tangent
Not Supported
(
x
+
y
)
n
=
∑
x0
n
(
n
k
)
x
n
-
k
y
k
=
∑
x1
n
(
n
k
)
x
x2
y
n
-
k
.
Search
Returned 97 matches (100 formulae, 101 docs)
Lookup 4940.280 ms, Re-ranking 4455.830 ms
Found 21405976 tuple postings, 6889713 formulae, 3282457 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.7459
-17.0000
14.0000
0.7459
testing/NTCIR/xhtml5/9/1306.6697/1306.6697_1_1.xhtml
B
n
(
k
)
(
x
)
=
∑
l
=
0
n
(
n
l
)
B
n
-
l
(
k
)
x
l
=
∑
l
=
0
n
(
n
l
)
B
l
(
k
)
x
n
-
l
.
Doc 2
0.7293
-12.0000
13.0000
0.7293
testing/NTCIR/xhtml5/2/math0101072/math0101072_1_57.xhtml
(
v
+
w
)
n
=
∑
0
n
[
n
m
]
q
2
w
m
v
n
-
m
=
∑
0
n
[
n
m
]
q
-
2
v
m
w
n
-
m
Doc 3
0.7293
-16.0000
21.0000
0.7293
testing/NTCIR/xhtml5/4/math0602613/math0602613_1_22.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
k
x
n
-
k
=
∑
k
=
0
n
[
n
k
]
q
-
1
x
k
y
n
-
k
.
Doc 4
0.7293
-16.0000
21.0000
0.7293
testing/NTCIR/xhtml5/10/math9509223/math9509223_1_16.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
k
x
n
-
k
=
∑
k
=
0
n
[
n
k
]
q
-
1
x
k
y
n
-
k
.
Doc 5
0.6507
-37.0000
15.0000
0.6507
testing/NTCIR/xhtml5/8/1202.2643/1202.2643_1_13.xhtml
G
~
n
+
1
,
q
(
x
)
=
∑
k
=
0
n
(
n
+
1
k
+
1
)
G
~
k
+
1
,
q
x
n
-
k
=
∑
k
=
1
n
+
1
(
n
+
1
k
)
G
~
k
,
q
x
n
+
1
-
k
.
Doc 6
0.6338
-29.0000
18.0000
0.6338
testing/NTCIR/xhtml5/5/0811.4652/0811.4652_1_16.xhtml
f
n
(
x
,
y
2
)
=
∑
k
≥
0
(
n
-
k
-
1
k
)
x
n
-
2
k
y
k
+
∑
k
≥
0
(
n
-
k
-
2
k
)
x
n
-
2
k
-
2
y
k
+
2
.
Doc 7
0.6189
-21.0000
12.0000
0.6189
testing/NTCIR/xhtml5/7/1007.3674/1007.3674_1_13.xhtml
E
n
(
r
)
(
x
)
=
∑
l
=
0
n
(
n
l
)
E
l
(
r
)
x
n
-
l
=
∑
l
=
0
n
(
n
l
)
E
n
-
l
(
r
)
x
l
.
Doc 8
0.6189
-27.0000
12.0000
0.6189
testing/NTCIR/xhtml5/9/1307.1793/1307.1793_1_2.xhtml
s
n
(
r
,
k
)
(
x
)
=
∑
l
=
0
n
(
n
l
)
s
l
(
r
,
k
)
x
n
-
l
=
∑
l
=
0
n
(
n
l
)
s
n
-
l
(
r
,
k
)
x
l
.
Doc 9
0.5702
-12.0000
14.0000
0.5702
testing/NTCIR/xhtml5/8/1202.2507/1202.2507_1_35.xhtml
=
∑
i
=
0
n
(
n
i
)
μ
i
x
n
-
i
=
∑
i
=
0
n
(
n
i
)
x
i
μ
n
-
i
.
Doc 10
0.5554
-3.0000
17.0000
0.5554
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_1.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
-
k
y
k
,
Doc 11
0.5554
-3.0000
10.0000
0.5554
testing/NTCIR/xhtml5/10/math9803070/math9803070_1_36.xhtml
(
x
+
y
)
m
=
∑
i
=
0
m
(
m
i
)
q
x
m
-
i
y
i
Doc 12
0.5554
-4.0000
16.0000
0.5554
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_34.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
Q
x
n
-
k
y
k
.
