Returned 97 matches (100 formulae, 88 docs)
    Lookup 112557.000 ms, Re-ranking 35132.194 ms
    Found 153173708 tuple postings, 15155960 formulae, 4965759 documents
[ formulas ] [ documents ] [ documents-by-formula ]

Doc 1
0.1826
-32.0000
9.0000
0.1826
testing/NTCIR/xhtml5/9/1212.1982/1212.1982_1_48.xhtml
p1(x,ξ)=-i2gjkxj(x)(ξk-Ak(x))-i2gjk(x)Akxj(x).

Doc 2
0.1582
-37.0000
8.0000
0.1582
testing/NTCIR/xhtml5/10/hep-th9501047/hep-th9501047_1_4.xhtml
Gv(ψ)(z1,z2)=-1δ8(z1-z2)+14(ψ(z1)D¯2δ8(z1-z2))+O(Ψ¯)

Doc 3
0.1582
-58.0000
9.0000
0.1582
testing/NTCIR/xhtml5/2/math-ph0110012/math-ph0110012_1_28.xhtml
F(x1,x2)=x1(f(x1-x2)f(x3-x1))+x2(f(x2-x3)f(x1-x2))+x3(f(x3-x1)f(x2-x3)),

Doc 4
0.1535
-41.0000
6.0000
0.2860
testing/NTCIR/xhtml5/9/1303.3381/1303.3381_1_47.xhtml
ft(x)=ut(x)vt(x),ut(x)t=2ut(x)x2,vt(x)t=-2vt(x)x2.
gt(x)=ut(x)vt(x)x-ut(x)xvt(x),

Doc 5
0.1527
-32.0000
7.0000
0.2578
testing/NTCIR/xhtml5/7/1004.0320/1004.0320_1_21.xhtml
μ±u1±x2=x1f±(x1):=μ±x1(ψ±(x1)u0±x1),
u1+-u1-=g(x1):=-ϕ(x1)(u0+x2-u0-x2)=-ϕ(x1)u0+x2(1-μ+μ-), on ζ0,formulae-sequencesuperscriptsubscriptu1superscriptsubscriptu1gsubscriptx1assignϕsubscriptx1superscriptsubscriptu0subscriptx2superscriptsubscriptu0subscriptx2ϕsubscriptx1superscriptsubscriptu0subscriptx21subscriptμsubscriptμon ζ0superscriptζ0\zeta^{0}u_{1}^{+}-u_{1}^{-}=g(x_{1}):=-\phi(x_{1})\left(\frac{\partial u_{0}^{+}}{% \partial x_{2}}-\frac{\partial u_{0}^{-}}{\partial x_{2}}\right)=-\phi(x_{1})% \frac{\partial u_{0}^{+}}{\partial x_{2}}\left(1-\frac{\mu_{+}}{\mu_{-}}\right% ),\quad\text{on $\zeta^{0}$},

Doc 6
0.1440
-25.0000
5.0000
0.1440
testing/NTCIR/xhtml5/2/hep-th0210204/hep-th0210204_1_23.xhtml
(x)=-12g2(Aja(x))2+12g2(Bja(x))2,

Doc 7
0.1440
-35.0000
5.0000
0.1440
testing/NTCIR/xhtml5/6/0912.4939/0912.4939_1_90.xhtml
t(z1-z)=0η(z1,η1)-0η(z,η)+V~η(z1,η1),

Doc 8
0.1440
-36.0000
4.0000
0.1440
testing/NTCIR/xhtml5/6/0910.0658/0910.0658_1_148.xhtml
X2=f3(z2)z3,X1=g1(z1)z1+z2+g3(z1,z2)z3,

Doc 9
0.1440
-52.0000
6.0000
0.1440
testing/NTCIR/xhtml5/8/1204.1299/1204.1299_1_31.xhtml
(f(z1)-f(z2))μod(z1,z2)=(f(z1)+c)g(z1)+(f(z2)+c)g(z2)-12Q(f(z1))-12Q(f(z2)),

