tangent
Not Supported
(
x
+
y
)
n
=
∑
x0
n
(
n
k
)
x
n
-
k
y
k
=
∑
x1
n
(
n
k
)
x
x2
y
n
-
k
.
Search
Returned 96 matches (100 formulae, 60 docs)
Lookup 38.658 ms, Re-ranking 5402.658 ms
Found 233030 tuple postings, 98875 formulae, 16977 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
-
k
y
k
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
.
Doc 1
0.9365, -6.0000, 29.0000, 2.6917
testing/wikipedia/v3/00133.html
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
-
k
y
k
Doc 2
0.5554, -2.0000, 17.0000, 1.6253
testing/wikipedia/v3/00131.html
Doc 3
0.5554, -2.0000, 17.0000, 1.0885
testing/wikipedia/v3/01569.html
(
y
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
y
n
-
k
x
k
Doc 4
0.5554, -2.0000, 13.0000, 2.6088
testing/wikipedia/v3/03031.html
(
x
+
y
)
n
=
∑
i
=
0
n
(
n
i
)
x
n
-
i
y
i
,
Doc 5
0.5554, -3.0000, 14.0000, 0.5554
testing/wikipedia/v3/02165.html
(
x
+
y
)
n
+
1
=
∑
k
=
0
n
+
1
(
n
+
1
k
)
x
n
+
1
-
k
y
k
,
Doc 1
0.9365, -6.0000, 29.0000, 2.6917
testing/wikipedia/v3/00133.html
𝐻𝑒
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
x
n
-
k
𝐻𝑒
k
(
y
)
Doc 6
0.4600, -8.0000, 14.0000, 1.3902
testing/wikipedia/v3/02848.html
(
Δ
n
c
)
0
=
∑
k
=
0
n
(
n
k
)
(
-
1
)
n
-
k
z
k
=
(
z
-
1
)
n
.
Doc 7
0.4364, -13.0000, 13.0000, 1.2116
testing/wikipedia/v3/19294.html
P
n
(
x
)
=
1
2
n
∑
k
=
0
n
(
n
k
)
2
(
x
-
1
)
n
-
k
(
x
+
1
)
k
=
∑
k
=
0
n
(
n
k
)
(
-
n
-
1
k
)
(
1
-
x
2
)
k
=
2
n
⋅
∑
k
=
0
n
x
k
(
n
k
)
(
n
+
k
-
1
2
n
)
,
Doc 8
0.4364, -60.0000, 15.0000, 0.6220
testing/wikipedia/v3/02190.html
1
=
1
n
=
(
p
+
q
)
n
=
∑
k
=
0
n
(
n
k
)
p
k
q
n
-
k
.
Doc 9
0.4282, -12.0000, 9.0000, 0.8247
testing/wikipedia/v3/01438.html
c
n
=
∑
i
=
0
n
x
i
i
!
y
n
-
i
(
n
-
i
)
!
=
1
n
!
∑
i
=
0
n
(
n
i
)
x
i
y
n
-
i
=
(
x
+
y
)
n
n
!
Doc 10
0.4108, -37.0000, 11.0000, 0.4108
testing/wikipedia/v3/06782.html
Δ
n
=
(
E
-
I
)
n
=
∑
k
=
0
n
(
n
k
)
(
-
1
)
n
-
k
E
k
,
Doc 7
0.4364, -13.0000, 13.0000, 1.2116
testing/wikipedia/v3/19294.html
(
x
+
y
)
α
=
∑
ν
≤
α
(
α
ν
)
x
ν
y
α
-
ν
.
