≠
0
Doc 154
0.5970
-1.0000
3.0000
0.5970
testing/NTCIR/xhtml5/9/1310.7656/1310.7656_1_77.xhtml
Δ
(
t
)
F
≠
0
Doc 155
0.5085
-1.0000
3.0000
0.5085
testing/NTCIR/xhtml5/3/math0412431/math0412431_1_12.xhtml
(
ran
L
)
⊥
≠
0
Doc 156
0.5085
-1.0000
3.0000
0.5085
testing/NTCIR/xhtml5/10/hep-th9309025/hep-th9309025_1_13.xhtml
(
∂
u
)
2
≠
0
Doc 157
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0508031/math0508031_1_30.xhtml
W
(
d
)
≠
0
Doc 158
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0506627/math0506627_1_267.xhtml
ρ
(
d
)
≠
0
Doc 159
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0508031/math0508031_1_28.xhtml
W
(
d
)
≠
0
Doc 160
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0506627/math0506627_1_99.xhtml
ρ
(
d
)
≠
0
Doc 161
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/5/0806.0111/0806.0111_1_39.xhtml
β
(
d
)
≠
0
Doc 162
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/8/1211.1874/1211.1874_1_95.xhtml
N
(
d
)
≠
0
Doc 163
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/8/1211.1874/1211.1874_1_99.xhtml
N
(
d
)
≠
0
Doc 164
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/6/0910.0298/0910.0298_1_81.xhtml
f
(
d
)
≠
0
Doc 165
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/5/0810.4830/0810.4830_1_165.xhtml
ω
(
d
)
≠
0
Doc 166
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/9/hep-th9308104/hep-th9308104_1_103.xhtml
α
(
d
)
≠
0
Doc 167
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/9/hep-th9308104/hep-th9308104_1_115.xhtml
α
(
d
)
≠
0
Doc 168
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0607450/math0607450_1_49.xhtml
t
(
d
)
≠
0
Doc 169
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/9/hep-th9308104/hep-th9308104_1_133.xhtml
α
(
d
)
≠
0
Doc 170
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0508029/math0508029_1_1.xhtml
D
(
d
)
≠
0
Doc 171
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/6/1002.4128/1002.4128_1_33.xhtml
μ
(
d
)
≠
0
Doc 172
0.4615
-1.0000
4.0000
0.4615
testing/NTCIR/xhtml5/5/0709.4495/0709.4495_1_225.xhtml
ψ
(
d
)
≠
0
Doc 173
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/8/1109.5275/1109.5275_1_60.xhtml
G
′
(
d
)
≠
0
Doc 174
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/4/math0511275/math0511275_1_48.xhtml
φ
(
d
j
)
≠
0
Doc 175
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/9/1307.8004/1307.8004_1_103.xhtml
J
G
(
d
)
≠
0
Doc 176
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/7/1009.5281/1009.5281_1_32.xhtml
f
′
(
d
)
≠
0
Doc 177
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/9/1307.8004/1307.8004_1_106.xhtml
J
G
(
d
)
≠
0
Doc 178
0.4615
-2.0000
4.0000
0.4615
testing/NTCIR/xhtml5/5/0809.0740/0809.0740_1_60.xhtml
ν
(
d
μ
)
≠
0
Doc 179
0.4615
-2.0000
3.0000
0.4615
testing/NTCIR/xhtml5/1/math0007184/math0007184_1_70.xhtml
Δ
12
(
Θ
)
≠
0
Doc 180
0.4615
-2.0000
3.0000
0.4615
testing/NTCIR/xhtml5/4/math-ph0504083/math-ph0504083_1_45.xhtml
Γ
Θ
(
ζ
)
≠
0
Doc 181
0.4615
-2.0000
3.0000
0.4615
testing/NTCIR/xhtml5/10/hep-ph9801271/hep-ph9801271_1_122.xhtml
Tr
(
-
)
F
≠
0
Doc 182
0.4615
-2.0000
3.0000
0.4615
testing/NTCIR/xhtml5/5/0708.4108/0708.4108_1_299.xhtml
f
(
Θ
κ
)
≠
0
Doc 183
0.4615
-2.0000
3.0000
0.4615
testing/NTCIR/xhtml5/5/0809.2127/0809.2127_1_34.xhtml
e
(
λ
Θ
)
≠
0
Doc 184
0.4615
-4.0000
3.0000
0.4615
testing/NTCIR/xhtml5/9/1312.1721/1312.1721_1_7.xhtml
(
d
ω
)
p
(
x
)
≠
0