Doc 10
0.1388
-40.0000
4.0000
0.1388
testing/NTCIR/xhtml5/5/0710.5222/0710.5222_1_54.xhtml
Ui(x,y)=k=1nχik(y)uixk(x)+γi(y)(u1(x)-u2(x))+u~i(x), i=1,2

Doc 11
0.1386
-34.0000
4.0000
0.1386
testing/NTCIR/xhtml5/2/cond-mat0108048/cond-mat0108048_1_21.xhtml
+x[12Z0(ux)(tux)2-12Z1(ux)(ux)2-U2(ux)+iϵux2],

Doc 12
0.1345
-34.0000
6.0000
0.2543
testing/NTCIR/xhtml5/1/math0006104/math0006104_1_67.xhtml
+c(g,h)b(z)a(z1)wz1(z0-1(z-z1z0)(g,h)δ(z-z1-z0))
z1XR-a(z1)b(z)wz1(z0-1(z1-zz0)(g,h)δ(z1-zz0))

Doc 13
0.1297
-28.0000
6.0000
0.1297
testing/NTCIR/xhtml5/4/math-ph0701058/math-ph0701058_1_60.xhtml
12t(u0(x+t)+u0(x-t))+12(u1(x+t)-u1(x-t))

Doc 14
0.1244
-30.0000
3.0000
0.2397
testing/NTCIR/xhtml5/2/cond-mat0108048/cond-mat0108048_1_51.xhtml
12Z0(n)(ux)(tux)2-12Z1(n)(ux)(ux)2-U2(n)(ux)
iX0(n)(ux)t-X1(n)(ux)+U1(n)(ux)+12Y0(n)(ux)(tux)2+12Y1(n)(ux)(ux)2,

Doc 15
0.1244
-33.0000
6.0000
0.1244
testing/NTCIR/xhtml5/8/1206.1718/1206.1718_1_71.xhtml
g(1)(x)f(1)xi(x)f(2)g(2)=g(1)(x)f(1)xi(x)g(2)f(2)

Doc 16
0.1244
-38.0000
6.0000
0.1244
testing/NTCIR/xhtml5/2/math-ph0212036/math-ph0212036_1_32.xhtml
e(x)=r(x)(u1x1(x)u2x2(x)-u1x2(x)u2x1(x))+h,

Doc 17
0.1244
-49.0000
6.0000
0.3110
testing/NTCIR/xhtml5/10/dg-ga9411011/dg-ga9411011_1_61.xhtml
(α=(2,1),i=1,j=2):-13u2x1(x)R1212x2(x)+g11(x)4u1x12x22(x)+
(α=(2,1),i=j=2):-13u2x1(x)R1212x1(x)+2g11(x)4u2x12x22(x)=0,
(α=(3,0),i=1,j=2):g22(x)4u2x14(x)+g11(x)4u1x13x2(x)=0,
Doc 18
0.1244
-53.0000
5.0000
0.1244
testing/NTCIR/xhtml5/9/1304.1688/1304.1688_1_59.xhtml
LD(f)g(x)=(-1)d-1j=1dzˇjxˇjxj[ajj(xj)dg(z)z1zd(zˇj,xj)]dzˇj

Doc 19
0.1198
-35.0000
8.0000
0.1198
testing/NTCIR/xhtml5/1/math0004116/math0004116_1_29.xhtml
=(x)2-kx(s-1)x-xkx(s-1)+kx(s-1)kx(s-1)

Doc 20
0.1198
-39.0000
4.0000
0.1198
testing/NTCIR/xhtml5/8/1204.1299/1204.1299_1_27.xhtml
(f(z1)-f(z2))μev(z1,z2)=g(z1)+g(z2)-12Q(f(z1))-12Q(f(z2)),

Doc 21
0.1198
-41.0000
6.0000
0.1198
testing/NTCIR/xhtml5/6/0904.3981/0904.3981_1_21.xhtml
K=(Dxvx+vxDx+12(Dzuxy+uxyDz)-12(Dyuxz+uxzDy)-uxxuxx0)

