tangent
Not Supported
d
d
x
(
log
c
x
)
=
1
x
ln
c
,
c
>
0
,
c
≠
1
Search
Returned 95 matches (100 formulae, 111 docs)
Lookup 928.272 ms, Re-ranking 449.232 ms
Found 18280374 tuple postings, 10740789 formulae, 4293125 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.4878
-17.0000
11.0000
0.4878
testing/NTCIR/xhtml5/4/math0611781/math0611781_1_20.xhtml
d
d
x
(
log
x
+
a
x
)
=
1
x
-
a
x
2
=
x
-
a
x
2
.
Doc 2
0.4412
-6.0000
8.0000
0.4412
testing/NTCIR/xhtml5/8/1108.4707/1108.4707_1_59.xhtml
f
(
x
)
=
1
(
-
log
x
)
β
,
β
>
0
,
Doc 3
0.4412
-9.0000
9.0000
0.4412
testing/NTCIR/xhtml5/8/1211.2005/1211.2005_1_38.xhtml
ρ
(
x
)
=
c
x
x
!
,
c
>
0
,
x
∈
ℕ
0
,
Doc 4
0.4412
-9.0000
9.0000
0.4412
testing/NTCIR/xhtml5/8/1211.2005/1211.2005_1_40.xhtml
ρ
(
x
)
=
c
x
x
!
,
c
>
0
,
x
∈
ℕ
0
,
Doc 5
0.3200
-3.0000
6.0000
0.3200
testing/NTCIR/xhtml5/7/1105.5735/1105.5735_1_11.xhtml
K
(
x
)
=
1
x
,
n
=
1
Doc 6
0.3200
-4.0000
8.0000
0.3200
testing/NTCIR/xhtml5/8/1207.6735/1207.6735_1_38.xhtml
f
(
x
)
=
1
x
p
,
x
>
0
Doc 7
0.3200
-8.0000
8.0000
0.6400
testing/NTCIR/xhtml5/4/math-ph0607038/math-ph0607038_1_80.xhtml
=
d
d
x
+
(
a
+
1
2
)
1
x
,
=
-
d
d
x
+
(
a
+
1
2
)
1
x
,
Doc 8
0.3200
-8.0000
7.0000
0.3200
testing/NTCIR/xhtml5/4/hep-ph0608153/hep-ph0608153_1_47.xhtml
d
d
x
1
Y
=
Γ
H
-
1
x
Y
.
Doc 9
0.3200
-8.0000
5.0000
0.3200
testing/NTCIR/xhtml5/7/1107.2216/1107.2216_1_18.xhtml
f
1
(
x
)
=
d
ϕ
K
d
x
,
ω
1
=
0
Doc 10
0.3200
-13.0000
8.0000
0.3200
testing/NTCIR/xhtml5/2/math0101216/math0101216_1_53.xhtml
d
d
x
ψ
0
=
0
,
d
d
x
ψ
1
=
1
b
0
,
Doc 11
0.3011
0.0000
7.0000
0.3011
testing/NTCIR/xhtml5/9/1401.0512/1401.0512_1_189.xhtml
c
>
0
,
c
≠
1
Doc 12
0.3011
-3.0000
4.0000
0.3011
testing/NTCIR/xhtml5/1/cs9808001/cs9808001_1_13.xhtml
g
(
x
)
=
d
x
d
t
,
Doc 13
0.3011
-3.0000
4.0000
0.3011
testing/NTCIR/xhtml5/1/cs9905016/cs9905016_1_23.xhtml
g
(
x
)
=
d
x
d
t
,
Doc 14
0.3011
-10.0000
6.0000
0.3011
testing/NTCIR/xhtml5/5/0706.2642/0706.2642_1_46.xhtml
d
d
x
(
s
log
x
-
x
)
=
-
x
-
s
x
Doc 15
0.2724
-2.0000
6.0000
0.2724
testing/NTCIR/xhtml5/10/hep-th9703176/hep-th9703176_1_58.xhtml
d
d
x
(
1
y
)
=
Doc 16
0.2724
-7.0000
6.0000
0.2724
testing/NTCIR/xhtml5/5/0712.2728/0712.2728_1_5.xhtml
S
0
,
2
(
x
)
=
1
x
,
x
≫
1.
