tangent
Not Supported
y
(
x
)
=
x0
(
ρ
)
x1
x2
(
x
-
x3
)
+
μ
y
.
Search
Returned 94 matches (100 formulae, 105 docs)
Lookup 2585.220 ms, Re-ranking 471.300 ms
Found 26522593 tuple postings, 3619753 formulae, 2091705 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5995
-6.0000
6.0000
0.5995
testing/NTCIR/xhtml5/6/1002.2011/1002.2011_1_14.xhtml
F
i
(
x
)
=
1
2
(
x
-
q
i
)
+
q
i
.
Doc 2
0.5422
-7.0000
5.0000
0.5422
testing/NTCIR/xhtml5/6/1002.2283/1002.2283_1_44.xhtml
f
i
(
x
)
=
1
2
(
x
-
y
i
)
2
+
c
i
Doc 3
0.5422
-7.0000
5.0000
0.5422
testing/NTCIR/xhtml5/8/1206.1310/1206.1310_1_70.xhtml
F
j
(
x
)
=
1
2
(
x
-
q
j
)
+
q
j
,
Doc 4
0.5096
-7.0000
7.0000
0.5096
testing/NTCIR/xhtml5/6/0908.3725/0908.3725_1_65.xhtml
ln
(
x
)
=
-
∑
n
≥
1
1
n
(
x
-
1
)
n
Doc 5
0.4848
-1.0000
5.0000
0.4848
testing/NTCIR/xhtml5/8/1109.4949/1109.4949_1_107.xhtml
1
c
(
x
0
-
r
)
+
r
Doc 6
0.4848
-6.0000
5.0000
0.4848
testing/NTCIR/xhtml5/8/1109.4949/1109.4949_1_106.xhtml
f
(
x
)
=
f
(
1
c
(
x
-
r
)
+
r
)
Doc 7
0.4848
-11.0000
5.0000
0.4848
testing/NTCIR/xhtml5/9/hep-th9211064/hep-th9211064_1_48.xhtml
U
(
x
)
=
U
(
x
o
)
-
a
2
(
x
-
x
o
)
2
+
…
Doc 8
0.4275
-11.0000
5.0000
0.4275
testing/NTCIR/xhtml5/8/1206.5722/1206.5722_1_43.xhtml
θ
L
(
x
)
=
1
2
(
x
-
1
2
)
2
+
1
2
Doc 9
0.4275
-13.0000
5.0000
0.4275
testing/NTCIR/xhtml5/8/1207.6958/1207.6958_1_15.xhtml
φ
(
x
2
)
=
4
arctan
exp
β
~
4
(
x
2
-
Y
)
+
π
2
Doc 10
0.3934
-3.0000
5.0000
0.3934
testing/NTCIR/xhtml5/1/hep-th0412257/hep-th0412257_1_14.xhtml
1
2
(
x
2
-
p
2
)
=
μ
Doc 11
0.3934
-7.0000
4.0000
0.3934
testing/NTCIR/xhtml5/10/hep-th9808121/hep-th9808121_1_11.xhtml
i
∂
G
F
(
x
-
y
)
=
δ
(
x
-
y
)
Doc 12
0.3934
-8.0000
4.0000
0.3934
testing/NTCIR/xhtml5/10/physics9710005/physics9710005_1_72.xhtml
b
=
1
2
(
x
-
(
x
*
)
-
1
)
=
sinh
ω
Doc 13
0.3700
0.0000
4.0000
0.3700
testing/NTCIR/xhtml5/3/math0412407/math0412407_1_25.xhtml
4
3
(
x
-
1
)
Doc 14
0.3700
-1.0000
4.0000
0.3700
testing/NTCIR/xhtml5/6/0910.4873/0910.4873_1_55.xhtml
cot
π
L
(
x
-
y
)
Doc 15
0.3700
-1.0000
4.0000
0.3700
testing/NTCIR/xhtml5/10/hep-th9905135/hep-th9905135_1_63.xhtml
1
2
(
x
2
-
3
)
Doc 16
0.3700
-1.0000
4.0000
0.3700
testing/NTCIR/xhtml5/8/1201.6595/1201.6595_1_28.xhtml
ϵ
s
(
x
1
-
y
)
Doc 17
0.3700
-1.0000
4.0000
0.3700
testing/NTCIR/xhtml5/8/1202.0498/1202.0498_1_28.xhtml
1
s
(
x
1
-
y
)
Doc 18
0.3700
-4.0000
4.0000
0.3700
testing/NTCIR/xhtml5/9/1308.4921/1308.4921_1_223.xhtml
