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Abstract

Intelligent Combination of Structural Analysis Algorithms:

Application to Mathematical Expression Recognition

Amit Pillay, M.S.

Rochester Institute of Technology, 2014

Supervisor: Dr. Richard Zanibbi

Structural analysis is an important step in many document based recognition problem.

Structural analysis is performed to associate elements in a document and assign meaning

to their association. Handwritten mathematical expression recognition is one such problem

which has been studied and researched for long. Many techniques have been researched to

build a system that produce high performance mathematical expression recognition. We

have presented a novel method to combine multiple structural recognition algorithms in

which the combined result shows better performance than each individual recognition algo-

rithms. In our experiment we have applied our method to combine multiple mathematical

expression recognition parsers called DRACULAE. We have used Graph Transformation

Network (GTN) which is a network of function based systems in which each system takes

graphs as input, apply function and produces a graph as output. GTN is used to combine

multiple DRACULAE parsers and its parameter are tuned using gradient based learning.
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It has been shown that such a combination method can be used to accentuate the

strength of individual algorithms in combination to produce better combination result which

higher recognition performance. In our experiment we were able to obtain a highest recogni-

tion rate of 74% as compared to best recognition result of 70% from individual DRACULAE

parsers. Our experiment also resulted into a maximum of 20% reduction of parent recogni-

tion errors and maximum 37% reduction in relation recognition errors between symbols in

expressions.
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Chapter 1

Introduction

Automated mathematical expression recognition is of great practical importance. If

technology matures printed document that needs to be converted to electronic form can be

done automatically. Recognition of handwritten expressions can be useful with data tablet

which can be an alternative and convenient way of writing rather than writing a LATEX

expression [28].

(a) (b)

Figure 1.1: Symbol layout in a textline vs. within a mathematical expression (from Tapia
and Rojas [25]). At right the dominant baseline of the handwritten expression is shown in
red.

Automatic recognition of handwritten or typeset mathematical expression has been

an important area of research for over many years [4][8]. Generally, mathematics recognition
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involves two major steps: recognition of individual symbols present in the expression and

interpreting the layout of the recognized symbols also known as structural analysis [4].

Structural analysis step may not be so crucial for recognition problems that involve only

standard english character 1.1(a). However for problems like recognition of mathematical

expressions, the actual position and location of symbols is important and their semantics

depends on their arrangement as shown in Figure 1.1(b).

Although there has been number of research that focus on applying different meth-

ods of structural analysis [15] [19] [13] [10], every system has improvement limitation in

recognition. It has been understood that for most tasks we are faced with a ceiling to the

improvement that can be reached with any available machine learning system [27]. [27]

explained that the potential loophole of any recognition algorithm is that each of them

introduce their own inductive bias to the recognition task and produce different errors. An

earlier study on system combination was done by Ali and Pazzani [1] in 1996 who studied

the effect of using combining different evidence descriptions of a class on the classification

error rate. The result show significant reduction in error rate for half of the different data

set used for the experiment and for most of the other set error remains the same.

Hence combination techniques can be adopted to overcome the individual system

limitations to further improve the recognition rate. Over the decade, there have been

number of research on combination techniques in Natural Language Processing [17] [27] [22]

[12], in speech recognition [11], in lexical disambiguation [6] and named entity recognition [5].

We proposed a novel combination technique to combine structural recognition algorithms

for parsing two dimensional notations or languages like mathematical expression.
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Thesis Statement: Recognition performance of structural analysis parsers like

mathematical recognition parsers can be improved by adopting intelligent parser combina-

tion method.

Our combination technique uses Graph Transformer Network(GTN) which was pre-

viously used in handwritten character recognition described by LeCun et. al [3]. [3] defined

a generalized way in which a series of modules representing key tasks like feature extraction

or segmentation in recognition process can be trained. Each module in a Graph Trans-

former Network (GTN) takes as input directed graphs and outputs a directed graph, where

the graphs have numerical attributes used for learning, and the production of the output is

learnt using a gradient descent algorithm. The power of the GTN is that it can combine

heterogeneous and dynamic modules and train them using a global optimization criterion,

rather than rely upon localized optimization [3].

In GTNs, the produced graphs contain nodes and/or edges that carry numerical

attributes, which are used for learning parameters in the GTN (for example, penalties

for a relationship defined by edges). During the learning process, labels are used to assign

penalties against edges based upon a loss function. These penalties are then backpropagated

to adjust weightings in the previous layer of GTN modules. We can see that for labeled

graphs that there will be some overlap in their structure to other unlabeled graphs. For

example, if our graph is describing the layout of symbols in a mathematical expression such

as X2 +Y (see Figure 1.2), then we can see that the graph will be similar to that for X+Y

or X2+Y . Using this similarity, we can therefore partially label these additional graphs and

calculate appropriate penalties for the edges. This thesis presents such an algorithm which
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(a) Tree 1 (b) Tree 2

Figure 1.2: Two Baseline Structure Trees representing Interpretations of X2 + Y

uses information regarding the similarity of graphs, and an appropriate (and differentiable)

penalty function to assign penalties for the labeled and unlabeled edges.
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Chapter 2

Background

Mathematical Expressions MEs form an essential part of scientific and technical

documents. Mathematical Expressions can be typeset or handwritten which uses two di-

mensional arrangements of symbols to transmit information. Recognizing both forms of

mathematical expressions are challenging.

Generally speaking understanding and recognizing mathematical expression, whether

typeset or handwritten, involves three activities: Expression localization, symbol recogni-

tion and symbol-arrangement analysis. ME localization involves finding and extracting

mathematical expression from the document. Symbol recognition converts the extracted

expression image into a set of symbols and symbol arrangement analyzes the spatial ar-

rangement of set of symbols to recover the information content of the given mathematical

notations.

Now based on the recognition process, symbol recognition activity can further sub-

divided as 1) preprocessing - noise reduction, deskewing, slant correction etc, 2) segmenta-

tion to isolate symbols 3) and finally, recognition. Similarly depending upon the symbol-

arrangement algorithm, symbol arrangement analysis can be further subdivided into a)

identification of spatial relationships among symbols b) identification of logical relationships

among symbols 3) construction of meaning. These processes can be executed in series or in
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parallel with latter processes providing contextual feedback for the earlier processes. The

order of these recognition activities can vary somewhat, for example, partial identification

of spatial and logical relationships can be performed prior to symbol recognition.

2.1 Preprocessing

Preprocessing is required to eliminate irregularities and noise from the image, es-

pecially in handwritten character recognition. Certain preprocessing method requirements

may depend upon the techniques used for recognition. [16] uses chain code method for hand-

written image representation. Preprocessing involves slant angle correction in which global

slant angle from different vertical lines is estimated and tangent of the estimated global

slant angle is used to correct for slant. Smoothing of image involves elimination of small

blobs (noise) on the contour. A sliding 3-component one dimensional window is applied

overall components during which components are removed or added based on the orien-

tation of components. Average stroke width is estimated by dividing chain code contours

horizontally and by tracing left to right various distances between outer and inner contour.

[18] performs size normalization to reduce variation in character size. To avoid significant

deformation due to directly scaling of all images to identical size, a holistic approach is used

for scaling in which if width/height ratio is less than 0.8 then scale is identical horizontally

and vertically otherwise the scale factor is set to 0.8 to prevent large variation in image

width.

6



2.2 Character segmentation

Character segmentation, next step in ME recognition, has long been a critical area

of OCR process. Depending upon the requirement, character segmentation techniques is

divided into four major headings [21]. Classical approach of segmentation also called dis-

section technique consists of partitioning the input image into sub-images based on their

inherent features, which are then classified. Another approach to segmentation is a group of

techniques that avoids dissection and segments to image either explicitly by classification of

pre-specified windows, or implicitly by classification of subsets of spatial features collected

from the image as a whole. Another approach is a hybrid approach employing dissection

but using classification to select from admissible segmentation possibility. Finally holis-

tic approach avoids segmentation process itself and performs recognition entire character

strings.

Various techniques have been used for segmentation that involves dissection. White

spaces between the characters are used to detect segmentation points. Pitch which is the

number of characters per unit of horizontal distance provides a basis for estimating segmen-

tation points. The segmentation points obtained for a given line should be approximately

equally spaced at the distance that corresponds to pitch [21].

