tangent
Not Supported
Ker
(
k
*
-
l
*
)
≅
?x0
(
i
*
,
j
*
)
.
Search
Returned 77 matches (100 formulae, 131 docs)
Lookup 632.561 ms, Re-ranking 97.027 ms
Found 12756868 tuple postings, 9596823 formulae, 4125083 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.4179
-4.0000
5.0000
0.7709
testing/NTCIR/xhtml5/6/0905.3021/0905.3021_1_406.xhtml
𝕕
∈
𝔻
≥
max
{
i
*
,
j
*
}
{
i
*
,
j
*
}
<
cf
(
μ
)
Doc 2
0.4000
-12.0000
7.0000
1.1059
testing/NTCIR/xhtml5/8/1206.2048/1206.2048_1_339.xhtml
f
γ
2
(
i
*
,
j
*
)
=
f
β
2
(
i
*
,
j
*
)
}
β
∈
u
,
(
i
*
,
j
*
)
∈
∂
×
κ
w
β
,
ε
,
i
*
,
j
*
=
{
γ
∈
u
ε
:
(
i
*
,
j
*
)
∉
s
γ
Doc 3
0.3784
-5.0000
6.0000
0.3784
testing/NTCIR/xhtml5/11/math9911028/math9911028_1_40.xhtml
ψ
(
σ
i
j
)
=
σ
(
i
,
j
)
.
Doc 4
0.3529
0.0000
6.0000
0.7059
testing/NTCIR/xhtml5/9/1306.2032/1306.2032_1_10.xhtml
(
i
*
,
j
*
)
|
{
s
:
(
i
s
,
j
s
)
=
(
i
*
,
j
*
)
}
|
Doc 5
0.3529
-4.0000
6.0000
0.3529
testing/NTCIR/xhtml5/8/1206.2048/1206.2048_1_47.xhtml
(
i
*
,
j
*
)
∈
σ
×
κ
Doc 6
0.3529
-4.0000
6.0000
0.3529
testing/NTCIR/xhtml5/8/1206.2048/1206.2048_1_52.xhtml
(
i
*
,
j
*
)
∈
σ
×
κ
Doc 7
0.3117
-4.0000
5.0000
0.3117
testing/NTCIR/xhtml5/6/0912.5233/0912.5233_1_248.xhtml
0
or
1
,
∀
(
i
,
j
)
.
Doc 8
0.3117
-4.0000
5.0000
0.3117
testing/NTCIR/xhtml5/6/0912.5233/0912.5233_1_99.xhtml
0
or
1
,
∀
(
i
,
j
)
.
Doc 9
0.3117
-6.0000
5.0000
0.3117
testing/NTCIR/xhtml5/4/math0605120/math0605120_1_26.xhtml
f
(
i
,
p
)
≠
f
(
i
,
j
)
.
Doc 10
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/6/0912.0873/0912.0873_1_101.xhtml
(
i
,
j
)
.
Doc 11
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/0811.3664/0811.3664_1_288.xhtml
(
i
,
j
)
.
Doc 12
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/8/1204.0798/1204.0798_1_4.xhtml
(
i
,
j
)
.
Doc 13
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/2/math0205279/math0205279_1_42.xhtml
(
i
,
j
)
.
Doc 14
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/6/0912.0232/0912.0232_1_27.xhtml
(
i
,
j
)
.
Doc 15
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/2/math-ph0010039/math-ph0010039_1_137.xhtml
(
i
,
j
)
.
Doc 16
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/4/math0509083/math0509083_1_80.xhtml
(
i
,
j
)
.
Doc 17
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/6/0907.0245/0907.0245_1_34.xhtml
(
i
,
j
)
.
Doc 18
0.2878
0.0000
5.0000
0.2878
testing/NTCIR/xhtml5/7/1005.4203/1005.4203_1_78.xhtml
(
i
,
j
)
.
Doc 19
0.2878
-1.0000
5.0000
0.2878
testing/NTCIR/xhtml5/3/math0406110/math0406110_1_196.xhtml
K
(
i
,
j
)
.
Doc 20
0.2878
-1.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/0803.0591/0803.0591_1_36.xhtml
x
(
i
,
j
)
.
Doc 21
0.2878
-2.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/math0703479/math0703479_1_62.xhtml
=
a
(
i
,
j
)
.