Doc 22
0.1185
-29.0000
3.0000
0.2089
testing/NTCIR/xhtml5/2/math0201313/math0201313_1_196.xhtml
+μ2z2(k0(𝐫+𝐦,z2)[z1-1(z2)2δ(z2z1)])
+μ2(z2)2(k0(𝐫+𝐦,z2)[z1-1z2δ(z2z1)])

Doc 23
0.1185
-35.0000
5.0000
0.1185
testing/NTCIR/xhtml5/10/dg-ga9411011/dg-ga9411011_1_62.xhtml
r+1ujxα+(i)(x)gjj(x)+r+1uixα+(j)(x)gii(x)=0,

Doc 24
0.1153
-34.0000
5.0000
0.1153
testing/NTCIR/xhtml5/7/1005.4757/1005.4757_1_42.xhtml
tu(t,x)=-122x2Ψ1(u(t,x))-12xΨ2(u(t,x))

Doc 25
0.1153
-39.0000
6.0000
0.1153
testing/NTCIR/xhtml5/2/hep-th0201074/hep-th0201074_1_23.xhtml
z(f1(z)f2(z))=f1(z)zf2(z)+(-1)𝔞(f1)f1f2z,

Doc 26
0.1153
-45.0000
7.0000
0.1153
testing/NTCIR/xhtml5/8/1204.1299/1204.1299_1_32.xhtml
(nμod(z1,z2)+g(z2)-g(z1)+12b2(f(z1)-f(z2)))(ϕ(z1)ψ(z2)-ψ(z1)ϕ(z2))

Doc 27
0.1153
-65.0000
8.0000
0.1153
testing/NTCIR/xhtml5/7/1103.2539/1103.2539_1_22.xhtml
D^t=-D^z1V1-D^z2V2-(z1v1+z2v2+v3)+k(g1(D^f1+g1-D^V1)+g2(D^f2+g2-D^V2))

Doc 28
0.1121
-47.0000
8.0000
0.1121
testing/NTCIR/xhtml5/3/nlin0401009/nlin0401009_1_8.xhtml
ut1=-ux,ut2=-uux+(-1v),ut3=-12u2ux+u(-1v)+-1(uxx(-2v)),.

Doc 29
0.1121
-51.0000
7.0000
0.1121
testing/NTCIR/xhtml5/7/1103.2539/1103.2539_1_35.xhtml
D^t=-D^z1(f1+ΓHSg1)-D^z2(f2+ΓHSg2)-(z1v1+z2v2+v3)+k(1-D^ΓHS).

Doc 30
0.1102
-18.0000
4.0000
0.1102
testing/NTCIR/xhtml5/3/math0312276/math0312276_1_13.xhtml
g(u0(0))=u0+x(0)-u0-x(0),

Doc 31
0.1102
-29.0000
4.0000
0.1102
testing/NTCIR/xhtml5/10/dg-ga9411011/dg-ga9411011_1_46.xhtml
ui(x)=0    gii(x)uixj(x)+gjj(x)ujxi(x)=0,

Doc 32
0.1102
-29.0000
3.0000
0.1102
testing/NTCIR/xhtml5/10/hep-th9412230/hep-th9412230_1_31.xhtml
N2G2c(z1,z2)=2z1z2Log(u(z1)-u(z2)z1-z2)

Doc 33
0.1102
-29.0000
3.0000
0.1102
testing/NTCIR/xhtml5/10/hep-th9412230/hep-th9412230_1_10.xhtml
N2G2c(z1,z2)=2z1z2Log[u(z1)-u(z2)z1-z2]

Doc 34
0.1102
-37.0000
4.0000
0.1102
testing/NTCIR/xhtml5/8/1208.5953/1208.5953_1_71.xhtml
-14π2𝒞1t𝒞2tf(z1)f(z2)2z1z2𝒢n(z1,z2)dz1dz2,

Doc 35
0.1102
-40.0000
6.0000
0.1102
testing/NTCIR/xhtml5/9/1307.8252/1307.8252_1_5.xhtml
2f(x1)2x12+2x12h(x1,x2,t)=22f(x1)x12(1-f(x2))

Doc 36
0.1102
-41.0000
5.0000
0.1102
testing/NTCIR/xhtml5/7/1012.0523/1012.0523_1_8.xhtml
{ut=12σ22ux12+μux2,u(0,x)=f(x1)+g(x2).

