tangent
Not Supported
∫
ℝ
n
f
d
x
=
∫
0
∞
{
∫
x0
f
d
S
}
d
r
.
Search
Returned 86 matches (100 formulae, 118 docs)
Lookup 213.413 ms, Re-ranking 773.485 ms
Found 2049929 tuple postings, 1017657 formulae, 653806 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.4819
-8.0000
7.0000
0.4819
testing/NTCIR/xhtml5/5/0806.2921/0806.2921_1_23.xhtml
∫
S
f
d
λ
=
∫
0
∞
f
(
r
)
A
(
r
)
d
r
,
Doc 2
0.4586
-7.0000
5.0000
0.4586
testing/NTCIR/xhtml5/8/1209.6413/1209.6413_1_2.xhtml
∫
Ω
x
(
∫
ℝ
n
f
d
v
-
1
)
d
x
=
0
Doc 3
0.4271
-2.0000
7.0000
0.4271
testing/NTCIR/xhtml5/9/1211.7303/1211.7303_1_33.xhtml
∫
Ω
f
d
x
=
∫
Γ
d
d
S
Doc 4
0.4271
-3.0000
7.0000
0.4271
testing/NTCIR/xhtml5/8/1210.0124/1210.0124_1_4.xhtml
∫
Ω
f
d
x
=
∫
Γ
ϕ
2
d
s
Doc 5
0.4271
-4.0000
7.0000
0.4271
testing/NTCIR/xhtml5/6/0907.1806/0907.1806_1_64.xhtml
lim
∫
ℝ
f
d
ν
k
=
∫
ℝ
f
d
μ
Doc 6
0.4271
-4.0000
6.0000
0.4271
testing/NTCIR/xhtml5/7/1012.5863/1012.5863_1_70.xhtml
∫
A
f
μ
d
ν
=
∫
A
f
ν
d
μ
Doc 7
0.4271
-4.0000
6.0000
0.4271
testing/NTCIR/xhtml5/6/0910.4809/0910.4809_1_39.xhtml
∫
X
𝚲
f
d
μ
=
∫
X
𝚲
f
d
ν
Doc 8
0.4271
-6.0000
9.0000
0.4271
testing/NTCIR/xhtml5/2/math-ph0204032/math-ph0204032_1_81.xhtml
∫
ℝ
n
f
d
x
=
∫
ℝ
n
g
d
x
=
1
Doc 9
0.4271
-8.0000
6.0000
0.4271
testing/NTCIR/xhtml5/4/math0702456/math0702456_1_58.xhtml
lim
n
→
∞
∫
ℂ
f
d
τ
n
=
∫
ℝ
f
d
μ
K
Doc 10
0.4271
-9.0000
7.0000
0.4271
testing/NTCIR/xhtml5/3/math0310377/math0310377_1_16.xhtml
lim
n
→
∞
∫
ℝ
d
f
d
ν
n
=
∫
ℝ
d
f
d
μ
Doc 11
0.4043
-8.0000
6.0000
0.4043
testing/NTCIR/xhtml5/4/math0505276/math0505276_1_24.xhtml
∫
{
∫
f
d
μ
y
}
d
ν
(
y
)
=
∫
f
d
μ
Doc 12
0.4043
-8.0000
6.0000
0.4043
testing/NTCIR/xhtml5/4/math0505276/math0505276_1_26.xhtml
∫
{
∫
f
d
μ
y
}
d
ν
(
y
)
=
∫
f
d
μ
Doc 13
0.4043
-11.0000
7.0000
0.4043
testing/NTCIR/xhtml5/6/1001.0560/1001.0560_1_6.xhtml
∫
ℝ
n
f
d
γ
k
=
∫
ℝ
n
f
(
k
y
)
d
γ
(
y
)
Doc 14
0.4043
-16.0000
8.0000
0.4043
testing/NTCIR/xhtml5/6/0911.4210/0911.4210_1_36.xhtml
∫
ℝ
n
f
d
x
=
∫
X
∑
g
∈
G
⊥
f
(
x
-
g
)
d
μ
([
x
])
Doc 15
0.3721
-1.0000
6.0000
0.3721
testing/NTCIR/xhtml5/3/cs0408028/cs0408028_1_54.xhtml
∫
f
d
ℰ
=
∫
f
d
𝒱
Doc 16
0.3721
-3.0000
6.0000
0.3721
testing/NTCIR/xhtml5/5/0811.1237/0811.1237_1_38.xhtml
∫
A
f
d
g
=
∫
B
f
d
g
Doc 17
0.3721
-3.0000
6.0000
0.3721
testing/NTCIR/xhtml5/9/1301.5041/1301.5041_1_41.xhtml