Doc 13
0.5554
-4.0000
13.0000
0.5554
testing/NTCIR/xhtml5/4/math0607566/math0607566_1_18.xhtml
(
A
+
B
)
n
=
∑
k
=
0
n
(
n
k
)
q
A
n
-
k
B
k
.
Doc 14
0.5554
-8.0000
16.0000
0.5554
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_12.xhtml
(
x
+
y
)
<
q
n
=
∑
k
=
0
n
{
n
k
}
Q
,
q
x
n
-
k
y
k
,
Doc 15
0.5554
-10.0000
13.0000
0.5554
testing/NTCIR/xhtml5/5/0804.1327/0804.1327_1_31.xhtml
P
M
n
P
-
1
=
(
D
+
N
)
n
=
∑
k
=
0
n
(
n
k
)
D
n
-
k
N
k
.
Doc 16
0.5455
-23.0000
16.0000
0.5455
testing/NTCIR/xhtml5/7/1005.4218/1005.4218_1_22.xhtml
p
(
x
)
:=
∑
k
=
0
n
(
n
k
)
1
(
k
+
d
)
!
x
k
=
∑
k
=
0
n
(
n
k
)
1
(
n
-
k
+
d
)
!
x
n
-
k
Doc 17
0.5236
-3.0000
16.0000
0.5236
testing/NTCIR/xhtml5/6/0903.3216/0903.3216_1_21.xhtml
(
x
+
y
)
n
=
∑
k
≥
0
(
n
k
)
x
n
-
k
y
k
,
Doc 18
0.5236
-6.0000
16.0000
0.5236
testing/NTCIR/xhtml5/6/0908.3248/0908.3248_1_58.xhtml
(
x
+
y
)
n
=
∑
k
≥
0
(
n
k
)
𝒯
1
,
1
x
n
-
k
y
k
Doc 19
0.5236
-7.0000
10.0000
0.5236
testing/NTCIR/xhtml5/6/0903.3391/0903.3391_1_18.xhtml
(
x
+
y
)
m
=
∑
n
≥
0
(
m
n
)
x
m
-
n
y
n
,
m
∈
ℤ
,
Doc 20
0.5065
-28.0000
16.0000
0.5065
testing/NTCIR/xhtml5/4/math0602672/math0602672_1_10.xhtml
z
n
=
∑
k
=
0
n
-
1
(
n
-
1
k
)
x
k
y
n
-
k
+
∑
k
=
0
n
-
1
(
n
-
1
k
)
x
k
+
1
y
n
-
k
-
1
.
Doc 21
0.4918
-32.0000
11.0000
0.4918
testing/NTCIR/xhtml5/5/0810.2001/0810.2001_1_16.xhtml
g
=
∑
j
(
∑
i
α
i
j
x
i
y
n
-
i
)
x
1
j
y
1
n
-
j
=
∑
i
(
∑
j
α
i
j
x
1
j
y
1
n
-
j
)
x
i
y
n
-
i
.
Doc 22
0.4882
-10.0000
10.0000
0.4882
testing/NTCIR/xhtml5/2/math0211171/math0211171_1_481.xhtml
(
x
+
y
)
p
=
∑
j
=
0
p
(
p
j
)
x
j
y
p
-
j
=
x
p
+
y
p
,
Doc 23
0.4882
-17.0000
12.0000
0.4882
testing/NTCIR/xhtml5/3/math0402330/math0402330_1_76.xhtml
a
n
=
∑
s
=
0
m
(
n
s
)
A
s
q
n
-
s
+
∑
k
≥
m
+
1
(
n
k
)
B
k
q
n
-
k
.
Doc 24
0.4746
-13.0000
10.0000
0.4746
testing/NTCIR/xhtml5/2/math0011158/math0011158_1_127.xhtml
∑
k
<
ζ
n
(
n
k
)
p
k
q
n
-
k
≤
∑
k
≤
ζ
n
(
n
k
)
p
ζ
n
q
n
.
