tangent
Not Supported
|
Ψ
>
=
∑
x0
Γ
x1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
x2
α
2
[
2
]
i
x3
λ
x4
x5
|
i
1
i
2
>
|
x6
>
Search
Returned 98 matches (100 formulae, 88 docs)
Lookup 56224.500 ms, Re-ranking 9680.461 ms
Found 109008516 tuple postings, 16019872 formulae, 5154113 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
|
ψ
>
=
∑
α
1
=
1
χ
1
…
∑
α
n
-
1
=
1
χ
n
-
1
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
…
λ
α
n
-
1
[
n
-
1
]
Γ
α
n
-
1
[
n
]
i
n
|
i
1
,
i
2
,
…
,
i
n
>
.
Doc 1
0.6125, -57.0000, 19.0000, 1.0061
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_9.xhtml
C
i
1
i
2
…
i
N
=
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
Γ
α
2
α
3
[
3
]
i
3
λ
α
3
[
3
]
⋯
λ
α
N
-
1
[
N
-
1
]
Γ
α
N
-
1
[
N
]
i
N
,
Doc 2
0.5858, -46.0000, 18.0000, 0.5858
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_49.xhtml
|
Ψ
⟩
=
∑
{
i
}
∑
{
α
}
(
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
…
λ
α
N
-
1
[
N
-
1
]
Γ
α
N
-
1
[
N
]
i
N
)
|
i
1
⟩
⊗
|
i
2
⟩
⊗
⋯
⊗
|
i
N
⟩
,
Doc 3
0.5732, -51.0000, 18.0000, 2.4317
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_50.xhtml
|
Ψ
⟩
=
∑
i
1
,
i
2
=
1
p
∑
α
1
=
1
min
(
p
,
D
)
∑
α
2
=
1
min
(
p
2
,
D
)
(
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
)
|
i
1
⟩
⊗
|
i
2
⟩
⊗
|
τ
α
2
[
3
⋯
N
]
⟩
.
Doc 3
0.5732, -51.0000, 18.0000, 2.4317
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_50.xhtml
|
ψ
2
n
×
2
n
>
=
∑
i
′
s
∑
α
′
s
Γ
α
1
α
2
(
1
)
i
1
Γ
α
2
α
3
(
2
)
i
2
…
Γ
α
n
α
1
(
n
)
i
n
|
i
n
,
…
i
2
,
i
1
>
Doc 4
0.4492, -35.0000, 13.0000, 0.4492
testing/NTCIR/xhtml5/4/quant-ph0510031/quant-ph0510031_1_8.xhtml
|
Ψ
⟩
=
∑
i
1
=
1
p
∑
α
1
=
1
min
(
p
,
D
)
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
|
i
1
⟩
⊗
|
τ
α
1
[
2
⋯
N
]
⟩
,
Doc 3
0.5732, -51.0000, 18.0000, 2.4317
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_50.xhtml
|
ω
α
1
i
2
[
3
⋯
N
]
⟩
=
∑
α
2
=
1
min
(
p
2
,
D
)
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
|
τ
α
2
[
3
⋯
N
]
⟩
.
Doc 3
0.5732, -51.0000, 18.0000, 2.4317
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_50.xhtml
|
τ
α
1
[
1
]
>
=
∑
i
1
Γ
α
1
[
1
]
i
1
|
i
1
>
Doc 3
0.5732, -51.0000, 18.0000, 2.4317
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_50.xhtml
ϵ
α
1
⋯
α
8
ϵ
β
1
⋯
β
8
Γ
α
1
α
2
i
1
i
2
⋯
Γ
α
7
α
8
i
7
i
8
Γ
β
1
β
2
j
1
j
2
⋯
Γ
β
7
β
8
j
7
j
8
×
Doc 5
0.2930, -37.0000, 6.0000, 0.2930
testing/NTCIR/xhtml5/3/hep-th0410176/hep-th0410176_1_26.xhtml
<
ψ
(
1
)
|
ψ
(
2
)
>
=
∑
0
,
d
∑
α
1
<
α
2
<
.
.
<
α
i
α
α
1
α
2
.
.
α
i
(
1
)
*
⋅
α
α
1
α
2
.
.
α
i
(
2
)
Doc 6
0.2843, -37.0000, 6.0000, 0.5687
testing/NTCIR/xhtml5/11/hep-th9911032/hep-th9911032_1_60.xhtml
<
u
(
1
)
|
u
(
2
)
>
=
∑
0
,
d
∑
α
1
<
α
2
<
.
.
<
α
i
α
α
1
α
2
.
.