Doc 37
0.1102
-42.0000
3.0000
0.1102
testing/NTCIR/xhtml5/6/0812.2682/0812.2682_1_29.xhtml
Q=p12+u2(x)p2+u3(x)p3-12(w1(y)u2′′(x)+v1(z)u3′′(x)+u1(x)),

Doc 38
0.1102
-45.0000
5.0000
0.1102
testing/NTCIR/xhtml5/2/math0012254/math0012254_1_49.xhtml
vx(x,0)=(a(u-1)x+b(u-1)t)x=-(b(u-1)xt+c(u-1)tt)=-bux-cut=f(x).

Doc 39
0.1102
-49.0000
4.0000
0.1102
testing/NTCIR/xhtml5/3/math0408227/math0408227_1_105.xhtml
(φ,u¯δδδ)=-φt-(A(x)(φ+u¯δδδ))x+(B(x)(φx+u¯xδδδ)x-u¯δδδ˙

Doc 40
0.1088
-40.0000
5.0000
0.1088
testing/NTCIR/xhtml5/2/math0012228/math0012228_1_55.xhtml
(fg)x(y)=fx(y)gx(y)+ϵi,j=1dαxij(y)fx(y)yigx(y)yj+

Doc 41
0.1051
-21.0000
6.0000
0.1051
testing/NTCIR/xhtml5/3/nlin0304033/nlin0304033_1_75.xhtml
F(z1,z2)=12(F(z1)+F(z2)-(z12-z22)2)

Doc 42
0.1051
-35.0000
7.0000
0.1051
testing/NTCIR/xhtml5/6/0912.3041/0912.3041_1_47.xhtml
Φ1(z0, z1)=ez01z1(z1g1(z1)+g1(0)-g1(0))=ez0g1(z1).

Doc 43
0.1045
-22.0000
5.0000
0.1045
testing/NTCIR/xhtml5/9/1303.3381/1303.3381_1_41.xhtml
gt(x)=-ft(x)x,ht(x)=2ft(x)x2

Doc 44
0.1045
-36.0000
4.0000
0.1045
testing/NTCIR/xhtml5/7/1009.1945/1009.1945_1_66.xhtml
w2(z1,z2)=1x(z1)x(z2)1(z1-z2)2-1(x(z1)-x(z2))2

Doc 45
0.1045
-40.0000
4.0000
0.1045
testing/NTCIR/xhtml5/7/1108.0615/1108.0615_1_117.xhtml
xk0(x)+g0(λx)k0(x)2(-1-1x2g0(λx)k0(x))τxk0(x)(λ2-1),

Doc 46
0.1045
-42.0000
4.0000
0.1045
testing/NTCIR/xhtml5/2/hep-th0211283/hep-th0211283_1_16.xhtml
Nf(z1,z2)=ln(f(0)z1-z2(1(f(0)-f(z2-1))-1(f(0)-f(z1-1)))),

Doc 47
0.1045
-48.0000
6.0000
0.1045
testing/NTCIR/xhtml5/10/solv-int9710010/solv-int9710010_1_9.xhtml
uut=-x[αup+2(p+2)+β(uu2x-12ux2)+γ(uu4x-uxu3x+12u2x2)].

Doc 48
0.1045
-48.0000
3.0000
0.2090
testing/NTCIR/xhtml5/2/math0010232/math0010232_1_106.xhtml
j=1𝑛Ω[aj(x,u0x)-fj(x)]g(x)xjdx-Ωc(x,f(x)-u0(x))g(x)dx=0
j=1𝑛Ω[aj(x,u0x)-fj(x)]g(x)xjdx-Ωc(x,f(x)-u0(x))g(x)dx0.