y
=
1
2
(
x
-
α
(
x
)
)
Doc 19
0.3700
-4.0000
4.0000
0.3700
testing/NTCIR/xhtml5/4/math0506035/math0506035_1_66.xhtml
L
(
x
)
=
1
2
(
x
-
α
)
Doc 20
0.3700
-6.0000
4.0000
0.3700
testing/NTCIR/xhtml5/1/cs0502045/cs0502045_1_50.xhtml
u
(
x
)
=
e
(
b
μ
(
x
-
1
)
)
Doc 21
0.3700
-6.0000
4.0000
0.3700
testing/NTCIR/xhtml5/8/1206.3464/1206.3464_1_96.xhtml
ψ
(
x
)
=
1
2
(
x
-
i
J
x
)
Doc 22
0.3700
-6.0000
4.0000
0.3700
testing/NTCIR/xhtml5/8/1203.0509/1203.0509_1_218.xhtml
ℑ
(
x
)
=
1
2
i
(
x
-
x
*
)
Doc 23
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/7/1104.5422/1104.5422_1_35.xhtml
f
i
(
x
)
=
1
2
(
x
-
y
i
)
2
Doc 24
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/5/0808.2270/0808.2270_1_19.xhtml
Π
ϵ
(
x
)
=
1
2
(
x
-
ϵ
x
ϵ
)
Doc 25
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/2/quant-ph0011059/quant-ph0011059_1_73.xhtml
V
(
x
)
=
ω
2
8
(
x
2
-
1
)
2
Doc 26
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/8/1206.0367/1206.0367_1_51.xhtml
Q
3
(
x
)
=
1
6
(
x
3
-
7
x
)
Doc 27
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/1/cond-mat0012414/cond-mat0012414_1_8.xhtml
V
(
x
)
=
λ
4
(
x
2
-
a
2
)
2
Doc 28
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/8/1206.0367/1206.0367_1_49.xhtml
Q
3
(
x
)
=
1
6
(
x
3
-
7
x
)
Doc 29
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/3/math0304144/math0304144_1_158.xhtml
h
(
x
)
=
1
2
(
x
-
ln
x
-
1
)
Doc 30
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/3/math0304144/math0304144_1_159.xhtml
h
(
x
)
=
1
2
(
x
-
ln
x
-
1
)
Doc 31
0.3700
-7.0000
4.0000
0.3700
testing/NTCIR/xhtml5/2/hep-th0012038/hep-th0012038_1_57.xhtml
V
(
x
)
=
ω
2
8
(
x
2
-
1
)
2
Doc 32
0.3700
-8.0000
4.0000
0.3700
testing/NTCIR/xhtml5/4/hep-th0603225/hep-th0603225_1_49.xhtml
V
(
x
)
=
λ
2
(
x
2
-
k
λ
)
2
Doc 33
0.3700
-8.0000
4.0000
0.3700
testing/NTCIR/xhtml5/7/1106.2727/1106.2727_1_89.xhtml
ϕ
(
x
)
=
λ
4
(
x
2
-
a
2
)
2
.
Doc 34
0.3700
-8.0000
4.0000
0.3700
testing/NTCIR/xhtml5/10/math-ph9903034/math-ph9903034_1_46.xhtml
V
κ
(
x
~
)
=
1
2
(
x
~
-
κ
)
2
Doc 35
0.3700
-8.0000
4.0000
0.3700
testing/NTCIR/xhtml5/7/1104.5422/1104.5422_1_44.xhtml
f
i
(
x
)
=
1
2
(
x
-
x
i
*
)
2
Doc 36
0.3700
-8.0000
4.0000
0.3700
testing/NTCIR/xhtml5/9/1304.3228/1304.3228_1_27.xhtml
φ
+
(
x
)
=
g
2
(
x
-
d
1
)
2
.
Doc 37
0.3700
-9.0000
5.0000
0.3700
testing/NTCIR/xhtml5/6/0912.5124/0912.5124_1_38.xhtml
(
x
-
c
)
λ
d
d
x
(
x
-
c
)
-
λ
.