α
i
(
1
)
⋅
α
α
1
α
2
.
.
α
i
(
2
)
,
Doc 6
0.2843, -37.0000, 6.0000, 0.5687
testing/NTCIR/xhtml5/11/hep-th9911032/hep-th9911032_1_60.xhtml
=
γ
i
0
i
1
i
2
i
3
i
4
[
1
]
-
2
h
i
0
i
1
i
2
i
3
λ
i
3
i
4
[
1
]
,
Doc 7
0.2528, -23.0000, 1.0000, 0.2528
testing/NTCIR/xhtml5/9/1303.5159/1303.5159_1_111.xhtml
C
n
α
=
∑
τ
i
1
(
1
)
…
i
α
1
(
1
)
τ
i
1
(
2
)
…
i
α
2
(
2
)
…
τ
i
1
(
s
)
…
i
α
s
(
s
)
,
Doc 8
0.2528, -30.0000, 2.0000, 0.2528
testing/NTCIR/xhtml5/5/0801.2496/0801.2496_1_155.xhtml
|
ψ
>
=
∑
i
1
i
2
…
i
n
=
0
,
1
t
r
(
A
[
1
]
i
1
A
[
2
]
i
2
…
A
[
n
]
i
n
)
|
i
1
,
i
2
,
…
,
i
n
>
.
Doc 9
0.2528, -38.0000, 4.0000, 0.2528
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_10.xhtml
Φ
I
=
∑
i
1
,
i
2
=
1
Ω
k
I
i
1
i
2
λ
i
1
λ
i
2
Doc 10
0.2475, -13.0000, 4.0000, 0.2475
testing/NTCIR/xhtml5/10/hep-th9607160/hep-th9607160_1_22.xhtml
|
Ψ
>
=
∑
i
1
i
2
…
i
N
C
i
1
i
2
…
i
N
|
i
1
>
⊗
|
i
2
>
⊗
⋯
⊗
|
i
N
>
Doc 11
0.2475, -25.0000, 8.0000, 0.2475
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_28.xhtml
|
ψ
>
1
,
…
,
n
=
∑
i
1
=
1
d
…
∑
i
n
=
1
d
tr
(
A
i
1
[
1
]
…
A
i
n
[
n
]
)
|
i
1
,
…
,
i
n
>
,
Doc 12
0.2475, -34.0000, 8.0000, 0.2475
testing/NTCIR/xhtml5/9/1309.3789/1309.3789_1_14.xhtml
Doc 13
0.2475, -34.0000, 8.0000, 0.2475
testing/NTCIR/xhtml5/8/1206.2947/1206.2947_1_18.xhtml
Q
k
=
∑
n
≥
i
1
>
i
2
>
⋯
>
i
k
≥
1
i
k
z
i
1
i
2
z
i
2
i
3
…
z
i
k
i
1
∂
i
1
∂
i
2
…
∂
i
k
Doc 14
0.2475, -35.0000, 3.0000, 0.2475
testing/NTCIR/xhtml5/10/hep-th9404173/hep-th9404173_1_11.xhtml
ℋ
2
=
{
∑
i
1
,
i
2
λ
i
1
i
2
a
¯
i
1
a
¯
i
2
|
0
>
|
i
1
,
i
2
∈
I
}
Doc 15
0.2374, -24.0000, 3.0000, 0.2374
testing/NTCIR/xhtml5/10/q-alg9510005/q-alg9510005_1_10.xhtml
e
α
1
,
-
i
1
e
α
1
,
-
i
2
…
e
α
1
,
-
i
m
1
f
α
2
,
-
i
1
f
α
2
,
-
i
2
…
f
α
2
,
-
i
m
2
|
𝐯
0
>
Doc 16
0.2374, -40.0000, 2.0000, 0.2374
testing/NTCIR/xhtml5/3/cond-mat0409369/cond-mat0409369_1_44.xhtml
|
Ψ
⟩
=
∑
α
1
=
1
min
(
p
,
D
)
λ
α
1
[
1
]
|
τ
α
1
[
1
]
⟩
⊗
|
τ
α
1
[
2
⋯
N
]
⟩
,
Doc 3
0.5732, -51.0000, 18.0000, 2.4317
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_50.xhtml
|
χ
>
=
∑
{
α
i
}
,
{
n
i
}
χ
n
1
n
2
⋯
n
N
α
1
α
2
⋯
α
N
|
α
1
α
2
⋯
α
N
>
⊗
