tangent
Not Supported
|
Ψ
>
=
∑
x0
Γ
x1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
x2
α
2
[
2
]
i
x3
λ
x4
x5
|
i
1
i
2
>
|
x6
>
Search
Returned 92 matches (100 formulae, 95 docs)
Lookup 1006.440 ms, Re-ranking 4936.525 ms
Found 5254587 tuple postings, 3069801 formulae, 1645617 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.6125
-57.0000
19.0000
1.0061
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_9.xhtml
|
ψ
>
=
∑
α
1
=
1
χ
1
…
∑
α
n
-
1
=
1
χ
n
-
1
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
…
λ
α
n
-
1
[
n
-
1
]
Γ
α
n
-
1
[
n
]
i
n
|
i
1
,
i
2
,
…
,
i
n
>
.
|
α
1
>
2
=
Γ
α
1
α
2
[
2
]
i
2
|
α
2
>
2
|
α
1
>
1
=
Γ
α
1
[
1
]
i
1
|
i
1
>
1
Doc 2
0.5858
-46.0000
18.0000
0.5858
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_49.xhtml
C
i
1
i
2
…
i
N
=
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
Γ
α
2
α
3
[
3
]
i
3
λ
α
3
[
3
]
⋯
λ
α
N
-
1
[
N
-
1
]
Γ
α
N
-
1
[
N
]
i
N
,
Doc 3
0.5732
-51.0000
18.0000
2.4317
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_50.xhtml
|
Ψ
⟩
=
∑
{
i
}
∑
{
α
}
(
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
…
λ
α
N
-
1
[
N
-
1
]
Γ
α
N
-
1
[
N
]
i
N
)
|
i
1
⟩
⊗
|
i
2
⟩
⊗
⋯
⊗
|
i
N
⟩
,
|
Ψ
⟩
=
∑
i
1
,
i
2
=
1
p
∑
α
1
=
1
min
(
p
,
D
)
∑
α
2
=
1
min
(
p
2
,
D
)
(
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
)
|
i
1
⟩
⊗
|
i
2
⟩
⊗
|
τ
α
2
[
3
⋯
N
]
⟩
.
|
Ψ
⟩
=
∑
i
1
=
1
p
∑
α
1
=
1
min
(
p
,
D
)
Γ
α
1
[
1
]
i
1
λ
α
1
[
1
]
|
i
1
⟩
⊗
|
τ
α
1
[
2
⋯
N
]
⟩
,
|
ω
α
1
i
2
[
3
⋯
N
]
⟩
=
∑
α
2
=
1
min
(
p
2
,
D
)
Γ
α
1
α
2
[
2
]
i
2
λ
α
2
[
2
]
|
τ
α
2
[
3
⋯
N
]
⟩
.
|
τ
α
1
[
1
]
>
=
∑
i
1
Γ
α
1
[
1
]
i
1
|
i
1
>
|
Ψ
⟩
=
∑
α
1
=
1
min
(
p
,
D
)
λ
α
1
[
1
]
|
τ
α
1
[
1
]
⟩
⊗
|
τ
α
1
[
2
⋯
N
]
⟩
,
Doc 4
0.4492
-35.0000
13.0000
0.4492
testing/NTCIR/xhtml5/4/quant-ph0510031/quant-ph0510031_1_8.xhtml
|
ψ
2
n
×
2
n
>
=
∑
i
′
s
∑
α
′
s
Γ
α
1
α
2
(
1
)
i
1
Γ
α
2
α
3
(
2
)
i
2
…
Γ
α
n
α
1
(
n
)
i
n
|
i
n
,
…
i
2
,
i
1
>
Doc 5
0.2528
-38.0000
4.0000
0.2528
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_10.xhtml
|
ψ
>
=
∑
i
1
i
2
…
i
n
=
0
,
1
t
r
(
A
[
1
]
i
1
A
[
2
]
i
2
…
A
[
n
]
i
n
)
|
i
1
,
i
2
,
…
,
i
n
>
.
