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Chapter 1

Introduction

The Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA)

is a common and critical component in web security. Motivation for CAPTCHAs is to stop

the automated abuse of web services [9]. A CAPTCHA uses a challenge task to differ-

entiate humans from computers. A usability vs. security trade-off is present in current

CAPTCHA implementations. Video CAPTCHA is a more recent implementation, aiming

to reduce this trade-off by providing increased usability. Compared to traditional text and

audio CAPTCHAs, little research in video CAPTCHAs exists.

A video CAPTCHA [8] proposed by Kluever & Zanibbi has shown promise in usability

studies [9]. This CAPTCHA requires a user to naturally describe a presented video, using

three tags. Further research is needed in the CAPTCHA’s security against OCR-based at-

tacks on text contained within the videos it uses. If such text is extracted and entered as tags,

the CAPTCHA challenge may be passed. We describe an evaluation of the CAPTCHA’s

security against this approach. Attacks are made against the CAPTCHA, aiming to extract

and OCR text within video key-frames.

A natural text segmenter is developed, using a bagged classifier of C4.5 decision trees

over text-location masks1. We find that natural text can be segmented with an average f-

measure of 76%, through the use of only geometric features. Tesseract-OCR is used to

classify text within segments, but is shown to be unreliable when classifying natural text.

Video CAPTCHA is found to be vulnerable to OCR-based attacks on its key frames. Text

1Text masks are defined manually, as text localization is outside the scope of this work.
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in challenge videos is found to be highly indicative of text that will pass a challenge. In

a series of 13 manual attacks on a randomly selected video sample, 9 (69.2%) succeed in

passing the challenge. Automated attacks are made against the same 13 videos, resulting

in 2 (15.4%) of 13 attacks succeeding.

Despite the low break rate, we find that automated attacks are able to extract groundtruth

tags in 9 (69.2%) of the 13 challenge videos. It is concluded that a more accurate way

of choosing a subset of extracted text to use would boost the automated break rate signifi-

cantly. We conclude that video CAPTCHA is vulnerable to OCR-based attacks that employ

a more sophisticated tag selection method.

This report details both the target video CAPTCHA system and Tesseract. Method-

ology for attacks and natural-text segmentation are then described. An evaluation of the

experiments conducted is then presented, detailing the performance of both the segmenter

and attacks. Evaluation results are discussed, followed by suggestions for future work.
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Chapter 2

Background

An introduction to the key components and concepts that make up our main problem is

presented here. Topics covered are: (a) CAPTCHA and its common implementations, in-

cluding video CAPTCHA; (b) prior work in developing and breaking video CAPTCHA;

(c) the video CAPTCHA system that this project aims to break; (d) optical character recog-

nition (OCR) and the Tesseract OCR engine.

2.1 CAPTCHA

The Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA,

as coined by M. Blum et al. in [1]) is a critical component in how we interact with the

web. The ultimate goal of CAPTCHAs is to automatically differentiate a human from a

computer. This differentiation is typically accomplished through a simple challenge task;

passing a challenge should ideally be simple for humans and difficult for computers. The

motivation for CAPTCHAs is to stop the automated abuse of online services [9]. Example

use cases include adding a layer of security to account registration and email forms. An

example of a text-based CAPTCHA used in account registration is shown in Figure 2.1.

The motivation for this project is to evaluate the security of a video understanding based

CAPTCHA system [8], which is a highly usable implementation of a Video CAPTCHA

(discussed later).

CAPTCHAs have been in use since 2000, with researchers at Carnegie Mellon Univer-

sity spearheading development. AltaVista introduced the first public use of a CAPTCHA,
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and patented its own version in 2001 [17]. Since then, there has been a multitude of differ-

ent approaches for distinguishing humans from computers.

Research in CAPTCHAs involves the fields of computer vision, machine learning,

pattern recognition, and human-computer interaction. The main problem that improving

CAPTCHAs present to researchers and developers is finding a way to best minimize the

usability vs. security trade-off. An ideal CAPTCHA would always pass a human (perfect

usability), while always failing a computer (perfect security). The trend however, has been

a somewhat inverse correlation between usability and security. Researchers continue to aim

for improvements in the usability, accessibility, and security of CAPTCHA systems.

Figure 2.1: A text-based CAPTCHA presented by Google during their account creation
process. A user must enter each displayed character correctly in-order to proceed. The
volume icon indicates that a user may elect for an audio-based CAPTCHA test instead.

Many different types of CAPTCHA systems have been developed with the goal of min-

imizing the usability vs. security trade-off. CAPTCHAs generally involve presenting a

user with some form of information, and requiring the user to act based on their under-

standing or observation of that information. CAPTCHA implementations differ in the type

of information they present, as well as in how that information is presented. Common types

of information presented to users are: [22]:
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Text The ’classic’ CAPTCHA that we are accustomed to seeing. This approach in-

volves the server-side rendering of distorted text characters, and their presentation

to the user.

Images Example: selecting all similar images in a set.

Audio Example: Entering alphanumeric characters spoken by a distorted voice, in the

presence of background noise.

2.2 Video CAPTCHA

Video CAPTCHA is a newer and less commonly seen CAPTCHA system. The term ”video

CAPTCHA” is used here to refer to any CAPTCHA that uses a video as its means to

present information to a user. Although prior work in video CAPTCHA is limited, both

commercial and academic applications do exist.

One commercial system is NuCaptcha [6], which is displayed in Figure 2.2. NuCaptcha

encapsulates a text-based CAPTCHA inside of a video; the video adds animations to the

text, ideally making it more difficult to crack than a text-based CAPTCHA alone. Nu-

Captcha was cracked by Stanford researchers working alongside the NuCaptcha team in

2012 [2]. By performing standard OCR on snapshots of the video’s moving text, the re-

searchers obtained a crack rate of more than 90% across NuCaptcha’s challenges.

Figure 2.2: An online demonstration of the NuCaptcha video CAPTCHA service. The text
shown in red is animated, and must be entered correctly for the test to be passed.
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Researchers at Wuban University describe a CAPTCHA based on moving, 3D object

identification [3]. It is described by the authors as resistant to common, static OCR attacks.

2.3 Video Understanding Approach

The motivation for this project is the evaluation of a video understanding based CAPTCHA

system’s vulnerability to in-scene, text based attacks. This CAPTCHA, seen in Figure 2.3,

is proposed in [8,9] by Kluever & Zanibbi. To pass a challenge, a user is asked to naturally

describe a short video by entering three descriptive tags for it. The challenge is passed if

one or more of the user’s answer tags matches any of the video’s automatically generated,

groundtruth tags. No similar video CAPTCHA currently (at least publicly) exists, although

similar methods have been tried on still images. An in-scene text attack on this system aims

to find answer tags by performing Optical Character Recognition (OCR) on words visible

within the challenge video’s key frames.

Usability and security for the video CAPTCHA are evaluated in [9]. A promising 60%

of 184 usability study participants found video CAPTCHAs to be ”more enjoyable” than

traditional text CAPTCHAs. Human pass rates in the studies are referred to as comparable

to then-existing CAPTCHA systems. However, a usability vs. security trade-off is visi-

ble in the results. Security is measured by the pass rate of tag-frequency based attacks;

these attacks involve submitting the three tags that describe the largest portion of videos in

the dataset. Usability is measured by the human pass rate of the user study participants.

Results in [9] suggest that different configurations of the system can result in significant

security vs. usability changes. A configuration for the system τ = (n, t, s, l) defines four

different parameters: n = # of related tags in the groundtruth; t = threshold for frequency

pruning; s = whether or not word stemming is used; l = whether or not inexact matching

is used. Example configurations and their resulting pass rates for both humans and attacks

are shown in Table 2.1
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Table 2.1: Different parameters in video-understanding based CAPTCHA [9] affecting the pass rates of
humans and the break rates frequency-based attacks. Configurations define the parameters: n = # of related
tags in the groundtruth; t = threshold for frequency pruning; s = whether or not word stemming is used; l =
whether or not inexact matching is used.

n t s l Human Pass Rate (%) Attack Break Rate (%)
0 1.0 FALSE FALSE 69.73 12.86
25 0.006 TRUE TRUE 86.49 5.26
90 0.006 TRUE TRUE 90.19 12.63

Figure 2.3: The video-understanding based CAPTCHA system used for this project. [8]

Challenge generation and grading are both automated, and make use of videos and tags

submitted to the video sharing website YouTube.com. A tag is a descriptive word that a

video’s uploader assigns to that video. Details of these procedures can be found in [8]

and [9]; what follows is a high-level summary of the information present in these sources.