|
n
1
n
2
⋯
n
N
>
Doc 17
0.2366, -34.0000, 5.0000, 0.4291
testing/NTCIR/xhtml5/10/solv-int9809010/solv-int9809010_1_15.xhtml
|
Ψ
′
>
=
Σ
i
j
∈
{
0
,
1
}
c
i
1
i
2
…
i
N
|
i
1
>
|
i
2
>
⋯
|
i
N
>
Doc 18
0.2288, -23.0000, 8.0000, 0.4181
testing/NTCIR/xhtml5/5/quant-ph0703006/quant-ph0703006_1_29.xhtml
Doc 19
0.2288, -23.0000, 8.0000, 0.2288
testing/NTCIR/xhtml5/5/quant-ph0703006/quant-ph0703006_1_25.xhtml
m
{
α
}
(
z
)
=
∑
z
i
1
α
1
z
i
2
α
2
…
z
i
N
α
N
,
Doc 20
0.2201, -14.0000, 2.0000, 0.2201
testing/NTCIR/xhtml5/5/0708.1139/0708.1139_1_10.xhtml
⟨
ϵ
α
1
α
2
…
α
N
f
/
2
M
i
1
α
1
M
i
2
α
2
…
M
i
N
f
/
2
α
N
f
/
2
⟩
≠
0
,
Doc 21
0.2201, -28.0000, 3.0000, 0.2201
testing/NTCIR/xhtml5/1/hep-th0511121/hep-th0511121_1_18.xhtml
|
ψ
>
=
∑
i
1
,
i
2
,
…
,
i
n
=
0
,
1
c
i
1
i
2
…
i
n
|
i
1
,
i
2
,
…
,
i
n
>
.
Doc 22
0.2201, -30.0000, 5.0000, 0.2201
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_1.xhtml
h
m
(
p
i
1
,
…
,
p
i
n
)
=
∑
α
1
+
⋯
+
α
n
=
m
p
i
1
α
1
p
i
2
α
2
⋯
p
i
n
α
n
,
Doc 23
0.2201, -30.0000, 2.0000, 0.2201
testing/NTCIR/xhtml5/7/1009.1886/1009.1886_1_39.xhtml
|
α
1
>
2
=
Γ
α
1
α
2
[
2
]
i
2
|
α
2
>
2
Doc 1
0.6125, -57.0000, 19.0000, 1.0061
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_9.xhtml
m
=
p
i
1
α
1
p
i
2
α
2
⋯
p
i
n
α
n
Doc 24
0.2104, -12.0000, 1.0000, 0.2104
testing/NTCIR/xhtml5/5/0811.2644/0811.2644_1_23.xhtml
Doc 25
0.2104, -12.0000, 1.0000, 0.2104
testing/NTCIR/xhtml5/5/0709.0762/0709.0762_1_12.xhtml
=
∑
i
1
<
i
2
<
⋯
<
i
k
z
i
1
α
1
z
i
2
α
2
⋯
z
i
k
α
k
.
Doc 26
0.2104, -20.0000, 2.0000, 0.3828
testing/NTCIR/xhtml5/4/math0508041/math0508041_1_205.xhtml
|
ψ
>
=
∑
i
1
,
…
,
i
k
α
i
1
,
…
,
i
k
|
i
1
,
…
,
i
k
>
,
Doc 27
0.2104, -21.0000, 6.0000, 0.2104
testing/NTCIR/xhtml5/6/1001.0018/1001.0018_1_20.xhtml
M
α
=
∑
i
1
<
i
2
<
⋯
<
i
k
x
i
1
α
1
x
i
2
α
2
⋯
x
i
k
α
k
Doc 28
0.2104, -21.0000, 2.0000, 0.2104
testing/NTCIR/xhtml5/5/0710.3965/0710.3965_1_35.xhtml
M
α
=
∑
i
1
<
i
2
<
⋯
<
i
ℓ
x
i
1
α
1
x
i
2
α
2
⋯
x
i
ℓ
α
ℓ
.
Doc 29
0.2104, -22.0000, 2.0000, 0.2104
testing/NTCIR/xhtml5/7/1004.2685/1004.2685_1_20.xhtml
𝐱
α
:=
∑
1
≤
i
1
<
i
2
<
⋯
<
i
k
x
i
1
α
1
x
i
2
α
2
⋯
x
i
k
α
k
.
