tangent
Not Supported
α
(
d
)
≤
(
3
/
2
+
ε
)
d
Search
Returned 66 matches (100 formulae, 144 docs)
Lookup 76.586 ms, Re-ranking 70.457 ms
Found 1448896 tuple postings, 1113622 formulae, 783317 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.7385
-6.0000
7.0000
1.3385
testing/NTCIR/xhtml5/7/1010.0383/1010.0383_1_51.xhtml
f
r
(
d
)
≤
(
3
2
+
o
(
1
)
)
d
f
r
(
d
)
≤
(
c
+
o
(
1
)
)
d
Doc 2
0.6885
-1.0000
7.0000
1.3770
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_5.xhtml
n
(
d
)
≤
(
2
-
ε
)
d
n
(
d
)
≥
(
2
+
ε
)
d
Doc 3
0.6885
-1.0000
7.0000
0.6885
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_6.xhtml
n
(
d
)
≤
(
2
-
ε
)
d
Doc 4
0.6885
-1.0000
7.0000
0.6885
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_7.xhtml
n
(
d
)
≥
(
2
+
ε
)
d
Doc 5
0.6512
-14.0000
5.0000
0.6512
testing/NTCIR/xhtml5/9/1301.0019/1301.0019_1_191.xhtml
𝐏
(
S
A
=
x
)
≤
(
24
π
+
o
(
1
)
)
n
-
3
/
2
,
Doc 6
0.5638
-3.0000
5.0000
0.5638
testing/NTCIR/xhtml5/4/math0504574/math0504574_1_68.xhtml
k
(
S
)
≤
(
3
)
n
-
1
Doc 7
0.5638
-3.0000
5.0000
0.5638
testing/NTCIR/xhtml5/7/1101.4792/1101.4792_1_108.xhtml
ℓ
(
p
)
≤
(
p
+
1
)
2
Doc 8
0.5638
-4.0000
5.0000
0.5638
testing/NTCIR/xhtml5/6/0912.2116/0912.2116_1_41.xhtml
#
E
(
q
)
≤
(
q
+
1
)
2
Doc 9
0.5109
-4.0000
5.0000
0.5109
testing/NTCIR/xhtml5/3/math0407135/math0407135_1_40.xhtml
δ
(
C
)
≤
(
1
+
ε
)
π
/
2
Doc 10
0.5109
-4.0000
5.0000
0.5109
testing/NTCIR/xhtml5/3/math0407135/math0407135_1_35.xhtml
δ
(
C
)
≤
(
1
+
ε
)
π
/
2
Doc 11
0.5109
-4.0000
5.0000
0.5109
testing/NTCIR/xhtml5/3/math0407135/math0407135_1_144.xhtml
δ
(
C
)
≤
(
1
+
ε
)
π
/
2
Doc 12
0.5109
-5.0000
6.0000
0.5109
testing/NTCIR/xhtml5/3/math0306246/math0306246_1_8.xhtml
n
(
d
)
≤
(
2
e
-
ε
)
d
Doc 13
0.4762
-6.0000
5.0000
0.4762
testing/NTCIR/xhtml5/9/1308.4229/1308.4229_1_49.xhtml
L
K
(
1
)
≤
(
q
+
1
)
2
g
Doc 14
0.4762
-6.0000
4.0000
0.4762
testing/NTCIR/xhtml5/7/1009.2535/1009.2535_1_228.xhtml
|
χ
(
h
)
|
≤
(
q
+
1
)
/
2
Doc 15
0.4211
-3.0000
5.0000
0.4211
testing/NTCIR/xhtml5/8/1206.3581/1206.3581_1_31.xhtml
λ
=
exp
(
3
/
2
Φ
)
Doc 16
0.4211
-3.0000
5.0000
0.4211
testing/NTCIR/xhtml5/4/hep-th0609095/hep-th0609095_1_43.xhtml
H
∝
exp
(
3
/
2
ϕ
)
Doc 17
0.4211
-4.0000
4.0000
0.4211
testing/NTCIR/xhtml5/6/0907.0620/0907.0620_1_135.xhtml
α
(
c
)
≤
(
d
#
Q
L
)
k
Doc 18
0.4211
-4.0000
4.0000
0.4211
testing/NTCIR/xhtml5/7/1011.3384/1011.3384_1_36.xhtml
α
(
G
)
≤
(
ν
-
n
)
/
2
Doc 19
0.4211
-4.0000
4.0000
0.4211
testing/NTCIR/xhtml5/7/1011.3384/1011.3384_1_45.xhtml
α
(
G
)
≤
(
ν
-
n
)
/
2
Doc 20
0.4211
-4.0000
4.0000
0.4211
testing/NTCIR/xhtml5/7/1011.3384/1011.3384_1_38.xhtml
α
(
G
)
≤
(
ν
-
n
)
/
2
Doc 21
0.4211
-4.0000
4.0000
0.4211
testing/NTCIR/xhtml5/7/1011.3384/1011.3384_1_41.xhtml
α
(
G
)
≤
(
ν
-
n
)
/
2
Doc 22
0.4211
-5.0000
5.0000
0.4211
testing/NTCIR/xhtml5/9/1401.7378/1401.7378_1_10.xhtml
ϕ
≡
(
3
/
2
/
κ
)
ln
ϑ
Doc 23
0.4211
-5.0000
5.0000
0.4211
testing/NTCIR/xhtml5/3/math0404501/math0404501_1_58.xhtml
α
(
B
)
≤
(
r
+
1
)
/
2
,
Doc 24
0.4211
-5.0000
4.0000
0.4211
testing/NTCIR/xhtml5/8/1111.1428/1111.1428_1_22.xhtml