Doc 17
0.2724
-10.0000
4.0000
0.2724
testing/NTCIR/xhtml5/5/0802.0133/0802.0133_1_324.xhtml
(
P
f
)
(
x
)
=
1
i
d
d
x
f
(
x
)
,
Doc 18
0.2724
-11.0000
7.0000
0.2724
testing/NTCIR/xhtml5/2/hep-th0105223/hep-th0105223_1_12.xhtml
a
=
d
d
x
-
∑
k
=
1
n
1
x
-
x
k
Doc 19
0.2724
-11.0000
4.0000
0.2724
testing/NTCIR/xhtml5/7/1108.0950/1108.0950_1_49.xhtml
p
N
-
1
(
x
)
=
1
N
d
d
x
p
N
(
x
)
Doc 20
0.2724
-15.0000
4.0000
0.2724
testing/NTCIR/xhtml5/5/0705.3729/0705.3729_1_42.xhtml
P
n
(
x
)
=
1
2
n
n
!
d
n
d
x
n
(
x
2
-
1
)
Doc 21
0.2542
-2.0000
6.0000
0.2542
testing/NTCIR/xhtml5/2/math0201109/math0201109_1_84.xhtml
m
(
x
)
=
1
x
,
Doc 22
0.2542
-3.0000
6.0000
0.4142
testing/NTCIR/xhtml5/5/0712.4066/0712.4066_1_18.xhtml
Z
(
x
)
=
1
x
2
,
d
y
d
x
=
1
x
2
.
Doc 23
0.2542
-4.0000
4.0000
0.2542
testing/NTCIR/xhtml5/9/1306.1317/1306.1317_1_75.xhtml
1
x
d
d
x
(
w
W
)
Doc 24
0.2542
-6.0000
6.0000
0.2542
testing/NTCIR/xhtml5/6/1001.1485/1001.1485_1_2.xhtml
d
d
x
(
s
(
x
)
x
)
=
0
Doc 25
0.2542
-7.0000
4.0000
0.2542
testing/NTCIR/xhtml5/7/1010.4248/1010.4248_1_28.xhtml
h
(
x
)
=
d
μ
c
d
λ
d
(
x
)
Doc 26
0.2542
-8.0000
6.0000
0.2542
testing/NTCIR/xhtml5/6/0907.4038/0907.4038_1_26.xhtml
d
V
2
d
x
(
x
)
=
o
(
1
x
)
Doc 27
0.2542
-8.0000
5.0000
0.2542
testing/NTCIR/xhtml5/5/0806.1836/0806.1836_1_77.xhtml
ψ
(
x
)
=
d
d
x
(
ln
Γ
(
x
)
)
.
Doc 28
0.2542
-8.0000
3.0000
0.2542
testing/NTCIR/xhtml5/3/math-ph0410025/math-ph0410025_1_20.xhtml
a
1
=
d
d
x
,
a
1
+
=
x
.