Doc 1
0.9365, -6.0000, 29.0000, 2.6917
testing/wikipedia/v3/00133.html
Doc 11
0.3964, -7.0000, 9.0000, 0.3964
testing/wikipedia/v3/05791.html
(
p
+
q
)
n
=
∑
k
=
0
∞
(
n
k
)
p
k
q
n
-
k
,
Doc 9
0.4282, -12.0000, 9.0000, 0.8247
testing/wikipedia/v3/01438.html
T
0
(
x
)
=
1
,
T
n
(
x
)
=
∑
k
=
1
n
S
(
n
,
k
)
x
k
=
∑
k
=
1
n
{
n
k
}
x
k
,
n
>
0
,
Doc 12
0.3919, -26.0000, 12.0000, 0.7247
testing/wikipedia/v3/04139.html
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
b
n
-
k
x
k
=
(
b
+
x
)
n
,
Doc 4
0.5554, -2.0000, 13.0000, 2.6088
testing/wikipedia/v3/03031.html
(
1
+
1
/
n
)
n
=
∑
k
=
0
n
(
n
k
)
/
n
k
=
∑
k
=
0
n
1
k
!
×
n
n
×
n
-
1
n
×
⋯
×
n
-
k
+
1
n
,
Doc 13
0.3822, -35.0000, 14.0000, 0.3822
testing/wikipedia/v3/02327.html
B
n
(
x
)
=
∑
j
=
0
n
(
n
j
)
B
j
x
n
-
j
Doc 14
0.3788, -6.0000, 7.0000, 0.3788
testing/wikipedia/v3/04615.html
∑
k
=
0
n
(
n
k
)
B
n
-
k
(
y
)
x
k
=
∑
k
=
0
n
(
n
k
)
L
(
(
2
y
)
n
-
k
)
x
k
=
L
(
∑
k
=
0
n
(
n
k
)
(
2
y
)
n
-
k
x
k
)
=
L
(
(
2
y
+
x
)
n
)
=
B
n
(
x
+
y
)
.
Doc 4
0.5554, -2.0000, 13.0000, 2.6088
testing/wikipedia/v3/03031.html
∑
j
=
k
n
(
n
j
)
(
-
1
)
n
-
j
=
-
∑
j
=
0
k
-
1
(
n
j
)
(
-
1
)
n
-
j
=
(
-
1
)
n
-
k
(
n
-
1
k
-
1
)
.
Doc 7
0.4364, -13.0000, 13.0000, 1.2116
testing/wikipedia/v3/19294.html
(
x
1
+
⋯
+
x
m
)
n
=
∑
|
α
|
=
n
(
n
α
)
x
α
Doc 15
0.3646, -8.0000, 9.0000, 0.3646
testing/wikipedia/v3/05760.html
s
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
x
k
s
n
-
k
(
y
)
.
Doc 16
0.3646, -12.0000, 11.0000, 1.2353
testing/wikipedia/v3/03081.html
1
e
∑
k
=
x
∞
k
n
(
k
-
x
)
!
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
Doc 17
0.3646, -19.0000, 9.0000, 0.3646
testing/wikipedia/v3/09424.html
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
n
-
k
x
k
applying the definition of Bernoulli polynomials
=
∑
k
=
0
n
(
n
k
)
L
(
y
n
-
k
)
x
k
applying the above definition
=
L
(
∑
k
=
0
n
(
n
k
)
y
n
-
k
x
k
)
since L is linear
=
L
(
(
y
+
x
)
n
)
.
Doc 4
0.5554, -2.0000, 13.0000, 2.6088
testing/wikipedia/v3/03031.html
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
⋅
x
k
.
