tangent
Not Supported
D
g
u
x0
D
t
-
f
0
v
a
-
β
y
v
g
=
0
Search
Returned 89 matches (100 formulae, 138 docs)
Lookup 4077.520 ms, Re-ranking 335.304 ms
Found 106576498 tuple postings, 7147523 formulae, 3276100 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.4586
-16.0000
7.0000
0.4586
testing/NTCIR/xhtml5/6/1003.4698/1003.4698_1_61.xhtml
∂
a
v
-
Δ
D
v
-
β
2
u
η
v
=
0
,
v
(
0
)
=
ξ
μ
V
,
Doc 2
0.3500
-6.0000
5.0000
1.4000
testing/NTCIR/xhtml5/5/0705.2488/0705.2488_1_3.xhtml
D
2
ψ
D
t
2
-
ζ
ρ
ψ
=
0
D
𝐐
ξ
D
t
-
𝐐
λ
⊗
𝐐
ξ
=
0
D
2
𝐐
ξ
D
t
2
-
𝐐
ρ
⊗
𝐐
ξ
=
0
D
2
𝐐
ψ
D
t
2
-
𝐐
ρ
⊗
𝐐
ψ
=
0
Doc 3
0.3500
-7.0000
4.0000
0.3500
testing/NTCIR/xhtml5/5/0811.3630/0811.3630_1_7.xhtml
d
v
1
d
t
-
λ
v
1
v
3
=
0
Doc 4
0.3167
-4.0000
5.0000
0.3167
testing/NTCIR/xhtml5/1/math0005034/math0005034_1_59.xhtml
ρ
D
g
V
D
t
=
DIV
𝒫
,
Doc 5
0.3167
-5.0000
5.0000
0.3167
testing/NTCIR/xhtml5/5/0802.2131/0802.2131_1_35.xhtml
D
u
ξ
→
D
t
=
F
ξ
→
,
Doc 6
0.3167
-7.0000
4.0000
0.6123
testing/NTCIR/xhtml5/6/0912.4606/0912.4606_1_20.xhtml
D
p
a
D
t
=
m
D
v
a
D
t
D
C
i
j
D
t
=
0
,
Doc 7
0.2956
0.0000
4.0000
0.2956
testing/NTCIR/xhtml5/6/0912.4606/0912.4606_1_4.xhtml
D
p
i
D
t
Doc 8
0.2956
0.0000
4.0000
0.2956
testing/NTCIR/xhtml5/7/1010.3655/1010.3655_1_88.xhtml
D
C
K
D
t
Doc 9
0.2956
0.0000
3.0000
0.2956
testing/NTCIR/xhtml5/9/cond-mat9307009/cond-mat9307009_1_62.xhtml
d
u
0
d
t
Doc 10
0.2956
0.0000
3.0000
0.2956
testing/NTCIR/xhtml5/9/cond-mat9307009/cond-mat9307009_1_55.xhtml
d
u
0
d
t
Doc 11
0.2956
0.0000
3.0000
0.2956
testing/NTCIR/xhtml5/9/cond-mat9307009/cond-mat9307009_1_63.xhtml
d
u
0
d
t
Doc 12
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/4/math0511311/math0511311_1_77.xhtml
∫
β
d
v
g
=
0
Doc 13
0.2956
-1.0000
4.0000
0.8867
testing/NTCIR/xhtml5/5/0711.3258/0711.3258_1_49.xhtml
D
χ
2
D
t
=
D
χ
3
D
t
=
D
χ
4
D
t
=
Doc 14
0.2956
-1.0000
4.0000
0.2956
testing/NTCIR/xhtml5/7/1104.1339/1104.1339_1_71.xhtml
D
𝒅
M
D
t
φ
Doc 15
0.2956
-2.0000
3.0000
0.2956
testing/NTCIR/xhtml5/9/cond-mat9307009/cond-mat9307009_1_387.xhtml
d
u
0
d
t
=
0
Doc 16
0.2956
-3.0000
4.0000
0.2956
testing/NTCIR/xhtml5/4/math0506195/math0506195_1_86.xhtml
∫
M
u
f
2
v
g
=
0
Doc 17
0.2609
-2.0000
5.0000
0.2609
testing/NTCIR/xhtml5/5/0802.2131/0802.2131_1_63.xhtml
D
ω
D
t
=
f
,
Doc 18
0.2609
-6.0000
4.0000
0.2609
testing/NTCIR/xhtml5/7/1012.5364/1012.5364_1_14.xhtml
D
ρ
D
t
+
ρ
∇
⋅
u
=
0
Doc 19
0.2609
-6.0000
4.0000
0.2609
testing/NTCIR/xhtml5/7/1012.5143/1012.5143_1_11.xhtml
D
ρ
D
t
+
ρ
∇
⋅
u
=
0
Doc 20
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/8/1108.4321/1108.4321_1_15.xhtml
D
v
a
=
0
Doc 21
0.2410