Doc 22
0.2878
-2.0000
5.0000
0.2878
testing/NTCIR/xhtml5/7/1012.1149/1012.1149_1_87.xhtml
(
i
,
j
∈
I
)
.
Doc 23
0.2878
-2.0000
5.0000
0.2878
testing/NTCIR/xhtml5/9/1303.6406/1303.6406_1_19.xhtml
(
i
,
j
∈
I
)
.
Doc 24
0.2878
-2.0000
4.0000
0.2878
testing/NTCIR/xhtml5/6/1002.2352/1002.2352_1_170.xhtml
𝑙𝐻
*
(
i
,
i
)
.
Doc 25
0.2878
-2.0000
4.0000
0.2878
testing/NTCIR/xhtml5/6/1002.2352/1002.2352_1_168.xhtml
𝑙𝐻
*
(
i
,
i
)
.
Doc 26
0.2878
-3.0000
5.0000
0.2878
testing/NTCIR/xhtml5/6/0909.2017/0909.2017_1_6.xhtml
=
R
k
(
i
,
j
)
.
Doc 27
0.2878
-3.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/0710.2143/0710.2143_1_325.xhtml
Ψ
-
T
(
i
,
j
)
.
Doc 28
0.2878
-3.0000
5.0000
0.2878
testing/NTCIR/xhtml5/2/hep-th0104059/hep-th0104059_1_54.xhtml
0
(
i
,
j
=
others
)
.
Doc 29
0.2878
-3.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/0710.2143/0710.2143_1_327.xhtml
W
-
T
(
i
,
j
)
.
Doc 30
0.2878
-3.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/0710.2143/0710.2143_1_271.xhtml
Ψ
-
T
(
i
,
j
)
.
Doc 31
0.2878
-3.0000
4.0000
0.2878
testing/NTCIR/xhtml5/7/1005.3750/1005.3750_1_242.xhtml
𝐶𝑂𝐿
(
i
,
j
)
=
u
.
Doc 32
0.2878
-4.0000
5.0000
0.2878
testing/NTCIR/xhtml5/7/1105.3137/1105.3137_1_73.xhtml
η
ν
=
(
i
,
j
*
i
)
Doc 33
0.2878
-4.0000
5.0000
0.2878
testing/NTCIR/xhtml5/3/math0407171/math0407171_1_48.xhtml
E
n
-
1
(
i
,
j
)
.
Doc 34
0.2878
-5.0000
3.0000
0.2878
testing/NTCIR/xhtml5/4/math0605120/math0605120_1_19.xhtml
(
i
,
j
)
≺
(
p
,
m
)
.
Doc 35
0.2878
-5.0000
3.0000
0.2878
testing/NTCIR/xhtml5/4/math0605120/math0605120_1_23.xhtml
(
i
,
j
)
⪯
(
p
,
m
)
.
Doc 36
0.2878
-6.0000
5.0000
0.2878
testing/NTCIR/xhtml5/2/math0201111/math0201111_1_132.xhtml
B
i
,
j
=
min
(
i
,
j
)
.
Doc 37
0.2878
-6.0000
5.0000
0.2878
testing/NTCIR/xhtml5/4/math0605120/math0605120_1_47.xhtml
x
=
*
𝐟
1
(
i
,
j
)
.
Doc 38
0.2878
-6.0000
5.0000
0.2878
testing/NTCIR/xhtml5/4/math0605120/math0605120_1_42.xhtml
x
=
*
𝐟
1
(
i
,
j
)
.
Doc 39
0.2878
-6.0000
5.0000
0.2878
testing/NTCIR/xhtml5/4/math0605120/math0605120_1_51.xhtml
x
=
*
𝐟
3
(
i
,
j
)
.
Doc 40
0.2878
-6.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/0710.2143/0710.2143_1_317.xhtml
w
-
=
Ψ
-
T
(
i
,
j
)
.
Doc 41
0.2878
-6.0000
5.0000
0.2878
testing/NTCIR/xhtml5/4/math0605120/math0605120_1_49.xhtml
x
=
*
𝐟
2
(
i
,
j
)
.
Doc 42
0.2878
-6.0000
4.0000
0.2878
testing/NTCIR/xhtml5/5/0809.0345/0809.0345_1_93.xhtml
when
(
i
,
j
)
=
(
∞
,
1
)
.
when (i,j)=(∞,1)ij1(i,j)=(\infty,1)
\displaystyle\text{when $(i,j)=(\infty,1)$}.