Doc 25
0.4561
-10.0000
15.0000
0.4561
testing/NTCIR/xhtml5/10/q-alg9608008/q-alg9608008_1_14.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
y
n
-
k
x
k
,
n
∈
𝐙
+
.
Doc 26
0.4561
-10.0000
15.0000
0.4561
testing/NTCIR/xhtml5/4/math0701369/math0701369_1_3.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
y
n
-
k
x
k
,
n
∈
ℤ
+
,
Doc 27
0.4561
-11.0000
14.0000
0.4561
testing/NTCIR/xhtml5/10/q-alg9608008/q-alg9608008_1_15.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
n
-
k
x
k
,
n
∈
𝐙
+
.
Doc 28
0.4561
-13.0000
14.0000
0.4561
testing/NTCIR/xhtml5/4/math0511148/math0511148_1_88.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
n
-
k
x
k
(
x
y
=
q
y
x
)
.
Doc 29
0.4427
-5.0000
14.0000
0.4427
testing/NTCIR/xhtml5/2/hep-th0207261/hep-th0207261_1_8.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
C
n
k
x
n
-
k
y
k
Doc 30
0.4427
-17.0000
11.0000
0.4427
testing/NTCIR/xhtml5/9/1302.3115/1302.3115_1_21.xhtml
f
(
z
)
∑
k
=
0
n
-
1
(
n
k
)
f
(
k
)
(
z
)
=
∑
k
=
0
n
(
n
k
)
f
(
k
)
(
z
)
Doc 31
0.4427
-21.0000
12.0000
0.4427
testing/NTCIR/xhtml5/5/0810.0438/0810.0438_1_50.xhtml
n
x
n
-
1
=
∑
k
=
1
n
(
n
k
)
B
n
-
k
(
x
)
=
∑
k
=
0
n
-
1
(
n
k
)
B
k
(
x
)
,
Doc 32
0.4427
-27.0000
12.0000
0.4427
testing/NTCIR/xhtml5/9/1309.7560/1309.7560_1_32.xhtml
(
n
+
1
)
X
n
=
∑
k
=
1
n
+
1
(
n
+
1
k
)
B
n
+
1
-
k
(
X
)
=
∑
k
=
0
n
(
n
+
1
k
)
B
k
(
X
)
Doc 33
0.4282
-5.0000
12.0000
0.4282
testing/NTCIR/xhtml5/1/math0009106/math0009106_1_56.xhtml
(
x
+
y
)
n
=
∑
0
n
(
n
i
)
q
x
i
y
n
-
i
Doc 34
0.4282
-5.0000
12.0000
0.4282
testing/NTCIR/xhtml5/7/1010.1981/1010.1981_1_38.xhtml
E
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
x
n
-
k
E
k
Doc 35
0.4282
-6.0000
13.0000
0.4282
testing/NTCIR/xhtml5/5/0708.1430/0708.1430_1_12.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
Doc 36
0.4282
-6.0000
12.0000
0.4282
testing/NTCIR/xhtml5/1/math0502560/math0502560_1_9.xhtml
(
x
+
y
)
n
=
∑
j
=
0
n
(
n
j
)
x
j
y
n
-
j
Doc 37
0.4282
-6.0000
9.0000
0.4282
testing/NTCIR/xhtml5/2/math0212344/math0212344_1_20.xhtml
(
x
+
y
)
k
=
∑
j
=
0
k
(
k
j
)
x
j
y
k
-
j
Doc 38
0.4282
-6.0000
9.0000
0.4282
testing/NTCIR/xhtml5/9/math9301202/math9301202_1_19.xhtml
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
k
b
n
-
k
Doc 39
0.4282
-7.0000
13.0000
0.4282
testing/NTCIR/xhtml5/5/0810.3554/0810.3554_1_121.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
.
