tangent
Not Supported
[
A
]
t
=
-
k
t
+
[
A
]
0
Search
Returned 83 matches (100 formulae, 117 docs)
Lookup 184.350 ms, Re-ranking 105.812 ms
Found 1131075 tuple postings, 940664 formulae, 699882 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5217
-3.0000
4.0000
0.5217
testing/NTCIR/xhtml5/2/hep-th0110046/hep-th0110046_1_7.xhtml
W
[
A
]
=
-
ln
Z
[
A
]
Doc 2
0.5217
-3.0000
4.0000
0.5217
testing/NTCIR/xhtml5/2/hep-th0110046/hep-th0110046_1_5.xhtml
W
[
A
]
=
-
ln
Z
[
A
]
Doc 3
0.5217
-4.0000
4.0000
0.5217
testing/NTCIR/xhtml5/2/hep-th0202053/hep-th0202053_1_54.xhtml
[
A
μ
]
L
=
-
i
A
μ
,
Doc 4
0.5217
-8.0000
5.0000
0.5217
testing/NTCIR/xhtml5/9/hep-th9111034/hep-th9111034_1_15.xhtml
Γ
ind
[
A
]
=
-
k
Γ
W
Z
W
[
A
]
,
Doc 5
0.4615
-6.0000
6.0000
0.4615
testing/NTCIR/xhtml5/9/1311.6095/1311.6095_1_37.xhtml
θ
k
=
-
k
t
+
θ
0
(
t
)
.
Doc 6
0.4615
-8.0000
5.0000
0.9231
testing/NTCIR/xhtml5/6/0902.4143/0902.4143_1_75.xhtml
12
[
h
]
=
-
3
t
+
3
[
h
]
+
[
P
]
6
[
H
]
=
-
2
t
+
2
[
H
]
+
[
P
]
Doc 7
0.4255
-1.0000
4.0000
0.4255
testing/NTCIR/xhtml5/8/1109.6697/1109.6697_1_33.xhtml
Q
[
x
]
=
-
k
Doc 8
0.4255
-1.0000
4.0000
0.4255
testing/NTCIR/xhtml5/8/1109.6697/1109.6697_1_76.xhtml
Q
[
x
]
=
-
k
Doc 9
0.4255
-1.0000
4.0000
0.4255
testing/NTCIR/xhtml5/8/1109.6697/1109.6697_1_64.xhtml
Q
[
y
]
=
-
k
Doc 10
0.4255
-1.0000
4.0000
0.4255
testing/NTCIR/xhtml5/8/1109.6697/1109.6697_1_7.xhtml
Q
[
x
]
=
-
k
Doc 11
0.4255
-2.0000
5.0000
0.4255
testing/NTCIR/xhtml5/4/gr-qc0601002/gr-qc0601002_1_3.xhtml
=
-
k
t
+
τ
b
Doc 12
0.4255
-2.0000
4.0000
0.4255
testing/NTCIR/xhtml5/8/1109.6697/1109.6697_1_5.xhtml
Q
[
x
]
=
-
k
.