Doc 29
0.2542
-8.0000
3.0000
0.2542
testing/NTCIR/xhtml5/9/1311.2295/1311.2295_1_7.xhtml
T
(
k
)
=
d
d
x
+
ω
k
x
,
Doc 30
0.2542
-10.0000
4.0000
0.2542
testing/NTCIR/xhtml5/2/math0105236/math0105236_1_128.xhtml
q
(
x
)
=
1
n
d
p
D
(
x
)
d
x
,
Doc 31
0.2542
-14.0000
4.0000
0.2542
testing/NTCIR/xhtml5/2/math0107219/math0107219_1_3.xhtml
π
f
(
x
)
=
1
c
K
(
1
+
o
(
1
)
)
x
log
x
,
Doc 32
0.2243
-4.0000
4.0000
0.2243
testing/NTCIR/xhtml5/6/0912.1973/0912.1973_1_13.xhtml
b
(
x
)
=
1
2
c
log
x
Doc 33
0.2243
-12.0000
5.0000
0.2243
testing/NTCIR/xhtml5/9/1309.4344/1309.4344_1_18.xhtml
f
(
x
)
=
1
x
(
x
d
d
x
)
r
g
(
x
)
,
Doc 34
0.2243
-15.0000
4.0000
0.2243
testing/NTCIR/xhtml5/5/0707.0823/0707.0823_1_183.xhtml
d
f
(
x
)
d
x
=
x
-
1
x
2
>
0
,
∀
x
>
1
Doc 35
0.2073
-1.0000
3.0000
0.2073
testing/NTCIR/xhtml5/7/1104.4502/1104.4502_1_224.xhtml
=
d
d
x
,
Doc 36
0.2073
-3.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/cond-mat0502195/cond-mat0502195_1_3.xhtml
f
(
x
)
=
1
x
c
Doc 37
0.2073
-3.0000
3.0000
0.2073
testing/NTCIR/xhtml5/9/1302.4632/1302.4632_1_104.xhtml
∂
x
=
d
d
x
,
Doc 38
0.2073
-4.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0907.1471/0907.1471_1_35.xhtml
f
1
+
(
x
)
=
1
x
Doc 39
0.2073
-4.0000
5.0000
0.2073
testing/NTCIR/xhtml5/5/0810.2229/0810.2229_1_28.xhtml
f
(
x
)
=
1
x
-
1
Doc 40
0.2073
-4.0000
5.0000
0.2073
testing/NTCIR/xhtml5/5/0810.2229/0810.2229_1_21.xhtml
T
(
x
)
=
1
x
mod
1
Doc 41
0.2073
-4.0000
5.0000
0.2073
testing/NTCIR/xhtml5/5/0810.2229/0810.2229_1_30.xhtml
f
(
x
)
=
1
x
-
1
Doc 42
0.2073
-4.0000
5.0000
0.2073
testing/NTCIR/xhtml5/2/math-ph0208001/math-ph0208001_1_103.xhtml
d
d
x
(
sin
x
x
)
Doc 43
0.2073
-4.0000
5.0000
0.2073
testing/NTCIR/xhtml5/5/0810.2229/0810.2229_1_23.xhtml
T
(
x
)
=
1
x
mod
1
Doc 44
0.2073
-4.0000
5.0000
0.2073
testing/NTCIR/xhtml5/2/math-ph0208001/math-ph0208001_1_72.xhtml
d
d
x
(
sin
x
x
)
Doc 45
0.2073
-6.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/math0308020/math0308020_1_22.xhtml
G
1
(
x
)
=
1
x
(
mod
1
)
Doc 46
0.2073
-7.0000
4.0000
0.2073
testing/NTCIR/xhtml5/11/hep-th9911189/hep-th9911189_1_19.xhtml
d
J
d
x
=
1
F
(
x
)
,
Doc 47
0.2073
-7.0000
3.0000
0.2073
testing/NTCIR/xhtml5/3/math-ph0305050/math-ph0305050_1_15.xhtml
v
(
x
)
=
d
u
d
x
1
u
Doc 48
0.2073
-8.0000
3.0000
0.2073
testing/NTCIR/xhtml5/4/math0606133/math0606133_1_36.xhtml
ψ
(
1
)
(
x
)
=
d
d
x
ψ
(
x
)
Doc 49
0.2073
-9.0000
5.0000
0.6218
testing/NTCIR/xhtml5/6/0905.2444/0905.2444_1_23.xhtml
1
x
d
d
x
(
x
d
B
d
x
)
x