-1.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/1003.5665/1003.5665_1_43.xhtml
ξ
a
v
a
=
0
Doc 22
0.2410
-1.0000
3.0000
0.2410
testing/NTCIR/xhtml5/10/hep-th9710109/hep-th9710109_1_6.xhtml
u
a
v
a
=
0
Doc 23
0.2410
-1.0000
3.0000
0.2410
testing/NTCIR/xhtml5/7/1012.4662/1012.4662_1_47.xhtml
t
a
v
a
=
0
Doc 24
0.2410
-1.0000
3.0000
0.2410
testing/NTCIR/xhtml5/7/1012.4662/1012.4662_1_16.xhtml
t
a
v
a
=
0
Doc 25
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/6/1003.0399/1003.0399_1_13.xhtml
D
u
a
=
=
0
Doc 26
0.2410
-1.0000
2.0000
0.2410
testing/NTCIR/xhtml5/7/1004.2176/1004.2176_1_28.xhtml
D
u
t
α
=
0
Doc 27
0.2410
-2.0000
4.0000
0.2410
testing/NTCIR/xhtml5/1/0911.1604/0911.1604_1_15.xhtml
D
s
D
t
=
0
Doc 28
0.2410
-2.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math-ph0512072/math-ph0512072_1_259.xhtml
D
s
D
t
=
0
Doc 29
0.2410
-2.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math-ph0310050/math-ph0310050_1_296.xhtml
D
s
D
t
=
0
Doc 30
0.2410
-2.0000
4.0000
0.2410
testing/NTCIR/xhtml5/5/0801.2632/0801.2632_1_90.xhtml
y
r
j
v
j
=
0
Doc 31
0.2410
-2.0000
4.0000
0.2410
testing/NTCIR/xhtml5/3/math-ph0311040/math-ph0311040_1_34.xhtml
D
s
D
t
=
0
Doc 32
0.2410
-2.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0611737/math0611737_1_82.xhtml
𝔤
1
y
1
v
=
0
Doc 33
0.2410
-2.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/1002.2693/1002.2693_1_42.xhtml
D
S
D
t
=
0
Doc 34
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/0906.2042/0906.2042_1_6.xhtml
Δ
q
0
v
t
=
0
Doc 35
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/4/math-ph0604052/math-ph0604052_1_139.xhtml
u
ε
t
v
ε
=
0
Doc 36
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/10/hep-th9607033/hep-th9607033_1_10.xhtml
D
μ
v
μ
a
=
0
Doc 37
0.2410
-2.0000
3.0000
0.2410
testing/NTCIR/xhtml5/4/math-ph0604052/math-ph0604052_1_138.xhtml
u
ε
t
v
ε
=
0
Doc 38
0.2410
-3.0000
4.0000
0.2410
testing/NTCIR/xhtml5/6/1002.2693/1002.2693_1_43.xhtml
D
R
D
t
=
0
,
Doc 39
0.2410
-6.0000
3.0000
0.2410
testing/NTCIR/xhtml5/2/math0205059/math0205059_1_6.xhtml
d
u
d
t
(
⋅
,
0
)
=
0
Doc 40
0.2410
-7.0000
2.0000
0.2410
testing/NTCIR/xhtml5/4/math0510384/math0510384_1_98.xhtml
∂
u
p
∂
t
-
L
u
p
=
0
Doc 41
0.2410
-8.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0507359/math0507359_1_21.xhtml
∫
M
(
Δ
g
u
^
α
i
)
d
v
g
=
0
Doc 42
0.2410
-8.0000
3.0000
0.2410
testing/NTCIR/xhtml5/4/math0505088/math0505088_1_45.xhtml
u
s
t
v
t
-
u
t
v
s
t
=
0
Doc 43
0.2410
-10.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/1002.1039/1002.1039_1_51.xhtml
(
v
-
u
)
g
+
∫
g
f
0
′
d
v
=
0
Doc 44
0.2410
-10.0000