To select a challenge video, a random walk over the dataset containing all YouTube

videos is performed. The dataset is treated as an undirected, bipartite graph representing

the many-to-many relationship between videos and tags. The algorithm to randomly walk

this graph is shown in Algorithm 2.1, as it is described in [9]. Given a starting tag t, a

current video v is selected such that v is tagged with t. A new video vnext is chosen from

the set of videos related to v such that some tag w is associated with both v and vnext. w

now becomes t, and the process repeats. This process is repeated for a random number of

iterations between 1 and a specified max-depth.
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Generation of groundtruth tags for a challenge video adds both the set of tags directly

assigned to that video, and a fixed number of tags pulled from videos related to it. Related

videos are obtained by querying the YouTube API, and then sorted by cosine similarity with

the challenge video. Cosine similarity is often used in information retrieval to evaluate the

relevance of retrieved text documents. Cosine similarity of two vectors u and v is defned

as:

CosSim(u, v) =
u · v
‖u‖‖v‖

(2.1)

Videos are represented by occurrence bit-vectors of their tags. A bit representing a tag t

within a video’s occurrence vector is 1 if t is present in that video’s author tags, otherwise it

is 0. Occurrence vectors of related videos are sorted in decreasing order of cosine similarity

to the challenge video’s occurrence vector. A fixed, maximum number of related tags are

then added to the challenge video’s groundtruth.

Any predefined stop words are then removed from the groundtruth. Stop words are

frequently occurring tags that provide little descriptive value, such as ”if”, ”then”, and ”he”.

Different inflections and derivations of each groundtruth tag are then added through word

stemming [18]. Word stemming reduces tags to their root forms, lowering the chance for

false negatives caused by non-descriptive differences from the groundtruth. For example:

if the groundtruth contains dogs, then the root dog is also added. Frequency-based pruning

of the groundtruth is performed as a final step. A tag-frequency distribution is generated

by recording the number of times different tags are seen during a series of random walks.

If any tag has an estimated frequency ≥ a pruning threshold t, that tag is pruned from the

groundtruth.

Grading involves the inexact matching of each answer tag to any groundtruth tag. If at

least one match exists for any answer tag, then the challenge is passed. Inexact matching

looks at the normalized Levenshtein distance (also known as string edit distance) between

two tags being compared. The Levenshtein distance between two strings s and t is the

minimum number of deletions, insertions, and/or substitutions needed to transform s to t or

t to s; the distance is then normalized by string length. If the normalized distance between
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two tags is ≥ 0.8, then they are considered to be a match (a distance of 1.0 signifies a

perfect match). This makes grading more forgiving of spelling errors and typos, and was

found to have little impact on security against frequency-based attacks.

Algorithm 2.1: Procedure to randomly walk the graph of all YouTube videos, as
defined in [9].

input : MaxDepth : Maximum depth of the random walk

1 Randomly select a depth d for the walk, such that 1 ≤ d ≤MaxDepth.

2 Randomly select a word t from a predefined dictionary.

3 Query the YouTube API to locate the tag vertex u corresponding to tag t.

4 while i < d do

5 Select a random edge (u, v) where v is a video vertex.

6 Select a random edge (v, w) where w is a tag associated with video v.

7 Assign u←− w.

8 Increment i.

2.4 Tesseract OCR Engine

Tesseract is an open-source OCR engine, that is widely regarded as being among the most

accurate of such (non commercial) tools. It began as a project at HP Labs in 1985, where

it was actively developed for ten years. Development ceased after this time period, until

Google Inc. picked up and open-sourced the project in 2006. It is now freely available on

Google Code1, under the Apache 2.0 license. It is available for Windows, Mac OSX, and

Linux.

Tesseract can currently detect and output text in over 60 languages. It can be used either

via the command line, or accessed through its C++ API. Third party add-ons exist that offer

a GUI. Among other key features, Tesseract supports: (a) confidence outputs for individual

words, (b) automatic adjustment for crooked text-lines, and (c) performing OCR on image

1https://code.google.com/p/tesseract-ocr
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sub-regions. Recommended features of images on which Tesseract is to perform OCR are:

Text Uniformity Text is in a uniform, non-handwritten font. Spacing between lines

and letters is consistent.

Proper Text Size All text has a minimal font-size of 10pt, and a minimal X-height of

20 pixels. X-height refers to the height in pixels of a lowercase ’x’

is a given font.

High Resolution The image has a resolution of between 300dpi (dots per inch) and

500dpi.

Little Noise Text has been de-noised as much as possible.

Binary Colors The image has only the colors black and white.

A detailed overview of Tesseract’s components can be found in [20]. Tesseract uses

both an adaptive classier and a static character classifier. The classifiers differ in their

(a) given training data, and (b) method of character normalization. The static character

classifier is given raw input, while the adaptive classifier is given the output from the static

character classifier. The adaptive classifier provides better discrimination in documents

with multiple fonts, by being more sensitive to font features and less sensitive to noise.

Tesseract’s features, which are a key strength of Tesseract [20], are different for the

training and recognition phases. Different features are needed to recognize damaged text,

which may only be present during testing. Training features are prototypes (similar to a

character’s contours), which are composed of the segments of a polygonal approximation

of the character’s shape. Segment’s contain the features: x position, y position, angle,

and length. Recognition features are small line segments extracted from the character’s

outline; segments are of a fixed, normalized length. Segments are matched many-to-one

to potential prototypes during classification, and the prototype most closely matching the

segment features is chosen as the final character. Features contained within segments are

the same as a prototype’s segment, minus the angle.
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Although Tesseract is widely considered to be the most accurate non-commercial OCR

system, it has limitations that impact this project. The first issue is that Tesseract strongly

prefers its input to be binary images [20], and performs with less accuracy and predictability

on images with color noise [16]. Given that the vast majority of videos used in video-

understanding systems (YouTube videos, in the case of [9]) are color, a good thresholding

procedure is needed. It is found in tests described in [16] that properly grayscaling color

images has a significantly positive impact on Tesseract’s OCR results. Text resolution

and size must be considered as well. Tesseract’s documentation states that the accuracy

of results drop drastically when the source image has either a resolution less than 300

dots-per-inch (DPI), or text smaller than 10 points. Many videos on YouTube are not of

good quality, even when the DPI is specified as high. The text size in the videos is also

unpredictable.

Although not officially stated, it can be inferred that Tesseract expects clean, book-page

like text. Tools for training Tesseract all generate images containing such text, and gener-

ally involve choosing a font style and size. Documentation also recommends a minimum

X-height, which is the height of a lower case ’x’ in a specific font. This information points

towards optimal inputs being uniform text with little noise, such as scanned documents.

Tesseract has been successful as a viable tool for natural-text OCR. A group of graduate

students2 successfully used Tesseract as the OCR component of a system that extracts and

classifies text within natural scenes. This system focuses on heavy pre-processing, using

the Stroke-Width Transform (SWT) described in [4]. SWT produces an array containing

the estimated stroke width (SW) of the strokes pertaining to each pixel of an image. The

SW of Text in natural scenes tends to be nearly constant across all of its connected com-

ponents, particularly when compared to other elements of the scene [4]. Leveraging this,

text is extracted by performing a SWT on a Canny edge-detection representation of the

image. Connected components (CCs) of text can then be found by comparing the SWs of

2This is a student project for a robotics course offered at the University of Pennsylvania.
https://alliance.seas.upenn.edu/ meam620/wiki/index.php?n=MenglongZhu2011.Final
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each component, and taking only those that do not have highly varying SWs. Connected

components are then grouped into words by comparing various, basic geometric properties

relative to the other components. These groups are used to generate bounding box coor-

dinates, which are fed to Tesseract for OCR. Much of the work in this system is in text

localization, the process of finding image sub-regions containing text. After localization

and pre-processing, the segmentation step seems comparatively trivial due to the cleanli-

ness of the post-processed image. This system demonstrates that if the location of text is

known in a natural scene, then Tesseract may be used to successfully classify that text in

many instances.

Section 3.3 proposes a similar but different strategy. Text is first located and labeled

manually, rather than the use of text localization techniques. Pre-processing of text re-

gions focuses more on removing noise caused by the manual text labeling, but uses similar

principles of smoothing and removing small components described above. CCs belong-

ing text-line are grouped via separate, minimum spanning trees. Features used to classify

CCs are similar, but are plugged into a bagged decision tree classifier instead of used as-is.

