
CASE STUDY: RECOGNITION STRATEGY LIBRARY
KEVIN TALMADGE, PROFESSOR RICHARD ZANIBBI

COMPUTER SCIENCE DEPARTMENT, ROCHESTER INSTITUTE OF TECHNOLOGY

INTRODUCTION
RSLib is a data provenance tool for pattern recogni-
tion research.
• "Run once, evaluate many times”

Purpose: Provide an easy means to
• Record intermediate interpretations
• Produce trace graph of the system
• Analyze and reuse saved interpretations

EXAMPLE EXPRESSION

Segmentation:
Grouping Strokes into Symbols

Parsing
Identifying Symbol Layout

CASE STUDY
Comparison Experiments: Merging overlapping strokes in the segmentation stage
• Segmentation stage has a preprocessing step where all touching strokes are merged.
• Analyze results with merge, analyze results without merge, compare.
• Produce quantitative evidence of benefit or merge step.

Comparison: Time sequential vs. nearest neighbor pairing for segmentation
• Segmentation algorithm steps through strokes in time order, decides to merge or split
• Pairing by nearest neighbor may provide better results

REFERENCES
[1] R. Zanibbi, et al., Decision-based Specification
and Comparison of Table Recognition Algorithms.,
in: Machine Learning in Document Analysis and
Recognition, 2008
[2] H. Mouchre, et. al ICDAR 2013 CROHME:
Third International Competition on Recognition of
Online Handwritten Mathematical Expressions., in:
ICDAR, IEEE, 2013

ACKNOWLEDGEMENTS
This material is based upon work supported by the
National Science Foundation under Grant No. IIS-
1016815. This material is alse based upon work sup-
ported by the RIT Center for Student Innovation’s SURF
program.

RESULTS

Comparison Experiments

Merge vs. No Merge Time Order vs. Nearest Neighbor Pairing

TEST SYSTEM
Math recognition system has three stages:
• Segmentation - Group strokes to form symbols
• Classification - Decide symbol labels
• Parsing - Determine symbol layout

RSLIB PROGRAM ELEMENTS
• Strategy: Object that manages execution and

stores provenance information.
• Interpretation: Dictionary containing the inter-

pretation data at each decision point.
• Decision Function: An individual decision

point enqueued and run as part of a strategy.
Operates using the current interpretation set
and produces a new set.

• Reporting Function: Performs reporting oper-
ations after running a strategy.

ADDITIONS
Several contributions were made to enhance the
functionality of the library:
• Saving and loading interpretation sets as-is
• Dynamically adding sub-decision points

within a decision function
• Producing the set of unique interpretations
• Computing the intersection and difference of

two interpretation sets

EXAMPLE CODE

Decision Point Wrapper Function

def segmentFn(eq, interp, strategy):M# Run the
segmenter.

eq.lei_CROHME2013_segment()

Save the result in the interpretation.
interp.segments = eq.segments

Return the updated interpretation.
return interp

Creating and Running a Strategy

Create the strategy and add decisison points.
strat = rsl.Strategy(iType)

strat.append((segmentFn, "segmentation", [eq]))
strat.append((classFn, "classification",

[O_eq))
strat.append((parseFn, "parsing", []))

Run the strategy.
strategy.run()

Producing a Report

Get report function (a closure).
reportFn = parseReport(filename, strategy)

Report the ’parsing’ decision point.
strategy.reportInterps(‘‘parsing’’, reportFn)