Inter-character boundaries can be obtained if most segmentation takes place by find-

ing columns of white. Now all segmentation points that do not lie near these boundaries

can be rejected as caused due to broken characters. Similarly we can estimate missed points

due to merged characters. Hoffman and McCullough gave a framework for segmentation

that involves three steps i.e. 1) Detection of the start of the character, 2) A decision to

begin testing for the end of a character called sectioning, 3) Detection of end-of-character.
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Sectioning is done by weighted analysis of horizontal black runs completed versus run still

incomplete. Once sectioning determines the regions of segmentation, rules were invoked to

segment based on either an increase in bit density or the use of special features designed to

detect end-of-character.

In [2], segmentation in cursive handwritten characters is performed in the binary

word image by using the contour of the writing. Determination of segmentation regions

is done in three steps. In first step a straight line is drawn in the slant angle direction

from each local maximum until the top of the word image. While going upward in the

slant direction, if any contour pixel is hit, this contour is followed until the slope of the

contour changes to the opposite direction. An abrupt change in the slope of the contour

indicates an end point. A line is drawn from the maximum to the end point and path

continues to go upward in slant direction until the top of the word image. In step 2, a path

in the slant direction from each maximum to the lower baseline, is drawn. Step 3 follows

the same process as in step 1 in order to determine the path from lower baseline to the

bottom of the word image. Combining all the three steps gives the segmentation regions.

In [16] segmentation involves detecting ligatures as segmentation points in cursive scripts.

Alternatively, concavity features in the upper contour and convexities in the lower contour

are used in conjunction with ligatures to reduce the number of potentials segmentation

points.

Another dissection technique that applies to non-cursive characters is bounding box

technique [21]. In this analysis, the adjacency relationships between characters are tested to

perform merging or their size or aspect ratios are calculated to trigger splitting mechanisms.

Another involves splitting of connected components. Connected components are merged or

8



split according to rules based on height and width of the bounding boxes. Intersection

of two characters can give rise to special image features and different dissection methods

have been developed to detect these features and to use them in splitting a character string

images into sub-images.

[9] focuses on segmentation of single and multiple touching character segmentation.

[9] proposes a new technique that links the feature points on the foreground and background

alternately to get the possible segmentation path. Gaussian mixture probability function

is determined and used to rank all the possible segmentation paths. Segmentation paths

construction is performed separately for single touching characters and for multiple touching

characters. All the paths from to two analysis are collectively processed to remove useless

strokes and then mixture Gaussian probability function is applied to decide which on is the

best segmentation path.

Another kind of approach to character segmentation is recognition based approach.

In these segmentation processes letter segmentation is a by-product of letter recognition.

The basic principle is use a mobile window of variable width to provide sequences of tentative

segmentation which are confirmed (or not) by character recognition. A technique called

Shortest Path Segmentation selects the optimal combination of cuts from the predefined

set of candidate cuts that construct all possible legal segments through combination. A

graph whose nodes represent acceptable segments is the created. The paths of these graphs

represent all legal segmentations of the word. Each node of the graph is then assigned

a distance obtained by the neural net recognizer. The shortest path though the graph

thus corresponds to the best recognition and segmentation of the word. An alternative

method attempts to match subgraphs of features with predefined character prototypes.
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Different alternative are represented by a directed network whose nodes correspond to the

matched subgraphs. Word recognition is done by searching for the path that gives the best

interpretation of the word features [9].

2.3 Symbol-Arrangement Analysis

One approach to symbol-arrangement analysis is syntactic approach. Syntactic ap-

proach makes use of two dimensional grammar rules to define the correct grouping of math

symbols. Co-ordinate grammar for recognition is presented by Anderson. The grammar

specifies syntactic rules that subdivide the set of symbols into several subsets, each with

its own syntactic subgoal. The final interpretation result is given by the m attribute of the

grammar start’s symbol where m represents ASCII encoding of the meaning of symbol-set.

Although coordinate grammar provides a clear and well structured recognition approach,

its slow parsing speed and difficulty to handle errors are its major drawbacks. In [8], a

syntactic approach is adopted in which a system consisting of hierarchy of parsers for the

interpretation of 2-D mathematical formulas is described. The ME interpreter consists of

two syntactic parser top-down and bottom-up. It starts with a priority operator in the

expression to be analyzed and tries to divide it into sub-expressions or operands which are

then analyzed in the same way and so on. The bottom-up parser chooses from the starting

character and from the neighboring sub-expressions the corresponding rule in the gram-

mar. This rule gives instructions to the top-down parser to delimit the zones of neighboring

operands and operators.

Garain and Chaudhari in [14], proposes a two pass approach to determine arrange-

ment of symbols. The first pass is a scanning or lexicon analysis that performs micro-level
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examination of the symbols to determine the symbol groups and to determine their cat-

egories or descriptors. The second pass is parsing or syntax analysis that processes the

descriptors synthesized in the first pass to determine the syntactical structure of the expres-

sion. A set of predefined rules guides the activities in both the passes.

Another symbol-arrangement analysis approach is recursive projection profile cutting[20].

Cutting by the vertical projection profile is attempted first, followed by horizontal cuts for

each resulting regions. The process repeats until no further cutting is possible. The resulting

spatial relationships are represented by a tree structure. Although the method looks simple

and efficient technique, it is still under study and also involves additional processing for

symbols like square root, subscripts and superscripts as these can be handled by projection

profile cut.

Another approach discussed is the Graph Rewriting. Graph rewriting involves infor-

mation represented as an attributed graph and the graph get updated through the applica-

tion of graph-rewriting rules. An initial graph contains one node to represent each symbol,

with nodes attributes recording the spatial coordinates of the symbol. Graph rewriting rules

are applied to add edges representing meaningful spatial relationships. Rules are further

applied to prune or modify these edges identifying logical relationships from the spatial

relationships. In [15], Ann Grbavec and Dorothea Blostein proposed a novel-graph rewrit-

ing techniques that addresses the recursive structure of mathematical notations, the critical

dependence of the meaning upon operator precedence and the presence of ambiguities that

depends upon global context. The recognition system proposed called EXPRESSO, is based

on Build-Constrain-Rank-Incorporate model where the Build phase constructs edges to rep-

resent potentially meaningful spatial relation- ships between symbols. The Constrain phase
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applies information about the notational conventions of mathematics to remove contra-

dictions and resolve ambiguities. The Rank phase uses information about the operator

precedence to group symbols into sub-expressions and the Incorporate phase interprets sub-

expressions.

Twaakyondo and Okamoto [26] discuss two basic strategies to decide the layout of

structure of the given expression. One strategy is to check the local structures of the sub-

expressions using a bottom-up method (specific structure processing). It is used to analyze

nested structures like subscripts, superscripts and root expressions. The other strategy is

to check the global structure of the whole expression by a top-down method (fundamental

structure processing). It is used to analyze the horizontal and vertical relations between

sub-expressions. The structure of the expression is represented as a tree structure.

Chou in [10] proposed a two-dimensional stochastic context-free grammar for recog-

nition of printed mathematical expressions. The recognized symbols are parsed with the

grammar in which each production rule has an associated probability. The main task of

the process is to find the most probable parse tree for the input expression. The overall

probability of a parse tree is computed by multiplying together the probabilities for all the

production rules used in a successful parse.

2.4 Baseline Structure Tree

Layout of symbols in mathematical expressions are organized into number of base-

lines. Layout analysis of mathematical expression extract these baselines, which can be

arranged in a structure called Baseline Structure Tree (BST) [28]. The recognized symbols

with bounding box coordinates form the input to our GTN structure. Layout parsers in
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GTN generate BST based on these input. Each node in BST represent the symbol in math-

ematical expression and edges represents spatial association between the symbols. Parser

also associate a penalty with each of the spatial association.

2.5 DRACULAE Parser

For mathematical expression parsing we made use of DRACULAE parser [28]. DRAC-

ULAE stands for Diagram Recognition Application for Computer Understanding of Large

Algebraic Expressions. DRACULAE analyzes symbol layout in mathematical expressions

by searching for baselines in the input expressions. These baselines are arranged into BSTs.

