tangent
Not Supported
(
x
+
y
)
n
=
∑
x0
n
(
n
k
)
x
n
-
k
y
k
=
∑
x1
n
(
n
k
)
x
x2
y
n
-
k
.
Search
Returned 94 matches (100 formulae, 100 docs)
Lookup 16911.800 ms, Re-ranking 6468.077 ms
Found 111101985 tuple postings, 8608438 formulae, 3889827 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.7459
-17.0000
14.0000
1.0788
testing/NTCIR/xhtml5/9/1306.6697/1306.6697_1_1.xhtml
B
n
(
k
)
(
x
)
=
∑
l
=
0
n
(
n
l
)
B
n
-
l
(
k
)
x
l
=
∑
l
=
0
n
(
n
l
)
B
l
(
k
)
x
n
-
l
.
s
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
s
k
(
y
)
x
n
-
k
=
∑
k
=
0
n
(
n
k
)
s
n
-
k
(
y
)
x
k
,
(
see
[
6
,
9
]
)
,
Doc 2
0.7293
-16.0000
21.0000
1.2495
testing/NTCIR/xhtml5/4/math0602613/math0602613_1_22.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
k
x
n
-
k
=
∑
k
=
0
n
[
n
k
]
q
-
1
x
k
y
n
-
k
.
(
a
x
+
b
y
)
n
=
∑
k
=
0
n
[
n
k
]
p
,
q
a
n
-
k
b
k
y
k
x
n
-
k
=
∑
k
=
0
n
[
n
k
]
p
-
1
,
q
-
1
b
n
-
k
a
k
x
k
y
n
-
k
,
Doc 3
0.7293
-16.0000
21.0000
0.7293
testing/NTCIR/xhtml5/10/math9509223/math9509223_1_16.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
k
x
n
-
k
=
∑
k
=
0
n
[
n
k
]
q
-
1
x
k
y
n
-
k
.
Doc 4
0.6338
-29.0000
18.0000
0.6338
testing/NTCIR/xhtml5/5/0811.4652/0811.4652_1_16.xhtml
f
n
(
x
,
y
2
)
=
∑
k
≥
0
(
n
-
k
-
1
k
)
x
n
-
2
k
y
k
+
∑
k
≥
0
(
n
-
k
-
2
k
)
x
n
-
2
k
-
2
y
k
+
2
.
Doc 5
0.5554
-3.0000
17.0000
0.5554
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_1.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
-
k
y
k
,
Doc 6
0.5554
-4.0000
16.0000
0.5554
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_34.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
Q
x
n
-
k
y
k
.
Doc 7
0.5554
-8.0000
16.0000
1.3705
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_12.xhtml
(
x
+
y
)
<
q
n
=
∑
k
=
0
n
{
n
k
}
Q
,
q
x
n
-
k
y
k
,
∑
k
=
0
n
{
n
k
}
Q
,
q
Q
k
x
n
-
k
+
1
y
k
+
∑
k
=
0
n
{
n
k
}
Q
,
q
q
n
x
n
-
k
y
k
+
1
∑
k
=
0
n
{
n
k
}
Q
,
q
x
n
-
k
y
k
x
+
∑
k
=
0
n
{
n
k
}
Q
,
q
q
n
x
n
-
k
y
k
+
1
Doc 8
0.5455
-23.0000
16.0000
0.5455
testing/NTCIR/xhtml5/7/1005.4218/1005.4218_1_22.xhtml
p
(
x
)
:=
∑
k
=
0
n
(
n
k
)
1
(
k
+
d
)
!
x
k
=
∑
k
=
0
n
(
n
k
)
1
(
n
-
k
+
d
)
!