Doc 6
0.2475
-8.0000
6.0000
0.2475
testing/NTCIR/xhtml5/9/1212.2214/1212.2214_1_31.xhtml
|
ψ
>
=
∑
j
d
A
c
i
|
i
A
>
|
i
B
>
,
Doc 7
0.2475
-12.0000
6.0000
0.2475
testing/NTCIR/xhtml5/1/1011.5039/1011.5039_1_49.xhtml
|
Ψ
A
B
1
>
=
∑
i
α
i
|
A
is in state i
>
|
B
1
subscript
B
1
B_{1}
knows, that
A
A
A
is in state i
>
.
ket
subscript
normal-Ψ
A
subscript
B
1
subscript
i
subscript
α
i
ket
AAA is in state i
ket
B1subscriptB1B_{1} knows, that AAA is in state i
|\Psi_{AB_{1}}\rangle=\sum_{i}\alpha_{i}|\textrm{\scriptsize$A$ is in state i}% \rangle|\textrm{\scriptsize$B_{1}$ knows, that $A$ is in state i}\rangle.
Doc 8
0.2475
-13.0000
5.0000
0.2475
testing/NTCIR/xhtml5/9/1212.2214/1212.2214_1_34.xhtml
K
B
|
ψ
>
=
∑
i
j
c
i
(
K
B
)
i
j
|
i
A
>
|
j
B
>
Doc 9
0.2475
-25.0000
8.0000
0.2475
testing/NTCIR/xhtml5/9/1306.2164/1306.2164_1_28.xhtml
|
Ψ
>
=
∑
i
1
i
2
…
i
N
C
i
1
i
2
…
i
N
|
i
1
>
⊗
|
i
2
>
⊗
⋯
⊗
|
i
N
>
Doc 10
0.2374
-7.0000
4.0000
0.4477
testing/NTCIR/xhtml5/1/1206.3119/1206.3119_1_35.xhtml
|
w
k
>
=
∑
i
λ
i
a
k
α
i
k
|
i
>
|
σ
>
=
∑
i
=
1
r
s
(
|
ψ
>
)
λ
i
|
i
>
|
i
′
>
Doc 11
0.2374
-14.0000
6.0000
0.2374
testing/NTCIR/xhtml5/10/hep-th9710104/hep-th9710104_1_34.xhtml
∑
i
=
0
8
H
α
1
⋯
α
i
λ
α
1
†
⋯
λ
α
i
†
|
-
>
.
Doc 12
0.2374
-24.0000
3.0000
0.2374
testing/NTCIR/xhtml5/10/q-alg9510005/q-alg9510005_1_10.xhtml
ℋ
2
=
{
∑
i
1
,
i
2
λ
i
1
i
2
a
¯
i
1
a
¯
i
2
|
0
>
|
i
1
,
i
2
∈
I
}
Doc 13
0.2288
-23.0000
8.0000
0.4181
testing/NTCIR/xhtml5/5/quant-ph0703006/quant-ph0703006_1_29.xhtml
|
Ψ
′
>
=
Σ
i
j
∈
{
0
,
1
}
c
i
1
i
2
…
i
N
|
i
1
>
|
i
2
>
⋯
|
i
N
>
|
Ψ
′
>
=
1
N
∑
i
j
∈
{
0
,
1
}
e
i
ϕ
i
1
i
2
.
.
i
N
|
i
1
>
|
i
2
>
⋯
|
i
N
>
.
Doc 14
0.2288
-23.0000
8.0000
0.2288
testing/NTCIR/xhtml5/5/quant-ph0703006/quant-ph0703006_1_25.xhtml
|
Ψ
′
>
=
Σ
i
j
∈
{
0
,
1
}
c
i
1
i
2
…
i
N
|
i
1
>
|
i
2
>
⋯
|
i
N
>
Doc 15
0.2201
-6.0000
6.0000
0.2201
testing/NTCIR/xhtml5/8/1209.1813/1209.1813_1_136.xhtml
|
Ψ
>
=
∑
r
<
r
|
Π
|
s
>
|
r
>
Doc 16
0.2201
-6.0000
5.0000
0.2201
testing/NTCIR/xhtml5/7/1009.0116/1009.0116_1_51.xhtml
|
ψ
>
=
∑
k
λ
k
|
m
k
>
|
μ
k
>
Doc 17
0.2201
-12.0000
6.0000
0.2201
testing/NTCIR/xhtml5/3/quant-ph0405089/quant-ph0405089_1_72.xhtml
|
ψ
>
A
B
=
∑
i
,
j
c
i
,
j
|
i
A
>
|
i
B
>
Doc 18
0.2201
-30.0000
5.0000
0.2201
testing/NTCIR/xhtml5/4/quant-ph0611271/quant-ph0611271_1_1.xhtml
|
ψ
>
=
∑
i
1
,
i
2
,
…
,
i
n
=
0
,
1
c
i
1
i
2
…
i
n
|
i
1
,
i
2
,
…
,
i
n
>
.