Doc 30
0.2104, -24.0000, 1.0000, 0.2104
testing/NTCIR/xhtml5/5/0704.0836/0704.0836_1_14.xhtml
|
d
ζ
>
=
∑
i
3
i
2
i
1
=
0
,
1
d
ζ
i
3
i
2
i
1
0
|
i
3
i
2
i
1
0
>
Doc 31
0.2104, -25.0000, 4.0000, 0.2104
testing/NTCIR/xhtml5/7/1004.3639/1004.3639_1_47.xhtml
B
¯
i
1
i
2
i
3
=
ϵ
α
1
α
2
α
3
Q
¯
α
1
i
1
Q
¯
α
2
i
2
Q
¯
α
3
i
3
.
Doc 32
0.2079, -24.0000, 4.0000, 0.2079
testing/NTCIR/xhtml5/7/1106.5051/1106.5051_1_16.xhtml
-
i
4
c
i
1
j
1
α
1
c
i
2
j
2
α
2
c
i
3
j
3
α
3
d
α
1
α
2
β
d
β
α
3
α
,
Doc 33
0.2007, -27.0000, 0.0000, 0.2007
testing/NTCIR/xhtml5/4/hep-th0512174/hep-th0512174_1_33.xhtml
|
ψ
>
=
∑
i
1
,
i
2
,
⋯
,
i
m
a
i
1
i
2
⋯
i
m
|
i
1
i
2
⋯
i
m
>
∈
H
1
⊗
H
2
⊗
⋯
⊗
H
m
Doc 34
0.2007, -33.0000, 5.0000, 0.2007
testing/NTCIR/xhtml5/9/1308.3287/1308.3287_1_16.xhtml
f
α
n
α
n
-
1
i
n
-
1
⋯
f
α
3
α
2
i
2
f
α
2
α
1
i
1
=
a
i
1
i
2
⋯
i
n
-
1
i
n
f
α
n
α
1
i
n
.
Doc 35
0.2007, -37.0000, 3.0000, 0.3732
testing/NTCIR/xhtml5/2/hep-th0206152/hep-th0206152_1_7.xhtml
F
i
1
i
2
…
i
C
a
i
1
†
a
i
2
†
.
.
a
i
C
†
|
0
>
Doc 36
0.1925, -16.0000, 3.0000, 0.1925
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_12.xhtml
|
Ψ
>
=
∑
{
α
i
}
Ψ
α
1
α
2
⋯
α
N
|
α
1
α
2
⋯
α
N
>
,
Doc 17
0.2366, -34.0000, 5.0000, 0.4291
testing/NTCIR/xhtml5/10/solv-int9809010/solv-int9809010_1_15.xhtml
4
n
pixel
image
→
|
ψ
>
=
∑
i
1
…
i
n
=
1
4
c
i
1
…
i
n
|
i
1
…
,
i
n
>
Doc 37
0.1925, -23.0000, 5.0000, 0.1925
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_24.xhtml
|
ψ
>
=
∑
i
1
,
i
2
,
⋯
,
i
m
a
i
1
i
2
⋯
i
m
|
i
1
i
2
⋯
i
m
>
.
Doc 38
0.1925, -24.0000, 5.0000, 0.1925
testing/NTCIR/xhtml5/9/1308.3287/1308.3287_1_9.xhtml
<
v
|
H
v
>
=
λ
i
1
ϱ
i
1
2
+
λ
i
2
ϱ
i
2
2
=
1
2
(
λ
i
1
+
λ
i
2
)
Doc 39
0.1925, -25.0000, 2.0000, 0.1925
testing/NTCIR/xhtml5/6/0902.0691/0902.0691_1_45.xhtml
|
Ψ
′
>
=
1
N
∑
i
j
∈
{
0
,
1
}
e
i
ϕ
i
1
i
2
.
.
i
N
|
i
1
>
|
i
2
>
⋯
|
i
N
>
.
Doc 18
0.2288, -23.0000, 8.0000, 0.4181
testing/NTCIR/xhtml5/5/quant-ph0703006/quant-ph0703006_1_29.xhtml
F
5
(
X
)
=
-
1
4
c
i
1
j
1
α
1
c
i
2
j
2
α
2
d
α
1
α
2
α
Tr
(
X
i
1
X
j
1
X
i
2
X
j
2
X
α
)
.
Doc 40
0.1843, -35.0000, 3.0000, 0.3489
testing/NTCIR/xhtml5/4/hep-th0512174/hep-th0512174_1_30.xhtml
|
α
1
>
1
=
Γ
α
1
[
1
]
i
1
|
i
1
>
1
Doc 1
0.6125, -57.0000, 19.0000, 1.0061
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_9.xhtml
M
α
:=
∑
i
1
<
i
2
<
⋯
<
i
k
x
i
1
α
1
x
i
2
α
2
⋯
x
i
k
α
k
.