x
n
-
k
Doc 9
0.5236
-3.0000
16.0000
0.5236
testing/NTCIR/xhtml5/6/0903.3216/0903.3216_1_21.xhtml
(
x
+
y
)
n
=
∑
k
≥
0
(
n
k
)
x
n
-
k
y
k
,
Doc 10
0.5236
-6.0000
16.0000
0.8949
testing/NTCIR/xhtml5/6/0908.3248/0908.3248_1_58.xhtml
(
x
+
y
)
n
=
∑
k
≥
0
(
n
k
)
𝒯
1
,
1
x
n
-
k
y
k
(
x
-
1
)
n
=
∑
k
≥
0
(
n
k
)
𝒯
1
,
1
(
-
1
)
n
-
k
x
k
⇔
x
n
=
∑
k
≥
0
(
n
k
)
𝒯
1
,
1
(
x
-
1
)
k
.
Doc 11
0.5065
-28.0000
16.0000
0.5065
testing/NTCIR/xhtml5/4/math0602672/math0602672_1_10.xhtml
z
n
=
∑
k
=
0
n
-
1
(
n
-
1
k
)
x
k
y
n
-
k
+
∑
k
=
0
n
-
1
(
n
-
1
k
)
x
k
+
1
y
n
-
k
-
1
.
Doc 12
0.4561
-10.0000
15.0000
0.4561
testing/NTCIR/xhtml5/10/q-alg9608008/q-alg9608008_1_14.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
y
n
-
k
x
k
,
n
∈
𝐙
+
.
Doc 13
0.4561
-10.0000
15.0000
0.4561
testing/NTCIR/xhtml5/4/math0701369/math0701369_1_3.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
y
n
-
k
x
k
,
n
∈
ℤ
+
,
Doc 14
0.4561
-11.0000
14.0000
0.4561
testing/NTCIR/xhtml5/10/q-alg9608008/q-alg9608008_1_15.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
n
-
k
x
k
,
n
∈
𝐙
+
.
Doc 15
0.4561
-13.0000
14.0000
0.4561
testing/NTCIR/xhtml5/4/math0511148/math0511148_1_88.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
y
n
-
k
x
k
(
x
y
=
q
y
x
)
.
Doc 16
0.4427
-5.0000
14.0000
0.4427
testing/NTCIR/xhtml5/2/hep-th0207261/hep-th0207261_1_8.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
C
n
k
x
n
-
k
y
k
Doc 17
0.4427
-21.0000
12.0000
0.4427
testing/NTCIR/xhtml5/5/0810.0438/0810.0438_1_50.xhtml
n
x
n
-
1
=
∑
k
=
1
n
(
n
k
)
B
n
-
k
(
x
)
=
∑
k
=
0
n
-
1
(
n
k
)
B
k
(
x
)
,
Doc 18
0.4282
-5.0000
12.0000
0.4282
testing/NTCIR/xhtml5/1/math0009106/math0009106_1_56.xhtml
(
x
+
y
)
n
=
∑
0
n
(
n
i
)
q
x
i
y
n
-
i
Doc 19
0.4282
-5.0000
12.0000
0.4282
testing/NTCIR/xhtml5/7/1010.1981/1010.1981_1_38.xhtml
E
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
x
n
-
k
E
k
Doc 20
0.4282
-6.0000
13.0000
0.4282
testing/NTCIR/xhtml5/5/0708.1430/0708.1430_1_12.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
Doc 21
0.4282
-6.0000
12.0000
0.4282
testing/NTCIR/xhtml5/1/math0502560/math0502560_1_9.xhtml
(
x
+
y
)
n
=
∑
j
=
0
n
(
n
j
)
x
j
y
n
-
j
Doc 22
0.4282
-7.0000
13.0000
0.4282
testing/NTCIR/xhtml5/5/0810.3554/0810.3554_1_121.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
.