Doc 18
0.3596, -5.0000, 10.0000, 0.3596
testing/wikipedia/v3/03830.html
Δ
n
[
f
]
(
x
)
=
∑
k
=
0
n
(
n
k
)
(
-
1
)
n
-
k
f
(
x
+
k
)
Doc 19
0.3596, -13.0000, 11.0000, 0.3596
testing/wikipedia/v3/12635.html
(
x
1
+
x
2
)
n
=
∑
k
1
+
k
2
=
n
(
n
k
1
,
k
2
)
x
1
k
1
x
2
k
2
;
k
1
,
k
2
,
n
∈
ℕ
0
Doc 20
0.3596, -29.0000, 11.0000, 0.6744
testing/wikipedia/v3/10096.html
u
n
=
∑
k
=
0
n
(
n
k
)
a
k
(
-
c
)
n
-
k
b
k
Doc 21
0.3468, -9.0000, 9.0000, 0.6160
testing/wikipedia/v3/12660.html
(
x
♢
y
)
n
=
∑
j
=
1
n
-
1
(
n
j
)
x
j
y
n
-
j
Doc 22
0.3468, -10.0000, 10.0000, 0.6796
testing/wikipedia/v3/05621.html
(
f
⋅
g
)
(
n
)
=
∑
k
=
0
n
(
n
k
)
f
(
k
)
g
(
n
-
k
)
Doc 23
0.3468, -11.0000, 7.0000, 0.3468
testing/wikipedia/v3/07606.html
H
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
H
k
(
x
)
(
2
y
)
(
n
-
k
)
=
2
-
n
2
⋅
∑
k
=
0
n
(
n
k
)
H
n
-
k
(
x
2
)
H
k
(
y
2
)
.
Doc 6
0.4600, -8.0000, 14.0000, 1.3902
testing/wikipedia/v3/02848.html
(
x
1
+
y
1
)
n
1
⋯
(
x
d
+
y
d
)
n
d
=
∑
k
1
=
0
n
1
⋯
∑
k
d
=
0
n
d
(
n
1
k
1
)
x
1
k
1
y
1
n
1
-
k
1
…
(
n
d
k
d
)
x
d
k
d
y
d
n
d
-
k
d
.
Doc 1
0.9365, -6.0000, 29.0000, 2.6917
testing/wikipedia/v3/00133.html
(
s
+
t
)
n
=
∑
k
=
0
n
(
n
k
)
(
s
)
k
(
t
)
n
-
k
Doc 24
0.3328, -11.0000, 8.0000, 0.3328
testing/wikipedia/v3/06981.html
B
n
(
x
)
=
∑
k
=
0
n
(
n
n
-
k
)
b
k
x
n
-
k
,
Doc 25
0.3328, -11.0000, 8.0000, 0.3328
testing/wikipedia/v3/28068.html
(
a
+
b
)
n
=
∑
j
=
0
n
(
n
j
)
(
a
)
n
-
j
(
b
)
j
Doc 26
0.3328, -11.0000, 7.0000, 0.9483
testing/wikipedia/v3/03187.html
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
(
x
)
n
-
k
(
y
)
k
,
Doc 28
0.3328, -12.0000, 10.0000, 0.3328
testing/wikipedia/v3/01177.html
E
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
E
k
(
x
)
y
n
-
k
Doc 27
0.3328, -12.0000, 10.0000, 1.2175
testing/wikipedia/v3/03168.html
B
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
x
)
y
n
-
k
Doc 27
0.3328, -12.0000, 10.0000, 1.2175
testing/wikipedia/v3/03168.html
B
n
(
y
+
x
)
=
∑
k
=
0
n
(
n
k
)
B
n
-
k
(
y
)
x
k
Doc 4
0.5554, -2.0000, 13.0000, 2.6088
testing/wikipedia/v3/03031.html
p
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
p
k
(
x
)
y
n
-
k
.
Doc 29
0.3328, -13.0000, 10.0000, 0.8651
testing/wikipedia/v3/09031.html
B
n
(
y
+
x
)
=
∑
k
=
0
n
(
n
k
)
B
n
-
k
(
y
)
x
k
.
Doc 4
0.5554, -2.0000, 13.0000, 2.6088
testing/wikipedia/v3/03031.html
p
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
p
k
(
x
)
p
n
-
k
(
y
)
Doc 22
0.3468, -10.0000, 10.0000, 0.6796
testing/wikipedia/v3/05621.html
(
a
+
b
)
(
n
)
=
∑
j
=
0
n
(
n
j
)
(
a
)
(
n
-
j
)
(
b
)
(
j
)
Doc 26
0.3328, -11.0000, 7.0000, 0.9483
testing/wikipedia/v3/03187.html
s
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
p
k
(
x
)
s
n
-
k
(
y
)
.