d
d
x
(
1
x
d
A
d
x
)
-
1
x
d
d
x
(
x
d
F
d
x
)
Doc 50
0.2073
-9.0000
5.0000
0.4145
testing/NTCIR/xhtml5/6/0905.2444/0905.2444_1_24.xhtml
x
d
d
x
(
1
x
d
A
d
x
)
-
1
x
d
d
x
(
x
d
F
d
x
)
Doc 51
0.2073
-9.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0911.1755/0911.1755_1_39.xhtml
f
(
x
)
=
1
x
∀
x
∈
(
0
,
1
)
Doc 52
0.2073
-10.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0906.3004/0906.3004_1_66.xhtml
d
d
x
i
(
1
1
-
x
1
⋯
x
i
)
Doc 53
0.2073
-11.0000
5.0000
0.2073
testing/NTCIR/xhtml5/8/1207.4985/1207.4985_1_6.xhtml
H
=
d
d
x
(
x
2
-
1
)
d
d
x
,
Doc 54
0.2073
-12.0000
5.0000
0.2073
testing/NTCIR/xhtml5/6/0912.4488/0912.4488_1_56.xhtml
F
g
(
x
)
=
1
x
g
(
log
x
)
,
x
>
0
,
Doc 55
0.2073
-12.0000
4.0000
0.2073
testing/NTCIR/xhtml5/3/hep-th0306078/hep-th0306078_1_54.xhtml
A
(
x
)
=
1
2
m
d
d
x
+
W
(
x
)
Doc 56
0.2073
-13.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/math0307214/math0307214_1_51.xhtml
-
d
d
x
(
1
x
(
1
-
1
x
2
)
k
)
.
Doc 57
0.2073
-14.0000
5.0000
0.2073
testing/NTCIR/xhtml5/9/1312.7171/1312.7171_1_12.xhtml
d
d
x
Li
k
(
x
)
=
1
x
Li
k
-
1
(
x
)
.
Doc 58
0.2073
-14.0000
5.0000
0.2073
testing/NTCIR/xhtml5/3/math-ph0502050/math-ph0502050_1_54.xhtml
Pf
(
1
|
x
|
)
=
d
d
x
(
sgn
(
x
)
log
|
x
|
)
,
Doc 59
0.2073
-19.0000
3.0000
0.2073
testing/NTCIR/xhtml5/5/0711.1063/0711.1063_1_18.xhtml
H
0
=
1
2
(
x
p
+
p
x
)
=
-
i
(
d
d
x
+
1
2
)
Doc 60
0.2073
-20.0000
5.0000
0.2073
testing/NTCIR/xhtml5/10/math9809111/math9809111_1_126.xhtml
ζ
(
-
l
)
=
1
1
-
2
l
+
1
[
(
d
d
x
x
)
l
1
1
+
x
]
|
x
=
1
.
Doc 61
0.2073
-20.0000
3.0000
0.2073
testing/NTCIR/xhtml5/5/0712.0705/0712.0705_1_26.xhtml
H
0
=
1
2
(
x
p
+
p
x
)
=
-
i
(
x
d
d
x
+
1
2
)
Doc 62
0.1754
-5.0000
2.0000
0.1754
testing/NTCIR/xhtml5/9/1212.0818/1212.0818_1_55.xhtml
A
1
=
d
d
x
+
tanh
x
Doc 63
0.1754
-5.0000
2.0000
0.1754
testing/NTCIR/xhtml5/9/1212.0818/1212.0818_1_30.xhtml
A
1
=
d
d
x
+
tanh
x
Doc 64
0.1754
-6.0000
4.0000
0.1754
testing/NTCIR/xhtml5/5/0808.3499/0808.3499_1_17.xhtml
d
𝐰
d
x
=
1
x
L
𝐰
Doc 65
0.1754
-8.0000
4.0000
0.1754
testing/NTCIR/xhtml5/5/0706.2343/0706.2343_1_82.xhtml
d
𝐰
d
x
=
1
x
L
(
x
)
𝐰
Doc 66
0.1754
-11.0000
3.0000
0.1754
testing/NTCIR/xhtml5/3/cond-mat0410095/cond-mat0410095_1_10.xhtml
A
^
=
1
x
d
d
x
x
d
d
x
,
Doc 67
0.1754
-12.0000
3.0000
0.1754
testing/NTCIR/xhtml5/4/math0504377/math0504377_1_29.xhtml
L
=
1
2
x
(
1
-
x
)
d
2
d
x
2
,
Doc 68
0.1754
-16.0000
4.0000
0.1754
testing/NTCIR/xhtml5/6/0812.1766/0812.1766_1_54.xhtml
A
2
j
=
1
(
2
j
)
!