Doc 49
0.1008
-34.0000
5.0000
0.1008
testing/NTCIR/xhtml5/8/1207.0942/1207.0942_1_31.xhtml
-162Vx2+12(V(x))2+43v3f02(x)+4vf02(x)V(x),

Doc 50
0.1008
-35.0000
5.0000
0.1008
testing/NTCIR/xhtml5/6/0911.2345/0911.2345_1_84.xhtml
ω(z^)-ω(z^)=1g(x-1)xh(z-1)-1g(x-1)xh(z-1)+

Doc 51
0.1008
-44.0000
3.0000
0.1008
testing/NTCIR/xhtml5/6/0907.1373/0907.1373_1_43.xhtml
i=1dxi(Ai(x)Tl(un)(x))=fn(x)+i=1dxi(Ai(x)(Tl(un)(x)-un(x))),

Doc 52
0.1008
-53.0000
6.0000
0.1008
testing/NTCIR/xhtml5/9/1303.0457/1303.0457_1_42.xhtml
12(1-x12)2Vx1x12-(n+1+12)Vx1x1=e-(n+12)tte(n+12)tVx1,

Doc 53
0.0964
-37.0000
5.0000
0.1899
testing/NTCIR/xhtml5/2/nlin0108015/nlin0108015_1_288.xhtml
c32=-ux3(Xuxx)-12Xuxxuxxx-12x2(Xuxx)ux
c21=ux2(Xux)-12Xuxuxx+12x(Xux)ux

Doc 54
0.0960
-27.0000
4.0000
0.0960
testing/NTCIR/xhtml5/7/1009.3151/1009.3151_1_26.xhtml
+g(ux)-g(vx)ux-vxf(u)+f(v)2(ux-vx)

Doc 55
0.0960
-44.0000
3.0000
0.0960
testing/NTCIR/xhtml5/6/0912.0832/0912.0832_1_31.xhtml
X1(z,v(z))vz1(z)+X2(z,v(z))vz2(z)=X3(z,v(z)), z=(z1,z2),

Doc 56
0.0960
-51.0000
6.0000
0.0960
testing/NTCIR/xhtml5/4/math0511402/math0511402_1_86.xhtml
L(f,n)g(x)=12(g(x+f(x)+1n)+g(x+f(x)-1n))-g(x)-f(x)g(x)1n+f(x)2

Doc 57
0.0960
-57.0000
4.0000
0.0960
testing/NTCIR/xhtml5/6/0903.2137/0903.2137_1_15.xhtml
H(x,λ)=(a1(x)+i=1kλifix1(x),,an(x)+i=1kλifixn(x), f1(x),,fk(x)).  

Doc 58
0.0904
-28.0000
3.0000
0.1808
testing/NTCIR/xhtml5/3/cond-mat0410320/cond-mat0410320_1_13.xhtml
-V(u1)u1-W(u2-u1)u1+Asin(ωt)+ξ1(t),
-V(u2)u2-W(u2-u1)u2+Asin(ωt)+ξ2(t),

Doc 59
0.0904
-32.0000
3.0000
0.0904
testing/NTCIR/xhtml5/6/0910.0658/0910.0658_1_114.xhtml
X1=g1(z1)z1+g2(z1)z2+g3(z1,z2)z3,

Doc 60
0.0904
-37.0000
4.0000
0.0904
testing/NTCIR/xhtml5/5/0804.0198/0804.0198_1_10.xhtml
G(z1,z2)=G(z1-z2)=-1(z1-z2)2+κ241sinh2κ(z1-z2)2

Doc 61
0.0904
-41.0000
5.0000
0.0904
testing/NTCIR/xhtml5/7/1005.3651/1005.3651_1_22.xhtml
+(xig(z))Cij=2mf(z)γj+g(z)xi(j=2mf(z)γj)+ρFi(t)

