Case Study: Recognition Strategy Library

Kevin Talmadge, Professor Richard Zanibbi
Computer Science Department, Rochester Institute of Technology

Introduction
RSlib is a data provenance tool for pattern recognition research.
- "Run once, evaluate many times"
Purpose: Provide an easy means to
- Record intermediate interpretations
- Produce trace graph of the system
- Analyze and reuse saved interpretations

RSlib Program Elements
- Strategy: Object that manages execution and stores provenance information.
- Interpretation: Dictionary containing the interpretation data at each decision point.
- Decision Function: An individual decision point enqueued and run as part of a strategy. Operates using the current interpretation set and produces a new set.
- Reporting Function: Performs reporting operations after running a strategy.

Test System
Math recognition system has three stages:
- Segmentation - Group strokes to form symbols
- Classification - Decide symbol labels
- Parsing - Determine symbol layout

Example Expression
Segmentation: Grouping Strokes into Symbols
Parsing: Identifying Symbol Layout

Example Code
Decision Point Wrapper Function
```python
def segmentFn(eq, interp, strategy):
    # Run the segmenter.
    eq.lei_CROHME2013_segment()
    # Save the result in the interpretation.
    interp.segments = eq.segments
    # Return the updated interpretation.
    return interp
```
Creating and Running a Strategy
```python
# Create the strategy and add decision points.
strat = rsl.Strategy(iType)
strat.append((segmentFn, "segmentation", [eq]))
strat.append((classFn, "classification", [O_eq]))
strat.append((parseFn, "parsing", []))
# Run the strategy.
strategy.run()
```
Producing a Report
```python
# Get report function (a closure).
reportFn = parseReport(filename, strategy)
# Report the 'parsing' decision point.
strategy.reportInterps('parsing', reportFn)
```

Results
Comparison Experiments
- Merge vs. No Merge
- Time Order vs. Nearest Neighbor Pairing

Additions
Several contributions were made to enhance the functionality of the library:
- Saving and loading interpretation sets as-is
- Dynamically adding sub-decision points within a decision function
- Producing the set of unique interpretations
- Computing the intersection and difference of two interpretation sets

Comparison Experiments: Merging overlapping strokes in the segmentation stage
- Segmentation stage has a preprocessing step where all touching strokes are merged.
- Analyze results with merge, analyze results without merge, compare.
- Produce quantitative evidence of benefit or merge step.
- Comparison: Time sequential vs. nearest neighbor pairing for segmentation
 - Segmentation algorithm steps through strokes in time order, decides to merge or split
 - Pairing by nearest neighbor may provide better results

References

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No. IIS-1016815. This material is also based upon work supported by the RIT Center for Student Innovation’s SURF program.