Doc 38
0.3700
-9.0000
4.0000
0.3700
testing/NTCIR/xhtml5/2/math0104159/math0104159_1_35.xhtml
P
W
(
x
)
=
1
2
(
x
-
W
¯
x
W
†
)
Doc 39
0.3700
-9.0000
4.0000
0.3700
testing/NTCIR/xhtml5/8/1203.3607/1203.3607_1_44.xhtml
φ
n
(
x
)
=
φ
(
2
r
n
(
x
-
x
n
)
)
Doc 40
0.3700
-9.0000
4.0000
0.3700
testing/NTCIR/xhtml5/8/1202.6107/1202.6107_1_39.xhtml
μ
(
1
16
(
x
β
-
τ
e
(
x
β
)
)
)
=
0.
Doc 41
0.3700
-9.0000
4.0000
0.3700
testing/NTCIR/xhtml5/6/0910.4467/0910.4467_1_94.xhtml
y
2
(
x
-
b
)
=
1
3
(
x
-
b
)
3
.
Doc 42
0.3700
-9.0000
4.0000
0.3700
testing/NTCIR/xhtml5/5/0709.2894/0709.2894_1_62.xhtml
(
x
±
-
1
)
2
+
2
3
(
x
±
-
1
)
3
Doc 43
0.3700
-10.0000
4.0000
0.3700
testing/NTCIR/xhtml5/7/1005.0323/1005.0323_1_20.xhtml
λ
(
x
→
)
=
A
m
4
(
x
2
2
-
x
1
2
)
Doc 44
0.3700
-10.0000
4.0000
0.3700
testing/NTCIR/xhtml5/9/1304.3228/1304.3228_1_29.xhtml
φ
+
(
x
)
=
g
2
(
x
-
a
-
d
+
)
2
.
Doc 45
0.3700
-10.0000
4.0000
0.3700
testing/NTCIR/xhtml5/2/math-ph0208038/math-ph0208038_1_15.xhtml
ln
κ
(
x
)
=
1
2
κ
(
x
κ
-
x
-
κ
)
.
Doc 46
0.3349
-5.0000
4.0000
0.3349
testing/NTCIR/xhtml5/5/0712.4066/0712.4066_1_17.xhtml
N
(
x
)
=
1
-
y
(
x
)
x
.
Doc 47
0.3349
-7.0000
4.0000
0.3349
testing/NTCIR/xhtml5/9/1312.0698/1312.0698_1_40.xhtml
=
1
2
(
x
2
-
1
)
=
a
(
x
)
,
Doc 48
0.3349
-10.0000
4.0000
0.3349
testing/NTCIR/xhtml5/9/1306.4442/1306.4442_1_92.xhtml
lim
γ
→
0
1
γ
(
x
γ
-
1
)
=
log
(
x
)
.
Doc 49
0.3349
-10.0000
4.0000
0.3349
testing/NTCIR/xhtml5/3/math0312247/math0312247_1_19.xhtml
(
x
-
y
)
2
-
1
2
(
x
+
y
)
+
1
16
Doc 50
0.3125
-2.0000
4.0000
0.3125
testing/NTCIR/xhtml5/6/0901.0327/0901.0327_1_39.xhtml
=
1
4
(
x
-
1
)
Doc 51
0.3125
-6.0000
4.0000
0.3125
testing/NTCIR/xhtml5/8/1203.0326/1203.0326_1_42.xhtml
β
1
(
x
)
=
2
9
(
x
-
2
)
Doc 52
0.3125
-6.0000
4.0000
0.3125
testing/NTCIR/xhtml5/5/0808.0835/0808.0835_1_77.xhtml
F
(
x
)
=
i
2
(
x
-
i
)
2
Doc 53
0.3125
-6.0000
4.0000
0.3125
testing/NTCIR/xhtml5/7/1011.2713/1011.2713_1_234.xhtml
V
(
x
)
=
1
2
(
x
2
-
1
)
Doc 54
0.3125
-6.0000
4.0000
0.3125
testing/NTCIR/xhtml5/7/1005.5632/1005.5632_1_208.xhtml
W
(
x
)
=
1
2
(
x
-
1
)
2
Doc 55
0.3125
-7.0000
4.0000
0.3125
testing/NTCIR/xhtml5/9/1401.0797/1401.0797_1_26.xhtml