The principle that basic, geometric properties can accurately group CCs into words is still

present.

2.5 Problem

The goal of this project is to measure the magnitude of the problem that OCR attacks pose

to video-understanding based CAPTCHA. The data flow for an attack algorithm is shown

in Figure 2.4. We want to know whether video CAPTCHAs can be passed by extracting

any text-words present within the video’s key frames, and entering a subset of those words

into the CAPTCHS challenge as answer tags. A key-frame of a video is any frame at which

the video presents a significant, visual change (e.g. cutting to a new scene). The following,

two hypotheses will be tested:

1. Tesseract can accurately classify words within the key-frames of videos used by

Video CAPTCHA, when given the predicted bounding-boxes of the words.
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2. Words present in videos are indicative of tags that Video CAPTCHA will accept.

As a concrete example of the problem statement, consider a video being presented by a

Video CAPTCHA to a human. Say this video has a key frame containing a sign that reads,

”Danger: Construction Site. Mandated by New York law”. In this case, a user should pass

this test if they enter a set of tags from this sign, e.g. {’Construction’, ’New’, ’York’}. Now

consider the same scenario, but with the video being presented to a computer. We wish

to know (a) if and how well the computer can extract these words, and (b) whether the

extracted text could then be used to pass the CAPTCHA test.

Key-frame sub regions containing words are automatically extracted using a word seg-

menter (section 3.3). Tesseract-OCR (section 2.4) is used to classify the extracted words

into actual text. Attacks are then made against video CAPTCHA (section 3.4) using the

classified words.

Figure 2.4: A flowchart displaying the inputs and outputs for each step in solving breaking
Video CAPTCHA.

2.5.1 Defining an Attack

To test the hypotheses, attacks will be made against the Video CAPTCHA system. The

goal of an attack is to pass the challenge being presented by a Video CAPTCHA; challenge

grading is described in section 2.3.

An attack on the system is formally defined as the following process:

1. Consider as targets the set V of YouTube videos that may be obtained using the

random-walk and tag-expansion algorithms described in [9].
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2. Let Vi ∈ V denote the video currently being presented.

3. Let Fi denote the key-frames of Vi. Manually create a set F i
m of binary masks corre-

sponding to each frame ∈ Fi.

4. Extract word bounding-boxes from a each mask ∈ F i
m; send the mask and extracted

regions to Tesseract for OCR.

5. Save Tesseract’s output to an extracted-tag set Ti.

6. Define an attack as an attempt at extracting Ti given Vi, and computing an answer set

Ai ⊂ Ti that hopes to pass as input to the CAPTCHA. The process of selecting tags

from the set Ti is described in section 3.4.
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Chapter 3

OCR-Based Video CAPTCHA Attacks

The process of attacking a video CAPTCHA (defined in section 2.5.1) consists of five

stages.

1. Key frame extraction and character labelling.

2. Pre-processing of the labelled masks.

3. Word segmentation on the pre-processed masks.

4. OCR on the original mask, using the word sub-regions obtained from a segmentation

over the pre-processed mask.

5. Answer tag generation.

3.1 Key-Frame Extraction and Masking

Key-frames (Fi) for a video are identified using basic image differencing. An image is

generated that represents the pixel-level differences between two other images. If two

frames in the same video differ beyond a certain threshold (defined by the FFmpeg1 tool),

then the location of the latter frame is considered to be a key-frame. This leverages the

tendency for non key-frames in videos to differ by very little. Using only key frames of a

video, as opposed to each frame, is beneficial for two main reasons: (a) processing time is

1http://www.ffmpeg.org/
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drastically reduced; (b) less garbage data is present in the OCR results, causing the process

of filtering Ti to produce more indicative tags.

Extracted frames are converted to character masks. Masks represent the location of text

characters within the original image. We manually2 groundtruth these masks, using color

quantization and filtering methods (further details are described in [21]). Quantized masks

may contain noise from the process, but should not contain any non-text objects from the

original image. An image before and after masking can be seen in Figure 3.1.

3.2 Image Pre-Processing

Before being segmented, character masks are fully binarized and denoised. As shown

by the multitude of speckle-like CCs in Figure 3.1b, the manual masking process is very

prone to leaving noise behind. Pre-processing drastically reduces the number of connected

components (CCs) that must be considered by the segmenter. The goal of pre-processing is

to denoise the original mask while fully preserving its structure. OCR may then be formed

on the original mask, using word sub-regions defined over the pre-processed mask. The

benefits of denoising are seen during word segmentation; noise confuses and slows down

the segmenter significantly.

A median filter is first used on the grayscale mask, with parameters radius = 2px and

% = 75. This removes a substantial amount of the noise caused by the character-masking

process. Noise around the edges of the mask, as well as general small speckles, are greatly

reduced.

Binarization is then performed on the mask. This process converts the character mask

from grayscale to binary (containing only the colors black and white). This step removes

a great deal of color noise around the edges of the mask, and lowers the amount of image

information that the segmenter must consider. A simple thresholding procedure is used to

classify each pixel in the mask as black (background) or white (foreground). For each pixel

2A manual approach is taken as text localization is outside the scope of this work.
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p in a mask M with threshold Mt, p = white if M [p] > Mt. Any pixels not labeled as

white in this way are labeled as black. Each threshold Mt is chosen using Otsu’s method

on M , a widely used thresholding technique described in [15].

Lastly, small connected components are filtered out. This step removes any remaining

speckle noise. First, any CCs with an area ≤ 5px are removed. The mean size µ of

the reaming connected components is then computed. Any CC smaller than 1/5 of µ is

removed from the mask.

An example of the final product is shown in Figure 3.1.
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(a) Initial image, before masking.

(b) Input after masking.

(c) Binarized and denoised image mask.

Figure 3.1: Displaying steps in the pre-processing chain. (a) The original image in which
words are to be segmented, before masking. (b) Locations of characters are repsetned by
a grayscale masking of the original image, using color quantization and filtering. (c) The
mask is binarized using Otsu’s thresholding method, and denoised via a median filter and
removal of small CCs.
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3.3 Segmenter Design

This section describes two algorithms that are developed to segment text-characters present

in natural scenes into words. The segmenters accept text pixels as input, in the form of a bi-

nary character-mask (as described above). Segmentation output is a set of bounding boxes,

where each bounding box should fully enclose exactly one word on the input mask. Provid-

ing Tesseract with these sub regions prior to OCR is expected to improve OCR results, by

focusing Tesseract on only the relevant portions of an image. This is particularly important

for text in natural scenes, as there is a large amount of noise present that is likely to confuse

Tesseract. If the noise is severe enough, characters will be unrecognizable by both humans

and OCR techniques.

First, a baseline segmenter is developed. The baseline is a semi-naive approach. A

more advanced segmentation method is then developed to improve on the baseline, using

bagged C4.5 decision trees. The goal of this second approach is to maximize the reliability

and accuracy of results. The information gained through the development of the baseline

approach is leveraged in-order to accomplish this.

3.3.1 Baseline Approach

The baseline segmenter is described by Algorithm 3.1 below, and visualized in Figure 3.2.

Connected components (CCs) of the input image (img) are first identified, and placed

into a labeling array l. The value of l[i,j] is the unique, numerical identifier of the CC that

occurs at img[i,j]. If no CC exists (i.e. a background location) at img[i,j], then l[i,j] = 0.

The CCs of img are now described by l.
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(a) Constructed, Euclidean Minimum Spanning
Tree.

(b) Segmentation result after cutting.

Figure 3.2: (a) Connected components of the pre-processed image are labelled (a color
change signifies a new CC), and a Euclidean Minimum Spanning Tree is constructed from
the CCs centers of mass (displayed as nodes); (b) The EMST is cut, using the function
slice(u,v,α=0.3) described in equation 3.1. Boxes around the resulting word segments are
shown.

CCs are then merged such that they represent whole words in the image. To accom-

plish this, all CCs are connected and represented by a Euclidean Minimum Spanning Tree

(EMST)3. Given a connected graphG = (V,E), a spanning tree of G is a subgraph that both

connects all V and is a tree. Given a set of weights belonging to E, a Minimum Spanning

Tree (MST) of G is a spanning tree of G with the lowest possible sum of edge weights. A

Euclidean MST is an MST over a graph defined in Euclidean space, with edge weights rep-

resenting the Euclidean distances between two vertices. Kruskal’s algorithm [10] is used

to construct an EMST.