Doc 19
0.2143
-16.0000
5.0000
0.2143
testing/NTCIR/xhtml5/10/hep-th9411056/hep-th9411056_1_30.xhtml
|
g
,
n
>
=
∑
i
∑
j
C
g
-
1
i
1
…
i
n
j
j
|
i
1
>
⊗
…
⊗
|
i
n
>
Doc 20
0.2104
-8.0000
7.0000
0.2104
testing/NTCIR/xhtml5/2/quant-ph0108064/quant-ph0108064_1_70.xhtml
|
Ψ
>
=
∑
i
=
0
n
c
i
|
i
>
|
i
>
Doc 21
0.2104
-8.0000
6.0000
0.2104
testing/NTCIR/xhtml5/4/quant-ph0603173/quant-ph0603173_1_22.xhtml
|
Ψ
>
=
∑
e
∈
E
λ
e
|
e
>
|
e
>
,
Doc 22
0.2104
-9.0000
6.0000
0.2104
testing/NTCIR/xhtml5/1/1206.3119/1206.3119_1_33.xhtml
|
ψ
>
=
∑
i
=
1
r
λ
i
|
i
>
|
i
′
>
Doc 23
0.2104
-10.0000
5.0000
0.2104
testing/NTCIR/xhtml5/1/quant-ph0204063/quant-ph0204063_1_20.xhtml
|
ψ
~
>
=
∑
i
=
1
k
λ
i
|
i
>
|
ϕ
i
>
Doc 24
0.2104
-11.0000
6.0000
0.4207
testing/NTCIR/xhtml5/7/1106.0712/1106.0712_1_23.xhtml
|
ψ
′′
>
=
∑
i
:
λ
i
≠
0
λ
i
|
i
>
|
i
>
|
ψ
′′′
>
=
∑
i
=
0
d
′
-
1
λ
i
|
i
>
|
i
>
Doc 25
0.2104
-11.0000
6.0000
0.4207
testing/NTCIR/xhtml5/7/1106.0712/1106.0712_1_25.xhtml
|
ψ
′′
>
=
∑
i
:
λ
i
≠
0
λ
i
|
i
>
|
i
>
|
ψ
′′′
>
=
∑
i
=
0
d
′
-
1
λ
i
|
i
>
|
i
>
Doc 26
0.2104
-14.0000
6.0000
0.2104
testing/NTCIR/xhtml5/7/1004.0196/1004.0196_1_15.xhtml
|
ψ
σ
>
=
∑
i
=
1
+
∞
λ
i
1
/
2
|
i
>
⊗
|
i
>
Doc 27
0.2104
-21.0000
6.0000
0.2104
testing/NTCIR/xhtml5/6/1001.0018/1001.0018_1_20.xhtml
|
ψ
>
=
∑
i
1
,
…
,
i
k
α
i
1
,
…
,
i
k
|
i
1
,
…
,
i
k
>
,
Doc 28
0.2104
-25.0000
4.0000
0.2104
testing/NTCIR/xhtml5/7/1004.3639/1004.3639_1_47.xhtml
|
d
ζ
>
=
∑
i
3
i
2
i
1
=
0
,
1
d
ζ
i
3
i
2
i
1
0
|
i
3
i
2
i
1
0
>
Doc 29
0.2007
-7.0000
6.0000
0.2007
testing/NTCIR/xhtml5/4/quant-ph0609163/quant-ph0609163_1_35.xhtml
|
Ψ
>
=
∑
a
c
a
|
ψ
a
>
|
ϕ
a
>
,
Doc 30
0.2007
-8.0000
5.0000
0.2007
testing/NTCIR/xhtml5/7/1010.4458/1010.4458_1_18.xhtml
|
b
′
>
=
∑
i
c
i
|
v
i
>
|
λ
~
i
>
Doc 31
0.2007
-8.0000
5.0000
0.2007
testing/NTCIR/xhtml5/7/1010.4458/1010.4458_1_16.xhtml
|
b
′
>
=
∑
i
c
i
|
v
i
>
|
λ
~
i
>
Doc 32
0.2007
-10.0000
5.0000
0.2007
testing/NTCIR/xhtml5/9/1306.5057/1306.5057_1_7.xhtml