ψ
~
(
x
)
=
1
ρ
(
x
ρ
-
1
)
Doc 56
0.3125
-7.0000
4.0000
0.3125
testing/NTCIR/xhtml5/2/quant-ph0108094/quant-ph0108094_1_22.xhtml
V
(
x
)
=
1
2
(
x
2
-
1
)
2
Doc 57
0.3125
-8.0000
4.0000
0.3125
testing/NTCIR/xhtml5/1/0802.0775/0802.0775_1_16.xhtml
α
(
x
)
=
1
3
ln
(
x
-
1
)
+
…
Doc 58
0.3125
-8.0000
4.0000
0.3125
testing/NTCIR/xhtml5/4/math-ph0611077/math-ph0611077_1_8.xhtml
V
(
x
)
=
1
4
(
x
2
-
1
)
2
,
Doc 59
0.3125
-9.0000
4.0000
0.6250
testing/NTCIR/xhtml5/9/1312.0037/1312.0037_1_88.xhtml
f
2
(
x
)
=
v
(
x
-
u
)
2
+
v
2
f
1
(
x
)
=
x
-
u
(
x
-
u
)
2
+
v
2
Doc 60
0.3125
-9.0000
4.0000
0.3125
testing/NTCIR/xhtml5/2/hep-th0104016/hep-th0104016_1_62.xhtml
f
(
x
)
=
ρ
(
x
-
x
0
)
2
+
ρ
2
Doc 61
0.3125
-10.0000
4.0000
0.3125
testing/NTCIR/xhtml5/5/math-ph0703058/math-ph0703058_1_32.xhtml
f
ζ
(
x
)
=
τ
(
x
-
σ
)
2
+
τ
2
.
Doc 62
0.3125
-13.0000
4.0000
0.3125
testing/NTCIR/xhtml5/10/math9903063/math9903063_1_5.xhtml
P
(
x
)
=
1
2
(
δ
(
x
-
1
)
+
δ
(
x
+
1
)
)
Doc 63
0.2932
-14.0000
5.0000
0.2932
testing/NTCIR/xhtml5/1/hep-th9712053/hep-th9712053_1_17.xhtml
ϕ
(
x
)
=
1
2
(
ρ
(
x
)
+
v
)
e
-
i
g
θ
(
x
)
Doc 64
0.2759
-7.0000
4.0000
0.2759
testing/NTCIR/xhtml5/6/1002.0260/1002.0260_1_69.xhtml
Φ
(
x
)
=
1
2
(
f
(
x
)
-
1
)
Doc 65
0.2759
-7.0000
4.0000
0.2759
testing/NTCIR/xhtml5/5/0801.0132/0801.0132_1_35.xhtml
θ
(
x
)
=
1
2
(
sgn
(
x
)
+
1
)
Doc 66
0.2759
-9.0000
3.0000
0.5517
testing/NTCIR/xhtml5/7/1007.0514/1007.0514_1_159.xhtml
g
∗
(
x
)
=
1
r
-
2
(
x
+
μ
)
2
g
∗
(
x
)
=
1
r
+
s
(
x
+
μ
)
(
1
-
x
-
μ
)
Doc 67
0.2759
-9.0000
3.0000
0.2759
testing/NTCIR/xhtml5/7/1007.0514/1007.0514_1_163.xhtml
g
∗
(
x
)
=
1
r
-
2
(
x
+
μ
)
2
Doc 68
0.2759
-9.0000
3.0000
0.2759
testing/NTCIR/xhtml5/4/hep-th0509002/hep-th0509002_1_19.xhtml
h
(
x
)
=
-
n
(
x
)
+
x
-
1
2
,
Doc 69
0.2759
-9.0000
2.0000
0.2759
testing/NTCIR/xhtml5/8/1205.3973/1205.3973_1_26.xhtml
1
2
(
f
(
x
+
0
)
+
f
(
x
-
0
)
)
Doc 70
0.2759
-10.0000
4.0000
0.2759
testing/NTCIR/xhtml5/2/hep-th0301135/hep-th0301135_1_24.xhtml
R
(
x
)
=
1
2
(
W
′
(
x
)
-
y
(
x
)
)
Doc 71
0.2759
-11.0000
4.0000
0.2759
testing/NTCIR/xhtml5/9/1212.3672/1212.3672_1_11.xhtml
G
(
x
)
=
sign
(
x
)
4