A vertex in the EMST represents the center of mass of a CC in Euclidean space. An

edge e={u,v} in the tree represents an undirected, ”connected” relationship between CCs

u and v. An edge’s value is the Euclidean distance between the two centers connected by

that edge. An example of such an EMST is shown in Figure 3.2a. Any two vertices in

the EMST that can reach each other are considered to be part of the same word. Since this

3EMST is generated using the SciPy library’s implementation: http://docs.scipy.org
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initial EMST connects all CCs, the entire mask is initially set as being one word. The edges

of the EMST must now be cut to form separate words.

Each edge is considered for a cut one at a time. The decision to cut an edge e={u,v} is

a function of the: (a) relative differences in the average size of the CCs u and v4 sizeAver-

age(u,v); (b) relative differences in positions of the bounding boxes of u and v, dx(u,v) and

dy(u,v); (c) a static, thresholding parameter α. The edge is cut if the inequality described

by equation 3.1 holds true for that edge. The optimal value for α is obtained via a grid

search on α over the range 0.0 ≤ α ≤ 2.0 (described in section 4).

split(e = {u, v}, α) =

dist(u, v) > sizeAverage(u, v)α = true

otherwise = false
(3.1)

The relative size difference between u and v (described by equation 3.2) is defined as

the average length of the diagonals of their bounding boxes.

sizeAverage(u, v) =

√
u.w2 + u.h2 +

√
v.w2 + v.h2

2
(3.2)

The relative difference in position between u and v, described in equation 3.5, is defined

as the maximum of dx and dy (equation 3.3). The dx and dy values measure the maximum

distances between the vertical and horizontal edges respectively of each bounding box.

dx(u, v) = max(u.x− (v.x+ v.w), v.x− (u.x+ u.w)) (3.3)

dy(u, v) = max(u.y − (v.y + v.h), v.y − (u.y + u.h)) (3.4)

dist(u, v) = max(dx(u, v), dy(u, v)) (3.5)

4For convenience, the minimal bounding-box of a connected component n is denoted by: n.x, n.y, n.w,
n.h, where x and y represent the coordinate of the top-left corner of the bounding box.
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After cutting the EMST in this way, the result is a minimum spanning forest where each

tree in the forest represents a word. Word level bounding-boxes are then easily obtained

by merging the bounding boxes of the the CCs within each forest. These merged bounding

boxes are returned as word segments. An example of a resulting segmentation can be seen

in Figure 3.2b.

Algorithm 3.1: Baseline Word Segmentation
input : a binary image mask mask, representing the locations of text within an

image

a thresholding value α

output: word level bounding-boxes of mask

1 l←− the connected-component labelling array of mask

2 centers←− centers of mass for each label ∈ l

3 emst←−MinimumSpanningTree(V = centers, E = dists)

4 for edge e = {u, v} ∈ emst.E do

5 if split(u, v, α) = true then

6 remove the edge e from emst

7 words←− bounding boxes of each connected component of emst

8 return [words]

3.3.2 Bagged Decision-Tree Approach

An improved segmentation method takes a more adaptive, intelligent approach to the prob-

lem. Beginning steps are connected component (CC) analysis and labeling, as performed

in the baseline. Three additional steps make up the segmenter: 1. text line segmentation, 2.

feature extraction; 3. word segmentation (classification).

A bagged decision tree classifier is pre-trained to segment text lines into words. Exam-

ples are constructed from CCs lying along the same text line, using the text line as context.

A text line can be defined [13] as a group of text characters that are visually aligned (i.e.
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characters that share a writing line). Alignment is determined in-terms of some primitive

image unit, such as CCs or pixels. A text line segmentation is the merging of primitives

into their corresponding text lines. An example of a text line segmentation on two natural

text images is shown in Figure 3.3.

Segmenting CCs into text-lines takes advantage of two observed properties of natural

text. First, groups of CCs within the same text line are likely to have little feature variance;

an example is shown in Figure 3.3a. Considering only text on the same line means treating

each group with similar variance as its own, separate image. Second, two CCs on different

text lines are extremely unlikely to be part of the same word. This makes an initial text line

segmentation very unlikely to cause errors by itself.

(a) Simple text line segmentation. (b) A more complex text line segmentation prob-
lem.

Figure 3.3: Examples of two text line segmentations of different natural text masks.
Changes in bounding box color signify a different text line. (a) Displaying how even when
the features of all CCs vary substantially, features within the same text lines vary very little.
(b) A segmentation made harder by the fancy ”hat” on the ”k” character; displaying how the
character variance between words in natural text can make the process more ambiguous.

A text line segmentation approach is adopted from OTCYMIST [11], a participant in

the ICDAR 2011 Robust Reading Competition [7]. The procedure used here is defined in

Algorithm 3.2. First, all CCs in the mask are sorted in decreasing order of the top-most edge

of their bounding boxes. An agglomerative clustering procedure then clusters CCs into line

groups. Each CC initially belongs to its own group. During each pass of clustering, two
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groups are greedily merged if the centroid of one group is within the vertical range of the

other group’s bounding box. Clustering is stopped when the process converges.

Algorithm 3.2: Text line segmentation via agglomerative clustering
input : CCs - Connected components of a binary text-mask.

output: A text line grouping of CCs.

1 Initialize a set of groups G

2 Assign to G each cc ∈ CCs

3 Sort each G in decreasing order by the top-most bounding box edge of each cc ∈ G.

4 while G has not converged do

5 Set G as converged

6 for group g ∈ G do

7 Assign to gy the y-coordinate of the centroid of g

8 for group q ∈ {G− g} do

9 Assign to bb the bounding box of group q

10 if gy ≥ bb.y and gy ≤ bb.y + bb.h then

11 Merge q into g

12 Remove q from G

13 Set G as non converged

14 Break and begin a new pass

15 return G

Feature Extraction

A Euclidean Minimum Spanning Tree (EMST) is created over each text line, as opposed

to the entire image; EMST creation is described in the baseline approach. This allows each

text line to be segmented in its own context. Features compare each pair of CCs connected

by an EMST edge.

Features are geometric properties of the two CCs being compared. In the list below, A

and B represent the two CCs being compared, and Ln represents the text line containing
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both A and B.

Center Distance: Euclidean distance between the centroids of A and B. Normalized

by the average size of their bounding boxes as defined in equation 3.2.

Bounding Box Distance: Minimum bounding box distance dist(A,B), as described

in equation 3.5. Normalized by average bounding box size, as described in equation 3.2.

This feature is similar to the single feature used in the baseline. It is defined as:

BBDist(A,B) =
dist(A,B)

sizeAverage(A,B)
(3.6)

Convex Hull Distance: Minimum distance between the convex hulls of A and B. This

is more precise than the bounding box distance, as the convex hull of a shape is essentially

a fitted, bounding polygon of that shape. A convex set in Euclidean space is a set of points

P such that for each pair of points (Pi, Pj) ∈ P and the straight line segment s connecting

them, each point along s is also ∈ P . A convex hull of a shape X is the intersection of all

convex sets that contain the points ∈ X (i.e. the smallest such convex set).

The minimum distance between two convex hulls X and Y is defined [5] as the mini-

mum distance between the convex hull of their Minkowski difference and the origin. The

Minkowski difference of X and Y is defined as X 	 Y = {x − y : x ∈ X, y ∈ Y },

where x and y are position vectors representing points in the hulls. A visual example of

this property is shown in Figure 3.4. The distance is normalized by the area of A	B.
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Figure 3.4: The Minkowski difference A	 B of two convex sets A and B. The minimum
distance between A and B is found by taking the minimum distance of A	B to the origin
(0, 0).

Nearest Neighbour Distance: A nearest neighbour distance between A and B is de-

scribed by a k-nearest neighbour graph over the text line containing A and B. The feature

is normalized by the total number of CCs within Ln. This distance is not commutative, i.e.

if A is the kth nearest neighbour of B, B is not necessarily the kth nearest neighbour of

A. To account for this, the minimum of the two nearest neighbour distances is used.

1-NN: Whether A is the nearest neighbour of B or B is the nearest neighbour of A.

This is a discrete feature, with possible values of {True, False}.

X-Gap: Compares the horizontal gap dx between A and B with the horizontal gap
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between CCs immediately neighbouring A and B.

Let An and Bn denote the CCs on Ln requiring the fewest edge traversals to reach

when starting from A and B respectively (i.e. the immediate neighbours of A and B). For

each a ∈ An and each b ∈ Bn, record to a set D the values dx(A, a) and dx(B, b). Select

d = max(D), and compute the percentage d is of dx(A,B). This percentage is the feature

value.