Doc 40
0.4282
-7.0000
13.0000
0.4282
testing/NTCIR/xhtml5/5/0708.1430/0708.1430_1_37.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
q
x
k
y
n
-
k
Doc 41
0.4282
-7.0000
13.0000
0.4282
testing/NTCIR/xhtml5/10/math9803003/math9803003_1_51.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
q
x
k
y
n
-
k
Doc 42
0.4282
-7.0000
12.0000
0.4282
testing/NTCIR/xhtml5/3/math0408067/math0408067_1_81.xhtml
(
x
+
y
)
n
=
∑
j
=
0
n
(
n
j
)
x
j
y
n
-
j
,
Doc 43
0.4282
-7.0000
9.0000
0.4282
testing/NTCIR/xhtml5/10/math9809086/math9809086_1_10.xhtml
(
u
+
v
)
n
=
∑
k
=
0
n
(
n
k
)
x
u
k
v
n
-
k
Doc 44
0.4282
-7.0000
9.0000
0.4282
testing/NTCIR/xhtml5/1/math0608026/math0608026_1_2.xhtml
(
a
+
c
)
n
=
∑
k
=
0
n
(
n
k
)
a
k
c
n
-
k
,
Doc 45
0.4282
-7.0000
8.0000
0.4282
testing/NTCIR/xhtml5/10/q-alg9704013/q-alg9704013_1_16.xhtml
(
x
+
y
)
k
=
∑
r
=
0
k
[
k
r
]
x
r
y
k
-
r
.
Doc 46
0.4282
-8.0000
12.0000
0.4282
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_5.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
x
k
y
n
-
k
,
Doc 47
0.4282
-8.0000
11.0000
0.4282
testing/NTCIR/xhtml5/10/q-alg9704013/q-alg9704013_1_14.xhtml
(
x
+
y
)
n
=
∑
r
=
0
n
[
n
r
]
x
r
y
n
-
r
,
(A1)
Doc 48
0.4282
-8.0000
10.0000
0.4282
testing/NTCIR/xhtml5/2/math0204075/math0204075_1_8.xhtml
(
x
+
z
)
n
=
∑
i
=
0
n
(
n
i
)
q
x
i
z
n
-
i
.
Doc 49
0.4282
-10.0000
13.0000
0.8070
testing/NTCIR/xhtml5/2/quant-ph0105017/quant-ph0105017_1_111.xhtml
h
(
x
)
=
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
x
h
′
(
x
)
=
n
x
(
x
+
y
)
n
-
1
=
∑
k
=
0
n
(
n
k
)
k
x
k
y
n
-
k
Doc 50
0.4282
-10.0000
10.0000
0.4282
testing/NTCIR/xhtml5/4/math0608559/math0608559_1_59.xhtml
(
x
+
y
)
m
=
∑
k
=
0
m
(
m
k
)
v
-
1
x
k
y
m
-
k
..3
Doc 51
0.4282
-11.0000
13.0000
0.4282
testing/NTCIR/xhtml5/6/1002.1383/1002.1383_1_4.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
(
∀
n
∈
ℕ
)
Doc 52
0.4240
-12.0000
11.0000
0.4240
testing/NTCIR/xhtml5/3/math0402315/math0402315_1_11.xhtml
i
z
,
w
(
z
-
w
)
n
=
∑
k
=
0
∞
(
n
k
)
z
n
-
k
(
-
w
)
k
,
Doc 53
0.4240
-12.0000
11.0000
0.4240
testing/NTCIR/xhtml5/10/q-alg9608008/q-alg9608008_1_19.xhtml
(
-
y
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
n
-
k
(
-
y
x
)
k
.
Doc 54
0.4240
-18.0000
14.0000
0.7569
testing/NTCIR/xhtml5/1/math0211366/math0211366_1_12.xhtml
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
α
k
+
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
β
k
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
L
k
Doc 55
0.4108
-6.0000
10.0000
0.4108
testing/NTCIR/xhtml5/8/1109.0326/1109.0326_1_4.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
.