(
sin
x
-
x
⋅
cos
x
)
Doc 72
0.2759
-11.0000
2.0000
0.2759
testing/NTCIR/xhtml5/9/1309.0201/1309.0201_1_21.xhtml
f
e
(
x
)
=
1
2
(
f
(
x
)
+
f
(
-
x
)
)
Doc 73
0.2759
-11.0000
2.0000
0.2759
testing/NTCIR/xhtml5/6/0907.1379/0907.1379_1_24.xhtml
f
s
(
x
)
=
1
2
(
f
(
x
)
+
f
(
-
x
)
)
Doc 74
0.2759
-11.0000
2.0000
0.2759
testing/NTCIR/xhtml5/8/1112.5469/1112.5469_1_13.xhtml
φ
o
(
x
)
=
1
2
(
φ
(
x
)
+
φ
(
-
x
)
)
Doc 75
0.2759
-11.0000
2.0000
0.2759
testing/NTCIR/xhtml5/2/hep-th0011196/hep-th0011196_1_7.xhtml
1
2
(
Ei
(
x
+
i
ϵ
)
+
Ei
(
x
-
i
ϵ
)
)
Doc 76
0.2759
-11.0000
2.0000
0.2759
testing/NTCIR/xhtml5/4/hep-th0609026/hep-th0609026_1_67.xhtml
1
2
(
Z
1
(
x
+
y
)
+
Z
1
(
x
-
y
)
)
Doc 77
0.2759
-11.0000
2.0000
0.2759
testing/NTCIR/xhtml5/11/hep-th9910036/hep-th9910036_1_131.xhtml
1
2
(
B
(
x
+
i
ϵ
)
+
B
(
x
-
i
ϵ
)
)
Doc 78
0.2759
-11.0000
2.0000
0.2759
testing/NTCIR/xhtml5/9/1301.6378/1301.6378_1_59.xhtml
h
~
(
x
)
=
1
2
(
h
(
x
)
+
h
(
-
x
)
)
Doc 79
0.2759
-14.0000
3.0000
0.2759
testing/NTCIR/xhtml5/7/1007.0514/1007.0514_1_162.xhtml
g
∗
(
x
)
=
1
r
+
s
(
x
+
μ
)
(
1
-
x
-
μ
)
Doc 80
0.2759
-14.0000
2.0000
0.2759
testing/NTCIR/xhtml5/3/math0412313/math0412313_1_9.xhtml
ψ
0
(
x
)
=
1
2
(
ψ
(
x
+
0
)
+
ψ
(
x
-
0
)
)
Doc 81
0.2759
-14.0000
2.0000
0.2759
testing/NTCIR/xhtml5/5/0711.3924/0711.3924_1_61.xhtml
K
f
(
x
)
=
1
2
(
f
(
x
+
a
)
+
f
(
x
-
a
)
)
Doc 82
0.2759
-14.0000
2.0000
0.2759
testing/NTCIR/xhtml5/7/1102.5061/1102.5061_1_22.xhtml
K
f
(
x
)
=
1
2
(
f
(
x
+
a
)
+
f
(
x
-
a
)
)
Doc 83
0.2759
-14.0000
2.0000
0.2759
testing/NTCIR/xhtml5/7/1102.5061/1102.5061_1_50.xhtml
K
f
(
x
)
=
1
2
(
f
(
x
+
a
)
+
f
(
x
-
a
)
)
Doc 84
0.2548
-11.0000
4.0000
0.2548
testing/NTCIR/xhtml5/7/1107.3191/1107.3191_1_13.xhtml
g
(
x
)
=
1
2
x
(
x
-
1
)
+
13
12
Doc 85
0.2548
-11.0000
4.0000
0.2548
testing/NTCIR/xhtml5/7/1107.3191/1107.3191_1_11.xhtml
g
(
x
)
=
1
2
x
(
x
-
1
)
+
13
12
Doc 86
0.2548
-12.0000
4.0000
0.2548
testing/NTCIR/xhtml5/5/0710.2590/0710.2590_1_44.xhtml
g
(
x
i
)
=
-
2
n
(
x
i
-
1
)
+
2
.
Doc 87
0.2548
-16.0000
4.0000
0.2548
testing/NTCIR/xhtml5/8/1110.2540/1110.2540_1_118.xhtml
u
(
x
)
-
v
(
x
)
=
π
2
(
sign
(
x
-
λ
m
)
+
1
)
.