Doc 23
0.4282
-7.0000
13.0000
0.4282
testing/NTCIR/xhtml5/5/0708.1430/0708.1430_1_37.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
q
x
k
y
n
-
k
Doc 24
0.4282
-7.0000
13.0000
0.4282
testing/NTCIR/xhtml5/10/math9803003/math9803003_1_51.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
q
x
k
y
n
-
k
Doc 25
0.4282
-7.0000
12.0000
0.4282
testing/NTCIR/xhtml5/3/math0408067/math0408067_1_81.xhtml
(
x
+
y
)
n
=
∑
j
=
0
n
(
n
j
)
x
j
y
n
-
j
,
Doc 26
0.4282
-8.0000
12.0000
0.4282
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_5.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
[
n
k
]
q
x
k
y
n
-
k
,
Doc 27
0.4282
-10.0000
13.0000
0.8070
testing/NTCIR/xhtml5/2/quant-ph0105017/quant-ph0105017_1_111.xhtml
h
(
x
)
=
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
x
h
′
(
x
)
=
n
x
(
x
+
y
)
n
-
1
=
∑
k
=
0
n
(
n
k
)
k
x
k
y
n
-
k
Doc 28
0.4282
-11.0000
13.0000
0.4282
testing/NTCIR/xhtml5/6/1002.1383/1002.1383_1_4.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
(
∀
n
∈
ℕ
)
Doc 29
0.4240
-18.0000
14.0000
1.0897
testing/NTCIR/xhtml5/1/math0211366/math0211366_1_12.xhtml
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
α
k
+
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
β
k
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
L
k
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
L
k
=
L
2
n
.
Doc 30
0.4039
-14.0000
14.0000
0.4039
testing/NTCIR/xhtml5/4/math0701369/math0701369_1_20.xhtml
(
x
⊖
q
y
)
n
=
∑
k
=
0
n
(
n
k
)
q
(
-
1
)
n
-
k
x
k
y
n
-
k
.
Doc 31
0.3964
-5.0000
12.0000
0.3964
testing/NTCIR/xhtml5/7/1105.3513/1105.3513_1_5.xhtml
(
x
+
y
)
n
=
∑
k
(
n
k
)
x
k
y
n
-
k
.
Doc 32
0.3964
-8.0000
12.0000
0.3964
testing/NTCIR/xhtml5/7/1105.3513/1105.3513_1_11.xhtml
(
x
+
y
)
n
=
∑
k
=
0
∞
(
n
k
)
x
k
y
n
-
k
.
Doc 33
0.3964
-10.0000
12.0000
0.3964
testing/NTCIR/xhtml5/4/math0701369/math0701369_1_7.xhtml
(
x
⊕
q
y
)
n
=
∑
k
=
0
n
(
n
k
)
q
x
k
y
n
-
k
.
Doc 34
0.3964
-21.0000
11.0000
0.3964
testing/NTCIR/xhtml5/6/0904.0407/0904.0407_1_55.xhtml
F
n
I
(
x
,
y
,
q
)
=
∑
2
k
≤
n
(
n
-
k
k
)
x
n
-
2
k
y
k
q
(
n
2
)
-
k
.
Doc 35
0.3919
-16.0000
12.0000
0.3919
testing/NTCIR/xhtml5/2/math-ph0212011/math-ph0212011_1_10.xhtml
[
x
+
y
]
n
≡
∑
k
=
0
n
[
n
]
!
[
k
]
!
[
n
-
k
]
!
x
n
-
k
y
k
.
Doc 36
0.3788
-6.0000
9.0000
0.3788
testing/NTCIR/xhtml5/9/1401.5618/1401.5618_1_16.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
Doc 37
0.3788
-6.0000
9.0000
0.3788
testing/NTCIR/xhtml5/5/0809.3277/0809.3277_1_62.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
Doc 38
0.3788
-13.0000
9.0000
0.3788
testing/NTCIR/xhtml5/7/1004.4989/1004.4989_1_20.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
≃
(
x
+
ι
)
n
.