b
r
(
P
)
≤
(
d
+
1
)
/
2
Doc 25
0.4211
-5.0000
4.0000
0.4211
testing/NTCIR/xhtml5/8/1202.3066/1202.3066_1_3.xhtml
s
r
(
P
)
≤
(
d
+
1
)
/
2
Doc 26
0.4211
-6.0000
5.0000
0.4211
testing/NTCIR/xhtml5/3/hep-th0305018/hep-th0305018_1_16.xhtml
φ
=
(
3
/
2
log
σ
)
/
κ
4
Doc 27
0.4211
-6.0000
4.0000
0.4211
testing/NTCIR/xhtml5/8/1111.1428/1111.1428_1_60.xhtml
s
=
deg
(
A
)
≤
(
d
+
1
)
/
2
Doc 28
0.3883
-2.0000
4.0000
0.3883
testing/NTCIR/xhtml5/7/1004.0475/1004.0475_1_98.xhtml
-
50
(
3
+
i
)
Doc 29
0.3883
-4.0000
5.0000
0.6883
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_188.xhtml
ψ
(
3
/
2
)
=
-
1
β
≤
3
/
2
Doc 30
0.3883
-5.0000
4.0000
0.3883
testing/NTCIR/xhtml5/2/math0209326/math0209326_1_30.xhtml
D
(
𝒜
)
≤
(
d
s
)
d
/
2
Doc 31
0.3883
-5.0000
4.0000
0.3883
testing/NTCIR/xhtml5/10/hep-th9902032/hep-th9902032_1_86.xhtml
λ
H
≤
(
2
+
1
)
/
2
Doc 32
0.3883
-6.0000
4.0000
0.3883
testing/NTCIR/xhtml5/9/1308.2247/1308.2247_1_39.xhtml
c
(
A
)
≤
(
3
/
4
)
d
+
ϵ
Doc 33
0.3883
-6.0000
3.0000
0.3883
testing/NTCIR/xhtml5/8/1211.5755/1211.5755_1_60.xhtml
μ
midp
(
𝒫
)
≤
(
d
-
1
)
/
2
Doc 34
0.3883
-6.0000
3.0000
0.3883
testing/NTCIR/xhtml5/8/1211.5755/1211.5755_1_58.xhtml
μ
midp
(
𝒫
)
≤
(
d
-
1
)
/
2
Doc 35
0.3883
-6.0000
3.0000
0.3883
testing/NTCIR/xhtml5/8/1211.5755/1211.5755_1_65.xhtml
μ
midp
(
𝒫
)
≤
(
d
-
1
)
/
2
Doc 36
0.3883
-6.0000
3.0000
0.3883
testing/NTCIR/xhtml5/9/1302.2219/1302.2219_1_140.xhtml
r
+
δ
(
z
)
≤
(
3
/
2
)
r
Doc 37
0.3883
-6.0000
3.0000
0.3883
testing/NTCIR/xhtml5/8/1211.5755/1211.5755_1_70.xhtml
μ
midp
(
𝒫
)
≤
(
d
-
1
)
/
2
Doc 38
0.3883
-7.0000
4.0000
0.3883
testing/NTCIR/xhtml5/7/1011.3384/1011.3384_1_49.xhtml
α
(
G
)
≤
(
ν
-
1
)
/
2
-
k
Doc 39
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/math0610709/math0610709_1_23.xhtml
3
/
2
Doc 40
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0708.3201/0708.3201_1_16.xhtml
3
/
2
Doc 41
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/math0610709/math0610709_1_22.xhtml
3
/
2
Doc 42
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0708.3201/0708.3201_1_15.xhtml
3
/
2
Doc 43
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/math0508190/math0508190_1_24.xhtml
3
/
2
Doc 44
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/10/hep-th9607190/hep-th9607190_1_14.xhtml
3
/
2
Doc 45
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/3/astro-ph0311495/astro-ph0311495_1_12.xhtml
3
/
2
Doc 46
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/11/hep-th9910001/hep-th9910001_1_44.xhtml
3
/
2
Doc 47
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/quant-ph0208062/quant-ph0208062_1_51.xhtml
3
/
2
Doc 48
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/8/1111.5896/1111.5896_1_39.xhtml
3
/
2
Doc 49
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/6/0812.2196/0812.2196_1_10.xhtml
3
/
2
Doc 50
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/math0204157/math0204157_1_11.xhtml
3
/
2
Doc 51
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/1/0712.3226/0712.3226_1_9.xhtml
3
/
2
Doc 52
0.3000