Doc 16
0.3646, -12.0000, 11.0000, 1.2353
testing/wikipedia/v3/03081.html
p
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
p
k
(
x
)
p
n
-
k
(
y
)
.
Doc 16
0.3646, -12.0000, 11.0000, 1.2353
testing/wikipedia/v3/03081.html
Doc 30
0.3328, -15.0000, 10.0000, 0.6020
testing/wikipedia/v3/02880.html
T
n
(
λ
+
μ
)
=
∑
k
=
0
n
(
n
k
)
T
k
(
λ
)
T
n
-
k
(
μ
)
.
Doc 12
0.3919, -26.0000, 12.0000, 0.7247
testing/wikipedia/v3/04139.html
(
x
)
(
n
)
=
x
(
x
+
1
)
⋯
(
x
+
n
-
1
)
=
∑
k
=
0
n
[
n
k
]
x
k
Doc 31
0.3328, -17.0000, 9.0000, 0.3328
testing/wikipedia/v3/10245.html
𝐻𝑒
n
[
α
+
β
]
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
𝐻𝑒
k
[
α
]
(
x
)
𝐻𝑒
n
-
k
[
β
]
(
y
)
.
Doc 6
0.4600, -8.0000, 14.0000, 1.3902
testing/wikipedia/v3/02848.html
p
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
c
k
x
n
-
k
;
Doc 29
0.3328, -13.0000, 10.0000, 0.8651
testing/wikipedia/v3/09031.html
∑
ν
=
0
n
b
ν
,
n
(
x
)
=
∑
ν
=
0
n
(
n
ν
)
x
ν
(
1
-
x
)
n
-
ν
=
(
x
+
(
1
-
x
)
)
n
=
1.
Doc 32
0.3273, -28.0000, 10.0000, 0.3273
testing/wikipedia/v3/04108.html
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
Doc 33
0.3148, -5.0000, 10.0000, 0.3148
testing/wikipedia/v3/02183.html
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
.
Doc 1
0.9365, -6.0000, 29.0000, 2.6917
testing/wikipedia/v3/00133.html
(
1
+
x
+
1
/
x
)
n
=
∑
k
=
-
n
n
(
n
k
)
2
x
k
Doc 34
0.3148, -11.0000, 10.0000, 0.6096
testing/wikipedia/v3/30027.html
(
x
1
)
n
=
∑
k
1
=
n
(
n
k
1
)
x
1
k
1
;
k
1
,
n
∈
ℕ
0
Doc 20
0.3596, -29.0000, 11.0000, 0.6744
testing/wikipedia/v3/10096.html
μ
n
(
t
+
s
)
=
∑
k
=
0
n
(
n
k
)
μ
k
(
t
)
μ
n
-
k
(
s
)
.