|
Ψ
>
=
∑
i
=
1
N
L
|
ψ
i
>
E
|
i
>
L
,
Doc 33
0.2007
-33.0000
5.0000
0.2007
testing/NTCIR/xhtml5/9/1308.3287/1308.3287_1_16.xhtml
|
ψ
>
=
∑
i
1
,
i
2
,
⋯
,
i
m
a
i
1
i
2
⋯
i
m
|
i
1
i
2
⋯
i
m
>
∈
H
1
⊗
H
2
⊗
⋯
⊗
H
m
Doc 34
0.1925
-8.0000
6.0000
0.1925
testing/NTCIR/xhtml5/1/1206.3119/1206.3119_1_17.xhtml
|
ψ
>
=
∑
i
1
m
|
i
>
|
i
′
>
Doc 35
0.1925
-8.0000
6.0000
0.1925
testing/NTCIR/xhtml5/1/1206.3119/1206.3119_1_18.xhtml
|
ψ
>
=
∑
i
1
n
|
i
>
|
i
′
>
Doc 36
0.1925
-11.0000
6.0000
0.3850
testing/NTCIR/xhtml5/7/1107.0354/1107.0354_1_28.xhtml
|
ψ
>
=
∑
i
=
1
∞
p
i
|
i
H
>
|
i
K
>
|
ϕ
>
=
∑
i
=
1
∞
q
i
|
i
H
′
>
|
i
K
>
Doc 37
0.1925
-11.0000
6.0000
0.3850
testing/NTCIR/xhtml5/7/1107.0354/1107.0354_1_24.xhtml
|
ψ
>
=
∑
i
=
1
∞
p
i
|
i
H
>
|
i
K
>
|
ϕ
>
=
∑
i
=
1
∞
q
i
|
i
H
′
>
|
i
K
′
>
Doc 38
0.1925
-12.0000
6.0000
0.3850
testing/NTCIR/xhtml5/7/1107.0354/1107.0354_1_31.xhtml
|
ψ
0
>
=
∑
i
=
1
∞
p
i
|
i
H
>
|
i
K
>
|
ϕ
0
>
=
∑
i
=
1
∞
q
i
|
i
H
′
>
|
i
K
′
>
Doc 39
0.1925
-17.0000
5.0000
0.1925
testing/NTCIR/xhtml5/10/solv-int9809010/solv-int9809010_1_15.xhtml
|
Ψ
>
=
∑
{
α
i
}
Ψ
α
1
α
2
⋯
α
N
|
α
1
α
2
⋯
α
N
>
,
Doc 40
0.1925
-24.0000
5.0000
0.1925
testing/NTCIR/xhtml5/9/1308.3287/1308.3287_1_9.xhtml
|
ψ
>
=
∑
i
1
,
i
2
,
⋯
,
i
m
a
i
1
i
2
⋯
i
m
|
i
1
i
2
⋯
i
m
>
.
Doc 41
0.1843
-20.0000
4.0000
0.1843
testing/NTCIR/xhtml5/9/hep-th9302098/hep-th9302098_1_12.xhtml
|
0
>
(
b
)
=
∑
i
s
=
0
∞
λ
i
1
…
i
N
∏
k
=
1
N
|
i
k
>
k
(
a
)
,
Doc 42
0.1832
-3.0000
5.0000
0.1832
testing/NTCIR/xhtml5/8/1201.2489/1201.2489_1_97.xhtml
|
Ψ
>
=
∑
n
|
O
n
>
.
Doc 43
0.1832
-3.0000
5.0000
0.1832
testing/NTCIR/xhtml5/5/0712.0689/0712.0689_1_466.xhtml
λ
i
j
a
|
i
>
⊗
|
j
>
Doc 44
0.1832
-6.0000
5.0000
0.1832
testing/NTCIR/xhtml5/2/hep-th0203211/hep-th0203211_1_20.xhtml
|
Ψ
>
=
∑
n
λ
n
|
χ
(
n
)
>
.
Doc 45
0.1832
-13.0000
4.0000
0.1832
testing/NTCIR/xhtml5/7/1107.0354/1107.0354_1_25.xhtml
|
m
N
>
=
∑
i
=
1
N
|
i
H
′′
>
|
i
K
′′
>
.