Doc 13
0.4255
-5.0000
4.0000
0.4255
testing/NTCIR/xhtml5/9/1212.5703/1212.5703_1_16.xhtml
Tr
[
A
B
]
=
-
Tr
[
B
A
]
Doc 14
0.4255
-5.0000
4.0000
0.4255
testing/NTCIR/xhtml5/7/1007.2651/1007.2651_1_2.xhtml
L
[
A
]
=
-
S
/
(
4
π
)
Doc 15
0.4255
-7.0000
4.0000
0.4255
testing/NTCIR/xhtml5/10/hep-th9610006/hep-th9610006_1_35.xhtml
sign
[
A
j
]
=
-
sign
[
A
j
+
1
]
Doc 16
0.3614
-4.0000
4.0000
0.3614
testing/NTCIR/xhtml5/3/hep-th0403227/hep-th0403227_1_31.xhtml
-
k
3
t
~
+
C
1
,
Doc 17
0.3614
-9.0000
4.0000
0.3614
testing/NTCIR/xhtml5/3/hep-th0410020/hep-th0410020_1_16.xhtml
E
Q
[
A
]
=
-
1
V
T
S
Q
[
A
]
Doc 18
0.3614
-11.0000
4.0000
0.3614
testing/NTCIR/xhtml5/7/1103.3150/1103.3150_1_7.xhtml
Γ
spinor
[
A
]
=
-
2
Γ
scalar
[
A
]
-
Δ
Γ
[
A
]
Doc 19
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math-ph0203001/math-ph0203001_1_127.xhtml
α
=
-
k
t
Doc 20
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math-ph0203001/math-ph0203001_1_132.xhtml
α
=
-
k
t
Doc 21
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/7/1009.4811/1009.4811_1_11.xhtml
[
A
]
=
-
1
Doc 22
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math-ph0203001/math-ph0203001_1_128.xhtml
α
=
-
k
t
Doc 23
0.3288
-1.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/math-ph0203001/math-ph0203001_1_129.xhtml
α
=
-
k
t
Doc 24
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/10/hep-th9804036/hep-th9804036_1_38.xhtml
(
[
A
]
=
-
1
)
Doc 25
0.3288
-2.0000
4.0000
0.3288
testing/NTCIR/xhtml5/2/gr-qc0110070/gr-qc0110070_1_3.xhtml
φ
k
=
-
k
t
Doc 26
0.3288
-3.0000
4.0000
0.3288
testing/NTCIR/xhtml5/4/math0601540/math0601540_1_105.xhtml
[
A
m
]
2
=
-
3
Doc 27
0.3288
-3.0000
3.0000
0.6575
testing/NTCIR/xhtml5/6/1003.4632/1003.4632_1_17.xhtml
[
A
]
ℱ
=
[
A
]
𝒢
[
A
]
ℱ
=
[
A
]
𝖫
Doc 28
0.3288
-3.0000
3.0000
0.6575
testing/NTCIR/xhtml5/6/1003.4632/1003.4632_1_11.xhtml
[
A
]
ℱ
=
[
A
]
𝒢
[
A
]
ℱ
=
[
A
]
𝖫
Doc 29
0.3288
-3.0000
3.0000
0.3288
testing/NTCIR/xhtml5/6/1003.4632/1003.4632_1_104.xhtml
[
A
]
𝖫𝗂𝗉
=
[
A
]
𝖫
Doc 30
0.3288
-4.0000
4.0000
0.3288
testing/NTCIR/xhtml5/1/hep-th0002151/hep-th0002151_1_1.xhtml
ν
[
A
]
=
-
3
/
2
Doc 31
0.2581
-4.0000
3.0000
0.2581
testing/NTCIR/xhtml5/10/hep-th9406025/hep-th9406025_1_14.xhtml
W
[
A
]
=
ln
Z
[
A
]
Doc 32
0.2581
-5.0000
3.0000
0.4888
testing/NTCIR/xhtml5/10/hep-th9606156/hep-th9606156_1_17.xhtml
[
A
]
[
A
]
=
[
I
]
+
…
[
A
]
[
A
]
[
A
]
=
[
A
]
Doc 33
0.2581
-5.0000
3.0000
0.2581
testing/NTCIR/xhtml5/2/math0208226/math0208226_1_55.xhtml
[
A
]
0
=
[
B
]
0
=
K
Doc 34
0.2581
-6.0000
3.0000
0.2581
testing/NTCIR/xhtml5/9/1311.1736/1311.1736_1_28.xhtml
[
A
]
=
∑
i
a
i
[
A
i
]
Doc 35
0.2581
-6.0000
3.0000
0.2581
testing/NTCIR/xhtml5/10/hep-th9805192/hep-th9805192_1_32.xhtml
△
F
[
A
]
=
det
M
[
A
]
,
Doc 36
0.2581
-6.0000
3.0000
0.2581
testing/NTCIR/xhtml5/4/hep-th0512060/hep-th0512060_1_62.xhtml
△
F
[
A
]
=
det
M
[
A
]
,
Doc 37
0.2581
-11.0000
4.0000
0.2581
testing/NTCIR/xhtml5/5/0808.3475/0808.3475_1_22.xhtml
[
∂
¯
]
+
[
A
^
]
=
[
∂
^
]
+
[
A
¯
]
Doc 38
0.2581
-12.0000
4.0000
0.2581
testing/NTCIR/xhtml5/9/1311.1736/1311.1736_1_33.xhtml