Doc 39
0.3788
-31.0000
9.0000
0.3788
testing/NTCIR/xhtml5/3/math0407001/math0407001_1_16.xhtml
B
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
x
)
y
n
-
k
,
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
,
Doc 40
0.3788
-31.0000
9.0000
0.3788
testing/NTCIR/xhtml5/3/math0304356/math0304356_1_38.xhtml
B
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
x
)
y
n
-
k
,
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
,
Doc 41
0.3788
-35.0000
9.0000
0.3788
testing/NTCIR/xhtml5/5/0812.0962/0812.0962_1_3.xhtml
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
k
x
n
-
k
and
E
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
E
k
2
k
(
x
-
1
2
)
n
-
k
.
Doc 42
0.3788
-35.0000
8.0000
0.3788
testing/NTCIR/xhtml5/7/1004.4989/1004.4989_1_32.xhtml
E
[
(
α
+
x
)
n
]
=
∑
k
=
0
n
(
n
k
)
E
[
α
k
]
x
n
-
k
=
∫
-
∞
∞
∑
k
=
0
n
(
n
k
)
t
k
x
n
-
k
f
(
t
)
d
t
,
Doc 43
0.3646
-4.0000
11.0000
0.3646
testing/NTCIR/xhtml5/6/0904.2672/0904.2672_1_21.xhtml
(
x
+
1
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
Doc 44
0.3646
-11.0000
11.0000
0.3646
testing/NTCIR/xhtml5/5/0707.1660/0707.1660_1_51.xhtml
p
n
,
0
(
x
,
y
)
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
-
k
Doc 45
0.3646
-13.0000
11.0000
0.3646
testing/NTCIR/xhtml5/5/0707.1660/0707.1660_1_49.xhtml
p
n
,
μ
(
x
,
y
)
:=
∑
k
=
0
n
(
n
k
)
μ
x
k
y
n
-
k
.
Doc 46
0.3646
-20.0000
11.0000
0.3646
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_35.xhtml
(
x
+
y
)
q
n
=
∑
k
=
0
n
(
n
k
)
q
k
(
n
-
k
+
1
2
)
x
n
-
k
y
k
,
Doc 47
0.3646
-25.0000
10.0000
0.3646
testing/NTCIR/xhtml5/8/1202.2264/1202.2264_1_39.xhtml
(
x
+
y
)
q
,
Q
n
=
∑
k
=
0
n
[
n
k
]
q
,
Q
(
q
Q
)
k
(
k
-
1
)
2
x
n
-
k
y
k
.
Doc 48
0.3646
-38.0000
9.0000
0.6656
testing/NTCIR/xhtml5/9/1301.6979/1301.6979_1_85.xhtml
f
=
∑
k
=
0
n
(
n
k
)
ξ
k
(
α
x
¯
+
β
y
¯
)
k
(
γ
x
¯
+
δ
y
¯
)
n
-
k
=
∑
k
=
0
n
(
n
k
)
ξ
¯
k
x
¯
k
y
¯
n
-
k
f
=
∑
k
=
0
n
(
n
k
)
ξ
k
x
k
y
n
-
k
Doc 49
0.3596
-13.0000
12.0000
0.3596
testing/NTCIR/xhtml5/6/0907.5420/0907.5420_1_135.xhtml
M
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
(
n
-
1
)
n
-
k
¯
2
k
x
k
¯
Doc 50
0.3596
-16.0000
10.0000
0.3596
testing/NTCIR/xhtml5/3/math0405544/math0405544_1_48.xhtml
(
Δ
(
x
n
)
u
)
(
t
)
=
∑
k
=
0
n
(
n
k
)
(
-
x
)
n
-
k
u
(
x
k
t
)
.
Doc 51
0.3596
-29.0000
11.0000
0.3596
testing/NTCIR/xhtml5/6/0909.1927/0909.1927_1_18.xhtml
P
μ
,
n
(
z
)
=
∑
k
=
0
n
γ
k
(
n
k
)
z
n
-
k
=
∑
j
,
k
(
n
k
)
(
k
j
)
μ
k
-
2
j
z
n
-
k
.