These BSTs are processed and restructured in three passes of recognition process adopted in

DRACULAE. Layout pass takes the lists of recognized symbols with their bounding boxes

and arrange them to form a BST. Arrangement is done by identifyng dominant baseline

in an expression and partitioning symbols not part of dominant baseline in separate re-

gions relative to dominant baselines. Regions are identified as ABOVE, BELOW, SUPER,

SUBSC, UPPER, LOWER, TLEFT, BLEFT, CONTAINS and EXPRESSIONS. The pro-

cess of identifying dominant baseline and partitioning symbols accordingly is recursively

performed among regions. Lexical analysis pass identifies compound symbols in BST and

groups them together using a set of rules. Lexical analysis is done based on local adjacency

of symbols combining those symbols that are adjacent to each other and matches one of the

known function name or pattern. Expression Analysis pass then applies mathematical ex-

pression grammar to convert Lexed BST into operator tree. Expression Syntax analysis uses

the precedence and associativity of mathematical operators to create an expression parse

tree. Expression Semantic analysis applies the symantic rules to identify implied operators

13



and ordering of operands according to operators.

2.6 Tree Edit Distance

(a) Tree1 (b) Tree2

Figure 2.1: Two Baseline Structure Trees Representing Interpretations of X2 + Y

Tree Edit Distance(TED) is used as error metric to compute the error between a

graph produced by layout analysis and the desired graph(Ground Truth). Suppose there

a cost function defined on every operation (insertion, deletion or relabeling) that can be

performed on trees, the tree edit distance is the minimum of sum of the cost of all the

operations performed in process of turning a tree T1 to Tree T2. Tai in [24] gave an

algorithm for computing tree edit distance between two labeled ordered trees that is similar

to a string to string correction algorithm. Preorder traversal of trees are performed to label

each node uniquely in a tree. Tai then perform mapping between nodes of the two trees to

establish which operations are performed to transform from tree T1 to tree T2. Edit distance

between two trees is then determined by the minimum cost mapping. The algorithm solves

the problem in time O(V1*V2*L12 ∗ L22), where V1 and V2 are the numbers of nodes

respectively of T1 and T2, and L1 and L2 are the maximum depths respectively of T1 and

T2.
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Our TED algorithm involves computing the tree edit distance between two Baseline

Structure Trees (BST) [28] as shown in Figure 2.1(a) and Figure 2.1(b) representing two

interpretations of a mathematical expression having matching symbols but different spatial

relationships between them. The expressions are converted into directed trees having nodes

with values as a symbol in given expression concatenated with the type of spatial relationship

which the symbol has with its parent symbol as shown in Figure 2.1(a) and Figure 2.1(b).

Tree edit distance is then given as the number of spatial relationship mismatches between

nodes of two trees plus the number of mismatching parents of nodes in two trees. In the

given example, Tree2 shows the incorrect interpretation of the expression X2 +Y . The tree

edit distance between Figures 2.1(a) and 2.1(b) is 2. One is due to symbol “2” in Tree2

having a mismatched spatial association with its parent “X” (i.e HOR instead of SUPER as

in Tree1) and one due to symbol “+” having mismatching parent (have parent as “2” instead

of “X” as in Tree1). Edit distance is then normalized as number of edits / 2n(where n is the

number of symbols); 2n is the maximum edit distance, where every symbol has the wrong

parent, and in the wrong spatial relationship. Normalization of edit distance is essential

in order to meaningfully rank the edits(error) with respect to number of symbols in the

expressions that are been compared. To cope with the repeated symbols in the expression

symbols needs to be numbered to identify them uniquely.

We presented a paper [29] at ICDAR 2011 conference that introduces a stroke based

performance metric to evaluate the performance of handwritten mathematical expressions.

The paper presents a metric that takes the hollistic approach from strokes to spatial struc-

ture recognition while evaluating the performance. In this technique, math expressions

are represented through bipartite graphs with nodes representing individual strokes in the
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expression(described in the paper). The edges in the graph represents the relationships

between a node in the graph and its ancestor nodes in the symbol layout tree. Given

such bipartite graph representations of recognizer output and ground truth, we compute

the recognition error by the number of disagreements in terms of stroke labels and spatial

relationships which represents distance measure between the two representations.

As there is only one metric involved in evaluating a recognition algorithm from

segmentation, classification to structural layout, such a metric can be used to better compare

mathematical recognition algorithms as well as provide a single learning function to improve

a complete recognition system.

2.7 Parser combination

Classification problem can be solved by having a descriptor for each class which is

based on different features taken under consideration and then classifying data to a class

based on how close the features of data are to the descriptor of that class. These class-

defining descriptors can be formed from a single model or can be formed by combination of

mutiple models together called as ensemble of models.

Ali and Pazzani [1] performed combination of multiple models in an ensemble for

classification. One of the hypotheses of their experiment was to see the effect of multiple

descriptors of a class on classification error in comparison with error from single descriptor.

They conducted the experiment on number of domains like Tic-Tac-Toe, DNA and wine.

The experiment invovled different combination techniques, such as Uniform Voting that

consist of counting of each class number of descriptors have got atleast one rule satisfied,

Bayesian Combination that involves assignment of class having highest posterior probability,
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Distribution Summation that involves summation of vectors of all distribution of all satisfied

rules from all models and so on [1]. The results shows a statistically significant reduction in

error rate for almost all of the data set used or no increase in some cases. For some dataset

like wine, the recognition accuracy has increased by factor of 6 from 93.3 percent (with

single descriptor) to 98.9 percent (with combined descriptors). This statistically significant

reduction in error rate has proven to be true for all the combination techinique tried for the

experiment[1].

Parser combination involves combining parse trees produced by different parsers,

with the goal of reducing error. Parser combination has been explored in a number of areas.

Syntactic parsing of a sentence in Natural Language Processing(NLP) can be done in two

different ways i.e Constituent Parsing and Dependency Parsing (Figure 2.2). Constituent

parsing involves breaking down of sentence into number of syntactic constituents (Noun

Clause, Verb Clause or Preposition Clause). Dependency parsing, on the other hand, iden-

tify dependencies between words in a sentence and connect the words with that dependency.

Our mathematical expression parsing technique is a dependency parsing rather than con-

stituency parsing as the technique involves identifying dependencies between symbols in an

expression.

Combination of parser can be performed in two different ways as mentioned by

Henderson and Brill [17]. The first method is Parse Hybridization in which constituents

from each parser’s output are recombined to construct a improved parse. The second is

Parser Switching in which a switching technique is applied which selects constituents using

simple majority voting. For example, if a constituent is included in at least half of the

parse trees to combine, the constituent becomes the part of combined tree. As shown in
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(a) Constituency Parsing

(b) Dependency Parsing

Figure 2.2: Types of Syntactic Parsing

the following Figure 2.3, the constituent Verb is included in two of three parse trees to be

combined (tree 1 and tree 3), and so it becomes the part of combined tree. Their experiment

showed that these combination techniques gave better recognition results than any of the

individual parser used for the experiment. Also the combination technique degrade very

less if a poor parser is added to the set.

[22] explained parser combination also based on parse hybridization. Parser combi-

nation for both dependency parsing and constituent parsing are explained. In dependency

reparsing different dependency structures from different parsers are obtained and then a

graph is contructed with each word as node and weighted directed edges as dependencies

obtained from initial dependency structures. This weighted graph is parsed again finding

maximum spanning tree to obtain well-formed optimal combined dependency structure.

Whereas in constituent reparsing, each individual parses are broken down into contituents

with their weights in a chart. Weights for identical constituents from parses are added
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(a) Parse Tree 1 (b) Parse Tree 2

(c) Parse Tree 3 (d) Combined Tree

Figure 2.3: Combination (d) of parse trees for English text (a-c)
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together and finally running a bottom-up parsing algorithm against this chart to obtain

maximized well-formed combined parse tree.

Francis Brunet-Manquet in [7] discussed a technique for parser combination for NLP.

The combination, however, is applied to dependency parsers unlike the constituent parsers

used by Henderson and Brill. The method involves first extracting linguistic data along with

confidence rates from a sentence extracted by different syntactic parsers. These linguistic

data are then arranged in a respective single structure called dependency structure that

identifies the dependencies between these data. From these structures, a common depen-

dency structure is obtained consisting of linguistic data contained in different dependency

structures along with different confidence rates associated by different parsers for each data.