0.0000
4.0000
0.3000
testing/NTCIR/xhtml5/9/1310.7167/1310.7167_1_63.xhtml
3
/
2
Doc 53
0.3000
-1.0000
4.0000
0.3000
testing/NTCIR/xhtml5/3/hep-th0302069/hep-th0302069_1_3.xhtml
3
/
2
H
Doc 54
0.3000
-2.0000
4.0000
0.9000
testing/NTCIR/xhtml5/6/0909.3571/0909.3571_1_29.xhtml
q
<
3
/
2
q
=
3
/
2
,
q
>
-
3
/
2
Doc 55
0.3000
-2.0000
4.0000
0.6000
testing/NTCIR/xhtml5/7/1009.3688/1009.3688_1_58.xhtml
τ
>
3
/
2
τ
≤
3
/
2
Doc 56
0.3000
-2.0000
4.0000
0.6000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_102.xhtml
β
≥
3
/
2
3
/
2
≃
1.22474
Doc 57
0.3000
-2.0000
4.0000
0.6000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_164.xhtml
β
<
3
/
2
β
≥
3
/
2
Doc 58
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/6/0912.0067/0912.0067_1_42.xhtml
λ
=
3
/
2
Doc 59
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/3/hep-th0503045/hep-th0503045_1_119.xhtml
ν
≥
3
/
2
Doc 60
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/6/0912.4669/0912.4669_1_32.xhtml
k
=
3
/
2
Doc 61
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_10.xhtml
β
≥
3
/
2
Doc 62
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_50.xhtml
β
≥
3
/
2
Doc 63
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/hep-th0506265/hep-th0506265_1_25.xhtml
g
=
3
/
2
Doc 64
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/3/math0310372/math0310372_1_157.xhtml
β
=
3
/
2
Doc 65
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/hep-th0511305/hep-th0511305_1_21.xhtml
α
>
3
/
2
Doc 66
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_60.xhtml
β
<
3
/
2
Doc 67
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/6/0909.0008/0909.0008_1_31.xhtml
c
=
3
/
2
Doc 68
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/math0511325/math0511325_1_77.xhtml
M
>
3
/
2
Doc 69
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_111.xhtml
β
≥
3
/
2
Doc 70
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_106.xhtml
β
≥
3
/
2
Doc 71
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_59.xhtml
β
≥
3
/
2
Doc 72
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/8/1110.2045/1110.2045_1_59.xhtml
γ
=
3
/
2
Doc 73
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/hep-ph0604250/hep-ph0604250_1_24.xhtml
r
=
3
/
2
Doc 74
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/3/hep-th0406108/hep-th0406108_1_15.xhtml
α
=
3
/
2
Doc 75
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/7/1009.3688/1009.3688_1_84.xhtml
τ
<
3
/
2
Doc 76
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_189.xhtml
β
≥
3
/
2
Doc 77
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/hep-ph0604250/hep-ph0604250_1_8.xhtml
r
=
3
/
2
Doc 78
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/hep-ph0604250/hep-ph0604250_1_6.xhtml
r
=
3
/
2
Doc 79
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/7/1010.3331/1010.3331_1_19.xhtml
𝒩
=
3
/
2
Doc 80
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/9/1212.1072/1212.1072_1_22.xhtml
3
/
2
h
+
Doc 81
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/3/hep-th0310160/hep-th0310160_1_43.xhtml
1.2247...