Doc 62
0.0904
-41.0000
4.0000
0.0904
testing/NTCIR/xhtml5/6/0906.3305/0906.3305_1_94.xhtml
ρ(1|2)(z1,z2)=(z2z2+12)ρ(1|1)(z1)-ρ(1|1)(z2)z1-z2

Doc 63
0.0904
-42.0000
3.0000
0.0904
testing/NTCIR/xhtml5/9/hep-th9207048/hep-th9207048_1_39.xhtml
S(g)|g(ξ,x)=Exp(ξω(x))=-16ξ-2(x3FxF-32(x2FxF)2)+

Doc 64
0.0904
-43.0000
3.0000
0.0904
testing/NTCIR/xhtml5/4/math-ph0508044/math-ph0508044_1_72.xhtml
u(x,t)=14πtSt(x)(v0(x)+1tu0(x)+u0(x)nx(x))dS(x),

Doc 65
0.0904
-45.0000
3.0000
0.0904
testing/NTCIR/xhtml5/2/math0209310/math0209310_1_98.xhtml
e(z1-z)x1e(z2-z)x2Singx1,x2(Y-(Y-(u,x1-x2)v,x2+z)ezw)

Doc 66
0.0904
-47.0000
3.0000
0.0904
testing/NTCIR/xhtml5/3/math-ph0305013/math-ph0305013_1_31.xhtml
vt=12(vux-uvx)-Ak-1[vxAk(u)+uxAk(v)+12vAk(ux)+12uAk(vx)],

Doc 67
0.0901
-28.0000
7.0000
0.0901
testing/NTCIR/xhtml5/5/0803.0261/0803.0261_1_12.xhtml
ut-utxx=-32x(u2)-12x(ux2)+12x3(u2)

Doc 68
0.0901
-52.0000
4.0000
0.0901
testing/NTCIR/xhtml5/5/0708.1551/0708.1551_1_15.xhtml
{u(x1),v(x2)}=x1((uv)(x1))x1-1δ(x1x2)+(uv+vu)(x1)x1x1-1δ(x1x2).

Doc 69
0.0862
-25.0000
5.0000
0.1625
testing/NTCIR/xhtml5/3/math-ph0305021/math-ph0305021_1_61.xhtml
-12(1+ϵ(z12-z22))z1-ϵz1z2z2,
-ϵz1z2z1-12(1-ϵ(z12-z22))z2,

Doc 70
0.0862
-33.0000
4.0000
0.0862
testing/NTCIR/xhtml5/7/1101.5292/1101.5292_1_8.xhtml
H=L1=1f1(x1)+f2(x2)(x12+x22+v1(x1)+v2(x2),

Doc 71
0.0862
-38.0000
4.0000
0.0862
testing/NTCIR/xhtml5/9/1306.0417/1306.0417_1_34.xhtml
R1k(t,x)-12((ukvk-uxkvxk)x-(ukvxk-uxkvk))mk-buxk

Doc 72
0.0862
-56.0000
3.0000
0.0862
testing/NTCIR/xhtml5/4/nlin0507062/nlin0507062_1_38.xhtml
uxt=12{ux(x),H-2}2=-12(ux)2-uuxx-12ρ2ρt=12{ρ(x),H-2}2=-(uρ)x

Doc 73
0.0817
-39.0000
4.0000
0.0817
testing/NTCIR/xhtml5/4/math0510438/math0510438_1_16.xhtml
Fλ(λ,t)=(xL(t,u(t)+λv(t),ut(t)+λvt(t)),v(t))

Doc 74
0.0777
-26.0000
4.0000
0.0777
testing/NTCIR/xhtml5/3/math0310474/math0310474_1_154.xhtml
ΔReu1(z)=(ddJcz1)y(z)(ux(z),Jux(z)).