Doc 52
0.3328
-12.0000
10.0000
0.3328
testing/NTCIR/xhtml5/5/0810.3554/0810.3554_1_122.xhtml
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
(
x
)
k
(
y
)
n
-
k
.
Doc 53
0.3328
-12.0000
10.0000
0.3328
testing/NTCIR/xhtml5/7/1004.4173/1004.4173_1_40.xhtml
H
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
H
n
-
k
(
x
)
y
k
Doc 54
0.3328
-13.0000
10.0000
0.3328
testing/NTCIR/xhtml5/8/1207.2312/1207.2312_1_56.xhtml
B
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
x
)
y
n
-
k
.
Doc 55
0.3328
-13.0000
10.0000
0.3328
testing/NTCIR/xhtml5/9/1302.3115/1302.3115_1_27.xhtml
B
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
x
)
y
n
-
k
.
Doc 56
0.3328
-14.0000
10.0000
0.3328
testing/NTCIR/xhtml5/5/0810.3554/0810.3554_1_110.xhtml
p
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
p
k
(
x
)
p
n
-
k
(
y
)
Doc 57
0.3328
-14.0000
10.0000
0.3328
testing/NTCIR/xhtml5/3/math0407181/math0407181_1_7.xhtml
p
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
p
n
-
k
(
x
)
p
k
(
y
)
Doc 58
0.3328
-14.0000
10.0000
0.3328
testing/NTCIR/xhtml5/5/0810.3554/0810.3554_1_119.xhtml
p
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
p
k
(
x
)
p
n
-
k
(
y
)
Doc 59
0.3328
-14.0000
10.0000
0.3328
testing/NTCIR/xhtml5/2/math0112194/math0112194_1_97.xhtml
S
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
S
k
(
x
)
P
n
-
k
(
y
)
Doc 60
0.3328
-14.0000
10.0000
0.3328
testing/NTCIR/xhtml5/5/0810.3554/0810.3554_1_99.xhtml
s
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
s
k
(
x
)
p
n
-
k
(
y
)
Doc 61
0.3328
-15.0000
10.0000
0.3328
testing/NTCIR/xhtml5/7/1105.4317/1105.4317_1_21.xhtml
p
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
p
k
(
x
)
p
n
-
k
(
y
)
.
Doc 62
0.3328
-15.0000
10.0000
0.3328
testing/NTCIR/xhtml5/1/math0406378/math0406378_1_13.xhtml
f
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
f
k
(
x
)
f
n
-
k
(
y
)
.
Doc 63
0.3328
-15.0000
10.0000
0.3328
testing/NTCIR/xhtml5/2/math0112194/math0112194_1_88.xhtml
P
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
P
k
(
x
)
P
n
-
k
(
y
)
.
Doc 64
0.3328
-15.0000
10.0000
0.3328
testing/NTCIR/xhtml5/2/math0112194/math0112194_1_90.xhtml
P
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
P
k
(
x
)
P
n
-
k
(
y
)
.
Doc 65
0.3328
-15.0000
7.0000
0.3328
testing/NTCIR/xhtml5/1/1111.4880/1111.4880_1_64.xhtml
∑
j
=
0
n
-
k
(
n
j
)
x
j
-
k
B
k
n
-
j
(
x
)
=
(
n
k
)
.
Doc 66
0.3328
-16.0000
10.0000
0.3328
testing/NTCIR/xhtml5/7/1102.1493/1102.1493_1_36.xhtml
ℬ
n
(
x
+
y
;
λ
)
=
∑
k
=
0
n
(
n
k
)
ℬ
n
-
k
(
x
;
λ
)
y
k
Doc 67
0.3328
-17.0000
10.0000
0.3328
testing/NTCIR/xhtml5/7/1011.3833/1011.3833_1_26.xhtml
B
n
(
m
)
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
m
)
(
y
)
x
n
-
k
.