=
3
/
2
Doc 82
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/hep-lat0112017/hep-lat0112017_1_77.xhtml
±
ı
3
/
2
Doc 83
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/10/hep-th9607190/hep-th9607190_1_23.xhtml
R
=
3
/
2
Doc 84
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/math0511186/math0511186_1_24.xhtml
α
p
(
d
)
≤
1
Doc 85
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/7/1104.1888/1104.1888_1_38.xhtml
3
/
2
=
1.22...
Doc 86
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/7/1006.2400/1006.2400_1_8.xhtml
r
=
3
/
2
Doc 87
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/11/math-ph9908018/math-ph9908018_1_55.xhtml
ρ
=
3
/
2
Doc 88
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/5/0804.4388/0804.4388_1_55.xhtml
β
≥
3
/
2
Doc 89
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/10/hep-th9904011/hep-th9904011_1_27.xhtml
A
=
3
/
2
Doc 90
0.3000
-2.0000
4.0000
0.3000
testing/NTCIR/xhtml5/7/1011.1101/1011.1101_1_34.xhtml
β
=
3
/
2
Doc 91
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/1/cond-mat0006313/cond-mat0006313_1_5.xhtml
Ω
i
=
3
/
2
Doc 92
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/cond-mat0203294/cond-mat0203294_1_37.xhtml
R
=
3
/
2
π
Doc 93
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/cond-mat0203294/cond-mat0203294_1_28.xhtml
R
=
3
/
2
π
Doc 94
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/cond-mat0203294/cond-mat0203294_1_39.xhtml
R
=
3
/
2
π
Doc 95
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/1/math0008120/math0008120_1_6.xhtml
u
=
d
3
/
2
Doc 96
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/cond-mat0203294/cond-mat0203294_1_21.xhtml
R
=
3
/
2
π
Doc 97
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/cond-mat0203294/cond-mat0203294_1_25.xhtml
R
=
3
/
2
π
Doc 98
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/cond-mat0203294/cond-mat0203294_1_16.xhtml
R
=
3
/
2
π
Doc 99
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/cond-mat0203294/cond-mat0203294_1_38.xhtml
R
=
3
/
2
π
Doc 100
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/7/1105.5268/1105.5268_1_37.xhtml
u
n
=
3
/
2
Doc 101
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/2/cond-mat0203294/cond-mat0203294_1_36.xhtml
R
=
3
/
2
π
Doc 102
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/6/0909.3571/0909.3571_1_19.xhtml
q
=
3
/
2
,
Doc 103
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/1/hep-th0008188/hep-th0008188_1_34.xhtml
q
=
±
3
/
2
Doc 104
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/9/1301.1174/1301.1174_1_37.xhtml
u
=
3
/
2
φ
Doc 105
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/4/hep-th0512171/hep-th0512171_1_148.xhtml
ϕ
′
≤
3
/
2
Doc 106
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/9/1301.1174/1301.1174_1_26.xhtml
u
=
3
/
2
φ
Doc 107
0.3000
-3.0000
4.0000
0.3000
testing/NTCIR/xhtml5/10/hep-th9906117/hep-th9906117_1_21.xhtml
γ
=
3
/
2
δ
Doc 108
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/7/1103.5609/1103.5609_1_64.xhtml
α
(
G
)
≤
1
/
2
Doc 109
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/1/math0612018/math0612018_1_29.xhtml
(
5
+
1
)
/
2
Doc 110
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/5/0801.0558/0801.0558_1_133.xhtml
(
5
+
1
)
/
2
Doc 111
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/1/math0610717/math0610717_1_11.xhtml
(
5
+
1
)
/
2
Doc 112
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/5/0801.0273/0801.0273_1_101.xhtml
ln
(
2
+
3
)
Doc 113
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/6/0908.2558/0908.2558_1_12.xhtml