3.0000
0.2410
testing/NTCIR/xhtml5/6/1002.1039/1002.1039_1_48.xhtml
(
v
-
u
)
g
+
∫
g
f
0
′
d
v
=
0
Doc 45
0.2041
-3.0000
3.0000
0.2041
testing/NTCIR/xhtml5/5/0805.1967/0805.1967_1_43.xhtml
L
X
v
-
μ
v
=
0
Doc 46
0.2041
-3.0000
3.0000
0.2041
testing/NTCIR/xhtml5/5/0805.1967/0805.1967_1_45.xhtml
L
X
v
-
μ
v
=
0
Doc 47
0.2041
-4.0000
3.0000
0.2041
testing/NTCIR/xhtml5/4/gr-qc0505085/gr-qc0505085_1_26.xhtml
m
0
D
u
¯
μ
d
τ
Doc 48
0.2041
-5.0000
3.0000
0.2041
testing/NTCIR/xhtml5/9/1309.3377/1309.3377_1_2.xhtml
b
(
t
)
v
t
-
Δ
v
=
0
Doc 49
0.2041
-6.0000
3.0000
0.2041
testing/NTCIR/xhtml5/6/0912.1123/0912.1123_1_8.xhtml
c
(
x
)
v
t
t
-
Δ
v
=
0
Doc 50
0.1860
0.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0901.4595/0901.4595_1_17.xhtml
y
v
=
0
Doc 51
0.1860
0.0000
4.0000
0.1860
testing/NTCIR/xhtml5/8/1209.1728/1209.1728_1_136.xhtml
v
g
=
0
Doc 52
0.1860
0.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/nlin0606070/nlin0606070_1_12.xhtml
v
g
=
0
Doc 53
0.1860
0.0000
4.0000
0.1860
testing/NTCIR/xhtml5/1/math0303156/math0303156_1_152.xhtml
v
g
=
0
Doc 54
0.1860
0.0000
4.0000
0.1860
testing/NTCIR/xhtml5/2/math0108173/math0108173_1_264.xhtml
y
v
=
0
Doc 55
0.1860
0.0000
4.0000
0.1860
testing/NTCIR/xhtml5/7/1010.3666/1010.3666_1_21.xhtml
v
g
=
0
Doc 56
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/2/hep-th0010045/hep-th0010045_1_50.xhtml
v
a
=
0
Doc 57
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/3/hep-th0402184/hep-th0402184_1_53.xhtml
v
a
=
0
Doc 58
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/3/hep-th0402184/hep-th0402184_1_52.xhtml
v
a
=
0
Doc 59
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1008.4120/1008.4120_1_228.xhtml
v
a
=
0
Doc 60
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/4/hep-th0612002/hep-th0612002_1_54.xhtml
v
a
=
0
Doc 61
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/5/hep-th0703143/hep-th0703143_1_103.xhtml
v
a
=
0
Doc 62
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/2/hep-th0010045/hep-th0010045_1_44.xhtml
v
a
=
0
Doc 63
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/2/hep-th0010045/hep-th0010045_1_52.xhtml
v
a
=
0
Doc 64
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/4/hep-th0612002/hep-th0612002_1_81.xhtml
v
a
=
0
Doc 65
0.1860
0.0000
3.0000
0.1860
testing/NTCIR/xhtml5/3/hep-th0311126/hep-th0311126_1_128.xhtml
v
a
=
0
Doc 66
0.1860
-1.0000
4.0000
0.1860
testing/NTCIR/xhtml5/8/1203.5987/1203.5987_1_69.xhtml
v
g
′
=
0
Doc 67
0.1860
-1.0000
3.0000
0.1860
testing/NTCIR/xhtml5/2/hep-th0208106/hep-th0208106_1_14.xhtml
v
¯
a
=
0
Doc 68
0.1860