∫
Ω
u
d
x
=
∫
Ω
f
d
x
Doc 18
0.3721
-3.0000
6.0000
0.3721
testing/NTCIR/xhtml5/5/0811.1237/0811.1237_1_36.xhtml
∫
A
f
d
g
=
∫
B
f
d
g
Doc 19
0.3721
-4.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/1003.5248/1003.5248_1_51.xhtml
∫
H
f
d
x
=
∫
H
c
f
d
x
Doc 20
0.3721
-4.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/1003.5248/1003.5248_1_22.xhtml
∫
B
f
d
x
=
∫
B
c
f
d
x
Doc 21
0.3721
-4.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/1003.5248/1003.5248_1_53.xhtml
∫
B
f
d
x
=
∫
B
c
f
d
x
Doc 22
0.3721
-4.0000
6.0000
0.3721
testing/NTCIR/xhtml5/9/1301.5041/1301.5041_1_48.xhtml
∫
Ω
u
t
d
x
=
∫
Ω
f
d
x
Doc 23
0.3721
-4.0000
6.0000
0.3721
testing/NTCIR/xhtml5/5/0801.1209/0801.1209_1_233.xhtml
∫
G
f
d
μ
¯
=
∫
G
f
d
μ
Doc 24
0.3721
-4.0000
6.0000
0.3721
testing/NTCIR/xhtml5/7/1104.0237/1104.0237_1_13.xhtml
∫
X
f
d
ν
=
∫
X
f
^
d
ν
Doc 25
0.3721
-4.0000
6.0000
0.3721
testing/NTCIR/xhtml5/7/1104.0237/1104.0237_1_10.xhtml
∫
X
f
d
ν
=
∫
X
f
^
d
ν
Doc 26
0.3721
-4.0000
6.0000
0.3721
testing/NTCIR/xhtml5/8/1112.6044/1112.6044_1_75.xhtml
∫
T
f
d
μ
=
∫
T
f
^
d
μ
Doc 27
0.3721
-4.0000
6.0000
0.3721
testing/NTCIR/xhtml5/8/1112.6044/1112.6044_1_61.xhtml
∫
T
f
d
μ
=
∫
T
f
^
d
μ
Doc 28
0.3721
-4.0000
6.0000
0.3721
testing/NTCIR/xhtml5/8/1112.6044/1112.6044_1_56.xhtml
∫
T
f
d
μ
=
∫
T
f
^
d
μ
Doc 29
0.3721
-4.0000
6.0000
0.3721
testing/NTCIR/xhtml5/8/1112.6044/1112.6044_1_66.xhtml
∫
T
f
d
μ
=
∫
T
f
^
d
μ
Doc 30
0.3721
-5.0000
6.0000
0.7442
testing/NTCIR/xhtml5/7/1105.1605/1105.1605_1_82.xhtml
∫
X
f
d
μ
1
=
∫
X
f
d
μ
2
∫
X
f
d
μ
1
=
∫
X
f
d
μ
2
,
Doc 31
0.3721
-5.0000
6.0000
0.3721
testing/NTCIR/xhtml5/7/1105.1605/1105.1605_1_78.xhtml
∫
X
f
d
μ
1
=
∫
X
f
d
μ
2
Doc 32
0.3721
-5.0000
6.0000
0.3721
testing/NTCIR/xhtml5/6/0909.0978/0909.0978_1_32.xhtml
∫
G
f
d
ν
=
∫
∂
G
f
d
ν
^
Doc 33
0.3721
-5.0000
6.0000
0.3721
testing/NTCIR/xhtml5/3/math0405471/math0405471_1_117.xhtml
∫
γ
0
f
d
z
=
∫
γ
1
f
d
z
Doc 34
0.3721
-5.0000
6.0000
0.3721
testing/NTCIR/xhtml5/4/math0512098/math0512098_1_137.xhtml
∫
𝐑
f
*
d
z
=
∫
𝐑
f
d
z
;
Doc 35
0.3721
-5.0000
6.0000
0.3721
testing/NTCIR/xhtml5/7/1104.1709/1104.1709_1_176.xhtml
∫
h
ν
ψ
d
x
=
∫
h
ν
f
d
x
Doc 36
0.3721
-5.0000
6.0000
0.3721
testing/NTCIR/xhtml5/7/1009.0125/1009.0125_1_16.xhtml
∫
𝐊
f
d
μ
1
=
∫
𝐊
f
d
μ
2
Doc 37
