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INTRODUCTION
RSLib is a data provenance tool for pattern recogni-
tion research.
• "Run once, evaluate many times”

Purpose: Provide an easy means to
• Record intermediate interpretations
• Produce trace graph of the system
• Analyze and reuse saved interpretations

EXAMPLE EXPRESSION

Segmentation:
Grouping Strokes into Symbols

Parsing
Identifying Symbol Layout

CASE STUDY
Comparison Experiments: Merging overlapping strokes in the segmentation stage
• Segmentation stage has a preprocessing step where all touching strokes are merged.
• Analyze results with merge, analyze results without merge, compare.
• Produce quantitative evidence of benefit or merge step.

Comparison: Time sequential vs. nearest neighbor pairing for segmentation
• Segmentation algorithm steps through strokes in time order, decides to merge or split
• Pairing by nearest neighbor may provide better results
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RESULTS

Comparison Experiments

Merge vs. No Merge Time Order vs. Nearest Neighbor Pairing

TEST SYSTEM
Math recognition system has three stages:
• Segmentation - Group strokes to form symbols
• Classification - Decide symbol labels
• Parsing - Determine symbol layout

RSLIB PROGRAM ELEMENTS
• Strategy: Object that manages execution and

stores provenance information.
• Interpretation: Dictionary containing the inter-

pretation data at each decision point.
• Decision Function: An individual decision

point enqueued and run as part of a strategy.
Operates using the current interpretation set
and produces a new set.

• Reporting Function: Performs reporting oper-
ations after running a strategy.

ADDITIONS
Several contributions were made to enhance the
functionality of the library:
• Saving and loading interpretation sets as-is
• Dynamically adding sub-decision points

within a decision function
• Producing the set of unique interpretations
• Computing the intersection and difference of

two interpretation sets

EXAMPLE CODE

Decision Point Wrapper Function

def segmentFn(eq, interp, strategy):M# Run the
segmenter.

eq.lei_CROHME2013_segment()

# Save the result in the interpretation.
interp.segments = eq.segments

# Return the updated interpretation.
return interp

Creating and Running a Strategy

# Create the strategy and add decisison points.
strat = rsl.Strategy(iType)

strat.append((segmentFn, "segmentation", [eq]))
strat.append((classFn, "classification",

[O_eq))
strat.append((parseFn, "parsing", []))

# Run the strategy.
strategy.run()

Producing a Report

# Get report function (a closure).
reportFn = parseReport(filename, strategy)

# Report the ’parsing’ decision point.
strategy.reportInterps(‘‘parsing’’, reportFn)