⇔
[
A
1
]
+
[
B
2
]
=
[
A
2
]
+
[
B
1
]
Doc 39
0.2308
0.0000
3.0000
0.4615
testing/NTCIR/xhtml5/9/1308.4182/1308.4182_1_121.xhtml
[
A
]
0
[
A
]
0
=
ℤ
Doc 40
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0708.2591/0708.2591_1_36.xhtml
[
A
]
t
Doc 41
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math-ph0208025/math-ph0208025_1_5.xhtml
-
k
t
Doc 42
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/1003.4703/1003.4703_1_155.xhtml
=
-
k
Doc 43
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1212.3335/1212.3335_1_38.xhtml
=
-
k
Doc 44
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0708.2591/0708.2591_1_33.xhtml
[
A
]
t
Doc 45
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/hep-th0005233/hep-th0005233_1_87.xhtml
[
A
]
=
Doc 46
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/alg-geom9505010/alg-geom9505010_1_16.xhtml
[
A
]
0
Doc 47
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/hep-th0109050/hep-th0109050_1_25.xhtml
-
k
t
Doc 48
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math-ph0504028/math-ph0504028_1_20.xhtml
-
k
t
Doc 49
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1308.4182/1308.4182_1_119.xhtml
[
A
]
0
Doc 50
0.2308
0.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1308.4182/1308.4182_1_123.xhtml
[
A
]
0
Doc 51
0.2308
-3.0000
3.0000
0.6923
testing/NTCIR/xhtml5/2/math0210350/math0210350_1_17.xhtml
[
A
]
=
[
A
′
]
[
A
]
=
[
B
]
+
[
C
]
[
A
×
B
]
=
[
A
]
[
B
]
Doc 52
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0202167/math0202167_1_80.xhtml
[
A
]
=
[
A
′
]
Doc 53
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/0905.0795/0905.0795_1_91.xhtml
[
A
t
]
=
[
A
]
Doc 54
0.2308
-3.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1006.2795/1006.2795_1_142.xhtml
[
A
↓
]
=
[
A
]
Doc 55
0.2308
-4.0000
3.0000
0.4615
testing/NTCIR/xhtml5/8/1207.4658/1207.4658_1_80.xhtml
[
A
]
+
[
A
]
=
0
[
A
1
]
+
[
A
2
]
=
0
Doc 56
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1207.5599/1207.5599_1_133.xhtml
Y
[
A
]
=
X
[
A
]
Doc 57
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0804.1268/0804.1268_1_30.xhtml
Pr
[
A
]
=
F
-
k
Doc 58
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/1110.2852/1110.2852_1_11.xhtml
[
A
]
⋅
[
A
]
=
0
Doc 59
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0108197/math0108197_1_80.xhtml
[
A
0
]
=
[
A
1
]
Doc 60
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/quant-ph0001108/quant-ph0001108_1_36.xhtml
[
-
k
]
=
-
[
k
]
Doc 61
0.2308
-4.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1102.0856/1102.0856_1_247.xhtml
Y
[
A
]
=
X
[
A
]
Doc 62
0.2308
-5.0000
3.0000
0.6923
testing/NTCIR/xhtml5/7/1104.3950/1104.3950_1_24.xhtml
r
↾
[
A
]
=
id
[
A
]
s
↾
[
A
]
=
id
[
A
]
s
V
↾
[
A
]
=
id
[
A
]
Doc 63
0.2308
-5.0000
3.0000
0.4615
testing/NTCIR/xhtml5/1/hep-th9610221/hep-th9610221_1_17.xhtml
S
[
A
g
]
=
S
[
A
]
J
𝒢
[
A
g
]
=
J
𝒢
[
A
]
Doc 64
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_154.xhtml
[
A
]
+
=
[
A
𝒞
]
+
Doc 65
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9502083/hep-th9502083_1_20.xhtml
Δ
[
A
h
]
=
Δ
[
A