Doc 56
0.4108
-7.0000
11.0000
0.4108
testing/NTCIR/xhtml5/8/1202.0362/1202.0362_1_34.xhtml
f
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
x
p
k
m
a
n
-
k
Doc 57
0.4108
-10.0000
9.0000
0.4108
testing/NTCIR/xhtml5/7/1106.5146/1106.5146_1_7.xhtml
B
n
(
α
)
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
α
)
x
n
-
k
,
Doc 58
0.4108
-11.0000
9.0000
0.4108
testing/NTCIR/xhtml5/8/1202.2643/1202.2643_1_14.xhtml
G
~
n
,
q
(
x
)
=
∑
k
=
0
n
(
n
k
)
G
~
k
,
q
x
n
-
k
Doc 59
0.4039
-14.0000
14.0000
0.4039
testing/NTCIR/xhtml5/4/math0701369/math0701369_1_20.xhtml
(
x
⊖
q
y
)
n
=
∑
k
=
0
n
(
n
k
)
q
(
-
1
)
n
-
k
x
k
y
n
-
k
.
Doc 60
0.4039
-24.0000
13.0000
0.4039
testing/NTCIR/xhtml5/9/1303.7309/1303.7309_1_6.xhtml
=
A
n
(
x
:
a
)
=
x
(
x
-
a
n
)
n
-
1
=
∑
k
=
1
n
(
n
-
1
k
-
1
)
(
-
a
n
)
n
-
k
x
k
Doc 61
0.3964
-5.0000
12.0000
0.3964
testing/NTCIR/xhtml5/7/1105.3513/1105.3513_1_5.xhtml
(
x
+
y
)
n
=
∑
k
(
n
k
)
x
k
y
n
-
k
.
Doc 62
0.3964
-8.0000
12.0000
0.3964
testing/NTCIR/xhtml5/7/1105.3513/1105.3513_1_11.xhtml
(
x
+
y
)
n
=
∑
k
=
0
∞
(
n
k
)
x
k
y
n
-
k
.
Doc 63
0.3964
-9.0000
11.0000
0.3964
testing/NTCIR/xhtml5/10/q-alg9608008/q-alg9608008_1_134.xhtml
Δ
(
x
n
)
=
∑
k
=
0
n
[
n
k
]
q
x
n
-
k
⊗
x
k
.
Doc 64
0.3964
-10.0000
12.0000
0.3964
testing/NTCIR/xhtml5/4/math0701369/math0701369_1_7.xhtml
(
x
⊕
q
y
)
n
=
∑
k
=
0
n
(
n
k
)
q
x
k
y
n
-
k
.
Doc 65
0.3919
-15.0000
12.0000
0.3919
testing/NTCIR/xhtml5/7/1008.0233/1008.0233_1_22.xhtml
E
n
,
q
(
x
)
=
∑
k
=
0
n
(
n
k
)
[
x
]
q
n
-
k
q
k
x
E
k
,
q
.
Doc 66
0.3822
-30.0000
12.0000
0.3822
testing/NTCIR/xhtml5/9/1401.6823/1401.6823_1_35.xhtml
𝔼
(
Y
k
)
=
∑
t
=
0
n
(
t
k
)
P
(
Y
=
t
)
=
∑
t
=
k
n
(
t
k
)
p
t
(
1
-
p
)
n
-
t
(
n
t
)
=
(
n
k
)
p
k
Doc 67
0.3788
-6.0000
9.0000
0.3788
testing/NTCIR/xhtml5/9/1401.5618/1401.5618_1_16.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
Doc 68
0.3788
-6.0000
9.0000
0.3788
testing/NTCIR/xhtml5/5/0809.3277/0809.3277_1_62.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
Doc 69
0.3788
-7.0000
9.0000
0.3788
testing/NTCIR/xhtml5/1/math0508233/math0508233_1_2.xhtml
E
n
(
x
)
=
∑
n
=
0
n
(
n
k
)
E
k
x
n
-
k
,
Doc 70
0.3788
-7.0000
9.0000
0.3788
testing/NTCIR/xhtml5/9/1304.4509/1304.4509_1_25.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
,
Doc 71
0.3788
-13.0000
9.0000
0.3788
testing/NTCIR/xhtml5/7/1004.4989/1004.4989_1_20.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
≃
(
x
+
ι
)
n
.