Doc 46
0.1832
-28.0000
5.0000
0.1832
testing/NTCIR/xhtml5/7/1004.3639/1004.3639_1_115.xhtml
|
λ
>
=
∑
i
3
i
2
i
1
i
0
=
0
,
1
λ
i
3
i
2
i
1
i
0
|
i
3
i
2
i
1
i
0
>
Doc 47
0.1832
-29.0000
4.0000
0.1832
testing/NTCIR/xhtml5/7/1004.3639/1004.3639_1_114.xhtml
|
Λ
>
=
∑
i
3
i
2
i
1
i
0
=
0
,
1
Λ
i
3
i
2
i
1
i
0
|
i
3
i
2
i
1
i
0
>
,
Doc 48
0.1786
-7.0000
5.0000
0.1786
testing/NTCIR/xhtml5/8/1203.1268/1203.1268_1_40.xhtml
|
ϕ
>
=
∑
i
b
i
|
i
>
A
|
b
i
>
B
Doc 49
0.1786
-19.0000
5.0000
0.1786
testing/NTCIR/xhtml5/8/1205.5433/1205.5433_1_13.xhtml
|
Ψ
>
=
∑
0
D
-
1
Ψ
i
1
i
2
⋯
i
K
|
i
1
,
i
2
,
⋯
,
i
K
>
Doc 50
0.1725
-4.0000
5.0000
0.1725
testing/NTCIR/xhtml5/5/0806.0595/0806.0595_1_25.xhtml
|
Ψ
>
=
∑
ν
ψ
ν
|
ν
>
Doc 51
0.1725
-4.0000
5.0000
0.1725
testing/NTCIR/xhtml5/5/0806.0595/0806.0595_1_14.xhtml
|
Ψ
>
=
∑
ν
ψ
ν
|
ν
>
Doc 52
0.1725
-4.0000
5.0000
0.1725
testing/NTCIR/xhtml5/6/0902.0049/0902.0049_1_6.xhtml
|
Ψ
>
=
∑
J
c
J
|
J
>
Doc 53
0.1725
-4.0000
4.0000
0.1725
testing/NTCIR/xhtml5/6/0910.3376/0910.3376_1_26.xhtml
|
ϕ
>
=
∑
i
α
i
|
i
>
Doc 54
0.1725
-4.0000
4.0000
0.1725
testing/NTCIR/xhtml5/8/1210.7659/1210.7659_1_250.xhtml
|
ψ
>
=
∑
i
α
i
|
i
>
Doc 55
0.1725
-4.0000
4.0000
0.1725
testing/NTCIR/xhtml5/7/1005.5530/1005.5530_1_36.xhtml
|
ψ
>
=
∑
i
ξ
i
|
i
>
Doc 56
0.1725
-7.0000
4.0000
0.1725
testing/NTCIR/xhtml5/8/1112.3337/1112.3337_1_43.xhtml
|
ψ
>
=
∑
i
=
1
m
α
i
|
i
>
Doc 57
0.1725
-7.0000
4.0000
0.1725
testing/NTCIR/xhtml5/6/0910.3376/0910.3376_1_17.xhtml
|
ϕ
>
=
∑
i
=
1
d
α
i
|
i
>
Doc 58
0.1725
-7.0000
4.0000
0.1725
testing/NTCIR/xhtml5/6/0910.3376/0910.3376_1_18.xhtml
|
ϕ
>
=
∑
i
∈
[
m
]
α
i
|
i
>
Doc 59
0.1725
-7.0000
4.0000
0.1725
testing/NTCIR/xhtml5/6/1001.0018/1001.0018_1_26.xhtml
|
ψ
>
=
∑
i
=
0
n
α
i
|
i
>
Doc 60
0.1725
-7.0000
4.0000
0.1725
testing/NTCIR/xhtml5/6/0910.3376/0910.3376_1_24.xhtml
|
ϕ
>
=
∑
i
=
1
d
α
i
|
i
>
Doc 61
0.1725
-9.0000
4.0000
0.1725
testing/NTCIR/xhtml5/1/1006.4014/1006.4014_1_40.xhtml
|
ψ
s
t
a
r
t
>
=
∑
i
α
i
|
i
>
Doc 62
0.1725
-11.0000
4.0000
0.1725
testing/NTCIR/xhtml5/2/quant-ph0109068/quant-ph0109068_1_14.xhtml
|
ϕ
>
=
∑
i
∈
{
0
,
1
}
m
α
i