Doc 35
0.3148, -15.0000, 8.0000, 0.3148
testing/wikipedia/v3/07298.html
Var
(
X
)
=
∑
k
=
0
n
(
n
k
)
p
k
(
1
-
p
)
n
-
k
(
k
-
n
p
)
2
=
n
p
(
1
-
p
)
,
Doc 36
0.3148, -24.0000, 9.0000, 0.3148
testing/wikipedia/v3/01076.html
d
n
f
=
∑
k
=
0
n
(
n
k
)
∂
n
f
∂
x
k
∂
y
n
-
k
(
d
x
)
k
(
d
y
)
n
-
k
,
Doc 37
0.3148, -24.0000, 7.0000, 0.3148
testing/wikipedia/v3/24576.html
Δ
(
X
n
)
=
∑
k
=
0
n
(
n
k
)
X
k
⊗
X
n
-
k
,
Doc 38
0.3010, -11.0000, 7.0000, 0.3010
testing/wikipedia/v3/03879.html
cos
n
θ
=
∑
k
=
0
n
(
n
k
)
cos
k
θ
sin
n
-
k
θ
cos
(
1
2
(
n
-
k
)
π
)
Doc 39
0.3010, -20.0000, 6.0000, 0.6020
testing/wikipedia/v3/25136.html
sin
n
x
=
∑
k
=
0
n
(
n
k
)
cos
k
x
sin
n
-
k
x
sin
(
1
2
(
n
-
k
)
π
)
Doc 40
0.3010, -20.0000, 6.0000, 0.6020
testing/wikipedia/v3/01767.html
sin
n
θ
=
∑
k
=
0
n
(
n
k
)
cos
k
θ
sin
n
-
k
θ
sin
(
1
2
(
n
-
k
)
π
)
Doc 39
0.3010, -20.0000, 6.0000, 0.6020
testing/wikipedia/v3/25136.html
cos
n
x
=
∑
k
=
0
n
(
n
k
)
cos
k
x
sin
n
-
k
x
cos
(
1
2
(
n
-
k
)
π
)
.
Doc 40
0.3010, -20.0000, 6.0000, 0.6020
testing/wikipedia/v3/01767.html
(
1
+
x
+
x
2
)
n
=
∑
j
=
0
2
n
(
n
j
-
n
)
2
x
j
=
∑
k
=
-
n
n
(
n
k
)
2
x
n
+
k
Doc 34
0.3148, -11.0000, 10.0000, 0.6096
testing/wikipedia/v3/30027.html
(
1
+
n
)
x
=
∑
k
=
0
n
(
n
k
)
x
k
=
1
+
n
x
+
(
x
2
)
n
2
+
h
i
g
h
e
r
p
o
w
e
r
s
o
f
n
Doc 41
0.2948, -32.0000, 10.0000, 0.2948
testing/wikipedia/v3/05108.html
d
n
d
x
n
[
f
(
x
)
g
(
x
)
]
=
∑
k
=
0
n
(
n
k
)
d
n
-
k
d
x
n
-
k
f
(
x
)
d
k
d
x
k
g
(
x
)
Doc 42
0.2948, -33.0000, 6.0000, 0.2948
testing/wikipedia/v3/16716.html
(
1
+
X
)
n
=
∑
k
≥
0
(
n
k
)
X
k
,
Doc 43
0.2827, -6.0000, 8.0000, 0.2827
testing/wikipedia/v3/00150.html
(
1
+
x
)
n
=
∑
r
=
0
∞
(
n
r
)
x
r
.
Doc 44
0.2827, -7.0000, 8.0000, 0.2827
testing/wikipedia/v3/24901.html
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
b
n
-
k
x
k
,
Doc 27
0.3328, -12.0000, 10.0000, 1.2175
testing/wikipedia/v3/03168.html
(
1
+
x
)
n
=
∑
k
=
0
∞
(
n
k
)
x
k
|
x
|
<
1
Doc 3
0.5554, -2.0000, 17.0000, 1.0885
testing/wikipedia/v3/01569.html
W
(
C
;
x
,
y
)
=
∑
w
=
0
n
A
w
x
w
y
n
-
w
.
Doc 45
0.2827, -12.0000, 8.0000, 0.2827
testing/wikipedia/v3/09485.html
L
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
(
-
1
)
k
k
!
x
k
.
Doc 46
0.2827, -13.0000, 9.0000, 0.2827
testing/wikipedia/v3/07059.html
(
x
)
m
(
x
)
n
=
∑
k
=
0
m
(
m
k
)
(
n
k
)
k
!
(
x
)
m
+
n
-
k
.