Doc 43
0.2878
-7.0000
5.0000
0.2878
testing/NTCIR/xhtml5/5/0710.4971/0710.4971_1_63.xhtml
H
i
=
∑
j
<
i
(
i
,
j
)
.
Doc 44
0.2878
-8.0000
5.0000
0.2878
testing/NTCIR/xhtml5/6/1001.4485/1001.4485_1_41.xhtml
=
1
+
κ
∑
j
≠
i
(
i
,
j
)
.
Doc 45
0.2878
-12.0000
3.0000
0.2878
testing/NTCIR/xhtml5/6/0902.0512/0902.0512_1_42.xhtml
x
k
,
l
,
i
f
(
i
,
j
)
≠
(
k
,
l
)
.
Doc 46
0.2222
-1.0000
4.0000
0.2222
testing/NTCIR/xhtml5/4/math0609184/math0609184_1_310.xhtml
(
i
l
,
j
)
Doc 47
0.2222
-2.0000
4.0000
0.6667
testing/NTCIR/xhtml5/7/1105.4393/1105.4393_1_81.xhtml
L
l
(
i
,
j
)
ι
L
l
(
i
,
j
)
L
l
(
i
,
j
)
∈
ℕ
Doc 48
0.2222
-2.0000
4.0000
0.4444
testing/NTCIR/xhtml5/6/1001.1414/1001.1414_1_59.xhtml
(
i
*
,
j
*
)
(
i
*
,
j
*
)
=
(
i
,
j
*
)
Doc 49
0.2222
-2.0000
4.0000
0.3781
testing/NTCIR/xhtml5/6/1001.1414/1001.1414_1_40.xhtml
(
i
*
,
j
*
)
(
i
*
=
i
,
j
*
)
Doc 50
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/0711.4179/0711.4179_1_29.xhtml
(
i
*
,
j
*
)
Doc 51
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/math0406592/math0406592_1_167.xhtml
(
i
l
,
j
l
)
Doc 52
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0903.5018/0903.5018_1_75.xhtml
(
i
*
,
i
*
)
Doc 53
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1001.1414/1001.1414_1_33.xhtml
(
i
*
,
j
*
)
Doc 54
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0903.5018/0903.5018_1_67.xhtml
(
i
*
,
i
*
)
Doc 55
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/9/1304.3611/1304.3611_1_62.xhtml
M
(
i
,
j
)
*
Doc 56
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/math0703923/math0703923_1_202.xhtml
u
*
(
i
,
j
)
Doc 57
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/4/math0511315/math0511315_1_29.xhtml
(
i
l
,
j
l
)
Doc 58
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1001.1414/1001.1414_1_80.xhtml
(
i
*
,
j
*
)
Doc 59
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1001.1414/1001.1414_1_28.xhtml
(
i
*
,
j
*
)
Doc 60
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/10/hep-th9701192/hep-th9701192_1_19.xhtml
T
*
(
i
,
j
)
Doc 61
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1001.1414/1001.1414_1_32.xhtml
(
i
*
,
j
*
)
Doc 62
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/9/1304.5165/1304.5165_1_11.xhtml
(
i
l
,
j
l
)
Doc 63
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0903.5018/0903.5018_1_74.xhtml
(
i
*
,
i
*
)
Doc 64
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/math0407171/math0407171_1_50.xhtml
E
l
(
i
,
j
)
Doc 65
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1001.1414/1001.1414_1_41.xhtml
(
i
*
,
j
*
)
Doc 66
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/cond-mat0501169/cond-mat0501169_1_106.xhtml
(
i
l
,
j
l
)
Doc 67
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/8/1112.0582/1112.0582_1_39.xhtml
(
i
*
,
j
*
)
Doc 68
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/4/math0511315/math0511315_1_26.xhtml
(
i
l
,
j
l
)
Doc 69
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/8/1203.3321/1203.3321_1_84.xhtml
l
(
i
,
j
)
k
Doc 70
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/8/1206.6033/1206.6033_1_105.xhtml
(
i
l
,
j
l
)
Doc 71
0.2222
-2.0000
4.0000
0.2222
testing/NTCIR/xhtml5/4/math0602641/math0602641_1_166.xhtml
u
(
i
,
j
)
l
Doc 72
0.2222
-3.0000
4.0000
0.4444
testing/NTCIR/xhtml5/6/0910.0664/0910.0664_1_58.xhtml
(
i
,
j
)
∈
W
.