|
i
>
,
Doc 63
0.1725
-11.0000
4.0000
0.1725
testing/NTCIR/xhtml5/3/quant-ph0304052/quant-ph0304052_1_8.xhtml
|
ϕ
>
=
∑
i
∈
{
0
,
1
}
m
α
i
|
i
>
,
Doc 64
0.1721
-6.0000
5.0000
0.1721
testing/NTCIR/xhtml5/9/1301.4505/1301.4505_1_18.xhtml
|
Ψ
>
=
∑
i
|
i
>
s
|
ϕ
i
>
b
Doc 65
0.1721
-8.0000
7.0000
0.1721
testing/NTCIR/xhtml5/9/1211.7033/1211.7033_1_3.xhtml
|
Ψ
>
=
∑
i
c
i
|
ψ
i
>
⊗
|
i
>
,
Doc 66
0.1721
-8.0000
6.0000
0.1721
testing/NTCIR/xhtml5/6/0904.2287/0904.2287_1_28.xhtml
|
Ψ
>
total
=
∑
ξ
c
ξ
|
ξ
>
|
E
ξ
>
,
Doc 67
0.1721
-8.0000
6.0000
0.1721
testing/NTCIR/xhtml5/8/1205.1992/1205.1992_1_80.xhtml
|
Ψ
>
total
=
∑
ξ
c
ξ
|
ξ
>
|
E
ξ
>
,
Doc 68
0.1721
-8.0000
5.0000
0.1721
testing/NTCIR/xhtml5/9/1308.3287/1308.3287_1_13.xhtml
|
ψ
>
=
∑
i
,
j
a
i
j
|
i
>
|
j
>
Doc 69
0.1721
-19.0000
5.0000
0.1721
testing/NTCIR/xhtml5/9/hep-th9302098/hep-th9302098_1_16.xhtml
|
0
>
(
b
)
=
∑
i
,
j
=
0
∞
λ
i
j
|
i
>
1
(
a
)
|
j
>
2
(
a
)
Doc 70
0.1646
-4.0000
5.0000
0.1646
testing/NTCIR/xhtml5/4/quant-ph0611280/quant-ph0611280_1_6.xhtml
|
Ψ
>
=
∑
i
α
i
|
ψ
k
>
Doc 71
0.1646
-6.0000
4.0000
0.1646
testing/NTCIR/xhtml5/8/1209.1014/1209.1014_1_5.xhtml
|
ψ
~
A
A
+
>
=
∑
i
|
i
i
>
A
Doc 72
0.1646
-8.0000
5.0000
0.1646
testing/NTCIR/xhtml5/2/quant-ph0208062/quant-ph0208062_1_12.xhtml
|
ϕ
>
=
∑
i
p
i
|
i
>
|
ϕ
i
>
Doc 73
0.1646
-9.0000
4.0000
0.1646
testing/NTCIR/xhtml5/7/1104.2992/1104.2992_1_6.xhtml
|
Ω
>
=
∑
i
=
1
N
|
i
i
>
∈
ℋ
⊗
ℋ
Doc 74
0.1646
-11.0000
4.0000
0.1646
testing/NTCIR/xhtml5/3/quant-ph0411123/quant-ph0411123_1_35.xhtml
|
ψ
>
0
=
∑
c
i
1
…
i
N
|
i
1
…
i
N
>
Doc 75
0.1559
-4.0000
4.0000
0.1559
testing/NTCIR/xhtml5/1/1208.0206/1208.0206_1_12.xhtml
|
I
>
=
∑
i
|
i
i
~
>
Doc 76
0.1559
-6.0000
4.0000
0.1559
testing/NTCIR/xhtml5/7/1005.2358/1005.2358_1_7.xhtml
|
I
>
=
∑
i
=
1
d
|
i
i
>
Doc 77
0.1559
-7.0000
4.0000
0.1559
testing/NTCIR/xhtml5/4/math-ph0611057/math-ph0611057_1_51.xhtml
|
Ω
0
>
=
∑
i
|
i
i
>
/
d
Doc 78
0.1559
-10.0000
4.0000
0.1559
testing/NTCIR/xhtml5/7/1107.0354/1107.0354_1_18.xhtml
|
m
N
>
=
∑
i
=
1
N
|
i
>
|
i
′
>
Doc 79
0.1456
-2.0000
4.0000
0.1456
testing/NTCIR/xhtml5/8/1208.4339/1208.4339_1_5.xhtml