]
Doc 66
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9502083/hep-th9502083_1_6.xhtml
Δ
[
A
]
=
Δ
[
A
g
]
Doc 67
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1212.4102/1212.4102_1_38.xhtml
W
[
A
U
]
=
W
[
A
]
Doc 68
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0602497/math0602497_1_154.xhtml
[
A
i
]
=
[
A
~
i
]
Doc 69
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0602497/math0602497_1_157.xhtml
[
A
i
]
=
[
A
~
i
]
Doc 70
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0602497/math0602497_1_155.xhtml
[
A
i
]
=
[
A
~
i
]
Doc 71
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/math0602497/math0602497_1_150.xhtml
[
A
i
]
=
[
A
~
i
]
Doc 72
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_127.xhtml
[
A
]
+
=
[
A
𝒞
]
+
Doc 73
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1202.5802/1202.5802_1_49.xhtml
[
A
]
+
=
[
A
J
]
+
Doc 74
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/6/0904.3490/0904.3490_1_15.xhtml
G
~
[
A
]
=
G
[
A
]
Doc 75
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/hep-lat0412041/hep-lat0412041_1_28.xhtml
Δ
[
A
ω
]
=
Δ
[
A
]
Doc 76
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0808.2436/0808.2436_1_5.xhtml
F
[
A
θ
]
=
F
[
A
]
Doc 77
0.2308
-5.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1309.4623/1309.4623_1_207.xhtml
ν
[
A
]
=
μ
*
[
A
]
Doc 78
0.2308
-5.0000
2.0000
0.2308
testing/NTCIR/xhtml5/4/math0510634/math0510634_1_37.xhtml
[
D
]
=
[
A
]
+
[
N
]
Doc 79
0.2308
-5.0000
2.0000
0.2308
testing/NTCIR/xhtml5/4/math0510634/math0510634_1_38.xhtml
[
D
]
=
[
A
]
+
[
N
]
Doc 80
0.2308
-6.0000
3.0000
0.4615
testing/NTCIR/xhtml5/9/1309.4623/1309.4623_1_208.xhtml
μ
*
[
A
]
=
μ
[
A
^
]
μ
*
[
A
c
]
=
μ
[
A
^
c
]
Doc 81
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/1/math0003212/math0003212_1_80.xhtml
[
A
n
]
=
[
A
l
,
n
]
Doc 82
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9806150/hep-th9806150_1_5.xhtml
Ψ
[
A
Ω
]
=
Ψ
[
A
]
.
Doc 83
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-ph9408346/hep-ph9408346_1_51.xhtml
[
A
]
±
†
=
±
[
A
]
±
Doc 84
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/3/cs0404024/cs0404024_1_214.xhtml
e
1
[
A
]
=
e
2
[
A
]
Doc 85
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1210.2044/1210.2044_1_58.xhtml
ℋ
[
A
-
k
]
=
B
-
k
Doc 86
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/hep-th0211151/hep-th0211151_1_7.xhtml
𝒵
[
A
]
=
𝒵
[
A
⟂
]
.
Doc 87
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9712132/hep-th9712132_1_9.xhtml
I
[
A
]
=
I
C
S
[
A
]
Doc 88
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1110.6262/1110.6262_1_2.xhtml
π
[
A
×
ℝ
]
=
μ
[
A
]
Doc 89
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/4/hep-th0702155/hep-th0702155_1_63.xhtml
S
c
l
[
A
]
=
W
[
A
]
Doc 90
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/gr-qc0207066/gr-qc0207066_1_64.xhtml
Tr
[
A
¯
]
=
Tr
[
A
]
*
Doc 91
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0707.2860/0707.2860_1_22.xhtml
P
[
A
;
K
[
A
′
]
]
=
Doc 92
0.2308
-6.0000
3.0000
0.2308
testing/NTCIR/xhtml5/10/hep-th9902075/hep-th9902075_1_18.xhtml