(
i
,
j
)
∈
V
0
.
Doc 73
0.2222
-3.0000
4.0000
0.4444
testing/NTCIR/xhtml5/5/0809.1171/0809.1171_1_83.xhtml
S
(
i
*
,
j
*
)
|
d
(
i
*
,
j
*
)
-
δ
|
Doc 74
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0901.0017/0901.0017_1_55.xhtml
(
i
,
j
)
∈
ℐ
*
Doc 75
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0901.0017/0901.0017_1_53.xhtml
(
i
,
j
)
∉
ℐ
*
Doc 76
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/7/1103.0301/1103.0301_1_14.xhtml
L
(
i
,
j
)
=
l
Doc 77
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0912.0859/0912.0859_1_42.xhtml
(
i
,
j
)
∈
B
l
Doc 78
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1002.0018/1002.0018_1_68.xhtml
J
F
*
(
i
,
j
)
Doc 79
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/hep-th0406212/hep-th0406212_1_16.xhtml
σ
(
i
l
,
j
k
)
Doc 80
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.0664/0910.0664_1_60.xhtml
(
i
,
j
)
∈
W
.
Doc 81
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.0664/0910.0664_1_35.xhtml
(
i
,
j
)
∈
W
.
Doc 82
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/9/1307.6794/1307.6794_1_76.xhtml
(
i
,
j
)
∈
T
.
Doc 83
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/1001.5280/1001.5280_1_217.xhtml
dist
(
i
,
j
)
=
l
Doc 84
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/2/math0201111/math0201111_1_11.xhtml
V
(
i
,
j
)
(
k
)
Doc 85
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/8/1207.3601/1207.3601_1_98.xhtml
e
*
=
(
i
,
j
)
Doc 86
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/2/math0012117/math0012117_1_2.xhtml
s
l
S
(
i
,
j
)
Doc 87
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/8/1202.2541/1202.2541_1_69.xhtml
(
i
,
j
)
∈
Ξ
.
Doc 88
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/10/hep-th9604027/hep-th9604027_1_73.xhtml
σ
(
i
l
,
j
k
)
Doc 89
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/2/math0201111/math0201111_1_90.xhtml
V
(
i
,
j
)
(
k
)
Doc 90
0.2222
-3.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0911.1739/0911.1739_1_36.xhtml
𝐮
(
i
,
j
)
,
l
Doc 91
0.2222
-4.0000
4.0000
0.4444
testing/NTCIR/xhtml5/8/1109.0898/1109.0898_1_170.xhtml
(
i
,
j
)
∈
R
k
l
(
i
,
j
)
∉
R
k
l
Doc 92
0.2222
-4.0000
4.0000
0.4444
testing/NTCIR/xhtml5/7/1005.4104/1005.4104_1_23.xhtml
H
n
(
i
*
,
j
*
)
W
n
(
i
*
,
j
*
)
Doc 93
0.2222
-4.0000
4.0000
0.4444
testing/NTCIR/xhtml5/8/1202.2541/1202.2541_1_60.xhtml
(
i
,
j
)
∈
Ξ
+
.
(
i
,
j
)
∈
Ξ
-
.
Doc 94
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_118.xhtml
(
i
,
j
)
∈
ℐ
+
.
Doc 95
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_143.xhtml
(
i
,
j
)
∈
ℐ
-
.
Doc 96
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/4/math0607375/math0607375_1_182.xhtml
q
(
i
,
j
l
)
=
0
Doc 97
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_138.xhtml
(
i
,
j
)
∈
ℐ
-
.
Doc 98
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_148.xhtml
(
i
,
j
)
∈
ℐ
-
.
Doc 99
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/7/1008.3843/1008.3843_1_126.xhtml
P
F
(
i
,
j
)
=
l
Doc 100
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_136.xhtml
(
i
,
j
)
∈
ℐ
-
.
Doc 101
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/2/math0109208/math0109208_1_52.xhtml
l
(
i
,
j
)
≤
n
.
Doc 102
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/math0312223/math0312223_1_21.xhtml
(
i
,
j
)
∉
S
k
.
Doc 103
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_142.xhtml
(
i
,
j
)
∈
ℐ
-
.
Doc 104
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_137.xhtml
(
i
,
j
)
∈
ℐ
-
.