These confidence rate is nothing but a weighted vote of a parser for a data. Finally a

grouping of all linguistic data is done by calculating a combined confidence rate for each

data. Combined rate is given as the sum of confidence rates of a data divided by number

of parsers that provided this data.

(a) WTNs (b) Composite WTNs

Figure 2.4: Combination of WTNs

Fiscus in [11] describes a combination technique that combines Automatic Speech

Recognition (ASR) systems using two steps. Refer to Figures 2.4(a) and 2.4(b). In the

first step, output from multiple ASRs which is in the form of Word Transition Networks
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(WTN) are combined using dynamic programming alignment to produce a single WTN.

The combination is done sequentially, combining first two and then adding each in turn to

the current combined result. The next step is to extract a single WTN from the composite

WTN using the voting or scoring scheme that selects the best scoring word sequence from

the given hypotheses. One scheme uses frequency of occurrence of particular word type.

Higher the frequency, better the score for the word. Other two schemes involve the use of

confidence scores generated by ASRs for each word along with frequency scores in voting

for best word sequence. One out of the two uses average confidence score while other uses

the maximum confidence score for each word type. Experimental results showed that each

scoring scheme results in improved word error(WE) reduction than individual ASR system

with scheme involving maximum confidence score resulting in maximum WE reduction.

2.8 Graph Transformer Network

Our combination technique uses Graph Transformer Network (GTN) which was pre-

viously used in handwritten character recognition described by LeCun et. al. [3]. Graph

Transformer Network (GTN) consists of network of modules that takes one or more graphs

or trees as inputs and produce graphs as outputs. These modules are differentiable w.r.t

its inputs and its internal parameters. Whole network is arranged just like feed-forward

network of Artificial Neural Network(ANN) that minimizes a global error function. LeCun

et. al showed that GTN can be trained using Gradient based back-propagation learning

algorithm and it is just not limited to network like ANN that takes fixed sized vectors as

input. Fixed sized vectors for data representation shows deficiency for tasks that deals with

variable length inputs like continuous speech recognition and handwritten word recognition
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[3]. Multiple length sequences which can be best represented in the form of graphs are

quite often used for above mentioned tasks. Thus GTN learning can be used for these tasks

representing data in the form of graphs in which each path represents a variable length

sequence.

Figure 2.5: GTN for character recognition. [3]

Figure 2.5 shows a GTN for recognizing handwritten character string that uses gra-

dient based learning.

2.8.0.1 GTN Training

GTN structure is trained as a whole with different modules interacting and propa-

gating states and gradients. The given GTN takes a segmentation graph representing the

segmented character image. Over-Segmentation of the image is performed so as to ensure

that the resulting set of cuts contain the correct set of cuts of the given image. The given

network makes use of two graph transformers called Recognition transformer and Vierbi

transformer. Recognition transformer takes segmentation graph and produces Interpreta-
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tion graph Gint in which every path represents a interpretation of a segmentation of the

input [a word]. Each arc in Gint is associated with a class label and with a penalty for that

class produced by the recognizer.

Another module called the Path Selector takes the Gint graph and the desired labelled

sequence as input and selects paths from Gint that contains the desired label sequence to give

Constrained graph Gc. Viterbi Transformer then applies Viterbi algorithm to the resulting

graph to select a shortest path (a path with smallest cumulative penalty)Cvit. The loss

function E to minimize is the average penalty of the correct lowest penalty path in the

given graph. Gradient based learning is used to train the network. Gradient are computed

at different differentiable modules of GTN which are propagated back to so as to compute

their gradients and update module parameters.

Partial derivative of the error E for the best path with respect to edge penalties on the

Cvit are equal to 1. This is because the loss function is simply the sum of the edge penalties

on Cvit. Since the shortest path is subset of Gc, the partial derivatives of loss function E

with respect to penalties on the arcs of Gc is 1 for those that appear in shortest path and

0 for those that do not. As path selector only selects those paths in Gint that have correct

label sequence, arcs in Gint the appear in Gc have partial derivatives as 1 or 0, depending on

whether that arc appear in shortest path Gvit. Now these penalties on Gint arcs are produced

by individual output of each recognizer instance, therefore we have same gradients (1 or 0)

for each output of each instance. Now these gradients present on each instance output

is then propagated back to produce gradient w.r.t racognizer parameters. Let ’w’ be the

set of parameters of recognition transformer. For each recognizer instance of recognition

transformer used to recognize a single character, a vector of partial derivatives of the loss
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function E with respect to the recognizer instance parameter vector ’w’ is obtained. Since

recognizer instances are clones of each other, gradients of E w.r.t recognizer transformer

parameter vector is computed as the sum of gradient vectors produced by each recognizer

instance.
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Chapter 3

Methodology

We describe a novel method of combining syntactic parsers. Our method is based

on parse hybirdization techniques presented by Brill and Henderson in [17], in which con-

stituents from each parser’s output are recombined to construct a improved parse. Our

method made use of GTN which consists of different instances of DRACULAE parsers [28]

that produce different BSTs (parse trees). The edges on these parse trees are then penal-

ized using penalty function which is described in section 3.1. Penalized edges then take

part in combination process which is described in section 3.2. After combination, gradients

with respect to combination error are computed using the process described in section 3.2.1.

Different experiments are performed which is summerized under last section 3.2.2.

3.1 Relationship Penalty Function

Draculae identifies 7 different symbol classes into which different symbols can be

classfied. They are as shown in the Table 3.1. Spatial regions around a symbol are

partitioned based on the symbol class into seven regions: SUPER, SUBSC, ABOV E,

BELOW , UPPER, LOWER and CONTAINS.

Figure 3.2 shows different regions associated with each symbol class. A region is

nothing but an axis-parallel box that includes only left and bottom edges [28]. Top and
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Table 3.1: Class Membership [28]

Class Symbols
Ascender 0...9, A...Z
Descender g, p, q, y, r, η, ρ

Γ,∆,Θ,Λ,Ξ,Π
Open Bracket [{(
Non Scripted Unary binary operators

and relation (×, \,≥,÷,≡)
Root

√

Variable Range
∑∏∫ ⋂⋃

Center All other symbols

right edges are not included in region definition. Every symbol is reduced to a single point

called the centroid of the symbol. A centroid of a symbol lies in exactly one region of its

parent symbol.

DRACULAE determines spatial relationships between symbols based on the set of

regions for a parent symbol, and the location of the centroid of the associated (child) symbol.

Thus a child of a symbol whose symbol class is ascender can lie in either in SUPER or

SUBSC or ABOV E or BELOW or HOR regions. For a pair of symbols that are associated

in a ground truth baseline structure tree, our model defines a penalty based on how close the

centroid of the neighboring symbol is to the vertical boundary (threshold) of these regions.

For example, a symbol correctly assigned to the SUPER region of another symbol will

have a penalty based on how close that centroid is to the SUPER region’s threshold that

separates the SUPER and HOR regions.

Penalties are defined in the interval [0, 1], using the sigmoid function:

P (y∆) =
1

1 + e−by∆
(3.1)

where P is the penalty e is constant, b is vertical scaling factor and y∆ is the y-offset of the

centroid of neighboring symbol vertical threshold. Vertical scaling factor is used to control
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Figure 3.1: Sigmoid Function

the steepness of the sigmoid curve. When vertical scaling factor is high, the curve increases

steeply which then act more as threshold and when vertical scaling factor is low (closes to

zero), the curve flattens.

We describe penalty computation based on types of regions:

3.1.1 Upper and lower regions

Upper regions include ABOV E, UPPER and SUPER as shown in Figure 3.2.

For upper regions we defined y-offset as,

y∆ = (C − TU)/(Ymax − Ymin) (3.2)

where TU is upper region’s vertical threshold and C is the centroid on neighboring
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Figure 3.2: Regions [28]

symbol. We normalize the y-offset by dividing offset value by parent symbol’s vertical size.

Similarly, for lower regions we defined y-offset as,

y∆ = (TL − C)/(Ymax − Ymin) (3.3)

where TL is lower region’s vertical threshold and C is the centroid on neighboring

symbol.