Doc 26
0.3328, -11.0000, 7.0000, 0.9483
testing/wikipedia/v3/03187.html
(
u
v
)
(
n
)
(
x
)
=
∑
k
=
0
n
(
n
k
)
⋅
u
(
n
-
k
)
(
x
)
⋅
v
(
k
)
(
x
)
.
Doc 47
0.2827, -21.0000, 8.0000, 0.2827
testing/wikipedia/v3/03398.html
c
n
=
∑
k
=
0
n
(
n
k
)
b
k
Doc 48
0.2692, -4.0000, 6.0000, 0.2692
testing/wikipedia/v3/04410.html
a
n
=
∑
k
=
0
n
(
n
k
)
t
k
.
Doc 21
0.3468, -9.0000, 9.0000, 0.6160
testing/wikipedia/v3/12660.html
c
n
=
∑
k
=
0
n
(
n
k
)
a
k
b
n
-
k
Doc 30
0.3328, -15.0000, 10.0000, 0.6020
testing/wikipedia/v3/02880.html
∑
n
,
k
(
n
k
)
x
k
y
n
=
1
1
-
y
-
x
y
.
Doc 2
0.5554, -2.0000, 17.0000, 1.6253
testing/wikipedia/v3/00131.html
∑
n
,
k
(
n
+
k
k
)
x
k
y
n
=
1
1
-
x
-
y
.
Doc 2
0.5554, -2.0000, 17.0000, 1.6253
testing/wikipedia/v3/00131.html
Δ
n
x
m
=
∑
k
=
0
n
(
-
1
)
n
-
k
(
n
k
)
(
x
+
k
)
m
Doc 27
0.3328, -12.0000, 10.0000, 1.2175
testing/wikipedia/v3/03168.html
P
e
=
∑
k
=
n
+
1
2
n
(
n
k
)
ϵ
k
(
1
-
ϵ
)
(
n
-
k
)
Doc 49
0.2692, -16.0000, 6.0000, 0.2692
testing/wikipedia/v3/12064.html
∑
n
,
k
(
n
k
)
x
k
y
n
=
1
1
-
(
1
+
x
)
y
=
1
1
-
y
-
x
y
.
Doc 50
0.2692, -22.0000, 7.0000, 0.2692
testing/wikipedia/v3/02490.html
<
L
1
L
2
|
x
n
>
=
∑
k
=
0
n
(
n
k
)
<
L
1
|
x
k
>
<
L
2
|
x
n
-
k
>
.
Doc 4
0.5554, -2.0000, 13.0000, 2.6088
testing/wikipedia/v3/03031.html
∑
k
=
0
n
(
n
k
)
k
n
-
k
Doc 51
0.2505, -3.0000, 8.0000, 0.2505
testing/wikipedia/v3/00526.html
(
x
+
1
)
n
=
∑
i
=
0
n
a
i
x
i
.
Doc 3
0.5554, -2.0000, 17.0000, 1.0885
testing/wikipedia/v3/01569.html
b
n
=
∑
k
=
0
n
(
n
k
)
2
(
n
+
k
k
)
2
.
Doc 52
0.2505, -10.0000, 6.0000, 0.4034
testing/wikipedia/v3/09155.html
∑
k
=
0
n
(
n
k
)
𝐻𝑒
k
[
α
]
(
x
)
𝐻𝑒
n
-
k
[
-
α
]
(
y
)
=
𝐻𝑒
n
[
0
]
(
x
+
y
)
=
(
x
+
y
)
n
.
Doc 6
0.4600, -8.0000, 14.0000, 1.3902
testing/wikipedia/v3/02848.html
D
(
n
)
=
∑
k
=
0
n
(
n
k
)
(
n
+
k
k
)
.
Doc 53
0.2373, -10.0000, 7.0000, 0.2373
testing/wikipedia/v3/21377.html
H
n
(
x
)
=
∑
k
=
0
n
(
n
+
k
n
-
k
)
(
-
x
)
k
.