Doc 68
0.3328
-17.0000
10.0000
0.3328
testing/NTCIR/xhtml5/7/1101.0900/1101.0900_1_115.xhtml
∑
k
=
m
n
(
n
k
)
x
k
y
n
-
k
≤
(
n
m
)
x
m
(
x
+
y
)
n
-
m
.
Doc 69
0.3328
-37.0000
10.0000
0.3328
testing/NTCIR/xhtml5/5/0810.0438/0810.0438_1_9.xhtml
B
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
x
)
y
n
-
k
and
E
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
E
k
(
x
)
y
n
-
k
.
Doc 70
0.3273
-10.0000
10.0000
0.3273
testing/NTCIR/xhtml5/3/math0406323/math0406323_1_3.xhtml
𝐁
n
=
∑
k
=
0
n
(
n
k
)
(
2
y
)
n
-
k
x
k
𝐀
k
.
Doc 71
0.3273
-37.0000
10.0000
0.3273
testing/NTCIR/xhtml5/6/0908.3248/0908.3248_1_59.xhtml
Φ
n
(
x
)
=
∑
k
≥
0
(
n
k
)
𝒯
1
,
q
(
-
1
)
n
-
k
q
(
n
-
k
2
)
x
k
⇔
x
n
=
∑
k
≥
0
(
n
k
)
𝒯
1
,
q
Φ
k
(
x
)
Doc 72
0.3057
-22.0000
10.0000
0.6005
testing/NTCIR/xhtml5/8/1109.0141/1109.0141_1_12.xhtml
K
n
(
x
)
=
∑
i
=
1
n
q
i
∑
k
=
n
-
i
+
1
n
(
n
k
)
x
k
(
1
-
x
)
n
-
k
.
H
n
(
x
)
=
∑
i
=
1
n
q
i
∑
k
=
i
n
(
n
k
)
x
k
(
1
-
x
)
n
-
k
Doc 73
0.3057
-22.0000
10.0000
0.3057
testing/NTCIR/xhtml5/7/1005.4218/1005.4218_1_65.xhtml
A
(
x
)
=
∑
k
=
0
n
(
n
k
)
a
k
x
k
,
B
(
x
)
=
∑
k
=
0
n
(
n
k
)
b
k
x
k
,
Doc 74
0.3057
-24.0000
9.0000
0.3057
testing/NTCIR/xhtml5/7/1010.1967/1010.1967_1_40.xhtml
P
(
x
)
=
∑
k
=
0
n
a
n
-
k
x
n
-
k
,
Q
(
x
)
=
∑
k
=
0
n
b
n
-
k
x
n
-
k
.
Doc 75
0.3057
-24.0000
9.0000
0.3057
testing/NTCIR/xhtml5/7/1010.1967/1010.1967_1_34.xhtml
P
(
x
)
=
∑
k
=
0
n
a
n
-
k
x
n
-
k
,
Q
(
x
)
=
∑
k
=
0
n
b
n
-
k
x
n
-
k
.
Doc 76
0.3010
-11.0000
7.0000
0.3010
testing/NTCIR/xhtml5/8/1109.4289/1109.4289_1_42.xhtml
∑
k
(
n
k
)
y
n
-
k
B
k
(
x
)
=
B
n
(
x
+
y
)
.
Doc 77
0.3010
-16.0000
9.0000
0.3010
testing/NTCIR/xhtml5/7/1012.0222/1012.0222_1_20.xhtml
Δ
(
x
i
n
)
=
∑
k
=
0
n
(
n
k
)
q
i
x
i
k
⊗
x
i
n
-
k
.