So the penalty function for upper regions becomes:

P (y∆) =
1

1 + e−b(C−TU )/(Ymax−Ymin)
(3.4)
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Similarly the penalty function for lower regions becomes:

P (y∆) =
1

1 + e−b(C−TL)/(Ymax−Ymin)
(3.5)

The upper penalty function (3.4) increases with the increase in y-offset. Whereas the

lower penalty function have opposite effect, i.e. the lower penalty function (3.5) decreases

with the increase in y-offset. This is described as below:

For upper penalty function:

P =

equation
< 0.5 if y∆ < 0

0.5 if y∆ = 0

> 0.5 if y∆ > 0

For lower penalty function:

P =


> 0.5 if y∆ < 0

0.5 if y∆ = 0

< 0.5 if y∆ > 0

3.1.2 Horizontal Regions

Horizontal regions include HOR and CONTAINS as shown in Figure 3.2. For

horizontal regions we first compute the centre of the distance between two vertical thresholds

i.e upper threshold and its corresponding lower threshold. The y-offset computation is

determined by location of neighboring symbols centroid. If the centroid lies above the

centre, the offset from upper threshold is used to compute the penalty value and if the
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centroid lies below the centre, the offset from lower threshold is uses to compute the penalty

value. Let,

Centre = (TU + TL)/2 (3.6)

if C < Centre, centroid lies towards upper vertical threshold, therefore we defined

y-offset w.r.t upper threshold as,

y∆ = (TU − C)/(Ymax − Ymin) (3.7)

So the penalty function becomes:

P (y∆) =
1

1 + e−b(TU−C)/(Ymax−Ymin)
(3.8)

Whereas. if C > Centre, centroid lies towards lower vertical threshold, therefore we

defined y-offset w.r.t lower threshold as,

y∆ = (C − TL)/(Ymax − Ymin) (3.9)

So the penalty function becomes:

P (y∆) =
1

1 + e−b(C−TL)/(Ymax−Ymin)
(3.10)

3.2 GTN Architecture

Input to our GTN is a list of mathematical symbols with bounding box co-ordinates.

This symbol list is passed to one or more layout parsers. In this first experiment, we have

used the publicly available DRACULAE parser [28] 1. DRACULAE parsers have three

1in the Freehand Formula Entry System http://www.cs.rit.edu/ rlaz/ffes/
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Figure 3.3: GTN Math Parser Combination Architecture

parameters, c which controls the vertical position of symbol centroids, ut which defines

the location of upper regions around symbols (e.g. superscript) and lt which defines the

location of lower regions around symbols(e.g subscript) for different layout classes assigned

to symbols based on their assigned class.

Individual penalties for each edge on different BSTs are computed using the penalty

function described in previous section. After the BSTs with edge penalties have been pro-

duced, the BSTs are passed to the Combiner module, which has a separate weight for each

incoming parser output. The Combiner performs a linear combination of weighted penalties

of spatial relationships between two symbols produced by different parsers. This is done

by combining all BSTs into a single graph, summing the penalties for any common edges

after they have been weighted by their associated connection weight wi, and then applying

Prim’s minimum spanning tree algorithm to produce the final BST. For example, consider

the SUPER relationship between “X” and “2” in Figure 3.3, where the resulting penalty is
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0.5 ∗ 0.2 + 0.4 ∗ 0.6 = 0.34. Since penalty is kept between [0,1], weighted penalty is rounded

off to 1 if its greater that 1.0.

The Combiner module output is passed to the BST Scorer module which computes

the tree edit distance between the combined BST and ground truth. The set of graph edges

E is partitioned into three disjoint sets: C, the set of correct edges, Ip, the set of edges

with an incorrect parent, and Ir, the set of edges with a correct parent, but an incorrect

relationship. Let N be the total number of edges in the combined BST. We define two edge

penalty sums,
∑

C for the set of correct edges, and
∑

Pr
the sum of penalties for Ir.

The function Errord minimized by the GTN is

Errord(C, Ip, Ir) = 1−
(
∑

Ip
+
∑

Ir
) + (|C| −

∑
C)

|C|+ |Ip|+ |Ir|
= 1−

(
∑

Ip
+
∑

Ir
) + (|C| −

∑
C)

|E|
(3.11)

Errord produces a loss in [0, 1]. This function is design for disriminative learning

[3], with the goal of maximimizing penalties on incorrect edges, and minimizing penalties

on correct edges.

3.2.1 Learning through Backpropagation

All modules in a GTN must be differentiable with respect to their inputs, allowing

error gradients to be backpropagated through each module. The modules in our system

include the BST Scorer (a sum module), the Combiner module, and one or more parsers

producing graphs with edge penalties in [0, 1].

The BST Scorer module is a simple ‘average’ module that calculates the average
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a. Gradients of error at BST Scorer module b. Gradients of error at Linear Combiner

Figure 3.4: Backpropagation in the GTN. Penalties are shown in square brackets

penalty for correct and incorrect edges in the combined BST (see Figure 3.4a). Let E be

the set of edges with the BST. Therefore partial derivative for Errord w.r.t a penalty on

combined BST edge is given using Equation (2) as follows.

(
∂Errord
∂eP

) = (
∂

∂eP
(1−

(
∑
Ip +

∑
Ir

) + (|C| −
∑

C)

|E|
)) (3.12)

(
δErrord
δeP

)
=



1
|E| if e ∈ C

− 1
|E| if e ∈ Ir

− 1
|E| if e ∈ Ip

The partial derivatives for Errord w.r.t a penalty on a correct edge will be a positive

and partial derivatives for Errord w.r.t a penalty on a incorrect edge will be a negative.

Such a discriminative learning approach minimizes correct edge penalties and also maximizes

penalties on incorrect edges, thus reducing the likelihood of selecting incorrect edges in the

Combiner module.

For the Combiner, the input weights wi are used to scale edge penalties in a graph
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containing all incoming edges, from which a minimum penalty spanning tree is computed

(see Section 3.2, and Figure 3.4b).

Consider an edge e between symbols X and 2 in the combined BST of Figure 3.4.

Let eP be the relationship penalty (0.34). Let w1(0.2) be the input weight to the first parser,

w2(0.7) to the second parser and w3(0.4) to the third parser. Let ep1 (0.5), ep2 (0.5), and

ep3 (0.6) be the penalties on the edges e1, e2 and e3 between X and 2 in each of the input

BSTs. For each weight wi, we have:

∂Errord,e
∂wi

=
∂Errord
∂eP

∂eP
∂wi

(3.13)

The above equation states that the partial derivative of cumulative error Errord,e

w.r.t a input weight wi is equal to product of partial derivative of cumulative error Errord,e

w.r.t an edge penalty on combined BST and partial derivative of that same edge penalty w.r.t

input weight wi. Here we are just applying the chain rule of computing partial derivatives.

Similarly, for each edge penalty epi in one of the original BSTs we have:

∂Errord,e
∂epi

=
∂Errord
∂eP

∂eP
∂epi

(3.14)

The above equation states that the partial derivative of cumulative error Errord,e

w.r.t an edge penalty epi on an input BST is equal to product of partial derivative of

cumulative error Errord,e w.r.t an edge penalty on combined BST and partial derivative of

that same edge penalty w.r.t edge penalty epi.

Prim’s algorithm iteratively finds the least expensive (minimum penalty) edge be-

tween two symbols in input BSTs and adds it to the minimum spanning tree. If edge ei
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contributed in linear combination to produce penalty for e i.e if ei ∈ e, then,

(
∂eP
∂wi

)
=


epi if ei ∈ e

0 if ei 6∈ ei

Similarly,

(
∂eP
∂epi

)
=


wi if ei ∈ e

0 if ei 6∈ e

Substituting value of (∂Errord
∂eP

) in equations 3.13 and 3.14, we get,

(
∂Errord,e

∂wi

)
=



1
|E|

∂eP
∂wi

if e ∈ C

− 1
|E|

∂eP
∂wi

if e ∈ Ir

0 if e ∈ Ip

(
∂Errord,e
∂epi

)
=



1
|E|

∂eP
∂epi

if e ∈ C

− 1
|E|

∂eP
∂epi

if e ∈ Ir

0 if e ∈ Ip

Given the set of such edges E in the combined BST, the partial derivative of the error

w.r.t. wi is is obtained by computing the gradient of error for each edge in the combined

BST as above, and then summing the derivatives:

∂Errord
∂wi

=
∑
e∈E

∂Errord,e
∂wi

(3.15)

The Linear Combiner module’s weights wi are updated as in the following:
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wi(n+ 1) = wi(n)− η ∗ ∂Errord
∂wi

(3.16)

where η is the learning rate.