(
d
d
x
)
2
j
Q
(
x
)
|
x
=
0
.
Doc 69
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/math0311099/math0311099_1_77.xhtml
dlog
1
(
x
)
=
d
x
x
Doc 70
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/quant-ph0409169/quant-ph0409169_1_89.xhtml
[
d
d
x
,
x
]
=
1
Doc 71
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/quant-ph0501155/quant-ph0501155_1_4.xhtml
[
d
d
x
,
x
]
=
1
Doc 72
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/0908.2644/0908.2644_1_42.xhtml
p
=
1
i
d
d
x
Doc 73
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/1003.4703/1003.4703_1_132.xhtml
p
=
1
i
d
d
x
Doc 74
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/2/math-ph0110031/math-ph0110031_1_48.xhtml
[
d
d
x
,
x
]
=
1
Doc 75
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/11/math9909139/math9909139_1_27.xhtml
A
=
1
i
d
d
x
Doc 76
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/4/math0604319/math0604319_1_93.xhtml
D
=
1
i
d
d
x
Doc 77
0.1600
-5.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/0910.1912/0910.1912_1_6.xhtml
[
d
d
x
,
x
]
=
1
Doc 78
0.1600
-6.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/1008.4231/1008.4231_1_15.xhtml
D
=
1
i
d
d
x
;
Doc 79
0.1600
-6.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/0903.3391/0903.3391_1_28.xhtml
d
d
x
log
x
=
x
-
1
Doc 80
0.1600
-6.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1106.1658/1106.1658_1_14.xhtml
d
d
x
log
x
=
x
-
1
Doc 81
0.1600
-6.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/0705.3282/0705.3282_1_11.xhtml
D
=
1
i
d
d
x
,
Doc 82
0.1600
-6.0000
3.0000
0.1600
testing/NTCIR/xhtml5/8/1111.2870/1111.2870_1_72.xhtml
1
x
d
x
d
λ
∈
ℝ
Doc 83
0.1600
-7.0000
4.0000
0.1600
testing/NTCIR/xhtml5/2/math-ph0208035/math-ph0208035_1_78.xhtml
a
=
d
d
x
-
1
2
x
Doc 84
0.1600
-7.0000
4.0000
0.1600
testing/NTCIR/xhtml5/8/1202.2402/1202.2402_1_6.xhtml
δ
x
=
1
x
⋅
d
d
x
Doc 85
0.1600
-8.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0705.3990/0705.3990_1_70.xhtml
d
d
x
b
(
x
)
=
-
1
x
Doc 86
0.1600
-8.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0811.1490/0811.1490_1_27.xhtml
L
1
=
1
2
d
2
d
x
2
Doc 87
0.1600
-8.0000
4.0000
0.1600
testing/NTCIR/xhtml5/4/hep-th0610257/hep-th0610257_1_52.xhtml
C
1
′
=
d
d
x
C
1
(
x
)
Doc 88
0.1600
-8.0000
4.0000
0.1600
testing/NTCIR/xhtml5/4/hep-th0610257/hep-th0610257_1_54.xhtml
C
1
′
=
d
d
x
C
1
(
x
)
Doc 89
0.1600
-9.0000
4.0000
0.3200
testing/NTCIR/xhtml5/6/1003.4620/1003.4620_1_15.xhtml
c
:=
1
2
(
d
d
x
+
x
)
c
†
=
1
2
(
-
d
d
x
+
x
)
Doc 90
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/1003.4620/1003.4620_1_58.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 91
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/0905.2929/0905.2929_1_9.xhtml