-1.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1008.4785/1008.4785_1_21.xhtml
v
a
+
=
0
Doc 69
0.1860
-1.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1008.4785/1008.4785_1_29.xhtml
v
a
+
=
0
Doc 70
0.1860
-1.0000
3.0000
0.1860
testing/NTCIR/xhtml5/3/math0502531/math0502531_1_144.xhtml
v
a
i
=
0
Doc 71
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/3/math0502534/math0502534_1_42.xhtml
y
i
k
v
=
0
Doc 72
0.1860
-2.0000
3.0000
0.1860
testing/NTCIR/xhtml5/5/0806.0969/0806.0969_1_39.xhtml
u
0
v
0
=
0
Doc 73
0.1860
-2.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/1212.1273/1212.1273_1_44.xhtml
u
a
v
a
=
0
Doc 74
0.1860
-2.0000
3.0000
0.1860
testing/NTCIR/xhtml5/6/1002.1136/1002.1136_1_15.xhtml
u
a
v
a
=
0
Doc 75
0.1860
-2.0000
3.0000
0.1860
testing/NTCIR/xhtml5/6/1001.4823/1001.4823_1_6.xhtml
u
a
v
a
=
0
Doc 76
0.1860
-2.0000
3.0000
0.1860
testing/NTCIR/xhtml5/8/1112.2441/1112.2441_1_27.xhtml
-
L
0
v
=
0
Doc 77
0.1860
-2.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/hep-th9305085/hep-th9305085_1_30.xhtml
f
n
v
0
=
0
Doc 78
0.1860
-3.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1009.0257/1009.0257_1_121.xhtml
4
u
0
v
0
=
0
Doc 79
0.1860
-3.0000
3.0000
0.1860
testing/NTCIR/xhtml5/4/hep-th0510125/hep-th0510125_1_67.xhtml
v
-
a
v
c
=
0
Doc 80
0.1860
-3.0000
3.0000
0.1860
testing/NTCIR/xhtml5/7/1009.0257/1009.0257_1_125.xhtml
4
u
0
v
0
=
0
Doc 81
0.1860
-3.0000
2.0000
0.1860
testing/NTCIR/xhtml5/3/math0403396/math0403396_1_58.xhtml
D
A
0
u
0
=
0
Doc 82
0.1860
-4.0000
3.0000
0.1860
testing/NTCIR/xhtml5/5/0705.4439/0705.4439_1_65.xhtml
(
a
0
)
t
v
i
=
0
Doc 83
0.1860
-4.0000
3.0000
0.1860
testing/NTCIR/xhtml5/5/0805.3660/0805.3660_1_21.xhtml
∂
t
v
-
Δ
v
=
0
Doc 84
0.1860
-4.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/1311.6131/1311.6131_1_29.xhtml
v
t
t
-
Δ
v
=
0
Doc 85
0.1860
-4.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/1311.6131/1311.6131_1_15.xhtml
v
t
t
-
Δ
v
=
0
Doc 86
0.1860
-4.0000
3.0000
0.1860
testing/NTCIR/xhtml5/3/hep-th0406189/hep-th0406189_1_63.xhtml
d
d
t
v
l
=
0
Doc 87
0.1860
-5.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/1212.4030/1212.4030_1_129.xhtml
v
t
-
I
(
0
)
v
=
0
Doc 88
0.1860
-5.0000
3.0000
0.1860
testing/NTCIR/xhtml5/6/0812.4672/0812.4672_1_66.xhtml
v
2
-
c
0
v
0
=
0
Doc 89
0.1860
-5.0000
3.0000
0.1860
testing/NTCIR/xhtml5/5/0805.3789/0805.3789_1_3.xhtml
∂
t
v
-
Δ
v
m
=
0
Doc 90
0.1860
-5.0000
2.0000
0.1860
testing/NTCIR/xhtml5/9/1308.0720/1308.0720_1_84.xhtml
v
0
=
d
d
t
u
0
Doc 91
0.1860
-6.0000
4.0000
0.1860
testing/NTCIR/xhtml5/4/math0601060/math0601060_1_16.xhtml
D
D
t
(
r
v
θ
)
=
0
Doc 92
0.1860
-6.0000
3.0000