Doc 72
0.3714
-15.0000
13.0000
0.3714
testing/NTCIR/xhtml5/9/1310.5882/1310.5882_1_100.xhtml
P
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
2
(
x
-
1
)
n
-
k
(
x
+
1
)
k
/
2
n
Doc 73
0.3714
-22.0000
11.0000
0.3714
testing/NTCIR/xhtml5/6/1001.2156/1001.2156_1_16.xhtml
∑
k
≤
m
(
m
+
r
k
)
x
k
y
m
-
k
=
∑
k
≤
m
(
-
r
k
)
(
-
x
)
k
(
x
+
y
)
m
-
k
,
Doc 74
0.3646
-4.0000
11.0000
0.3646
testing/NTCIR/xhtml5/6/0904.2672/0904.2672_1_21.xhtml
(
x
+
1
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
Doc 75
0.3646
-4.0000
10.0000
0.3646
testing/NTCIR/xhtml5/5/0810.0438/0810.0438_1_8.xhtml
=
∑
k
=
0
n
(
n
k
)
x
n
-
k
B
k
,
Doc 76
0.3646
-5.0000
11.0000
0.3646
testing/NTCIR/xhtml5/4/math0603405/math0603405_1_9.xhtml
(
x
+
1
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
,
Doc 77
0.3646
-9.0000
9.0000
0.3646
testing/NTCIR/xhtml5/7/1101.3810/1101.3810_1_52.xhtml
(
A
+
B
)
n
=
∑
k
=
0
n
(
n
k
)
q
B
k
A
n
-
k
Doc 78
0.3646
-10.0000
9.0000
0.3646
testing/NTCIR/xhtml5/9/1401.0237/1401.0237_1_34.xhtml
=
∑
k
=
0
n
(
n
k
)
β
k
z
n
-
k
=
(
z
+
β
)
n
.
Doc 79
0.3646
-11.0000
11.0000
0.3646
testing/NTCIR/xhtml5/5/0707.1660/0707.1660_1_51.xhtml
p
n
,
0
(
x
,
y
)
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
Doc 80
0.3646
-13.0000
8.0000
0.3646
testing/NTCIR/xhtml5/5/0708.2685/0708.2685_1_183.xhtml
Δ
(
x
n
)
=
∑
i
=
0
n
(
n
i
)
q
x
i
a
n
-
i
⊗
x
n
-
i
Doc 81
0.3646
-20.0000
11.0000
0.3646
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_35.xhtml
(
x
+
y
)
q
n
=
∑
k
=
0
n
(
n
k
)
q
k
(
n
-
k
+
1
2
)
x
n
-
k
y
k
,
Doc 82
0.3596
-8.0000
12.0000
0.3596
testing/NTCIR/xhtml5/10/q-alg9608008/q-alg9608008_1_17.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
c
n
,
k
y
n
-
k
x
k
Doc 83
0.3596
-13.0000
12.0000
0.3596
testing/NTCIR/xhtml5/6/0907.5420/0907.5420_1_135.xhtml
M
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
(
n
-
1
)
n
-
k
¯
2
k
x
k
¯
Doc 84
0.3596
-16.0000
10.0000
0.3596
testing/NTCIR/xhtml5/3/math0405544/math0405544_1_48.xhtml
(
Δ
(
x
n
)
u
)
(
t
)
=
∑
k
=
0
n
(
n
k
)
(
-
x
)
n
-
k
u
(
x
k
t
)
.
Doc 85
0.3596
-20.0000
11.0000
0.3596
testing/NTCIR/xhtml5/4/math0702158/math0702158_1_87.xhtml
(
(
1
-
p
)
δ
0
+
p
δ
1
)
∗
n
=
∑
k
=
0
n
(
n
k
)
(
1
-
p
)
n
-
k
p
k
δ
k
Doc 86
0.3596
-29.0000
11.0000
0.3596
testing/NTCIR/xhtml5/6/0909.1927/0909.1927_1_18.xhtml
P
μ
,
n
(
z
)
=
∑
k
=
0
n
γ
k
(
n
k
)
z
n
-
k
=
∑
j
,
k
(
n
k
)
(
k
j
)
μ
k
-
2
j
z
n
-
k
.
Doc 87
0.3386
-10.0000
10.0000
0.3386
testing/NTCIR/xhtml5/5/0712.0138/0712.0138_1_8.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
x
a
)
n
-
k
.