b
=
1
2
(
x
+
d
d
x
)
Doc 92
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1007.4349/1007.4349_1_14.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 93
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1007.4349/1007.4349_1_18.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 94
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1010.0204/1010.0204_1_17.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 95
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1106.0112/1106.0112_1_82.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 96
0.1600
-9.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1106.0112/1106.0112_1_84.xhtml
a
=
1
2
(
x
+
d
d
x
)
Doc 97
0.1600
-10.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/hep-th0307205/hep-th0307205_1_17.xhtml
T
=
1
4
π
d
V
d
x
|
x
=
x
0
Doc 98
0.1600
-11.0000
4.0000
0.3200
testing/NTCIR/xhtml5/10/hep-th9905135/hep-th9905135_1_59.xhtml
1
2
(
d
d
x
+
g
x
-
x
)
1
2
(
-
d
d
x
+
g
x
-
x
)
Doc 99
0.1600
-11.0000
4.0000
0.1600
testing/NTCIR/xhtml5/9/1309.4344/1309.4344_1_81.xhtml
1
x
(
x
d
d
x
)
r
+
1
f
(
x
)
Doc 100
0.1600
-12.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/hep-th0001094/hep-th0001094_1_2.xhtml
B
±
=
1
2
(
W
(
x
)
∓
d
d
x
)
Doc 101
0.1600
-12.0000
4.0000
0.1600
testing/NTCIR/xhtml5/2/hep-th0102004/hep-th0102004_1_15.xhtml
A
=
1
2
(
d
d
x
+
W
(
x
)
)
.
Doc 102
0.1600
-12.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/math-ph0308026/math-ph0308026_1_16.xhtml
A
=
1
2
(
-
d
d
x
+
W
(
x
)
)
Doc 103
0.1600
-12.0000
4.0000
0.1600
testing/NTCIR/xhtml5/5/0707.3451/0707.3451_1_55.xhtml
=
1
r
(
r
p
0
)
1
/
2
d
d
x
,
Doc 104
0.1600
-13.0000
4.0000
0.1600
testing/NTCIR/xhtml5/6/1001.1136/1001.1136_1_10.xhtml
b
=
c
†
=
1
2
(
-
d
d
x
+
x
)
Doc 105
0.1600
-13.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/hep-th0009099/hep-th0009099_1_9.xhtml
∇
=
1
x
f
(
N
)
,
N
=
x
d
d
x
.
Doc 106
0.1600
-13.0000
4.0000
0.1600
testing/NTCIR/xhtml5/7/1104.1936/1104.1936_1_55.xhtml
Q
g
(
x
)
=
(
d
d
x
-
1
x
)
g
(
x
)
Doc 107
0.1600
-14.0000
4.0000
0.1600
testing/NTCIR/xhtml5/9/1309.4344/1309.4344_1_42.xhtml
1
x
(
x
d
d
x
)
r
f
(
x
)
=
g
(
x
)
,
Doc 108
0.1600
-15.0000
4.0000
0.3200
testing/NTCIR/xhtml5/3/quant-ph0409169/quant-ph0409169_1_91.xhtml
P
=
1
2
(
x
+
d
d
x
-
c
2
x
K
)
X
=
1
2
(
x
-
d
d
x
+
c
2
x
K
)
.
Doc 109
0.1600
-15.0000
4.0000
0.1600
testing/NTCIR/xhtml5/3/quant-ph0502098/quant-ph0502098_1_7.xhtml
A
1
†
=
1
2
(
-
d
d
x
+
α
1
(
x
)
)
Doc 110
0.1600
-15.0000
3.0000
0.1600
testing/NTCIR/xhtml5/2/hep-th0012038/hep-th0012038_1_61.xhtml
E
~
=
1
2
(
d
x
c
d
τ
)
2
-
V
(
x
c
)
Doc 111
0.1600
-16.0000
4.0000
0.1600
testing/NTCIR/xhtml5/1/1209.4429/1209.4429_1_2.xhtml
=
1
2
(
α
-
1
(
x
)
d
d
x
+
β
(
x
)
)
,