0.1860
testing/NTCIR/xhtml5/4/math0612037/math0612037_1_48.xhtml
(
1
-
f
0
g
1
)
c
=
0
Doc 93
0.1860
-6.0000
1.0000
0.1860
testing/NTCIR/xhtml5/3/math0310061/math0310061_1_34.xhtml
(
D
f
D
g
-
t
)
v
=
0
Doc 94
0.1860
-7.0000
3.0000
0.1860
testing/NTCIR/xhtml5/9/1309.3377/1309.3377_1_5.xhtml
|
x
|
-
α
v
t
-
Δ
v
=
0
Doc 95
0.1860
-7.0000
2.0000
0.1860
testing/NTCIR/xhtml5/9/1401.4277/1401.4277_1_1.xhtml
∂
u
∂
t
-
Δ
u
m
=
0
Doc 96
0.1860
-7.0000
2.0000
0.1860
testing/NTCIR/xhtml5/9/1401.4277/1401.4277_1_8.xhtml
∂
u
∂
t
-
Δ
u
m
=
0
Doc 97
0.1860
-7.0000
2.0000
0.1860
testing/NTCIR/xhtml5/4/math0701153/math0701153_1_2.xhtml
∂
u
∂
t
-
Δ
t
u
=
0
Doc 98
0.1860
-7.0000
2.0000
0.1860
testing/NTCIR/xhtml5/8/1206.2492/1206.2492_1_16.xhtml
∂
u
∂
t
-
Δ
u
m
=
0
Doc 99
0.1860
-10.0000
3.0000
0.1860
testing/NTCIR/xhtml5/6/1001.1787/1001.1787_1_10.xhtml
v
′′
+
α
v
′
-
β
v
+
v
p
=
0
Doc 100
0.1562
-11.0000
3.0000
0.1562
testing/NTCIR/xhtml5/1/1302.4513/1302.4513_1_2.xhtml
u
1
-
u
0
Δ
t
+
f
(
u
0
)
x
=
0
Doc 101
0.1455
-1.0000
4.0000
0.1455
testing/NTCIR/xhtml5/5/0706.3166/0706.3166_1_27.xhtml
D
u
d
t
Doc 102
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/8/1111.0607/1111.0607_1_11.xhtml
u
0
=
v
0
=
0
Doc 103
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/7/1106.3673/1106.3673_1_58.xhtml
u
0
=
v
0
=
0
Doc 104
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/8/1111.0607/1111.0607_1_36.xhtml
u
0
=
v
0
=
0
Doc 105
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/7/1106.3673/1106.3673_1_55.xhtml
u
0
=
v
0
=
0
Doc 106
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/7/1009.0257/1009.0257_1_113.xhtml
u
0
=
v
0
=
0
Doc 107
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/7/1009.0257/1009.0257_1_114.xhtml
u
0
=
v
0
=
0
Doc 108
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/2/hep-th0108110/hep-th0108110_1_2.xhtml
u
0
=
v
0
=
0
Doc 109
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/8/1112.3306/1112.3306_1_107.xhtml
u
0
+
v
~
=
0
Doc 110
0.1455
-3.0000
3.0000
0.1455
testing/NTCIR/xhtml5/3/math-ph0302057/math-ph0302057_1_6.xhtml
u
0
=
v
0
=
0
Doc 111
0.1455
-5.0000
1.0000
0.1455
testing/NTCIR/xhtml5/6/1002.2129/1002.2129_1_79.xhtml
ψ
0
(
u
g
)
∈
D
v
g
Doc 112
0.1455
-9.0000
3.0000
0.1455
testing/NTCIR/xhtml5/5/0803.3670/0803.3670_1_33.xhtml
f
0
(
u
k
)
-
f
0
(
u
j
)
≤
b
Doc 113
0.1455
-14.0000
3.0000
0.1455
testing/NTCIR/xhtml5/9/1309.4824/1309.4824_1_9.xhtml
∂
u
∂
t
-
u
∇
u
=
0
,
u
(
0
)
=
u
0
Doc 114
0.1304
-2.0000
2.0000
0.1304
testing/NTCIR/xhtml5/8/1206.5515/1206.5515_1_118.xhtml
D
u
t
0
*
Doc 115
0.1304
-3.0000
3.0000
0.1304