[
3
]
=
-
1
+
[
2
]
2
Doc 93
0.2308
-6.0000
2.0000
0.2308
testing/NTCIR/xhtml5/7/1006.1132/1006.1132_1_75.xhtml
φ
[
E
[
A
]
]
=
φ
[
A
]
Doc 94
0.2308
-6.0000
2.0000
0.2308
testing/NTCIR/xhtml5/2/math-ph0202024/math-ph0202024_1_17.xhtml
[
A
]
[
B
]
=
[
A
⊗
B
]
Doc 95
0.2308
-7.0000
3.0000
0.4615
testing/NTCIR/xhtml5/7/1102.0856/1102.0856_1_245.xhtml
X
[
A
]
=
Y
[
A
]
∪
α
¯
Y
[
A
]
=
X
[
A
]
∪
β
¯
Doc 96
0.2308
-7.0000
3.0000
0.4615
testing/NTCIR/xhtml5/8/1207.5599/1207.5599_1_131.xhtml
X
[
A
]
=
Y
[
A
]
∪
α
¯
Y
[
A
]
=
X
[
A
]
∪
β
¯
Doc 97
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0803.3708/0803.3708_1_7.xhtml
[
A
∐
B
]
=
[
A
]
+
[
B
]
Doc 98
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1203.3344/1203.3344_1_7.xhtml
[
A
∐
B
]
=
[
A
]
+
[
B
]
Doc 99
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1102.0856/1102.0856_1_249.xhtml
X
[
A
]
=
Y
[
A
]
∪
B
e
Doc 100
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0108197/math0108197_1_121.xhtml
[
A
]
=
[
A
1
]
+
[
A
2
]
Doc 101
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0706.0435/0706.0435_1_9.xhtml
[
A
2
δ
]
=
[
A
2
δ
′
]
Doc 102
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0706.0435/0706.0435_1_60.xhtml
[
A
2
δ
]
=
[
A
2
δ
′
]
Doc 103
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1207.5599/1207.5599_1_134.xhtml
Y
[
A
]
=
X
[
A
]
∪
B
e
Doc 104
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/9/1301.0885/1301.0885_1_318.xhtml
[
A
]
[
A
]
t
=
I
s
×
s
Doc 105
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1102.0856/1102.0856_1_248.xhtml
Y
[
A
]
=
X
[
A
]
∪
B
e
Doc 106
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1207.5599/1207.5599_1_135.xhtml
X
[
A
]
=
Y
[
A
]
∪
B
e
Doc 107
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/5/0706.0435/0706.0435_1_193.xhtml
[
A
2
δ
]
=
[
A
2
δ
′
]
Doc 108
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/8/1202.3432/1202.3432_1_13.xhtml
𝒪
inv
[
A
U
]
=
𝒪
inv
[
A
]
Doc 109
0.2308
-7.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0201099/math0201099_1_171.xhtml
[
A
0
]
=
[
A
2
]
+
[
A
]
Doc 110
0.2308
-7.0000
2.0000
0.2308
testing/NTCIR/xhtml5/5/0809.2713/0809.2713_1_35.xhtml
[
A
]
-
[
B
]
+
[
U
]
=
0
Doc 111
0.2308
-7.0000
2.0000
0.2308
testing/NTCIR/xhtml5/2/math0111066/math0111066_1_45.xhtml
[
A
]
+
[
B
]
:=
[
A
⊕
B
]
Doc 112
0.2308
-7.0000
2.0000
0.2308
testing/NTCIR/xhtml5/8/1108.5448/1108.5448_1_115.xhtml
[
A
]
[
B
]
=
[
A
b
B
b
]
Doc 113
0.2308
-7.0000
2.0000
0.2308
testing/NTCIR/xhtml5/5/0809.1647/0809.1647_1_135.xhtml
[
A
]
→
[
A
-
a
]
+
[
a
]
Doc 114
0.2308
-8.0000
3.0000
0.2308
testing/NTCIR/xhtml5/2/math0301246/math0301246_1_169.xhtml
[
A
k
+
1
]
=
[
A
]
+
[
F
]
Doc 115
0.2308
-11.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1012.2601/1012.2601_1_68.xhtml
[
A
]
t
-
i
⟶
ℓ
2
i
[
A
]
t
+
i
Doc 116
0.2308
-11.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1012.2601/1012.2601_1_66.xhtml
[
A
]
t
-
i
⟶
ℓ
2
i
[
A
]
t
+
i
Doc 117
0.2308
-12.0000
3.0000
0.2308
testing/NTCIR/xhtml5/7/1009.2458/1009.2458_1_152.xhtml
[
A
∘
Z
]
=
𝟏
A
[
Z
]
+
[
A
]
∧
[
Z
]