0.3721
-5.0000
6.0000
0.3721
testing/NTCIR/xhtml5/4/math0512098/math0512098_1_134.xhtml
∫
𝐑
f
*
d
z
=
∫
𝐑
f
d
z
;
Doc 38
0.3721
-5.0000
6.0000
0.3721
testing/NTCIR/xhtml5/2/math0209166/math0209166_1_52.xhtml
∫
γ
0
f
d
z
=
∫
γ
1
f
d
z
Doc 39
0.3721
-6.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/1003.5248/1003.5248_1_31.xhtml
∫
B
f
d
x
=
∫
ℝ
N
∖
B
f
d
x
Doc 40
0.3721
-6.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/1003.5248/1003.5248_1_33.xhtml
∫
B
f
d
x
=
∫
ℝ
N
∖
B
f
d
x
Doc 41
0.3721
-6.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/1003.5248/1003.5248_1_32.xhtml
∫
H
f
d
x
=
∫
ℝ
N
∖
H
f
d
x
Doc 42
0.3721
-6.0000
7.0000
0.3721
testing/NTCIR/xhtml5/3/math-ph0306026/math-ph0306026_1_40.xhtml
∫
𝕋
2
f
d
x
=
∫
𝕋
2
f
¯
d
x
Doc 43
0.3721
-6.0000
6.0000
0.3721
testing/NTCIR/xhtml5/9/1306.6653/1306.6653_1_24.xhtml
lim
n
∫
X
f
n
d
E
=
∫
X
f
d
E
Doc 44
0.3721
-7.0000
7.0000
0.3721
testing/NTCIR/xhtml5/7/1104.4479/1104.4479_1_29.xhtml
∫
0
∞
τ
x
f
d
μ
=
∫
0
∞
f
d
μ
Doc 45
0.3721
-8.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/0904.4275/0904.4275_1_18.xhtml
∫
B
f
p
d
x
=
∫
ℝ
N
∖
B
f
p
d
x
Doc 46
0.3721
-8.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/0904.4275/0904.4275_1_20.xhtml
∫
B
f
p
d
x
=
∫
ℝ
N
∖
B
f
p
d
x
Doc 47
0.3721
-8.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/0904.4275/0904.4275_1_19.xhtml
∫
H
f
p
d
x
=
∫
ℝ
N
∖
H
f
p
d
x
Doc 48
0.3721
-8.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/0906.1470/0906.1470_1_116.xhtml
∫
Ω
f
k
d
x
=
∫
Ω
f
¯
k
d
x
=
0
Doc 49
0.3721
-11.0000
7.0000
0.3721
testing/NTCIR/xhtml5/6/0904.0583/0904.0583_1_37.xhtml
∫
E
∩
H
-
f
d
x
=
∫
E
∩
H
+
f
d
x
=
0
Doc 50
0.3500
-8.0000
6.0000
0.3500
testing/NTCIR/xhtml5/8/1111.1846/1111.1846_1_13.xhtml
∫
ℝ
f
d
μ
=
∫
ℝ
f
(
x
)
μ
(
d
x
)
Doc 51
0.3500
-8.0000
6.0000
0.3500
testing/NTCIR/xhtml5/8/1111.1846/1111.1846_1_6.xhtml
∫
ℝ
f
d
μ
=
∫
ℝ
f
(
x
)
μ
(
d
x
)
Doc 52
0.3500
-10.0000
7.0000
0.3500
testing/NTCIR/xhtml5/5/0707.1084/0707.1084_1_45.xhtml
F
=
∫
f
d
0
x
=
∫
-
∞
∞
f
d
x
X
Doc 53
0.3500
-12.0000
6.0000
0.3500
testing/NTCIR/xhtml5/10/gr-qc9809058/gr-qc9809058_1_19.xhtml
F
=
∫
Ω
f
d
n
x
=
∫
ℝ
n
θ
Ω
f
d
n
x
,
Doc 54
0.3500
-15.0000
6.0000
0.3500
testing/NTCIR/xhtml5/8/1204.1667/1204.1667_1_53.xhtml
∫
ℝ
n
|
f
|
p
w
d
x
=
∫
0
∞
f
w
*
(
t
)
p
d
t
.