testing/NTCIR/xhtml5/2/hep-th0104227/hep-th0104227_1_38.xhtml
v
a
v
a
=
0
Doc 116
0.1304
-3.0000
3.0000
0.1304
testing/NTCIR/xhtml5/10/math-ph9903032/math-ph9903032_1_45.xhtml
f
(
t
)
-
f
0
Doc 117
0.1304
-4.0000
3.0000
0.1304
testing/NTCIR/xhtml5/3/math0401205/math0401205_1_43.xhtml
f
0
=
-
f
~
0
Doc 118
0.1304
-4.0000
3.0000
0.1304
testing/NTCIR/xhtml5/3/math0401205/math0401205_1_37.xhtml
f
0
=
-
f
~
0
Doc 119
0.1304
-4.0000
3.0000
0.1304
testing/NTCIR/xhtml5/5/0805.1612/0805.1612_1_42.xhtml
f
0
′′
=
-
f
0
Doc 120
0.1304
-4.0000
2.0000
0.1304
testing/NTCIR/xhtml5/8/1208.2453/1208.2453_1_15.xhtml
v
0
2
-
u
0
2
Doc 121
0.1304
-4.0000
2.0000
0.1304
testing/NTCIR/xhtml5/6/0902.3300/0902.3300_1_87.xhtml
|
D
3
u
∞
|
=
0
Doc 122
0.1304
-4.0000
2.0000
0.1304
testing/NTCIR/xhtml5/8/1208.2453/1208.2453_1_16.xhtml
v
0
2
-
u
0
2
Doc 123
0.1304
-4.0000
2.0000
0.1304
testing/NTCIR/xhtml5/6/0902.3300/0902.3300_1_83.xhtml
f
0
=
D
u
0
k
Doc 124
0.1304
-5.0000
3.0000
0.1304
testing/NTCIR/xhtml5/6/0908.1196/0908.1196_1_32.xhtml
v
r
r
-
△
v
=
0
Doc 125
0.1304
-5.0000
3.0000
0.1304
testing/NTCIR/xhtml5/6/0908.1196/0908.1196_1_8.xhtml
v
t
t
-
△
v
=
0
Doc 126
0.1304
-5.0000
3.0000
0.1304
testing/NTCIR/xhtml5/6/0908.1196/0908.1196_1_38.xhtml
v
r
r
-
△
v
=
0
Doc 127
0.1304
-5.0000
3.0000
0.1304
testing/NTCIR/xhtml5/6/1001.3177/1001.3177_1_33.xhtml
v
t
t
-
△
v
=
0
Doc 128
0.1304
-6.0000
3.0000
0.1304
testing/NTCIR/xhtml5/3/math0309154/math0309154_1_63.xhtml
f
(
z
0
-
t
)
-
f
0
Doc 129
0.1304
-6.0000
3.0000
0.1304
testing/NTCIR/xhtml5/9/1312.0990/1312.0990_1_13.xhtml
(
u
0
)
ν
v
0
ν
=
0
Doc 130
0.1304
-8.0000
2.0000
0.1304
testing/NTCIR/xhtml5/7/1106.0686/1106.0686_1_52.xhtml
∂
t
α
(
v
-
u
0
)
-
Δ
v
Doc 131
0.1304
-8.0000
2.0000
0.1304
testing/NTCIR/xhtml5/10/hep-th9501129/hep-th9501129_1_7.xhtml
(
D
u
0
)
+
2
u
-
1
=
0
Doc 132
0.1304
-8.0000
2.0000
0.1304
testing/NTCIR/xhtml5/10/hep-th9501129/hep-th9501129_1_9.xhtml
(
D
u
0
)
+
2
u
-
1
=
0
Doc 133
0.0879
-2.0000
3.0000
0.0879
testing/NTCIR/xhtml5/4/math-ph0702022/math-ph0702022_1_19.xhtml
∂
u
0
∂
t
Doc 134
0.0879
-2.0000
3.0000
0.0879
testing/NTCIR/xhtml5/9/hep-th9304152/hep-th9304152_1_31.xhtml
∂
u
0
∂
t
Doc 135
0.0879
-4.0000
3.0000
0.0879
testing/NTCIR/xhtml5/2/hep-th0110125/hep-th0110125_1_42.xhtml
∂
u
1
∂
t
=
0
Doc 136
0.0727
-5.0000
2.0000
0.0727
testing/NTCIR/xhtml5/10/alg-geom9510012/alg-geom9510012_1_42.xhtml
D
(
u
0
)
=
0
Doc 137
0.0727
-9.0000
2.0000
0.0727
testing/NTCIR/xhtml5/4/math0610051/math0610051_1_5.xhtml
∂
u
∂
t
(
x
,
0
)
=
0
Doc 138
0.0727
-9.0000
2.0000
0.0727
testing/NTCIR/xhtml5/11/math9909139/math9909139_1_24.xhtml
∂
u
∂
t
(
x
,
0
)
=
0