Doc 41
0.1832, -23.0000, 1.0000, 0.1832
testing/NTCIR/xhtml5/4/math0512366/math0512366_1_45.xhtml
Doc 42
0.1832, -23.0000, 1.0000, 0.1832
testing/NTCIR/xhtml5/4/math0610976/math0610976_1_3.xhtml
C
1
|
i
1
1
i
1
2
…
.
i
1
C
2
+
C
1
;
i
2
1
i
2
2
.
.
i
2
C
2
>
Doc 43
0.1832, -24.0000, 4.0000, 0.7534
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_15.xhtml
x
=
∑
i
1
,
i
2
,
…
,
i
r
a
i
1
i
2
…
i
r
x
1
i
1
x
2
i
2
⋯
x
r
i
r
Doc 44
0.1832, -26.0000, 1.0000, 0.1832
testing/NTCIR/xhtml5/3/math0403323/math0403323_1_40.xhtml
|
λ
>
=
∑
i
3
i
2
i
1
i
0
=
0
,
1
λ
i
3
i
2
i
1
i
0
|
i
3
i
2
i
1
i
0
>
Doc 45
0.1832, -28.0000, 5.0000, 0.1832
testing/NTCIR/xhtml5/7/1004.3639/1004.3639_1_115.xhtml
|
Λ
>
=
∑
i
3
i
2
i
1
i
0
=
0
,
1
Λ
i
3
i
2
i
1
i
0
|
i
3
i
2
i
1
i
0
>
,
Doc 46
0.1832, -29.0000, 4.0000, 0.1832
testing/NTCIR/xhtml5/7/1004.3639/1004.3639_1_114.xhtml
c
n
(
α
)
=
∑
i
1
+
i
2
+
⋯
+
i
b
=
0
2
n
c
i
1
i
2
…
i
b
α
1
i
1
α
2
i
2
⋯
α
b
i
b
Doc 47
0.1832, -33.0000, 1.0000, 0.1832
testing/NTCIR/xhtml5/3/math-ph0407072/math-ph0407072_1_46.xhtml
c
n
,
g
(
α
)
=
∑
i
1
+
i
2
+
⋯
+
i
b
=
0
2
n
c
i
1
i
2
…
i
b
α
1
i
1
α
2
i
2
⋯
α
b
i
b
Doc 48
0.1832, -35.0000, 1.0000, 0.1832
testing/NTCIR/xhtml5/3/math-ph0407072/math-ph0407072_1_44.xhtml
|
Ψ
>
=
∑
0
D
-
1
Ψ
i
1
i
2
⋯
i
K
|
i
1
,
i
2
,
⋯
,
i
K
>
Doc 49
0.1786, -19.0000, 5.0000, 0.1786
testing/NTCIR/xhtml5/8/1205.5433/1205.5433_1_13.xhtml
z
i
1
α
1
z
i
2
α
2
⋯
z
i
k
α
k
Doc 26
0.2104, -20.0000, 2.0000, 0.3828
testing/NTCIR/xhtml5/4/math0508041/math0508041_1_205.xhtml
x
i
1
α
1
x
i
2
α
2
⋯
x
i
k
α
k
Doc 50
0.1725, -9.0000, 0.0000, 0.1725
testing/NTCIR/xhtml5/4/math0512366/math0512366_1_44.xhtml
Doc 51
0.1725, -9.0000, 0.0000, 0.1725
testing/NTCIR/xhtml5/4/math0512369/math0512369_1_36.xhtml
Doc 52
0.1725, -9.0000, 0.0000, 0.1725
testing/NTCIR/xhtml5/4/math0610976/math0610976_1_2.xhtml
q
i
1
α
1
q
i
2
α
2
⋯
q
i
N
α
N
D
ϵ
α
1
α
2
⋯
α
N
D
Doc 53
0.1725, -19.0000, 0.0000, 0.1725
testing/NTCIR/xhtml5/10/hep-th9709161/hep-th9709161_1_8.xhtml
1
4
(
α
i
1
i
2
-
1
2
ϕ
i
1
i
2
α
j
1
j
2
j
1
j
2
)
.