Y-Gap: Equivalent to the x-gap, but measures vertical distance using dy(A,B) instead

of horizontal distance.

Between Angle: The angle θ of the slope between the centers of A and B. This feature

purposefully does not take into account the quadrant in which θ lies. Let (Xcx, Xcy) denote

the (x,y) coordinate of the center of a CC X . The feature BetweenAngle(A,B) is then

defined as:

BetweenAngle(A,B) = arctan(|Bcx − Acx

Bcy − Acy

|) (3.7)

Aspect Ratio Difference: Ratio of the area of the convex hull of A to the area of the

convex hull of B. The ratio is taken of the larger CC to the smaller CC.

Area Difference: Difference in the width/height ratios of the bounding boxes con-

taining A and B. It is defined as:

AreaDiff(A,B) = |(Aw/Ah)− (Bw/Bh)| (3.8)

X/Y Overlap: Percentage of A that overlaps B. X-overlap and Y-overlap are the per-

centages of horizontal and vertical overlap respectively, and are used as two separate fea-

tures.

Classification

A bagged decision-tree classifier segments text lines into text words. Figure 3.5 demon-

strates a text word segmentation. The classifier looks at an edge of an EMST, and predicts

whether or not that edge should be cut. A bagged classifier forms an ensemble of base

learners to equally vote on each classification outcome. For each ensemble learner i, a
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training set Ti is created for it by randomly sampling the initial training set T uniformly

and with replacement. This method of sampling is known as bootstrapping [12] (explain-

ing the naming origins of Bootstrap AGGregatING). In the case of this work, 10 such

classifiers are used to form the ensemble. The size of each sample is the size of the initial

training set.

Figure 3.5: Text lines are segmented into text words, via a bagging of C4.5 decision tree
classifiers.

A C4.5 [19] decision tree is used as the base learner. For a set X of feature vectors and

a set Y of class labels, a decision tree forms a predictive, tree structure over a set of training

examples S = {(x → y)|x ∈ X, y ∈ Y }. The tree classifies an example by answering a

series of questions based on pre-defined decision tests, eventually arriving at the decision to

classify the example. Tests are defined by decision nodes, and classifications by leaf nodes.

The tree constructs decision nodes by partitioning S on a feature f , selected based on some

criteria. A decision node is created containing some test on f , with a branch representing

each possible outcome of the test.

C4.5 is a type of decision tree that uses the gain ratio of a feature as the selection

criterion. Gain ratio is a normalized version of information gain; information gain seeks the

partition feature that will result in the least confusion (entropy) within the data. Information

gain has an inherent bias towards splits containing a greater number of possible outcomes,

as these are often excellent choices as far as entropy is concerned. However, favoring splits
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with many outcomes often results in a tree that overfits the data. The gain ratio criterion

reduces this bias, by emphasizing the information gained from a split that is actually useful

for classification [19].

The feature vector X is created by extracting the features of each text line in each

training image (features are described in section 3.3.2). An EMST ML = (V,E) is created

over each text line L. Training examples are then generated by extracting features from

each pair of CCs (A,B) directly connected by an edge e = (A,B) ∈Ml.E. If e should be

cut by the segmenter, the example is classified as split; otherwise the example is classified

as merge.

3.4 Attacking Video CAPTCHA

This section presents the methodology used to perform both manual and automated at-

tacks on video CAPTCHA. Manual attacks are performed in-order to remove the variables

introduced by both Tesseract and the word-segmentation algorithms.

A single sample set S⊂ V of size 13 is used throughout all attacks. Sv denotes the video

currently being processed. S is generated by performing a random walk over YouTube

videos, as described by Algorithm 2.1. S is then manually filtered such that:

• Each video contains human readable text in at least one of its key frames.

• Each video has at least three groundtruth tags associated with it.

• No video runs over five minutes in length, or features inappropriate content.

The following is a template for attacking a challenge video Sv. First, the tag set Tv for

the attack is generated. For a manual attack, each identified key-frame in Sv is observed,

and any text present is manually inserted into Tv. Only words that are considered to be

human readable are manually recorded. In the case of an automated attack, each key frame

is fed to the word segmenter as described in section 3.3. Tesseract then classifies the text

present within each resulting, image sub region. All text returned by Tesseract is added to
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Tv. The answer set Av ⊂ Tv is then created and sent to the CAPTCHA as answer tags. The

attack is successful if the CAPTCHA is passed using Av.

The answer set Av is created by filtering the extracted-tag set Ti to include three answer

tags. A challenge allows for only one attempt at, so tags from Tv must be carefully chosen

for inclusion in Av. This filtering process leverages publicly available information on the

CAPTCHA system [8, 9].

The first step is to pre-process the tags in Tv. In this step, tags that would clearly be

rejected by the CAPTCHA system are excluded from further consideration. Pre-processing

consists of:

1. String sanitization

2. Removal of tags with < 3 characters

3. Removal of stop words

4. Frequency-based pruning

String sanitization intends to reduce noise and ambiguity in the extracted tags. Each

tag in Tv is stripped of excess white-space (which may be present due to errors in OCR),

and then has any ending punctuation removed. Punctuation at the start or in the middle

of a tag is not removed. This is to avoid invalidating tags that have punctuation in their

semantic meanings; semantically meaningful punctuation is less likely to occur at the end

of a tag. This is particularly relevant due to YouTube tags often referencing pop-culture, or

otherwise not being ”proper” words. For example: a tag that references an online handle,

”R.I.T.”, should have all punctuation left intact.

After string sanitization, stop words ∈ Tv can be more accurately removed. Stop words

add no descriptive value, and are automatically rejected by the system [9]. Examples of

stop words are, ”if”, ”then”, ”you”, etc. The listing of stop words used to filter Tv is the

same list used by the CAPTCHA system to filter inputs. This ensured that none of the

three guesses are wasted due to the inclusion of such tags, and that further steps are not
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bogged down by having to consider them. Any reaming, pre-processed tags composed

of two or fewer characters are then excluded. These are likely non-descriptive tags that

escaped removal thus far; very short are unlikely to be descriptive.

Frequency-based pruning eliminates tags with an estimated global frequency that would

likely cause them to be rejected by the CAPTCHA system. The global frequency of a tag is

defined as the probability of randomly selecting that tag from a sample of the population,

consisting of all tags in all YouTube videos. This step mirrors the frequency-based prun-

ing method employed by the CAPTCHA system. The CAPTCHA system uses a pruning

threshold (t = 0.005) [9] to purge tags that occur with an estimated frequency ≥ t (see

section 2.3). To prevent selecting tags that are likely to be pruned in this way, all tags ∈ Tv

that have a global frequency ≥ t are removed.

In order to perform the frequency-based pruning step, our own tag-frequency data must

be obtained. Even if it was assumed that we had access to the same random-walk data

used by the CAPTCHA system, that data is currently about five years old. Given that

cultural trends change frequently, five year old tags for a social site (such as YouTube) are

likely to be less descriptive of the overall data than they once were. A new frequency table

is generated in the same way that the CAPTCHA system generated its own table. The

process consists of updating the system’s code [8] and re-running the tag-scraping routine

over 30,522 videos.

The final step is to select the three remaining tags with the highest local frequencies.

A tag’s local frequency is defined as the probability of selecting it at random from Tv. In

other words, this step examines the number of times a word appears in Sv. Tags present in

multiple frames do not necessarily have higher local frequencies, as the same tag appearing

many times in a single frame is counted equally. The three tags with the highest local

frequency are selected. Use of this simple heuristic is based on the assumption that the

more often a descriptive word appears in a video, the more descriptive of the video that

word is. Clearly this is not always the case, but it is a reasonable assumption to make

without going into the realm natural language processing.
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In the event of a tie (i.e. two tags have the same local frequency), the tag with the

greater global frequency is chosen. Since all tags that would be pruned due to a high global

frequency have been removed, there is far less danger in attacking based purely on tag

frequency. Tags with a higher, global frequency are statistically more likely to describe

to any given video. If the two tags also have the same global frequencies, one is selected

purely at random.
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Chapter 4

Experiments

The experiments used to test the hypotheses are presented here. Through these experiments,

three key questions are evaluated:

1. Are the words present within the CAPTCHA’s challenge videos useful in passing the

challenges?