In order to compute min at switching surfaces (when edges have same penalty val-

ues) we compute penalties using the same penalty functions at a very small higher interval

and select minimum of newly computed penalty values. This ensures that we select cor-

rect(minimum) penalty function each time there is a tie. We also know that min function

is continuous and reasonably regular to achieve convergence using gradient-based learning

algorithm [3].

Next we define gradient of Errord,e w.r.t scaling factor (b) of a penalty function.

∂Errord,e
∂b

=
∂Errord,e
∂epi

∂epi
∂b

(3.17)

From Equation 3.1, we have,

∂epi
∂b

=
∂( 1

1+e−by∆
)

∂b
=

e−by∆

(1 + e−by∆)2

∂(−by∆)

∂b
(3.18)

Now depending upon the experimental setup, we have single penalty function for all

combining parsers or individual penalty function for each combining parser (described in

detail in section 3.2.2).

If we have single penalty setup, then for each edge on each combining BST, we take

the penalty(pi) associated with that edge and using the above equation we compute the
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partial derivatives of Errord,e w.r.t b. The total gradient w.r.t b will be the sum of all such

partial derivatives computed.

∂Errord
∂b

=
∑
e∈E

∂Errord,e
∂b

(3.19)

However in individual penalty setup, each parser in the setup is associated with

individual penalty function. For each edge on a combining BST, we compute the partial

derivative of Errord,e w.r.t to that BST’s associated scaling factor bi using equation 3.17.

The total gradient w.r.t scaling factor bi is equal to the sum of all such partial derivatives

computed for all edges of that BST.

∂Errord
∂bi

=
∑
e∈E

∂Errord,e
∂bi

(3.20)

Similarly we compute total gradient of Errord,e w.r.t to scaling factors of other

combining BSTs individually.

The penalty functions’ scaling factor are updated as in the following:

bi(n+ 1) = bi(n)− η ∗ ∂Errord
∂bi

(3.21)

where η is the learning rate.

The error gradients for each of the parsers need to be computed relative to the

parameters defining the vertical locations of SUPER/HOR, ABOV E/CONTAINS and

UPPER/CONTAINS regions (ut) and SUBSC/HOR, BELOW/CONTAINS and LOWER/CONTAINS
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regions (lt), and the vertical position of symbol centroids (c). Both are defined as a per-

centage of bounding box height. The partial derivatives of Errord w.r.t region parameters

t and c are calculated as:

∂Errord,e
∂ut

=
∂Errord,e
∂epi

∂epi
∂ut

(3.22)

∂Errord,e
∂lt

=
∂Errord,e
∂epi

∂epi
∂lt

(3.23)

∂Errord,e
∂c

=
∂Errord,e
∂epi

∂epi
∂c

(3.24)

The relationship penalty epi is based on the proximity of the neighboring (child)

symbol’s centroid C to the region threshold T and is calculated using equation 3.1 explained

in previous section.

From Equation 3.1, we have,

∂epi
∂T

=
∂( 1

1+e−by∆
)

∂T
=

e−by∆

(1 + e−by∆)2

∂(−by∆)

∂T
(3.25)

Similarly,

∂epi
∂C

=
∂( 1

1+e−by∆
)

∂C
=

e−by∆

(1 + e−by∆)2

∂(−by∆)

∂C
(3.26)

This region threshold T is in turn defined by threshold parameter t and symbol’s

centroid C is in turn defined by centroid parameter c. This is shown in Figure 3.5.
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Figure 3.5: Threshold and Centroid Table [28]

Again applying chain rule we get:

∂epi
∂ut

=
∂epi
∂T

∂T

∂ut
(3.27)

∂epi
∂lt

=
∂epi
∂T

∂T

∂lt
(3.28)

∂epi
∂c

=
∂epi
∂C

∂C

∂c
(3.29)

Substituting
∂epi
∂ut

,
∂epi
∂lt

and
∂epi
∂c

in Equation 3.22, 3.23 and 3.24 respectively, we have,
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∂Errord,e
∂ut

=
∂Errord,e
∂epi

e−by∆

(1 + e−by∆)2

∂(−by∆)

∂T

∂T

∂ut
(3.30)

∂Errord,e
∂lt

=
∂Errord,e
∂epi

e−by∆

(1 + e−by∆)2

∂(−by∆)

∂T

∂T

∂lt
(3.31)

∂Errord,e
∂c

=
∂Errord,e
∂epi

e−by∆

(1 + e−by∆)2

∂(−by∆)

∂C

∂C

∂c
(3.32)

We compute ∂Errord
ut

and ∂Errord
lt

by summing the gradient of error for each each edge

penalty in set of edges E as follows,

∂Errord
∂ut

=
∑
e∈E

∂Errord,e
∂ut

(3.33)

∂Errord
∂lt

=
∑
e∈E

∂Errord,e
∂lt

(3.34)

Similarly we compute ∂Errord
c

by summing the gradient of error for each each edge

penalty in set of edges E as follows,

∂Errord
∂c

=
∑
e∈E

∂Errord,e
∂c

(3.35)

Each parser’s ut, lt and c parameter values are updated as in the following:

ut(n+ 1) = ut(n)− ρ ∗ ∂Errord
∂ut

(3.36)
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lt(n+ 1) = lt(n)− ρ ∗ ∂Errord
∂lt

(3.37)

c(n+ 1) = c(n)− ρ ∗ ∂Errord
∂c

(3.38)

where ρ is the learning rate.

3.2.2 Experiment

Experiments are based on INFTY dataset [23] which consists of ground truth database

for characters, words and mathematical expressions. There are 21,056 mathematical expres-

sions present in the INFTY dataset which are preprocessed to produce a dataset to be used

for our experiment. Experiment consists of dividing the dataset into different sets for GTN

training, validation and testing. Experiments are mainly divided into two sections as ex-

plained in the following subsections. Each experiments are run multiple times and results

are recorded for each run and analyzed.

3.2.2.1 Data Set

Experimental dataset consists of INFTY dataset [23] that consists of 21,056 math-

ematical expressions. Dataset is divided into two parts: one that contains text data in

Microsoft Access format and other that contains image data in the form of PNG files.

Text data consist of mathematical symbols described using 29 attributes. Using these 29

attributes, individual mathematical expressions are extracted into separate expressions as

given in image data. These expressions are then preprocessed in the following ways:
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• Removing Matrices: DRACULAE expression grammar parses a subset of dialects of

mathematics and matrices are not included in the subset. Hence all the expression in

the dataset containing matrices are removed in the resulting dataset.

• Removing Malformed: All those expressions that contain more than 1 symbol (more

than start symbol) having -1 or null parent, in otherwords if there are more than 1

symbol in an expression having no parent then that expression is to be malformed

expression and hence removed the the resulting dataset.

• Removing Single-Symbol: As GTN learning is based on learning relationships between

two symbols in an expression, all expressions containing 1 symbol are removed from

the resulting dataset as they do not contribute anything in GTN learning process.

• Shuffling: After all the above preprocessing, the expressions are shuffled inorder to

randomize expressions in different sets. The order in which data is presented for

training is important and its is believed that having randomized data improves the

accuracy during training as shuffling enables data to be as far as possible thus making

the set statistically unbiased.

After preprocessing, 14,687 mathematical expressions are extracted into the resulting

dataset out of 21,056 expressions. These 14,687 expressions are later divided in different

sets for training, validation and testing. Out of 14,687 mathematical expressions, 8814

expressions are included in training set, 3107 expressions are included in validation set and

2766 expressions are included in the test set. A separate validation set is used to compare

the performance of the networks by evaluating the error function against this set, and the

network having the smallest error with respect to the validation set is selected.
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Experimental setup is mainly divided into two parts where we try to analyze the

effect of having one penalty function for all DRACULAE parsers used in GTN and having

individual penalty functions for each DRACULAE parser used in GTN.