Doc 54
0.1725, -21.0000, 1.0000, 0.1725
testing/NTCIR/xhtml5/3/hep-th0311112/hep-th0311112_1_17.xhtml
a
i
1
i
2
⋯
i
n
X
α
1
α
2
i
1
⋯
X
α
n
-
1
α
n
i
n
-
1
X
α
1
α
n
*
i
n
,
Doc 35
0.2007, -37.0000, 3.0000, 0.3732
testing/NTCIR/xhtml5/2/hep-th0206152/hep-th0206152_1_7.xhtml
S
y
m
=
∑
i
1
,
i
2
a
i
1
i
2
(
x
→
)
D
^
x
i
1
D
^
x
i
2
Doc 55
0.1721, -19.0000, 2.0000, 0.1721
testing/NTCIR/xhtml5/4/cs0609075/cs0609075_1_14.xhtml
-
1
4
c
i
1
j
1
α
1
c
i
2
j
2
α
2
d
α
1
α
2
α
Doc 40
0.1843, -35.0000, 3.0000, 0.3489
testing/NTCIR/xhtml5/4/hep-th0512174/hep-th0512174_1_30.xhtml
Q
i
1
α
1
Q
i
2
α
2
⋯
Q
i
N
α
N
ϵ
α
1
α
2
⋯
α
N
ϵ
i
1
i
2
⋯
i
N
k
1
⋯
k
N
D
/
N
!
Doc 56
0.1646, -33.0000, 0.0000, 0.1646
testing/NTCIR/xhtml5/10/hep-th9709161/hep-th9709161_1_2.xhtml
-
1
4
r
5
c
i
1
j
1
α
1
c
i
2
j
2
α
2
d
α
1
α
2
α
Tr
(
Q
i
1
Q
j
1
Q
i
2
Q
j
2
Q
α
)
Doc 57
0.1646, -34.0000, 3.0000, 0.1646
testing/NTCIR/xhtml5/4/hep-th0512174/hep-th0512174_1_31.xhtml
q
i
1
i
1
a
i
1
i
2
=
q
i
2
i
2
a
i
2
i
1
Doc 58
0.1559, -14.0000, 1.0000, 0.1559
testing/NTCIR/xhtml5/2/math0201095/math0201095_1_53.xhtml
∑
j
ρ
j
j
i
1
i
2
a
i
1
j
≠
∑
j
ρ
j
j
i
1
i
2
a
i
2
j
Doc 60
0.1559, -20.0000, 1.0000, 0.1559
testing/NTCIR/xhtml5/7/1105.5353/1105.5353_1_35.xhtml
η
^
i
1
i
2
μ
|
L
2
=
∑
|
α
|
≤
3
A
i
1
i
2
α
μ
[
u
(
1
)
]
α
Doc 59
0.1559, -20.0000, 1.0000, 0.1559
testing/NTCIR/xhtml5/1/math0002163/math0002163_1_150.xhtml
Doc 61
0.1559, -20.0000, 1.0000, 0.1559
testing/NTCIR/xhtml5/1/math0002163/math0002163_1_116.xhtml
|
i
1
>
⊗
|
i
2
>
=
∑
α
ρ
3
i
3
C
ρ
1
i
1
ρ
2
i
2
ρ
3
i
3
α
|
i
3
>
,
Doc 62
0.1559, -21.0000, 3.0000, 0.1559
testing/NTCIR/xhtml5/3/math-ph0502017/math-ph0502017_1_22.xhtml
ψ
~
s
1
,
i
1
=
∑
i
2
=
1
d
c
i
1
i
2
s
1
s
2
⊗
ψ
~
s
2
,
i
2
..1
Doc 63
0.1559, -23.0000, 1.0000, 0.1559
testing/NTCIR/xhtml5/9/hep-th9303066/hep-th9303066_1_109.xhtml
α
1
∑
i
1
i
2
…
i
r
1
-
1
∈
E
i
r
1
x
i
1
x
i
2
…
x
i
r
1
-
1
Doc 64
0.1559, -24.0000, 1.0000, 0.1559
testing/NTCIR/xhtml5/9/1312.3034/1312.3034_1_66.xhtml
𝒞
[
2
]
|
i
1
1
i
1
2
…
.
i
1
C
2
+
C
1
;
i
2
1
i
2
2
.
.
i
2
C
2
>
Doc 43
0.1832, -24.0000, 4.0000, 0.7534
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_15.xhtml
𝒞
[
1
]
|
i
1
1
i
1
2
…
.
i
1
C
2
+
C
1
;
i
2
1
i
2
2
.