Doc 78
0.2948
-17.0000
10.0000
0.2948
testing/NTCIR/xhtml5/5/0710.5556/0710.5556_1_15.xhtml
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
=
∑
k
=
0
n
C
k
n
x
k
,
Doc 79
0.2827
-21.0000
9.0000
0.2827
testing/NTCIR/xhtml5/7/1005.4218/1005.4218_1_78.xhtml
B
(
x
)
=
∑
k
=
0
n
(
n
k
)
(
n
+
d
k
+
d
)
(
n
-
k
+
d
n
-
k
)
x
k
Doc 80
0.2827
-38.0000
9.0000
0.2827
testing/NTCIR/xhtml5/1/0911.1325/0911.1325_1_13.xhtml
-
∑
k
=
0
n
(
n
k
)
x
k
∑
m
=
1
n
-
k
(
-
x
)
m
m
=
∑
k
=
1
n
(
n
k
)
x
k
∑
m
=
1
k
1
m
+
n
-
k
.
Doc 81
0.2827
-43.0000
7.0000
0.2827
testing/NTCIR/xhtml5/1/0909.5512/0909.5512_1_7.xhtml
P
~
n
(
x
)
=
∑
k
=
0
n
(
-
1
)
n
-
k
(
n
k
)
(
n
+
k
k
)
x
k
=
∑
k
=
0
n
(
-
1
)
n
-
k
(
n
+
k
n
-
k
)
(
2
k
k
)
x
k
.
Doc 82
0.2819
-22.0000
9.0000
0.2819
testing/NTCIR/xhtml5/1/1111.4880/1111.4880_1_66.xhtml
∑
j
=
0
n
-
k
(
-
1
)
j
(
n
j
)
B
k
n
-
j
(
x
)
=
(
-
1
)
n
-
k
(
n
k
)
x
n
.
Doc 83
0.2726
-14.0000
9.0000
0.2726
testing/NTCIR/xhtml5/9/1301.3669/1301.3669_1_2.xhtml
=
n
n
ξ
(
n
)
=
∑
k
=
0
n
(
n
k
)
k
k
(
n
-
k
)
n
-
k
,
Doc 84
0.2692
-19.0000
6.0000
0.2692
testing/NTCIR/xhtml5/10/math9603215/math9603215_1_56.xhtml
s
(
n
)
=
∑
k
=
0
n
F
(
n
,
k
)
=
∑
k
=
0
n
(
n
k
)
P
n
(
x
)
,
Doc 85
0.2692
-19.0000
6.0000
0.2692
testing/NTCIR/xhtml5/10/math9412226/math9412226_1_29.xhtml
s
(
n
)
=
∑
k
=
0
n
F
(
n
,
k
)
=
∑
k
=
0
n
(
n
k
)
P
n
(
x
)
,
Doc 86
0.2692
-20.0000
8.0000
0.2692
testing/NTCIR/xhtml5/4/math0603277/math0603277_1_143.xhtml
q
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
(
n
+
k
k
)
(
-
x
k
)
(
-
x
+
k
k
)
.
Doc 87
0.2692
-29.0000
6.0000
0.2692
testing/NTCIR/xhtml5/9/1212.0957/1212.0957_1_60.xhtml
C
n
+
1
=
∑
k
=
0
n
(
n
k
)
M
k
⟺
M
n
=
∑
k
=
0
n
(
-
1
)
n
-
k
(
n
k
)
C
k
+
1
.
Doc 88
0.2622
-14.0000
9.0000
0.2622
testing/NTCIR/xhtml5/9/1301.3669/1301.3669_1_1.xhtml
=
∑
k
=
0
n
(
n
k
)
(
k
n
)
k
(
n
-
k
n
)
n
-
k
,
Doc 89
0.2622
-49.0000
8.0000
0.2622
testing/NTCIR/xhtml5/8/1110.5014/1110.5014_1_18.xhtml
D
n
(
2
x
2
y
)
=
2
D
n
(
x
2
y
)
=
2
∑
k
=
0
n
(
n
k
)
D
k
(
x
)
D
n
-
k
(
x
y
)
=
2
∑
k
=
0
n
(
n
k
)
D
k
(
x
)
D
n
-
k
+
1
(
x
)
,
Doc 90
0.2505
-42.0000
6.0000
0.2505
testing/NTCIR/xhtml5/8/1109.4289/1109.4289_1_33.xhtml
S
(
n
,
0
)
=
∑
k
=
0
n
(
n
+
1
k
)
(
-
1
)
k
S
2
(
n
-
k
,
n
-
k
)
=
∑
k
=
0
n
(
n
+
1
k
)
(
-
1
)
k
=
(
-
1
)
n
.