Doc 105
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_151.xhtml
(
i
,
j
)
∈
ℐ
-
.
Doc 106
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_121.xhtml
(
i
,
j
)
∈
ℐ
+
.
Doc 107
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/10/math9808021/math9808021_1_18.xhtml
(
i
,
j
)
∈
A
k
l
Doc 108
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.4124/0910.4124_1_132.xhtml
(
i
,
j
)
∈
ℐ
-
.
Doc 109
0.2222
-4.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/math0312234/math0312234_1_84.xhtml
φ
(
k
)
=
(
i
,
j
)
Doc 110
0.2222
-5.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0906.0072/0906.0072_1_59.xhtml
a
c
c
(
i
,
j
)
=
l
Doc 111
0.2222
-5.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/math0403346/math0403346_1_34.xhtml
(
(
i
,
j
)
,
(
k
l
)
)
Doc 112
0.2222
-5.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/0806.2058/0806.2058_1_13.xhtml
(
i
,
j
)
∈
Λ
×
Π
.
Doc 113
0.2222
-5.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0906.0072/0906.0072_1_60.xhtml
a
c
c
(
i
,
j
)
=
l
Doc 114
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/9/1311.5475/1311.5475_1_95.xhtml
(
i
,
j
)
≠
(
1
,
j
)
.
Doc 115
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/2/math0301386/math0301386_1_109.xhtml
(
i
,
j
)
≠
(
0
,
0
)
.
Doc 116
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/0711.4179/0711.4179_1_32.xhtml
(
i
*
,
j
*
)
∈
ℰ
(
A
)
Doc 117
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/0705.3522/0705.3522_1_131.xhtml
(
i
,
j
)
=
(
1
,
0
)
.
Doc 118
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/9/1311.5475/1311.5475_1_84.xhtml
(
i
,
j
)
≠
(
1
,
j
)
.
Doc 119
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/2/math0105106/math0105106_1_23.xhtml
(
i
,
j
)
≠
(
1
,
n
)
.
Doc 120
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/8/1211.5494/1211.5494_1_20.xhtml
K
d
(
i
*
,
j
*
)
=
∞
Doc 121
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/2/math0301386/math0301386_1_133.xhtml
(
i
,
j
)
=
(
0
,
0
)
.
Doc 122
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/8/1211.5494/1211.5494_1_29.xhtml
K
d
(
i
*
,
j
*
)
=
∞
Doc 123
0.2222
-6.0000
4.0000
0.2222
testing/NTCIR/xhtml5/5/0805.3391/0805.3391_1_230.xhtml
(
i
,
j
)
≠
(
1
,
2
)
.
Doc 124
0.2222
-7.0000
4.0000
0.2222
testing/NTCIR/xhtml5/9/1305.5998/1305.5998_1_51.xhtml
(
i
,
j
)
∈
A
g
n
c
l
.
Doc 125
0.2222
-8.0000
4.0000
0.2222
testing/NTCIR/xhtml5/10/q-alg9710027/q-alg9710027_1_16.xhtml
(
i
,
j
)
=
(
n
+
1
,
n
)
.
Doc 126
0.2222
-8.0000
4.0000
0.2222
testing/NTCIR/xhtml5/6/0910.2413/0910.2413_1_58.xhtml
0
∀
(
i
,
j
)
≠
(
1
,
1
)
.
Doc 127
0.2222
-9.0000
4.0000
0.2222
testing/NTCIR/xhtml5/3/math0304013/math0304013_1_11.xhtml
S
(
i
,
j
)
*
=
S
j
*
S
i
*
Doc 128
0.2222
-9.0000
3.0000
0.2222
testing/NTCIR/xhtml5/7/1005.2967/1005.2967_1_69.xhtml
x
{
i
,
j
}
(
k
*
-
1
)
=
x
*
Doc 129
0.1739
-1.0000
2.0000
0.1739
testing/NTCIR/xhtml5/4/math0601175/math0601175_1_44.xhtml
i
*
,
j
*
Doc 130
0.1558
-5.0000
3.0000
0.1558
testing/NTCIR/xhtml5/2/math0203037/math0203037_1_53.xhtml
(
Im
i
*
,
Im
j
*
)
Doc 131
0.0984
-6.0000
1.0000
0.0984
testing/NTCIR/xhtml5/9/1303.5631/1303.5631_1_58.xhtml
i
*
i
*
=
j
*
j
*