.
i
2
C
2
>
Doc 43
0.1832, -24.0000, 4.0000, 0.7534
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_15.xhtml
+
1
2
(
γ
i
1
i
2
)
(
α
1
α
2
|
(
γ
a
T
i
1
i
2
)
|
α
3
)
Doc 65
0.1456, -20.0000, 1.0000, 0.2372
testing/NTCIR/xhtml5/3/hep-th0305129/hep-th0305129_1_152.xhtml
β
2
=
λ
1
2
α
1
2
+
2
λ
1
λ
2
α
1
α
2
+
λ
2
2
α
2
2
Doc 66
0.1429, -18.0000, 4.0000, 0.1429
testing/NTCIR/xhtml5/5/0809.0384/0809.0384_1_44.xhtml
|
i
1
1
,
i
1
2
;
i
2
1
>
Σ
[
1
,
1
]
=
[
a
†
[
2
]
i
1
1
i
2
1
a
†
[
1
]
i
1
2
+
a
†
[
2
]
i
1
2
i
2
1
a
†
[
1
]
i
1
1
]
|
0
>
Doc 43
0.1832, -24.0000, 4.0000, 0.7534
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_15.xhtml
I
=
<
x
i
1
α
1
,
x
i
2
α
2
,
…
,
x
i
r
α
r
>
𝐝
Doc 67
0.1363, -17.0000, 1.0000, 0.1363
testing/NTCIR/xhtml5/4/math0702508/math0702508_1_53.xhtml
|
ψ
2
1
×
2
1
>
=
∑
i
1
=
1
,
…
4
c
i
1
|
i
1
>
.
Doc 68
0.1363, -18.0000, 4.0000, 0.2725
testing/NTCIR/xhtml5/4/quant-ph0510031/quant-ph0510031_1_4.xhtml
η
i
1
i
2
=
f
i
1
k
1
k
0
f
i
2
k
0
k
1
=
k
i
1
i
2
Doc 69
0.1363, -19.0000, 2.0000, 0.1363
testing/NTCIR/xhtml5/10/hep-th9901127/hep-th9901127_1_23.xhtml
ϵ
α
1
α
2
α
3
A
α
†
[
i
1
]
A
α
2
†
[
i
2
]
A
α
3
†
[
i
3
]
,
Doc 70
0.1363, -21.0000, 1.0000, 0.1363
testing/NTCIR/xhtml5/6/0909.2394/0909.2394_1_27.xhtml
|
ψ
2
2
×
2
2
>
=
∑
i
1
,
i
2
=
1
,
…
4
c
i
2
,
i
1
|
i
2
,
i
1
>
,
Doc 68
0.1363, -18.0000, 4.0000, 0.2725
testing/NTCIR/xhtml5/4/quant-ph0510031/quant-ph0510031_1_4.xhtml
ρ
~
α
2
α
1
=
∑
i
⟨
Ψ
α
2
α
1
|
A
i
α
2
α
1
|
Ψ
α
2
α
1
⟩
A
i
α
2
α
1
.
Doc 71
0.1363, -28.0000, 3.0000, 0.1363
testing/NTCIR/xhtml5/10/gr-qc9509054/gr-qc9509054_1_47.xhtml
X
λ
1
λ
2
λ
3
λ
4
(
λ
5
|
α
1
α
1
′
α
2
α
2
′
)
Doc 72
0.1283, -16.0000, 2.0000, 0.1283
testing/NTCIR/xhtml5/9/hep-th9301094/hep-th9301094_1_13.xhtml
g
i
1
i
2
j
1
j
2
(
x
~
i
1
i
2
)
x
i
1
j
1
x
i
2
j
2
Doc 73
0.1283, -20.0000, 2.0000, 0.1283
testing/NTCIR/xhtml5/4/math0512216/math0512216_1_57.xhtml
h
i
1
i
2
i
3
:
g
i
1
i
2
i
3
g
i
2
i
3
i
1
→
g
i
1
i
3
i
2
Doc 74
0.1283, -21.0000, 1.0000, 0.1283
testing/NTCIR/xhtml5/4/math0504274/math0504274_1_522.xhtml
Doc 75
0.1283, -21.0000, 1.0000, 0.1283
testing/NTCIR/xhtml5/4/math0504274/math0504274_1_540.xhtml
a
†
[
1
]
i
1
C
2
+
1
a
[
1
]
i
1
C
2
+
2
†
…
.