Doc 91
0.2373
-12.0000
6.0000
0.2373
testing/NTCIR/xhtml5/10/math9412226/math9412226_1_20.xhtml
s
(
n
)
=
∑
k
(
n
k
)
2
=
∑
k
=
0
n
(
n
k
)
2
Doc 92
0.2373
-15.0000
6.0000
0.2373
testing/NTCIR/xhtml5/10/math9412226/math9412226_1_21.xhtml
∑
k
=
0
n
(
n
k
)
3
=
∑
k
=
0
n
(
n
k
)
2
(
2
k
n
)
Doc 93
0.2373
-15.0000
6.0000
0.2373
testing/NTCIR/xhtml5/10/math9603215/math9603215_1_36.xhtml
∑
k
=
0
n
(
n
k
)
3
=
∑
k
=
0
n
(
n
k
)
2
(
2
k
n
)
Doc 94
0.2373
-31.0000
6.0000
0.2373
testing/NTCIR/xhtml5/7/1011.3833/1011.3833_1_4.xhtml
q
n
=
∑
k
=
0
n
(
n
k
)
2
k
!
,
p
n
=
∑
k
=
0
n
(
n
k
)
2
k
!
(
2
H
n
-
k
-
H
k
)
.
Doc 95
0.2293
-38.0000
7.0000
0.2293
testing/NTCIR/xhtml5/7/1008.4547/1008.4547_1_7.xhtml
B
n
(
f
|
x
)
=
∑
k
=
0
n
f
(
k
n
)
(
n
k
)
x
k
(
1
-
x
)
n
-
k
=
∑
k
=
0
n
f
(
k
n
)
B
k
,
n
(
x
)
.
Doc 96
0.2293
-38.0000
7.0000
0.2293
testing/NTCIR/xhtml5/7/1009.0097/1009.0097_1_2.xhtml
𝔹
n
(
f
|
x
)
=
∑
k
=
0
n
f
(
k
n
)
(
n
k
)
x
k
(
1
-
x
)
n
-
k
=
∑
k
=
0
n
f
(
k
n
)
B
k
,
n
(
x
)
.
Doc 97
0.2182
-15.0000
7.0000
0.2182
testing/NTCIR/xhtml5/3/math-ph0306032/math-ph0306032_1_46.xhtml
∑
k
=
0
n
(
n
k
)
x
k
-
∑
k
=
p
+
1
n
(
n
k
)
x
k
Doc 98
0.2128
-19.0000
7.0000
0.2128
testing/NTCIR/xhtml5/5/0708.0563/0708.0563_1_2.xhtml
∑
k
=
0
n
(
n
k
)
H
n
-
k
(
x
)
i
k
H
k
(
-
i
y
)
=
(
x
+
y
)
n
.
Doc 99
0.1961
-33.0000
6.0000
0.1961
testing/NTCIR/xhtml5/3/quant-ph0304094/quant-ph0304094_1_32.xhtml
∑
k
=
0
n
k
!
t
k
(
n
k
)
2
N
n
-
k
¯
=
∑
k
=
0
n
k
!
s
k
(
n
k
)
2
(
N
+
ϵ
)
n
-
k
¯
.
Doc 100
0.1734
-18.0000
5.0000
0.1734
testing/NTCIR/xhtml5/1/0909.5512/0909.5512_1_99.xhtml
N
n
(
x
)
=
∑
k
=
1
n
1
n
(
n
k
-
1
)
(
n
k
)
x
k
.