|
i
1
>
|
i
2
>
Doc 80
0.1456
-2.0000
4.0000
0.1456
testing/NTCIR/xhtml5/1/quant-ph0008124/quant-ph0008124_1_23.xhtml
|
i
1
>
|
i
2
>
Doc 81
0.1429
-12.0000
6.0000
0.1429
testing/NTCIR/xhtml5/9/1312.5682/1312.5682_1_20.xhtml
|
Ψ
>
=
1
N
∑
i
=
1
N
|
i
>
|
i
¯
>
Doc 82
0.1363
-4.0000
5.0000
0.1363
testing/NTCIR/xhtml5/1/1011.5039/1011.5039_1_32.xhtml
|
Ψ
>
=
∑
s
c
s
|
s
>
Doc 83
0.1363
-4.0000
4.0000
0.1363
testing/NTCIR/xhtml5/3/quant-ph0404075/quant-ph0404075_1_83.xhtml
|
ψ
>
=
∑
i
c
i
|
i
>
Doc 84
0.1363
-4.0000
4.0000
0.1363
testing/NTCIR/xhtml5/2/quant-ph0205133/quant-ph0205133_1_10.xhtml
|
v
>
=
∑
i
v
i
|
i
>
Doc 85
0.1363
-10.0000
1.0000
0.1363
testing/NTCIR/xhtml5/2/hep-th0211154/hep-th0211154_1_59.xhtml
ℰ
α
1
α
2
…
α
n
,
ε
i
1
i
2
…
i
n
Doc 86
0.1363
-12.0000
4.0000
0.1363
testing/NTCIR/xhtml5/9/hep-th9302098/hep-th9302098_1_14.xhtml
|
0
>
(
b
)
=
∑
i
=
0
∞
λ
i
|
i
>
(
a
)
,
Doc 87
0.1363
-18.0000
4.0000
0.2725
testing/NTCIR/xhtml5/4/quant-ph0510031/quant-ph0510031_1_4.xhtml
|
ψ
2
1
×
2
1
>
=
∑
i
1
=
1
,
…
4
c
i
1
|
i
1
>
.
|
ψ
2
2
×
2
2
>
=
∑
i
1
,
i
2
=
1
,
…
4
c
i
2
,
i
1
|
i
2
,
i
1
>
,
Doc 88
0.1283
-4.0000
4.0000
0.1283
testing/NTCIR/xhtml5/8/1210.5048/1210.5048_1_65.xhtml
|
r
2
>
=
∑
|
i
i
>
Doc 89
0.1283
-12.0000
3.0000
0.1283
testing/NTCIR/xhtml5/1/hep-th0002095/hep-th0002095_1_13.xhtml
|
Ψ
(
λ
)
>
=
∑
n
=
0
∞
λ
n
|
Ψ
n
>
.
Doc 90
0.1283
-13.0000
5.0000
0.1283
testing/NTCIR/xhtml5/6/1003.4474/1003.4474_1_41.xhtml
|
i
1
i
2
…
i
q
>
=
|
i
1
>
⊗
|
i
1
>
⊗
⋯
⊗
|
i
q
>
Doc 91
0.1187
-5.0000
4.0000
0.1187
testing/NTCIR/xhtml5/5/0712.0689/0712.0689_1_444.xhtml
|
i
>
|
j
>
λ
i
j
a
Doc 92
0.1071
-18.0000
3.0000
0.1071
testing/NTCIR/xhtml5/2/quant-ph0208065/quant-ph0208065_1_11.xhtml
|
Ψ
0
>
≡
|
Ψ
(
0
)
>
=
∑
i
=
1
N
1
N
|
i
>
.
Doc 93
0.0916
-6.0000
3.0000
0.0916
testing/NTCIR/xhtml5/7/1005.4230/1005.4230_1_44.xhtml
ρ
|
i
>
=
λ
i
|
i
>
Doc 94
0.0916
-6.0000
3.0000
0.0916
testing/NTCIR/xhtml5/6/0904.1218/0904.1218_1_63.xhtml
Φ
|
i
>
=
λ
i
|
i
>
Doc 95
0.0916
-7.0000
3.0000
0.0916
testing/NTCIR/xhtml5/4/hep-th0505227/hep-th0505227_1_198.xhtml
H
|
i
>
=
λ
i
|
i
>
,