Doc 55
0.3347
-3.0000
8.0000
0.3347
testing/NTCIR/xhtml5/8/1210.5930/1210.5930_1_11.xhtml
∫
f
d
x
=
∫
Ω
f
d
x
.
Doc 56
0.3347
-3.0000
8.0000
0.3347
testing/NTCIR/xhtml5/8/1210.6493/1210.6493_1_6.xhtml
∫
f
d
x
=
∫
Ω
f
d
x
.
Doc 57
0.3347
-4.0000
8.0000
0.3347
testing/NTCIR/xhtml5/7/1004.4749/1004.4749_1_5.xhtml
∫
f
d
x
=
∫
ℝ
3
f
d
x
.
Doc 58
0.3347
-4.0000
8.0000
0.3347
testing/NTCIR/xhtml5/8/1111.2114/1111.2114_1_9.xhtml
∫
f
d
x
=
∫
ℝ
3
f
d
x
.
Doc 59
0.3347
-4.0000
8.0000
0.3347
testing/NTCIR/xhtml5/8/1207.3746/1207.3746_1_5.xhtml
∫
f
d
x
=
∫
ℝ
2
f
d
x
.
Doc 60
0.3347
-10.0000
7.0000
0.3347
testing/NTCIR/xhtml5/5/0806.0021/0806.0021_1_55.xhtml
=
∫
ℝ
n
f
+
d
γ
n
+
∫
ℝ
n
f
-
d
γ
n
Doc 61
0.3167
-2.0000
5.0000
0.5776
testing/NTCIR/xhtml5/5/0710.4324/0710.4324_1_2.xhtml
J
=
∫
0
∞
f
k
d
x
y
=
∫
0
x
f
d
x
Doc 62
0.3167
-7.0000
6.0000
0.3167
testing/NTCIR/xhtml5/6/1003.1808/1003.1808_1_139.xhtml
∫
I
φ
(
x
)
d
x
=
∫
𝒯
f
d
ν
.
Doc 63
0.3167
-15.0000
5.0000
0.3167
testing/NTCIR/xhtml5/4/math0604554/math0604554_1_71.xhtml
∫
0
∞
p
t
p
-
1
|
E
t
|
d
t
=
∫
ℝ
n
f
p
d
x
.
Doc 64
0.2956
-1.0000
6.0000
0.5911
testing/NTCIR/xhtml5/5/0811.4673/0811.4673_1_263.xhtml
∫
ℝ
f
d
x
=
0
∫
ℝ
f
1
d
x
=
-
∫
ℝ
f
2
d
x
≠
0
Doc 65
0.2956
-1.0000
5.0000
0.5911
testing/NTCIR/xhtml5/9/1310.8217/1310.8217_1_57.xhtml
∫
Ω
f
d
x
=
1
μ
~
ε
(
Ω
)
=
∫
Ω
f
d
x
=
1
Doc 66
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/9/1310.8217/1310.8217_1_60.xhtml
∫
Ω
f
d
x
=
1
Doc 67
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/5/0810.3073/0810.3073_1_58.xhtml
∫
B
f
d
x
=
0
Doc 68
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/6/0904.0583/0904.0583_1_34.xhtml
∫
P
f
d
x
=
0
Doc 69
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/8/1211.4408/1211.4408_1_12.xhtml
∫
𝒪
f
d
x
=
0
Doc 70
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/6/0904.0583/0904.0583_1_32.xhtml
∫
P
f
d
x
=
0
Doc 71
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/5/0810.2064/0810.2064_1_52.xhtml
∫
Ω
f
d
x
=
0.