(
5
+
1
)
/
2
Doc 114
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/4/math0601689/math0601689_1_55.xhtml
α
(
k
)
≤
1
/
2
Doc 115
0.3000
-3.0000
3.0000
0.3000
testing/NTCIR/xhtml5/7/1009.2373/1009.2373_1_122.xhtml
(
5
+
1
)
/
2
Doc 116
0.3000
-3.0000
2.0000
0.3000
testing/NTCIR/xhtml5/3/cs0304023/cs0304023_1_56.xhtml
γ
(
R
)
≤
3
/
2
Doc 117
0.3000
-6.0000
4.0000
0.3000
testing/NTCIR/xhtml5/6/0907.1278/0907.1278_1_36.xhtml
0
≤
g
(
0
)
≤
3
/
2
Doc 118
0.3000
-7.0000
4.0000
0.3000
testing/NTCIR/xhtml5/6/0909.2159/0909.2159_1_53.xhtml
(
3
+
1
)
/
2
<
n
≤
2
Doc 119
0.3000
-8.0000
3.0000
0.6000
testing/NTCIR/xhtml5/7/1011.3797/1011.3797_1_189.xhtml
α
(
S
f
)
≤
α
(
S
)
+
ε
/
2
α
(
T
g
)
≤
α
(
T
)
+
ε
/
2
Doc 120
0.3000
-8.0000
2.0000
0.3000
testing/NTCIR/xhtml5/8/1109.2316/1109.2316_1_8.xhtml
p
(
n
)
≤
c
(
d
)
n
-
3
/
2
Doc 121
0.3000
-13.0000
4.0000
0.3000
testing/NTCIR/xhtml5/1/hep-th0004126/hep-th0004126_1_19.xhtml
σ
+
=
3
/
2
(
Λ
+
+
Λ
-
)
/
κ
Doc 122
0.2105
-2.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/0704.0565/0704.0565_1_33.xhtml
3
/
2
+
ε
Doc 123
0.2105
-2.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1206.4727/1206.4727_1_12.xhtml
3
/
2
+
ε
Doc 124
0.2105
-3.0000
3.0000
0.4211
testing/NTCIR/xhtml5/3/gr-qc0411129/gr-qc0411129_1_35.xhtml
(
3
/
2
)
2
(
3
/
2
)
2
/
5
=
3
/
20
Doc 125
0.2105
-3.0000
3.0000
0.4211
testing/NTCIR/xhtml5/4/gr-qc0512160/gr-qc0512160_1_137.xhtml
(
3
/
2
)
2
(
3
/
2
)
2
/
5
=
3
/
20
Doc 126
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/hep-ph0703027/hep-ph0703027_1_148.xhtml
3
m
3
/
2
Doc 127
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/5/0709.3384/0709.3384_1_6.xhtml
(
3
/
2
+
ε
)
Doc 128
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1211.1057/1211.1057_1_458.xhtml
≤
(
3
/
2
)
s
Doc 129
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/3/math0405148/math0405148_1_64.xhtml
3
+
3
/
2
Doc 130
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/9/1212.3823/1212.3823_1_87.xhtml
Θ
(
d
3
/
2
)
Doc 131
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0511343/math0511343_1_89.xhtml
O
(
d
3
/
2
)
Doc 132
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0511343/math0511343_1_87.xhtml
O
(
d
3
/
2
)
Doc 133
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1101.4070/1101.4070_1_83.xhtml
L
3
/
2
+
ε
Doc 134
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1210.6228/1210.6228_1_19.xhtml
3
/
2
<
3
Doc 135
0.2105
-3.0000
3.0000
0.2105
testing/NTCIR/xhtml5/1/hep-th9908090/hep-th9908090_1_14.xhtml
(
3
/
2
)
3
Doc 136
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/10/math9401201/math9401201_1_91.xhtml
len
(
w
)
≤
3
/
2
Doc 137
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/8/1206.2717/1206.2717_1_13.xhtml
c
n
3
/
2
+
ε
Doc 138
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0510506/math0510506_1_111.xhtml
1
-
(
3
/
2
)
Doc 139
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1004.5285/1004.5285_1_46.xhtml
𝒪
~
(
d
3
/
2
)
Doc 140
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1004.5285/1004.5285_1_48.xhtml
𝒪
~
(
d
3
/
2
)
Doc 141
0.2105
-4.0000
3.0000
0.2105
testing/NTCIR/xhtml5/6/0911.3895/0911.3895_1_35.xhtml
t
3
/
2
α
(
1
)
Doc 142
0.2105
-9.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0505358/math0505358_1_35.xhtml
σ
Y
=
D
/
(
3
c
3
/
2
)
Doc 143
0.2105
-9.0000
3.0000
0.2105
testing/NTCIR/xhtml5/7/1102.4879/1102.4879_1_69.xhtml
+
O
(
d
k
-
3
/
2
+
ε
)
,
Doc 144
0.2105
-9.0000
3.0000
0.2105
testing/NTCIR/xhtml5/4/math0511528/math0511528_1_70.xhtml
σ
Y
=
D
/
(
3
c
3
/
2
)