Doc 88
0.2158
-7.0000
4.0000
0.2158
testing/NTCIR/xhtml5/6/0905.1791/0905.1791_1_29.xhtml
f
(
x
)
=
2
(
x
-
1
2
)
.
Doc 89
0.2158
-10.0000
4.0000
0.2158
testing/NTCIR/xhtml5/7/1107.5426/1107.5426_1_7.xhtml
g
(
x
)
=
1
2
(
1
+
tanh
(
x
-
θ
)
)
Doc 90
0.2158
-10.0000
4.0000
0.2158
testing/NTCIR/xhtml5/1/1201.5439/1201.5439_1_20.xhtml
q
(
x
)
=
(
x
-
1
2
(
ξ
+
1
)
)
2
Doc 91
0.2158
-10.0000
4.0000
0.2158
testing/NTCIR/xhtml5/4/math0601102/math0601102_1_63.xhtml
f
(
x
)
=
1
2
(
1
+
x
-
T
(
x
)
)
Doc 92
0.1967
-7.0000
4.0000
0.3934
testing/NTCIR/xhtml5/11/math-ph9910020/math-ph9910020_1_61.xhtml
y
1
(
x
)
=
1
x
-
A
,
y
(
x
)
=
B
1
+
B
(
x
-
A
)
,
Doc 93
0.1967
-7.0000
3.0000
0.3934
testing/NTCIR/xhtml5/7/1108.0962/1108.0962_1_66.xhtml
g
(
x
)
=
f
(
x
)
x
-
α
g
(
x
)
=
f
(
x
)
x
-
α
′
Doc 94
0.1967
-7.0000
3.0000
0.1967
testing/NTCIR/xhtml5/3/math-ph0307057/math-ph0307057_1_21.xhtml
F
(
x
)
=
x
-
1
log
(
x
)
Doc 95
0.1967
-8.0000
4.0000
0.1967
testing/NTCIR/xhtml5/4/math0604201/math0604201_1_80.xhtml
g
(
x
)
=
λ
x
-
f
(
x
)
+
μ
Doc 96
0.1967
-8.0000
3.0000
0.1967
testing/NTCIR/xhtml5/8/1110.3738/1110.3738_1_6.xhtml
g
(
x
)
=
f
(
x
)
(
x
-
b
)
Doc 97
0.1967
-8.0000
3.0000
0.1967
testing/NTCIR/xhtml5/5/0811.4767/0811.4767_1_64.xhtml
z
(
x
-
y
)
y
(
x
-
z
)
.
Doc 98
0.1967
-8.0000
3.0000
0.1967
testing/NTCIR/xhtml5/7/1108.0962/1108.0962_1_59.xhtml
g
(
x
)
=
f
(
x
)
x
-
α
′
Doc 99
0.1967
-8.0000
3.0000
0.1967
testing/NTCIR/xhtml5/2/math0112269/math0112269_1_49.xhtml
H
(
x
)
=
-
G
(
x
)
x
-
α
Doc 100
0.1967
-8.0000
3.0000
0.1967
testing/NTCIR/xhtml5/2/hep-th0210081/hep-th0210081_1_33.xhtml
σ
(
x
)
=
g
a
δ
(
x
-
a
)
Doc 101
0.1967
-9.0000
4.0000
0.1967
testing/NTCIR/xhtml5/8/1210.3580/1210.3580_1_33.xhtml
y
(
x
)
=
Ψ
(
x
)
Ψ
(
x
-
ϵ
)
Doc 102
0.1967
-9.0000
3.0000
0.1967
testing/NTCIR/xhtml5/6/0903.0683/0903.0683_1_32.xhtml
f
(
x
)
=
x
(
x
-
a
)
x
-
1
Doc 103
0.1967
-9.0000
3.0000
0.1967
testing/NTCIR/xhtml5/8/1205.6946/1205.6946_1_128.xhtml
J
*
(
x
)
=
-
1
β
ln
y
(
x
)
Doc 104
0.1967
-9.0000
3.0000
0.1967
testing/NTCIR/xhtml5/5/0806.2366/0806.2366_1_43.xhtml
f
(
x
)
=
(
x
-
1
)
k
k
!
.
Doc 105
0.1967
-12.0000
3.0000
0.1967
testing/NTCIR/xhtml5/7/1005.3448/1005.3448_1_15.xhtml
deg
(
x
3
-
y
2
)
=
1
2
deg
(
x
)
+
5.