Doc 72
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/6/0904.0583/0904.0583_1_61.xhtml
∫
P
f
d
x
=
0
Doc 73
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/6/0904.0583/0904.0583_1_31.xhtml
∫
P
f
d
x
=
0
Doc 74
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/7/1011.5863/1011.5863_1_144.xhtml
∫
B
f
d
x
=
0
Doc 75
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/8/1108.2249/1108.2249_1_28.xhtml
∫
𝐓
f
d
x
=
0
Doc 76
0.2956
-2.0000
6.0000
0.2956
testing/NTCIR/xhtml5/9/1212.5066/1212.5066_1_2.xhtml
∫
ℝ
2
f
d
x
=
0
Doc 77
0.2956
-2.0000
6.0000
0.2956
testing/NTCIR/xhtml5/6/1002.2489/1002.2489_1_28.xhtml
∫
ℝ
f
d
x
h
=
0
Doc 78
0.2956
-2.0000
6.0000
0.2956
testing/NTCIR/xhtml5/8/1109.1543/1109.1543_1_22.xhtml
∫
ℝ
2
f
d
x
=
M
Doc 79
0.2956
-2.0000
5.0000
0.2956
testing/NTCIR/xhtml5/6/0911.4177/0911.4177_1_84.xhtml
∫
𝕋
d
f
d
x
=
0.
Doc 80
0.2956
-2.0000
5.0000
0.2956
testing/NTCIR/xhtml5/6/0911.4177/0911.4177_1_86.xhtml
∫
𝕋
d
f
d
x
=
0
Doc 81
0.2956
-2.0000
5.0000
0.2956
testing/NTCIR/xhtml5/9/1308.1570/1308.1570_1_10.xhtml
∫
𝒪
f
d
x
¯
=
0
Doc 82
0.2956
-7.0000
6.0000
0.2956
testing/NTCIR/xhtml5/9/1401.2216/1401.2216_1_21.xhtml
∂
𝐚
∫
f
d
x
=
∫
∂
𝐚
f
d
x
Doc 83
0.2956
-7.0000
5.0000
0.5911
testing/NTCIR/xhtml5/8/1111.2409/1111.2409_1_98.xhtml
∫
H
f
+
f
d
x
=
λ
∫
f
d
x
∫
H
f
[
t
]
+
f
[
t
]
d
x
=
λ
∫
f
[
t
]
d
x
Doc 84
0.2956
-8.0000
3.0000
0.2956
testing/NTCIR/xhtml5/4/math0701374/math0701374_1_14.xhtml
χ
(
∫
ℒ
f
d
μ
)
=
∫
ℒ
f
d
χ
.
Doc 85
0.2956
-8.0000
3.0000
0.2956
testing/NTCIR/xhtml5/5/0807.0491/0807.0491_1_42.xhtml
χ
(
∫
ℒ
f
d
μ
)
=
∫
ℒ
f
d
χ
.
Doc 86
0.2956
-9.0000
5.0000
0.2956
testing/NTCIR/xhtml5/8/1111.2409/1111.2409_1_16.xhtml
∫
H
λ
,
θ
+
f
d
x
=
λ
∫
f
d
x
Doc 87
0.2956
-10.0000
5.0000
0.2956
testing/NTCIR/xhtml5/7/1009.3046/1009.3046_1_18.xhtml
∫
Ω
x
(
1
-
∫
ℝ
n
f
d
v
)
d
x
=
0
Doc 88
0.2956
-12.0000
5.0000
0.2956
testing/NTCIR/xhtml5/9/1212.3750/1212.3750_1_22.xhtml
∫
0
u
f
(
k
x
)
d
x
=
∫
0
u
f
(
x
)
d
x
Doc 89
0.2956
-14.0000
6.0000
0.2956
testing/NTCIR/xhtml5/7/1004.2445/1004.2445_1_75.xhtml
∫
0
∞
f
[
ϕ
(
x
)
]
d
x
=
∫
0
∞
f
(
x
)
d
x
.