Doc 75
0.0763
-29.0000
4.0000
0.0763
testing/NTCIR/xhtml5/7/1105.0453/1105.0453_1_43.xhtml
S(z1,z)=(z-1z)2(z1-1z1)(z-z1)(z-1z1)

Doc 76
0.0763
-32.0000
4.0000
0.0763
testing/NTCIR/xhtml5/5/math0703698/math0703698_1_21.xhtml
V1(1)=V1+ηx(1)ux+ηy(1)uy+ηt(1)ut,

Doc 77
0.0763
-34.0000
3.0000
0.0763
testing/NTCIR/xhtml5/7/1106.4580/1106.4580_1_112.xhtml
(u1,v1,w1)=(p(zf1(x)+xg1(x))x,x,zf1(x)+xg1(x))

Doc 78
0.0763
-34.0000
3.0000
0.0763
testing/NTCIR/xhtml5/7/1106.4580/1106.4580_1_133.xhtml
(u1,v1,w1)=(p(zf1(x)+xg1(x))x,x,zf1(x)+xg1(x))

Doc 79
0.0763
-44.0000
3.0000
0.2290
testing/NTCIR/xhtml5/8/1210.5733/1210.5733_1_70.xhtml
e(z1-z2)x0e(z1-z0)x1e(z2-z0)x2(Y(v,x2)Y(u,x1)w)
e(z1-z2)x0e(z1-z0)x1e(z2-z0)x2(Y(u,x1)Y(v,x2)w)
e(z1-z2)x0e(z1-z0)x1e(z2-z0)x2(Y(Y(u,x0)v,x2)w)
Doc 80
0.0763
-56.0000
3.0000
0.0763
testing/NTCIR/xhtml5/9/1309.7161/1309.7161_1_58.xhtml
(12u2,1n+2α(t)un+2+β(t)(uuxx-12ux2)+σ(t)(uuxxxx-uxuxxx+12uxx2)).

Doc 81
0.0748
-35.0000
6.0000
0.0748
testing/NTCIR/xhtml5/9/1303.1655/1303.1655_1_41.xhtml
-[x1(δ(ux1)ux1x1)+x2(δ(ux2)ux1x2)+γΔux1]=-utx1

Doc 82
0.0672
-25.0000
3.0000
0.0672
testing/NTCIR/xhtml5/1/math0606723/math0606723_1_19.xhtml
2v1x2=u¨1(gx)2+u˙1(2gx2)

Doc 83
0.0672
-44.0000
3.0000
0.0672
testing/NTCIR/xhtml5/6/0812.1825/0812.1825_1_107.xhtml
12[Λσ,(u1+u2)]xv+12[Λσ,v]x(u1+u2)+u2Λσxv+vΛσxu1.

Doc 84
0.0622
-36.0000
3.0000
0.0622
testing/NTCIR/xhtml5/3/hep-th0407261/hep-th0407261_1_54.xhtml
-12x2(σ(x2)-σ(x1)x2-x1)+R2(x1;x2)M(x1)

Doc 85
0.0622
-38.0000
3.0000
0.0622
testing/NTCIR/xhtml5/10/hep-th9901100/hep-th9901100_1_15.xhtml
=-12t(2v12+2x12)-α2t(2u12+2y12)

Doc 86
0.0622
-46.0000
3.0000
0.0622
testing/NTCIR/xhtml5/6/0910.4320/0910.4320_1_21.xhtml
-ψb+1(y(z1);a)ψc+1(y(P(z1));a)lny(z1)-lny(P(z1))x1z1x1,

Doc 87
0.0525
-41.0000
3.0000
0.0525
testing/NTCIR/xhtml5/4/hep-th0608216/hep-th0608216_1_18.xhtml
1φ=-x2(x1)2+(x2)2, 2φ=x1(x1)2+(x2)2-2πθ(x1)δ(x2),

Doc 88
0.0480
-29.0000
2.0000
0.0480
testing/NTCIR/xhtml5/4/math0610766/math0610766_1_50.xhtml
t(ux)=x(ut)-x(ux)=cx(ut)+dt(ut),