a
†
[
1
]
i
1
C
2
+
C
1
|
0
>
Doc 43
0.1832, -24.0000, 4.0000, 0.7534
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_15.xhtml
∑
i
1
,
i
2
=
1
3
a
i
1
i
2
†
[
2
]
a
i
1
i
2
[
2
]
Doc 76
0.1187, -19.0000, 1.0000, 0.1187
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_14.xhtml
<
Φ
i
1
λ
1
μ
1
|
T
i
2
λ
2
μ
2
|
Φ
i
3
τ
3
λ
3
μ
3
>
Doc 77
0.1187, -22.0000, 1.0000, 0.1187
testing/NTCIR/xhtml5/6/0911.0276/0911.0276_1_16.xhtml
δ
(
α
)
T
i
1
i
2
=
α
i
i
1
T
i
i
2
+
α
i
i
2
T
i
1
i
[
i
i
1
]
[
i
1
i
2
]
Doc 78
0.1071, -29.0000, 2.0000, 0.1071
testing/NTCIR/xhtml5/9/hep-th9211065/hep-th9211065_1_68.xhtml
B
i
1
(
0
)
α
1
δ
α
1
α
2
B
i
2
(
0
)
α
2
=
A
i
1
i
2
(
x
)
Doc 79
0.1003, -22.0000, 0.0000, 0.1003
testing/NTCIR/xhtml5/7/1105.6080/1105.6080_1_41.xhtml
(
λ
i
1
,
λ
i
2
)
(
λ
~
j
2
,
λ
~
j
1
)
=
⟨
i
1
i
2
⟩
[
j
2
j
1
]
,
Doc 80
0.1003, -26.0000, 4.0000, 0.1003
testing/NTCIR/xhtml5/4/hep-ph0607015/hep-ph0607015_1_16.xhtml
1
(
N
-
1
)
!
ϵ
α
1
α
2
…
.
α
N
-
1
z
[
α
1
]
i
1
z
[
α
2
]
i
2
…
.
z
[
α
N
-
1
]
Doc 81
0.1003, -34.0000, 2.0000, 0.1003
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_27.xhtml
[
s
11
]
i
1
i
2
i
1
i
2
[
s
11
]
j
1
j
2
j
1
j
2
Doc 82
0.0916, -18.0000, 4.0000, 0.0916
testing/NTCIR/xhtml5/10/hep-th9607030/hep-th9607030_1_75.xhtml
[
λ
i
1
(
i
1
,
j
1
)
]
[
λ
i
2
(
i
2
,
j
2
)
]
=
[
1
]
Doc 83
0.0916, -19.0000, 2.0000, 0.0916
testing/NTCIR/xhtml5/3/math0312234/math0312234_1_97.xhtml
+
1
6
(
γ
i
1
i
2
)
(
α
1
α
2
|
(
T
a
i
1
i
2
)
|
α
3
)
Doc 65
0.1456, -20.0000, 1.0000, 0.2372
testing/NTCIR/xhtml5/3/hep-th0305129/hep-th0305129_1_152.xhtml
Δ
¯
x
i
1
x
i
2
|
=
μ
¯
∂
¯
i
1
x
i
2
=
μ
¯
C
i
1
i
2
Doc 84
0.0916, -22.0000, 4.0000, 0.0916
testing/NTCIR/xhtml5/9/hep-th9306030/hep-th9306030_1_153.xhtml
(
R
~
)
i
1
i
2
j
1
j
2
=
(
R
)
i
1
i
2
j
1
j
2
(
-
1
)
[
i
1
]
[
i
2
]
Doc 85
0.0916, -27.0000, 4.0000, 0.0916
testing/NTCIR/xhtml5/2/math0104181/math0104181_1_16.xhtml
(
B
i
1
(
X
)
α
1
-
B
i
1
(
0
)
α
1
)
δ
α
1
α
2
(
B
i
2
(
X
)
α
2
-
B
i
2
(
0
)
α
2
)
Doc 86
0.0916, -33.0000, 3.0000, 0.0916
testing/NTCIR/xhtml5/7/1105.6080/1105.6080_1_42.xhtml
z
i
1
i
2
[
12
]
≡
1
2
(
z
[
1
]
i
1
z
[
2
]
i
2
-
z
[
2
]
i
1
z
[
1
]
i
1
)
=
1
2
ϵ
α
1
α
2
z
[
α
1
]
i
1
z
[
α
2
]
i
2
Doc 87
0.0916, -52.0000, 4.0000, 0.1558
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_17.xhtml
(
x
1
)
i
1
(
x
2
)
i
2
ε
(
(
ℒ
x
)
α
1
1
…
(
ℒ
x
)
α
n
2
-
i
2
2
)
Doc 88
0.0714, -25.0000, 1.0000, 0.0714
testing/NTCIR/xhtml5/3/hep-th0410205/hep-th0410205_1_25.xhtml
z
′
[
1
]
i
1
=
(
e
x
p
i
θ
a
λ
a
[
1
]
)
i
2
i
1
z
[
1
]
i
2
Doc 87
0.0916, -52.0000, 4.0000, 0.1558
testing/NTCIR/xhtml5/2/quant-ph0206005/quant-ph0206005_1_17.xhtml