Doc 90
0.2956
-17.0000
6.0000
0.2956
testing/NTCIR/xhtml5/4/math0602658/math0602658_1_3.xhtml
∫
0
∞
q
n
f
(
x
)
d
q
x
=
∫
0
∞
f
(
x
)
d
q
x
.
Doc 91
0.2956
-18.0000
6.0000
0.2956
testing/NTCIR/xhtml5/7/1004.2445/1004.2445_1_79.xhtml
∫
0
∞
f
(
[
x
-
s
(
x
)
]
2
)
d
x
=
∫
0
∞
f
(
y
2
)
d
y
,
Doc 92
0.2956
-23.0000
6.0000
0.2956
testing/NTCIR/xhtml5/5/0809.3315/0809.3315_1_1.xhtml
∫
ℝ
n
f
(
x
)
d
x
=
∫
0
∞
∫
Σ
f
(
A
t
θ
)
t
γ
-
1
d
σ
(
θ
)
d
t
Doc 93
0.2956
-24.0000
6.0000
0.2956
testing/NTCIR/xhtml5/8/1208.2839/1208.2839_1_13.xhtml
∫
G
f
(
x
)
d
x
=
∫
0
∞
∫
S
1
f
(
D
r
x
)
d
σ
(
x
)
r
Q
-
1
d
r
.
Doc 94
0.2956
-25.0000
6.0000
0.2956
testing/NTCIR/xhtml5/4/math0602664/math0602664_1_13.xhtml
∫
ℝ
d
f
(
x
)
d
x
=
∫
0
∞
∫
S
0
f
(
r
E
θ
)
σ
(
d
θ
)
r
q
-
1
d
r
.
Doc 95
0.2956
-26.0000
6.0000
0.2956
testing/NTCIR/xhtml5/4/math0702050/math0702050_1_20.xhtml
∫
ℝ
d
f
(
x
)
d
x
=
∫
0
∞
∫
S
E
f
(
r
E
θ
)
σ
E
(
d
θ
)
r
q
-
1
d
r
.
Doc 96
0.2909
-5.0000
7.0000
0.2909
testing/NTCIR/xhtml5/4/math0606126/math0606126_1_69.xhtml
∫
S
f
k
d
x
→
∫
S
f
d
x
.
Doc 97
0.2609
-3.0000
4.0000
0.2609
testing/NTCIR/xhtml5/5/0708.1329/0708.1329_1_18.xhtml
α
=
∫
B
2
f
d
x
.
Doc 98
0.2609
-6.0000
4.0000
0.2609
testing/NTCIR/xhtml5/8/1111.2657/1111.2657_1_7.xhtml
∫
ℝ
3
f
=
∫
ℝ
3
f
d
x
.
Doc 99
0.2609
-11.0000
3.0000
0.5018
testing/NTCIR/xhtml5/7/1107.4663/1107.4663_1_6.xhtml
∫
0
T
∫
f
=
∫
0
T
∫
Ω
f
d
x
d
t
.
∫
f
=
∫
Ω
f
d
x
Doc 100
0.2609
-11.0000
3.0000
0.5018
testing/NTCIR/xhtml5/7/1107.4663/1107.4663_1_9.xhtml
∫
0
T
∫
f
=
∫
0
T
∫
Ω
f
d
x
d
t
.
∫
f
=
∫
Ω
f
d
x
Doc 101
0.2609
-22.0000
5.0000
0.2609
testing/NTCIR/xhtml5/9/1302.1217/1302.1217_1_155.xhtml
d
d
r
∫
B
(
x
0
,
r
)
f
(
x
)
d
x
=
∫
∂
B
(
x
0
,
r
)
f
d
S
Doc 102
0.2410
-3.0000
5.0000
0.2410
testing/NTCIR/xhtml5/9/1303.6724/1303.6724_1_62.xhtml
∫
0
T
f
d
x
=
0.