Figure 3.6: GTN-Single Penalty Architecture

3.2.2.2 Single Penalty Function Setup

In this setup a single penalty function is used to compute a penalty on each edge

of the BST as described in section 3.1. The setup is shown in Figure 3.6. Penalty for

each edge in each BST is computed and the resulting BSTs are fed as into to Combiner

module for weighted combination of penalized edges to produce combined BST. During

backpropagation learning, gradients computed w.r.t to each penalized edge on each BST

are combined to update the scaling factor of penalty function.
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Figure 3.7: GTN-Individual Penalties Architecture

3.2.2.3 Multiple penalty functions Setup

In this setup each BST from DRACULAE parser are penalized with individual

penalty function as shown in Figure 3.7. Edge penalties are computed using separate penalty

functions and then the resulting BSTs are fed into combiner module for weighted combina-

tion of penalized edges. During backpropagation learning, gradients computed from a BST’s

edges are combined to update the scaling factor of penalty function used to penalized the

BST.

3.2.3 Training and testing

We assess the recognition performance of GTN on Suzuki’s INFTY dataset using

3 metrices, namely 1) the ratio of correctly recognized mathematical expressions to total
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number of expressions used in test set 2) total number of incorrectly recognized symbol’s

parent (Parent Error) in all the expressions used in test set and 3) total number of incorrectly

recognized symbol’s relationship with its parent symbol (Relationship Error).

We adopted batch method of learning where GTN is trained with all the expressions

in training set (called as epoch) and after each epoch all the GTN parameters are updated.

After each epoch, the GTN network perfomance is evaluated against validation set and

GTN network with minimum validation error is selected. Once the minimum validation

error GTN network is selected, the test set is run against the learned GTN network and the

resulting combined BST for each expression is compared against the grund truth and a tree

edit distance is computed between ground truth and combined BST as explained in section

2.6. Edit distance of 0 means the expression is correctly recognized by the GTN network and

count of correctly recognized expression is increased. On the other hand, if the edit distance

is more than 0, corresponding parent error and relationship error are evaluated and noted.

Same data sets are used for two different setups explained above and similar processes of

training and testing are performed and the results are noted. Since the experiment used

gradient descent method of learning, there is a chance of encountering local minima instead

of global minima. To try to avoid local minima problem, each experiment is run multiple

times.
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Chapter 4

Results and Discussion

The results from the experiments described in Chapter 3 are presented in this chap-

ter. Section (4.1) presents the experimental results from each individual GTN setup and

provides the expression rate along with averages and standard deviations. Section (4.2)

provides a distribution of different error types for each GTN setup. Section (4.3) presents a

compariative error analysis from different experimental GTN setup for different error types.

4.1 Expression Rate

Following Figures 4.1, 4.2 provide the expression rates from each individual GTN

experimental setup which include 1 parser, 2 parsers and 3 parsers. The graphs are bar

charts in which each bar represents an expression rate averaged over 10 experimental runs

for a given GTN setup. The graphs also show the standard error in terms of a vertical line

at the top of each bar. The standard error shows the dispersion of recognition rates around

its average for each GTN setup.

4.1.1 Single Penalty Scale

In this experimental setup we use a single vertical scaling factor to define our penalty

function as described in 3.1. In such an experiment since we are using one scaling factor,
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Figure 4.1: Average recognition rates along with standard errors for single-scale experiment

learning of both upper and lower thresholds affects the learning of scaling factor.

4.1.2 Discussion

As can be inferred from the graph 4.1, in all the GTN setups we get considerable

good recognition rates higher than the recognition rate from plain DRACULAE. For GTN

structure with 1 parser shows maximum recognition rate of 74% as compared to 70% of

DRACULAE run but with higher standard error as compared to other GTN structures. This

is due to few outliers that have low recognition rates for some runs. This is contributed by

a phenomenon called local minima problem associated with the experiments using gradient

descent method of learning. Local minimum problem occurs when backpropogation learning

converge at local minimum value in the search space instead of global desired minimum.

It can be a result of complex error function having multiple learning parameters or lack of

sufficient learning data sets.
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2-parsers GTN structure, which involves combination of 2 DRACULAE parsers in a

GTN setup, also achieves a maximum recognition rate of 74% which is higher than plain

DRACULAE and have smaller standard error rate as compared to other GTN structures.

Smaller the standard error, smaller is the variation from the average and a better represen-

tation of recognition result. Thirdly there is 3-parsers GTN setup which achives a maximum

recognition rate of 73% and with a standard error in between 1-parser and 2-parsers GTN

structures. This graph, overall, shows that with the such a experiment which involves com-

bination of parsers we can acheive better recognition rates however results obtained were

not as consistent as we desired.

As mentioned above some of the experimental runs have witnessed local minima

problem associated with gradient descent learning. By employing other means and meth-

ods focussed to reduce local minima problem we can achieve more consistent recognition

results with smaller standard errors. There are other factors that can be attributed to

lower performance one of which can be explained by contrasting our experiment with Le-

cun’s experiment. In Lecuns’s experiment there is always a particular interpretation among

combining interpretations that is always correct. This advantage allows Lecun’s to obtain

learning at the ’string’ level(instead of single character level). This we can say because they

are making use of combined penalty of one single interpretation(a correct one offcourse).

However since we dont have a correctly recognized interpretation(expression) we are still

performing the learning at the individual relationship level (instead of whole mathematical

expression level). This we can say as we are looking into single relationship correctness

or incorrectness. This also allows their final error function to fit well for their combining

architecture, as it tries to reduce the penalty of correct character sequence as a whole and
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Figure 4.2: Average recognition rates along with standard errors for two-scales experiment

increase the penalty of incorrect character sequence as a whole.

Other performance limiting factor can be attibuted to the more deterministic nature

of DRACULAE parsers which makes learning harder. DRACULAE consists of multiple

heuristic rules that cannot be used in learning especially in gradient based learning.

4.1.3 Upper and Lower Penalty Scales

In this experiment we split the vertical scaling factor used in penalty function into

two: upper scale to control/scale penalty for upper regions and lower scale to control/scale

the penalty for lower regions. By dividing the scaling factor into two we are ensuring that

the upper and lower regions’ threshold learnings are not affected by each other. So for each

scale, gradients are computed independently and propagated back to compute the gradients

of upper and lower thresholds independent of each other. Figure 4.2 shows the expression

recognition rate plot from such an experiment.
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4.1.4 Discussion

AS can be seen from the graph, the bars looks more or less similar to what we

obtained for single scale experimental results. We see lower maximum recognition rate

reached with this experiment as compared to single penalty scale experiment. However

this experimental results shows lower error rates as compared to single scale experiment

as the number of parsers in GTN increases. This means with separate scaling factors we

are getting less variation in the recognition rate with increasing number of parsers in GTN

which means we are getting a better representation of recognition result.

4.2 Relation and Parent Error

As mentioned in 3.2 section, the recognition error is computed in terms of three

disjoint sets from GTN - set of correctly recognized edges, set of edges with an incorrect

parent (parent error) and set with edges with a correct parent but an incorrect relationship

(relation error). Error function is given at 3.11. Following graphs give the distribution of

relation and parent errors from different GTN structures. These graphs provide an overview

of how and what distribution of these types of error affect the resulting recognition rate.