2. Can Tesseract’s OCR classify those words accurately and reliably?

3. Can we automatically obtain those words reliably and accurately?

A measure of the ability to obtain image sub-regions of natural text words is first evalu-

ated. Evaluating the performance of the natural text segmenters uses a dataset of 221 man-

ually generated, binary character-masks (as described in section 3.2). The original images

used to generate the masks are all from the ICDAR 2003 Robust Text Detection Compe-

tition [14]. An example of a competition image and its corresponding mask is shown in

Figure 4.1. Groundtruth image sub-regions are provided for the words in each image.

Types of imagery present in the ICDAR dataset include both photographs and scans of

book covers, signs, logos, and others. The image masks have varying levels of noise, from

minor to severe. Noise is present in the masks due to (a) the noise present in the original

ICDAR images, and (b) the color quantization and filtering methods used to generated the

masks. Noise helps the results better reflect Tesseract’s performance in natural scenes, in

which noise levels are often unpredictable.
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(a) Original, scaled ICDAR 2003 image. (b) The manually generated, binary mask.

Figure 4.1: (a) An image from the ICDAR 2003 Robust Text Detection Competition; (b)
the manually generated, binary mask of that image.

Data is randomly split into a training set containing 151 images, and a testing set con-

taining 70 images. Parameters for both the baseline and bagged segmenter are learned over

the training set. For the baseline segmenter, only the thresholding parameter α must be

learned. A grid search over the training set is performed to find the optimal α, using the

range 0.000 ≤ α ≤ 2.000. The α with the best resulting evaluation metric is chosen for

use on the testing set. Different values are compared and evaluated based on their resulting

recall, precision, and f-measures over the training set.

For the bagged segmenter, the C4.5 decision-trees are trained over all features extracted

from each image of the training set (as described in section 3.3). As there are more merge

examples than there are split examples, the dataset is proportioned to include 1 split exam-

ple for every 2.5 merge examples. This avoids the issue of C4.5 over-fitting one dimension

of the problem, while under performing on the other. More merge examples than splits are

used for two reasons: 1. over segmentation is preferred to under segmentation, as Tesseract

can still classify two words in the same sub-region; 2. C4.5 is likely to have insufficient

examples to generalize from if a 1:1 class ratio is used in this instance. A ratio of 1:2.5

helps alleviate over fitting the merge class, while still supplying sufficient information.

Tesseract is then run in PSM WORD mode on each original image, using the sub-

regions predicted by the segmenter. The term ”original image” refers to the character
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mask before pre-processing. The pre-processed image is created to aid the segmenter, and

may cause distortions in the characters that would make them poor candidates for OCR.

PSM WORD instructs Tesseract to consider each sub-region to represent exactly one word.

OCR results are compared against the groundtruth text for evaluation.

A series of attacks is then made video CAPTCHA, using a sample set containing 13

videos. A manual and an automated are both conducted for each sample video, using the

method described in section 3.4.

4.1 Metrics

This section details the evaluation metrics used in the experiments.

4.1.1 Segmenter Evaluation

The performance of both the baseline and bagged segmenters are evaluated at the object

level, as opposed to the primitive level. Primitives are individual connected components

of an image; objects are then sets of symmetrical relationships between connected compo-

nents (primitives). In the most basic case where each connected component in the image

fully and only represents one letter, primitives are letters and objects are words.

The goal of a segmentation is to recognize the set of relationships between primitives

that most correctly represents all objects (i.e. to get the words). The result of a segmentation

is evaluated based on how many objects are fully recognized and represented. An object is

considered recognized if and only if the exact set of relationships that make up that object is

detected. There is no in-between score for finding objects; an object is either found exactly,

or it is fully over/under-segmented. This method of evaluation is performed by the LgEval

tool [23], which treats the image as a graph of its primitives.

The final output of the segmenter is a predicted primitive-graph. Output is compared to

a corresponding ground-truth graph for evaluation. For a predicted graph/segmentation G:

the set of ground-truth objects associated with G is denoted Gt, and the set of all objects

found/predicted by G is denoted Gp. Metrics used to evaluate the predicted graphs are then:
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Recall The fraction of ground-truth objects that are found.

recall = |Gt
⋂

Gp|
|Gt|

Precision The fraction of found objects that are in the ground truth.

precision = |Gt
⋂

Gp|
|Gp|

F-Measure Overall effectiveness, defined as the harmonic mean of recall

and precision.

F = 2 (precision)×(recall)
(precision)+(recall)

4.1.2 Attack Evaluation

The concept of relevant tags in a set is used in evaluating attack performance. A relevant

tag in a CAPTCHA challenge is any tag that is in the CAPTCHA system’s groundtruth set

for that challenge. The set of relevant tags pertaining to Vi is denoted V r
i . It should be noted

that for any Vi, the set V r
i contains a fixed number of tags belonging to videos related to

Vi Related tags are extracted and stored before each experiment, to allow for reproducible

results.

The following details how the results of the manual and automated attacks are evalu-

ated. Two key processes are measured in-terms of recall, precision, and f-measure: (a) text

extraction from Vi’s key frames into Ti, and (b) the selection of three guess-tags from Ti

into Ai.

Text extraction metrics evaluate Ti in-terms of its correlation with the groundtruth tags

associated with Vi. The interpretation of text-extraction metrics varies in accordance with
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the type of attack they are associated with. In a manual attack, the only possible word-

recognition error associated with text extraction is due to human error; it is assumed that

this error is very low. In this case then, text extraction measures how indicative words

found in Vi’s key frames are of tags that will be accepted by the video CAPTCHA. In

automated attacks, extraction errors result from errors in segmentation and/or errors in

OCR/Tesseract. In this case, text extraction measures the ability to obtain and recognize

the words in a video.

The metrics used to evaluate the tag extraction process are as follows:

Extraction Recall The fraction of relevant tags that are extracted.

TErecall =
|T r

i |
|V r

i |

Extraction Precision The fraction of extracted tags that are relevant.

TEprecision = |Ti|
|T r

i |

F-Measure The overall effectiveness of tag extraction.

TEFM = 2
TEprecision×TErecall

TEprecision+TErecall

Tag selection metrics evaluate the process of selecting extracted tags to use as answer

tags. Errors in this process may result only from the pre-processing, filtering, and selection

steps. Only precision is used to evaluate the tag selection process, as recall is not applicable.

Attack Set Precision How accurate the tag selection process is.

TSprecision =
|T r

i

⋂
Ar

i |
|Ar

i |
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A global Attack Success measure simply records whether the CAPTCHA challenge was

passed. Attack success is summed for each attack in an experiment set to obtain a measure

for general effectiveness.
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Chapter 5

Results and Discussion

This section provides the results for both types of segmentations and attacks.

5.1 Evaluating Segmenter Designs

Results presented here represent segmentation performance over the ICDAR dataset.

The baseline segmenter is evaluated using the tuning parameter α = 0.316, which was

found to be optimal in a grid search over 20 even increments in the range 0.0 ≤ α ≤ 2.0.

Performance over each of the candidate α values is shown in Figure 5.1, in-terms of recall,

precision, and F-measure. A different view of the grid-search results is shown in Figure 5.2,

which displays the frequency at which each α was optimal for an image.
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Figure 5.1: Results of the grid search performed to an optimal value for α. For each
candidate α value, the resulting recall, precision, and F-measure resulting from a baseline
segmentation over the training set are shown. α = 0.316 is shown to be optimal, with
F = 46.44%.
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Figure 5.2: Displaying the results of the grid search to find α, in-terms of the number of
times each α value was best at segmenting an image. Values are compared by their resulting
F-measures. If two or more values yield the same F-measure, they are each recorded as
optimal.

Evaluation metrics for the both the baseline and bagged-classifier segmenters are shown

in Figure 5.3. Separate evaluations are given over both the training and testing datasets.

Baseline measures are obtained using α = 0.316. Frequency distributions of F-meausres

obtained by each segmenter over the testing set are shown in Figure 5.4 and Figure 5.5.
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Figure 5.3: Comparing recall, precision and f-measure achieved by the baseline and
bagged-classifier segmenters over the (a) training data and (b) the testing data.

Given the unpredictable nature of natural text, the low numbers for the baseline are
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not surprising. However, the causes of both errors and successes later prove critical in

improving the approach. One cause of errors is the Euclidean Minimum Spanning Tree

construction. Natural text CCs are sometimes arranged such that an EMST over them will

never connect all CCs belonging to one or more, particular words. This means that the

usage of a raw EMST inherently causes errors in the segmentation, regardless of the edges

that are cut. EMST errors were most frequently observed when two diagonal text lines were

close to each other, causing the EMST to connect upwards/downwards instead of left/right.