Doc 103
0.2410
-3.0000
5.0000
0.2410
testing/NTCIR/xhtml5/8/1201.3735/1201.3735_1_33.xhtml
∫
0
P
f
d
x
=
0
Doc 104
0.2410
-3.0000
5.0000
0.2410
testing/NTCIR/xhtml5/4/math0506411/math0506411_1_80.xhtml
[
f
]
=
∫
ℝ
f
d
x
Doc 105
0.2410
-3.0000
5.0000
0.2410
testing/NTCIR/xhtml5/4/math0506411/math0506411_1_79.xhtml
[
f
]
=
∫
ℝ
f
d
x
Doc 106
0.2410
-6.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1206.6144/1206.6144_1_19.xhtml
∫
f
d
x
≜
∫
Ω
f
d
x
.
Doc 107
0.2410
-7.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/1003.3005/1003.3005_1_64.xhtml
∫
0
T
∫
𝐑
f
d
v
d
x
=
0
Doc 108
0.2410
-14.0000
5.0000
0.2410
testing/NTCIR/xhtml5/8/1111.1680/1111.1680_1_48.xhtml
∫
ℝ
3
f
(
|
x
|
)
d
x
=
∫
-
∞
∞
f
(
r
)
d
r
;
Doc 109
0.2410
-14.0000
5.0000
0.2410
testing/NTCIR/xhtml5/8/1111.1680/1111.1680_1_49.xhtml
∫
ℝ
3
f
(
|
x
|
)
d
x
=
∫
-
∞
∞
f
(
r
)
d
r
;
Doc 110
0.2410
-14.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math-ph0602031/math-ph0602031_1_13.xhtml
∫
∫
f
±
,
ε
d
p
d
x
=
∫
∫
f
±
d
p
d
x
Doc 111
0.2410
-16.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0811.3818/0811.3818_1_110.xhtml
∮
f
d
x
=
:
∫
0
y
0
f
d
x
+
∫
y
0
1
f
d
x
Doc 112
0.2410
-19.0000
4.0000
0.2410
testing/NTCIR/xhtml5/8/1204.6540/1204.6540_1_84.xhtml
∫
Ω
∫
ℝ
2
f
d
𝐯
d
x
=
∫
Ω
∫
ℝ
2
f
0
d
𝐯
d
x
=
0.
Doc 113
0.2041
-2.0000
3.0000
0.2041
testing/NTCIR/xhtml5/4/math-ph0503028/math-ph0503028_1_10.xhtml
∫
f
=
∫
f
d
x
Doc 114
0.2041
-3.0000
3.0000
0.2041
testing/NTCIR/xhtml5/5/0707.0974/0707.0974_1_176.xhtml
∫
0
∞
f
*
f
d
x
Doc 115
0.2041
-14.0000
3.0000
0.2041
testing/NTCIR/xhtml5/5/0712.1090/0712.1090_1_19.xhtml
∫
ℝ
f
(
x
,
t
)
d
x
=
∫
ℝ
f
0
(
x
)
d
x
.
Doc 116
0.1860
-14.0000
4.0000
0.1860
testing/NTCIR/xhtml5/8/1203.2035/1203.2035_1_53.xhtml
∫
X
f
(
O
(
x
)
)
ψ
(
x
)
d
x
=
∫
ℝ
f
ψ
~
Doc 117
0.1860
-15.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1104.0603/1104.0603_1_226.xhtml
∫
ℝ
3
f
A
(
x
)
d
x
=
∫
ℝ
3
f
B
(
x
)
d
x
Doc 118
0.1562
-17.0000
4.0000
0.1562
testing/NTCIR/xhtml5/3/math0406251/math0406251_1_74.xhtml
∫
ℝ
2
f
(
|
x
|
)
d
2
x
=
2
π
∫
0
∞
f
(
r
)
r
d
r
.