4.2.1 Discussion

Figure 4.3 shows a column bar chart which gives the relation and parent error distri-

bution for 10 different runs for 1-ParserGTN structure. The graph also shows the recognition

rate at the top of each column for that particular run. An obvious inference can be made

from the graph is that lower the total error, higher is the recognition rate. As can be seen

from the graph parent errors are higher contributing elements than relation errors in each
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Figure 4.3: Segmented bar chart showing Relation and Parent error distribution of 10 runs
for 1-Parser GTN structure. Red represents parent error count and blue represents relation
error count. Corresponding recognition rate for the run is also shown at the top of each bar

Figure 4.4: Segmented bar chart showing Relation and Parent error distribution of 10 runs
for 2-Parser GTN structure. Red represents parent error count and blue represents relation
error count. Corresponding recognition rate for the run is also shown at the top of each bar
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Figure 4.5: Segmented bar chart showing Relation and Parent error distribution of 10 runs
for 3-Parser GTN structure. Red represents parent error count and blue represents relation
error count. Corresponding recognition rate for the run is also shown at the top of each bar

run. Therefore for different expressions used in the experiment there are more instances of

edges in final BST with incorrectly recognized parents than edges with incorrectly recognized

relationships with parent. From the graph it is also visible that for the runs with minimum

parent and relation errors has better recognition rate. Figures 4.4 and 4.5 similarly shows

the error distribution for 10 different runs of 2-parsers and 3-parsers GTN structures re-

spectively.These graphs also shows the same behavior in which we have higher parent errors

as compared to relation errors. Each of the run showing more parent errors as compared to

relation errors can be explained using the following two figures:

Figure 4.6: Ground Truth BST
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Figure 4.7: DRACULAE Parsed BST

Figure 4.6 represents the ground truth BST for one such expression from INFTY

dataset and Figure 4.7 represents DRACULAE parsed BST. As can be seens from the

figure 4.6 symbol Overline is HOR to symbol Cup and symbols Gamma, Zeta and another

Cup are BELOW, SUBSC and HOR to Overline respectively. However in resulting parsed

BST (Figure 4.7) we found that symbol Gamma was incorrectly recognized as HOR to

symbol Cup which caused Symbols Overline, Zeta and Cup to be incorrectly associated as

child symbols of Gamma. This shows a single misrecognition of association between symbols

(Cup and Gamma here) leads to 3 parent errors and in our experiments when we obtain a

parent error we avoid an additional count of relation error(if there is one) to wrong parent.

This is essential to avoid incorrect count of errors. In another term we avoid associating

error count of 2 for incorrect parent and relation error just because had the parent was

correctly recognized, the relationship with the correct parent could have been correct. As a

result we end up having more parent errors than relation errors.

4.3 Error Comparison

Following figures shows the errors based comparison between different GTN struc-

tures. Figure 4.8 shows a bar chart depicting parent error comparison between GTNs with

1, 2 and 3 parsers. The bars charts gives the min, average and max view of parent error

from different GTN structures. Similarly, Figure 4.9 shows a bar chart depicting relation
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error comparison between different GTN structures.

Figure 4.8: Parent errors comparison between GTN structures having 1, 2 and 3 DRACU-
LAE parsers involved

4.3.1 Discussion

As can be inferred from the parent error graph 4.8, 2-Parsers GTN has average

parent errors more or less close to DRACULAE parent errors and hence gives better result

as compared to other 2 GTN structures. 2-Parser GTN also have loweest minimum parent

errors as compared to other 2 GTN structures. From graph 4.9, it can be seen that 3-

parsers GTN gives lowest average relation errors and is very close to relation errors from

DRACULAE. 2-Parsers GTN also shows the lowest min and max relation errors as compared

to other GTN structures thus resulting into better recognition rate. However to reitrerate,

as we have seen that parent errors contribute highly in total recognition error and therefore

any GTN structure which results into lower parent error will produce better recognition
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Figure 4.9: Relation errors comparison between GTN structures having 1, 2 and 3 DRAC-
ULAE parsers involved

results and vice-versa.

4.4 Summary

Our experiment employs a novel method to combine multiple structural recogni-

tion parsers (mathematical recognition DRACULAE parsers [28]) inorder to obtain higher

recognition rate. Our experiments support our hypothesis that by combining the recogni-

tion results from multiple similar structural recognition parsers, we can improve structural

recognition and obtain recognition rate higher than individual parser’s recognition rate.

From the above results we can see that by combining multiple DRACULAE parsers in GTN

we can obtain a recognition rate of maximum 74% which is higher than the best result

from vanilla DRACULAE result which is nearly 70%. Results also shows that the number
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of parent and relation errors can also be reduced from the combination. The best results

in Figure 4.8 shows a reduction of 20% in parent errors for 2-Parser BST and around 13%

reduction in parent errors for 1-Parser BST. 3-Parsers BST shows a slight increase of 1%

in parent errors. The best results in Figure 4.9 shows a 37% reduction in relation errors

for 3-Parsers BST, 20% reduction for 1-Parser BST and 17% reduction in 2-Parsers BST.

The average results doesnt look as promising due to low recognition in some experiment

runs affecting the overall average. Above results need to be improved inorder to maximize

average recognition rates and obtain consistent result.
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Chapter 5

Conclusion

Thesis Statement: Recognition performance of stuctural analysis parsers like

mathematical recognition parsers can be improved by adopting intelligent parser combi-

nation method.

We have presented a machine learning algorithm of combining multiple structural recogni-

tion algorithms thats supports our hypothesis. Similar experiment was presented by LeCun

et. al [3], but it was applied to one dimensional document symbol recognition problem. We

showed, in our experiments, that we can combine multiple instances of 2-dimensional math-

ematical recognition DRACULAE parsers to obtain a maximum recognition rate of 74% as

compared to the best rate of 70% from plain DRACULAE. Our experiment also showed

that the total parent and relation errors can be reduced with the combination leading to

better recognition of symbol’s parent and its spatial relationship with its parent.

The average results were not as promising due to lower recognition results from

some experimental runs which lower the average result. Other learning methods can be

employed and tested in order to maximize average recognition rates and obtain consistent

result. Section 4.2 explained that misrecognition of parent symbol is a higher contributing
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factor in recognition error, therefore we need to employ better handling of parent errors in

our experiment to reduce the number of parent errors (may be by highly penalizing parent

errors or using an error function that weights parent errors higher) and thus we can obtain

better recognition rate than what we obtained from the above experiments.

5.1 Future Work

The performance of our method can be improved by using other performance im-

proving machine learning algorithms like Boosting. Most widely used boosting algorithm

is AdaBoost (AdaptiveBoosting). AdaBoost train each of the base classifier in sequence

using a weighted form of the data set in which weighting coefficient of each data point are

adjusted according to the performance of the previous trained classifier so as to give greater

weight to misclassified data points. Boosting technique like AdaBoost can be applied to

GTN structure to either boost the intermediate results generated by a module of GTN or

boost the result given by entire GTN structure.

Our learning technique can be applied to other structural recognition algorithms like

table recognition [30] where we combine the results from multiple different algorithms. Such

a technique can overcome the recognition limits of each algorithm used in combination and

combined output can take advantage of each algorithm’s strength and reinforce it if the

algorithmic parameters are tuned correctly.
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[25] Ernesto Tapia and Raúl Rojas. Recognition of on-line handwritten mathematical

expressions using a minimum spanning tree construction and symbol dominance. In

GREC, volume 3088, pages 329–340, 2003.

[26] HM Twaakyondo and M. Okamoto. Structure analysis and recognition of mathematical

expressions. In Document Analysis and Recognition, 1995., Proceedings of the Third

International Conference on, volume 1, 1995.

[27] Hans Van Halteren, Jakub Zavrel, and Walter Daelemans. Improving data driven

wordclass tagging by system combination. pages 491–497, 1998.

[28] Blostein D. Zanibbi, R. and J.R Cordy. Recognizing mathematical expressions using

tree transformation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(11):1455–1467, 2002.

[29] R. Zanibbi, A. Pillay, H. Mouchere, C. Viard-Gaudin, and D. Blostein. Stroke-based

performance metrics for handwritten mathematical expressions. In Document Analysis

and Recognition (ICDAR), 2011 International Conference on, pages 334–338, Sept

2011.

[30] Richard Zanibbi, Dorothea Blostein, and James R. Cordy. Decision-based specification

and comparison of table recognition algorithms. In Machine Learning in Document

62



Analysis and Recognition, volume 90 of Studies in Computational Intelligence, pages

71–103. Springer, 2008.

63



Vita

Amit Arun Pillay was born in Nagpur, Maharashtra, India on September 21, 1984,

the son of Arun Pillay and Uma Pillay. He received the Bachelor of Engineering(B.E) de-

gree in Information Technology from Veermata Jijabai Technological Institute, Mumbai,

India in 2006. He obtained his Master of Science (M.S) degree from Rochester Institute

of Technology, United States of America. Currently he is working as a Software Engineer

at Silverpop, Atlanta, Georgia, US. His research interest includes Machine Learning, Pat-

tern Recognition, Computer Vision and Image Processing. His current research includes

combining syntactical pattern recognition techniques.

Permanent address: 615, Shadowood Pkwy SE,
Atlanta, Georgia, US

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald
Knuth’s TEX Program.

64