A vertical connection generally means connecting different words.

The importance of pre-processing the masks is made clear during preliminary experi-

ments with the baseline. An initial pre-processing step consisted of only a binary closing

on the mask, using a fixed size structuring element. Much noise was leftover, which had a

very negative impact on segmentation results on the training set. This initial pre-processing

yielded an F-measure of 21%, less than half of the 46% shown in Figure 5.3. In addition

to greatly improving accuracy, further pre-processing also reduced run time significantly.

The baseline achieved poor performance over the training set when compared with the

testing set. Training set F-measure is 46%, while testing set F-measure is 61%. This

15% difference suggests two things: 1. there is a great deal more variance in the training

set when compared with the testing set; 2. only comparing bounding box distance is not

enough to describe this variance. There are also 1/3 more images in the training set, making

the fitting of a single, static parameter over the data more difficult. Baseline predictions on

the testing set are still 10% greater than chance. This implies the baseline feature is quite

descriptive, and will be useful when combined with additional information. The feature is

carried over to the C4.5 learners in the bagged classifier.

Looking at Figure 5.4, it is observed that baseline segmentation is generally all or noth-

ing. Over the training data, 46% ( 70) of mask segmentations result in an f-measure in the

range [90,100]; 20% of such resulting f-measures fall in the range [0,10]. A likely expla-

nation for this is the static α parameter not providing enough information. In evaluation, a

segment is either completely found or completely missed, i.e. there is no middle ground.
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If a word has one character with different properties than the rest, then it may be missed

due to the inability of a single feature to describe enough variance. The unpredictability of

natural text makes this case likely to appear.

A segmentation approach using bagged C4.5 trees over segmented lines is shown to

work well. When compared to the baseline, Figure 5.3 shows F-measure increases of 35%

over the training set and 15% over the testing set. The large increase in training F-measure

points to a model being created that better represents the training data. Pruning of the C4.5

trees accounts for less than perfect accuracy, and is needed to avoid overfitting (which is

surely not an issue for the baseline).

Many reasons exist for these improved results. An immediate cause for improvement

is the changing in the way EMSTs are used in segmentation, mitigating the inherent errors

caused by EMSTs during baseline experiments. Creating a separate EMST over each text

line addresses the observed cause of the error. Text line segmentation also greatly helps in

eliminating erroneous choices. The use of a majority-vote classifier is also helpful; bagging

of C4.5 trees showed a 4% improvement over the use of C4.5 alone.

When selecting features for the C4.5 trees, the goal is to capture properties which are

both simple and highly descriptive of the data. This principle leads to the various distance

and gap measures being chosen. X-gap is an example of a feature that is very simple to

understand and implement, while also providing great descriptive power (the gap features

added nearly 10% to the ensemble’s classification rate). The different distance measures

(bounding box, convex hull, centroid, and k-nearest neighbor) are similar to each other

and easy to implement, while describing different properties of related CCs. Each distance

measure may be more or less descriptive than another, often depending on the context of a

specific example. For instance: the k-nearest neighbor distance may offer a different look

at CCs than the bounding box distance, particularly in the various contexts presented by

natural text images. Since the k-nearest neighbor distance is highly sensitive to noise in

the image, the other distance measures are needed to cover more of the data. Features con-

cerning overlap and aspect ratio are meant to capture special cases that are encountered in
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text. Aspect ratio captures characters such as the dash symbol. Overlap captures instances

of broken up characters, as well as instances of small text acting as subtext to a larger CC

(e.g. a slogan contained below a logo).

Testing set accuracy did not improve quite as much as expected, but improvement is

quite noticeable. An inclusion of more visual (non-geometric) features is likely to cause

significant improvement. An example of such a feature is the Stroke-Width Transform,

discussed in section 2.4. There is only so much information that can be described by

geometric measures alone. A 15% improvement may also mean that one or more features

are confusing C4.5, causing ambiguity in the data. Removing features one-by-one did not

yield improved results however. Additionally, the set of training examples was an issue.

Due to the nature of how features are generated, far more merge than split examples are

present in the training set. To help mitigate this, 1 split is taken for every 2.5 merges;

experiments using different ratios produced comparably worse results. Availability of more

training data in-general would clearly help as well; additional training data is abundant, and

just needs to be pre-processed to be used by a classifier.

Overall, the goal of noticeably improving on the baseline is accomplished.
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(a) F-measure values achieved by the baseline segmenter over the training set, using α = 0.316.

(b) F-measure values achieved by the baseline segmenter over the test set, using α = 0.316.

Figure 5.4: Histograms displaying the f-measures resulting from a baseline segmentation
on (a) the training set, and (b) the test set. Relative frequencies are shown on the y-axis;
normalized frequencies are labelled above each bar.
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(a) F-measure values achieved by the bagged segmenter over the training set.

(b) F-measure values achieved by the bagged segmenter over the test set.

Figure 5.5: Histograms displaying the f-measures resulting from running the bagged seg-
menter on (a) the training set, and (b) the test set. Relative frequencies are shown on the
y-axis; normalized frequencies are labelled above each bar.
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5.2 Results of Attacking Video CAPTCHA

Results for manually attacking the videos in the sample set are displayed in Table 5.1.

Overall, 9 of the 13 challenge videos are broken. Of the 4 videos not broken, two had only

one word in their key frames. This suggests a significant level of correlation between text

present in video key frames and the groundtruth tags that will pass video CAPTCHA.

TErecall defines the percentage of the CAPTCHA’s groundtruth tags that can be found

in the video’s key frames. It is expected to be a low value, as the groundtruth for a video

also contains tags of related videos that are unlikely to be present within the key frames of

the original. This is shown to be true by TErecall having a mean of 17%. Attacks with

IDs 1 and 3 did however retrieve the majority of the CAPTCHA’s groundtruth tags from

the key frames. TEprecision indicates how indicative words present in the key frames are of

tags that will pass the CAPTCHA. A mean value of 26% indicates that over 1/4 of such

text is indeed indicative. Any means of extracting that text would therefore pose a threat to

video CAPTCHA.

In theory, a challenge can be passed if even one groundtruth tag is extracted (i.e.

TEprecision > 0). One or more groundtruth tags are shown as extracted in 11 of the 13

attacks. In attacks {5, 13}, values of TSprecision and TEprecision show attack failures caused

by the tag selection process. Groundtruth tags exist in the extracted tag set, but fail to be

extracted during tag selection.
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Table 5.1: Results of performing manual attacks on video CAPTCHA, using the 13 videos in the sample set.
An ID of µ signifies the mean; an ID of σ indicates the standard deviation.

ID TErecall TEprecision TEfmeasure TSprecision Success
1 56.831 22.27 32.0 33.333 yes
2 2.963 100.0 5.755 100.0 yes
3 65.891 27.157 38.462 66.667 yes
4 25.641 22.727 24.096 100.0 yes
5 2.899 18.182 5.001 0.0
6 42.945 26.923 33.097 66.667 yes
7 2.797 19.048 4.878 33.333 yes
8 6.944 27.027 11.049 33.333 yes
9 11.486 11.888 11.684 33.333 yes

10 1.55 50.0 3.007 66.667 yes
11 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0
13 2.367 8.333 3.687 0.0
µ 17.101 25.658 13.286 41.026
σ 22.334 24.886 13.150 34.970

Table 5.2: Results of performing automated attacks on video CAPTCHA, using the videos in the sample set.
An ID of µ signifies the mean; an ID of σ indicates the standard deviation.

ID TErecall TEprecision TEfmeasure TSprecision Success
1 16.94 3.144 5.304 0.0
2 2.963 100.0 5.755 100.0 yes
3 0.0 0.0 0.0 0.0
4 0.641 0.719 0.678 0.0
5 0.0 0.0 0.0 0.0
6 3.681 6.897 4.8 33.333 yes
7 1.399 18.182 2.598 0.0
8 0.0 0.0 0.0 0.0
9 1.351 3.39 1.932 0.0

10 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0
µ 2.075 10.179 1.621 10.256
σ 4.451 26.389 2.168 27.377

Results for automated attacks on videos in the sample set are shown in Table 5.2. Al-

though only 2 of the 13 videos are passed (compared to 9 of 13 for the manual attacks),

the results do indicate threat posed to video CAPTCHA. In 6 of the automated attacks, at
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least one groundtruth tag is extracted from a video’s key-frames and correctly classified by

Tesseract. Of these 6 attacks however, only 2 (attacks {2, 6}) succeed in selecting the ex-

tracted tags that are relevant. Tag selection often selects tags that are severely mis-classified

by Tesseract. These tags resemble random letters and symbols, and consequently escape

filtering during answer set pre-processing steps (sanitation, stop word removal, frequency

pruning, and length checking). If at least one extracted groundtruth tag is selected as an

answer tag whenever possible in an attack, the success rate becomes 6/13. This suggests a

bottleneck caused by the tag selection process.