Doc 88
0.3328
-10.0000
9.0000
0.3328
testing/NTCIR/xhtml5/3/math0402078/math0402078_1_13.xhtml
(
x
+
ψ
a
)
n
=
∑
k
≥
0
(
n
k
)
ψ
a
k
x
n
-
k
Doc 89
0.3328
-10.0000
9.0000
0.3328
testing/NTCIR/xhtml5/3/math0402078/math0402078_1_12.xhtml
(
x
+
ψ
a
)
n
=
∑
k
≥
0
(
n
k
)
ψ
a
k
x
n
-
k
Doc 90
0.3328
-15.0000
7.0000
0.3328
testing/NTCIR/xhtml5/1/1111.4880/1111.4880_1_64.xhtml
∑
j
=
0
n
-
k
(
n
j
)
x
j
-
k
B
k
n
-
j
(
x
)
=
(
n
k
)
.
Doc 91
0.3328
-17.0000
10.0000
0.3328
testing/NTCIR/xhtml5/7/1101.0900/1101.0900_1_115.xhtml
∑
k
=
m
n
(
n
k
)
x
k
y
n
-
k
≤
(
n
m
)
x
m
(
x
+
y
)
n
-
m
.
Doc 92
0.3273
-10.0000
8.0000
0.3273
testing/NTCIR/xhtml5/3/math0307379/math0307379_1_9.xhtml
𝒩
∑
α
β
h
α
β
x
α
y
β
=
∑
α
h
α
α
x
α
y
α
.
Doc 93
0.3273
-20.0000
7.0000
0.3273
testing/NTCIR/xhtml5/7/1006.2610/1006.2610_1_31.xhtml
=
∑
k
=
2
m
(
m
k
)
x
k
(
x
0
+
1
)
m
-
k
-
∑
k
=
2
m
x
k
x
0
m
-
k
Doc 94
0.3148
-5.0000
10.0000
0.3148
testing/NTCIR/xhtml5/9/1301.3658/1301.3658_1_17.xhtml
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
Doc 95
0.3148
-6.0000
10.0000
0.3148
testing/NTCIR/xhtml5/6/0910.1263/0910.1263_1_46.xhtml
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
,
Doc 96
0.3148
-13.0000
10.0000
0.6296
testing/NTCIR/xhtml5/7/1008.4547/1008.4547_1_49.xhtml
=
∑
k
=
1
n
(
n
-
1
k
-
1
)
q
x
k
(
1
-
x
)
q
n
-
k
=
∑
k
=
2
n
(
n
-
2
k
-
2
)
q
x
k
(
1
-
x
)
q
n
-
k
Doc 97
0.3148
-18.0000
10.0000
0.3148
testing/NTCIR/xhtml5/2/math0301123/math0301123_1_17.xhtml
=
∑
k
=
0
n
(
n
k
)
x
(
a
∗
)
n
-
k
(
b
∗
)
k
⊗
B
b
k
a
n
-
k
,
Doc 98
0.2948
-17.0000
10.0000
0.2948
testing/NTCIR/xhtml5/5/0710.5556/0710.5556_1_15.xhtml
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
=
∑
k
=
0
n
C
k
n
x
k
,
Doc 99
0.2819
-22.0000
9.0000
0.2819
testing/NTCIR/xhtml5/1/1111.4880/1111.4880_1_66.xhtml
∑
j
=
0
n
-
k
(
-
1
)
j
(
n
j
)
B
k
n
-
j
(
x
)
=
(
-
1
)
n
-
k
(
n
k
)
x
n
.
Doc 100
0.2726
-34.0000
10.0000
0.2726
testing/NTCIR/xhtml5/5/0707.1660/0707.1660_1_68.xhtml
∑
k
=
1
2
n
+
1
(
2
n
k
-
1
)
μ
x
k
y
2
n
-
k
+
1
+
∑
k
=
0
2
n
(
2
n
k
)
μ
x
k
y
2
n
-
k
+
1
Doc 101
0.2373
-11.0000
7.0000
0.2373
testing/NTCIR/xhtml5/4/math0505129/math0505129_1_77.xhtml
∑
i
∈
σ
n
x
(
i
)
=
∑
k
∈
K
n
(
n
k
)
x
k