Doc 54
0.2373, -14.0000, 7.0000, 0.2373
testing/wikipedia/v3/03051.html
B
n
=
∑
k
=
0
n
-
1
(
n
-
1
k
)
n
4
n
-
2
n
E
k
(
n
=
2
,
4
,
6
,
…
)
E
n
=
∑
k
=
1
n
(
n
k
-
1
)
2
k
-
4
k
k
B
k
(
n
=
2
,
4
,
6
,
…
)
Doc 55
0.2293, -58.0000, 7.0000, 0.2293
testing/wikipedia/v3/00144.html
(
x
)
n
=
∑
k
=
1
n
(
-
1
)
n
-
k
L
(
n
,
k
)
x
(
k
)
.
Doc 56
0.2054, -17.0000, 5.0000, 0.2054
testing/wikipedia/v3/02101.html
∑
n
,
k
1
(
n
+
k
)
!
(
n
+
k
k
)
x
k
y
n
=
e
x
+
y
.
Doc 2
0.5554, -2.0000, 17.0000, 1.6253
testing/wikipedia/v3/00131.html
(
x
+
y
)
n
=
(
n
0
)
x
n
y
0
+
(
n
1
)
x
n
-
1
y
1
+
(
n
2
)
x
n
-
2
y
2
+
⋯
+
(
n
n
-
1
)
x
1
y
n
-
1
+
(
n
n
)
x
0
y
n
,
Doc 1
0.9365, -6.0000, 29.0000, 2.6917
testing/wikipedia/v3/00133.html
p
n
(
x
)
=
∑
k
=
0
n
a
n
,
k
x
k
and
q
n
(
x
)
=
∑
k
=
0
n
b
n
,
k
x
k
.
Doc 16
0.3646, -12.0000, 11.0000, 1.2353
testing/wikipedia/v3/03081.html
Doc 29
0.3328, -13.0000, 10.0000, 0.8651
testing/wikipedia/v3/09031.html
(
1
+
x
)
∑
k
=
0
n
(
α
k
)
x
k
=
∑
k
=
0
n
(
α
+
1
k
)
x
k
+
(
α
n
)
x
n
+
1
,
Doc 57
0.1961, -28.0000, 7.0000, 0.1961
testing/wikipedia/v3/06249.html
P
n
~
(
x
)
=
(
-
1
)
n
∑
k
=
0
n
(
n
k
)
(
n
+
k
k
)
(
-
x
)
k
.
Doc 8
0.4364, -60.0000, 15.0000, 0.6220
testing/wikipedia/v3/02190.html
∑
k
(
n
k
)
x
k
=
(
1
+
x
)
n
.
Doc 2
0.5554, -2.0000, 17.0000, 1.6253
testing/wikipedia/v3/00131.html
a
n
=
∑
k
=
1
n
(
-
1
)
k
-
1
(
n
k
)
2
k
(
n
-
k
)
a
n
-
k
.
Doc 58
0.1734, -22.0000, 3.0000, 0.1734
testing/wikipedia/v3/02934.html
(
n
k
+
1
)
=
n
-
k
k
+
1
(
n
k
)
Doc 2
0.5554, -2.0000, 17.0000, 1.6253
testing/wikipedia/v3/00131.html
y
n
=
∑
k
=
0
n
-
1
h
k
x
n
-
k
Doc 59
0.1529, -10.0000, 5.0000, 0.1529
testing/wikipedia/v3/01263.html
a
n
=
∑
k
=
0
n
c
n
,
k
(
n
k
)
2
(
n
+
k
k
)
2
Doc 52
0.2505, -10.0000, 6.0000, 0.4034
testing/wikipedia/v3/09155.html
θ
n
(
x
)
=
x
n
y
n
(
1
/
x
)
=
∑
k
=
0
n
(
2
n
-
k
)
!
(
n
-
k
)
!
k
!
x
k
2
n
-
k
Doc 60
0.1529, -34.0000, 4.0000, 0.1529
testing/wikipedia/v3/14766.html