TErecall and TEprecision for automated attacks show that problems exist in other areas

of the attack process as well. Only 2% of groundtruth tags are extracted on average,

compared to 17% for manual attacks. Of the extracted tags, an average of only 10%

are groundtruth tags (compared to 25% in manual attacks). Main causes of this are the

masking, segmentation, and OCR processes.

Figure 5.6: An example of the character masking process causing a failure in an automated
attack. A noisy character-mask of video key frame is shown. The degree of noise in the
mask causes errors in segmentation and OCR.
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Figure 5.7: A key-frame character mask that includes non-character objects. These objects
are OCR’d as garbage data.

Many of the masks were of extremely poor quality, as shown in Figure 5.6. Masks of

key frames also frequently contain objects that do not represent text, as shown in Figure 5.7.

Such masks confuse the segmenter and cause Tesseract to output garbage text; this accounts

for a great deal of irrelevant, extracted tags.

Figure 5.8: The bagged segmenter accurately segmenting characters of a video key-frame
into words. Tesseract fails to classify these words, and outputs garbage data.
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Figure 5.9: The bagged segmenter fails to segment a character mask of a video key-frame.
Errors from text-line segmentation can be seen.

Although the segmenter performed well on many of the key-frame masks (as shown in

Figure 5.8), it did not perform well on several masks. Both noise in masks and the often

low quality of imagery in videos contribute to the errors. The segmenter is seen failing in

Figure 5.9, beginning at the text-line level.

Tesseract is a significant source of errors. Garbage text is often given for good segmen-

tations (such as the segmentation shown in Figure 5.8). With better image pre-processing

and mask generation techniques, both Tesseract and the segmentation process are expected

to perform significantly better.
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Chapter 6

Conclusions

Words present in videos are indicative of tags that Video CAPTCHA will accept. A series

of thirteen manual attacks against video CAPTCHA demonstrate that text present within

challenge video key-frames are highly indicative of tags that will pass a video CAPTCHA.

In 10 of the 13 attacks, at least one word in the video could be used to pass the challenge.

Tesseract is not able to accurately classify words within the key-frames of videos used

by Video CAPTCHA, when given the predicted bounding-boxes of the words. Tesseract

is proven highly unreliable at classifying noisy and/or natural text in video key-frames.

However, at least one extracted groundtruth-tag is correctly OCR’d by Tesseract in 9 of the

13 challenge videos. While Tesseract should not be used to reliably classify natural text, it

does provide the ability to launch successful OCR-based attacks on video CAPTCHA.

Development and evaluation of a natural text segmenter demonstrates that natural text

can be extracted from a character-mask with about 76% reliability. A series of automated

attacks show that text within key-frame masks can be similarly segmented, but with less

reliability. Even though the automated attacks provide a low break rate, they demonstrate

that tags that will pass video CAPTCHA can be extracted and OCR’d the vast majority

of the time. The bottleneck in break rate is currently the tag selection process, which has

trouble handling garbage and/or noisy text-data from OCR.

We conclude that OCR-based attacks do pose a moderate level of threat to Video

CAPTCHA, and that such attacks should be considered during future development of Video

CAPTCHAs. Future work should focus on improvements to character-mask generation

and OCR. Improving mask generation will lead to less noise, and consequently improved
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word segmentation and OCR. Text localization and applicable pre-processing techniques

can likely create more effective masks than the manual approach taken in this work. Using

text localization and canny edge detections, OTCYMIST [11] obtains an f-measure of 70%

on the ICDAR 2011 dataset with an MST approach similar to the baseline. An improved

tag selection approach is also needed to obtain better break rates. A method that ranks tags

belonging to a dictionary as higher priority is recommended. Spellchecking tags should

also be considered.
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Appendix A

Sample Set of CAPTCHA Challenge Videos

The table below describes the 13 videos used in the manual and automated attack exper-

iments. Attack ID (AID) corresponds to the ID of the attack in Table 5.1 and Table 5.2

that is performed on the video. A video with a YouTube ID (YID) of ytid can be directly

accessed via the following web URL: http://www.youtube.com/watch?v=ytid

YID AID Video Title
5tntAwMpV8Q 4 WCMH NBC 4 News Highlights Federal Funding Cuts to Health Centers
csfa34CbBLg 1 Why are you excited about dot jobs?
gGzpGDbrfvk 3 Owl City ft. Carly Rae Jepsen - Good Time Lyrics
he5mZX1sRXk 11 Interactive game book
lG9PkUtj4SI 5 Coffe Table w/ sword maintenance compartments
obR9U4yDaAk 10 DONESBLOG
owxzRRhnGaU 8 Team WWE vs The Nexus Summerslam 2010 highlights - HD
Q7R6mq6TKig 6 Attract money with positive affirmations.. (law of attraction)
Tuwzq4EpQ44 12 How to draw a haunted house, step by step
vez2-ax6IRc 9 Near Charleston, SC Dealership - Finance 2013 Nissan Rogue
wmakOt65At4 2 Country - Empire Of The Sun
YtTOQSRMRcM 7 Truck Driving challenge part 1: Rig Stig & the power slide - Top Gear - BBC
yX1ltt6GAD8 13 Cut the Rope - Spooky Box - Level 12-14 - 3 stars walkthrough
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Appendix B

Example Tag Extraction Results

The list below shows 5 challenge videos in the sample set, along with their correspond-

ing manual and automated tag extraction results. Automatically extracted tags indicate

segmentation and OCR performance. Various degrees of OCR performance are shown.

Some videos result in clean OCR’d text, while others result in ”garbage data” composed of

seemingly random characters.

YouTube ID: wmakOt65At4

Attack ID: 2

Manually Extracted Tags: Empire of the Sun

Automatically Extracted Tags: EMPIRE OF THE SUN

YouTube ID: yX1ltt6GAD8

Attack ID: 13

Manually Extracted Tags: menu level 12 - 14 menu menu menu menu menu menu

menu menu menu menu menu menu menu menu excellent! replay next menu excellent!

replay next menu excellent! replay next menu excellent! replay next menu star bonus

2616 383 time 0:16 3264 your final score 3720 improved result

Automatically Extracted Tags: 2/] Excel:-{I

YouTube ID: he5mZX1sRXk
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Attack ID: 11

Manually Extracted Tags: powered by total immersion

Automatically Extracted Tags: .353

YouTube ID: lG9PkUtj4SI

Attack ID: 5

Manually Extracted Tags: top: open side ** 3 1/2 side:- closed h20 collection m:3 1/2

w:2 1/2 T-T 2 table top design open

Automatically Extracted Tags: rt; -3% . ’ X); 3-ez Tog. Oh” -3% . ’ X); -3% . ’ X); -3%

. ’ X); -3% . // 3: ’ X); -3% // $ d :- rJ Cfo /’ X); -3% . // ’ X); -3% . // /’ X); .,.,-y 3-mf-

Lia!”-A: nal A nal nal In-”3’ nal nal nal LI LI H2] .1-is LI 09 .1-is LI {0 5; .1-is VI ’}’-. .

:, VI ’}’-. . :, ..n”””’ .v-n –=rr-’ –=rr-’ of-/’ ”...II,1$

YouTube ID: owxzRRhnGaU

Attack ID: 8

Manually Extracted Tags: N N N N N N N W summer slam the nexus u me never give

up r-truth live chris jericho john morrison bret ”the hitman” hart enation lover

WWEhighlightss hd ww slim jim slam.c wwe slam.com

Automatically Extracted Tags: WWEhIgh—Ightss g 5.WlMMFD =kr* (94 $? ”1’EK5)

:L** Eljfgii W W WWEhighIightss . - . . . ,f //: . ..-””79 Eln): Vi//’z:,’/Y2: ; I g. ; -. I g. I

g. uS1,1V1N.tl*, WWEhughIughlss C C &lMMFD-= J55; (4: If


