tangent
Not Supported
(
p
1
,
⋯
,
p
n
)
Search
Returned 76 matches (100 formulae, 205 docs)
Lookup 135.762 ms, Re-ranking 100.386 ms
Found 1361196 tuple postings, 546382 formulae, 490734 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
1.0000
0.0000
8.0000
1.0000
testing/NTCIR/xhtml5/6/0909.3169/0909.3169_1_20.xhtml
(
p
1
,
…
,
p
d
)
Doc 2
1.0000
0.0000
6.0000
1.0000
testing/NTCIR/xhtml5/9/1312.7608/1312.7608_1_190.xhtml
(
τ
1
,
…
,
τ
p
)
Doc 3
1.0000
-1.0000
7.0000
1.0000
testing/NTCIR/xhtml5/5/0811.1097/0811.1097_1_56.xhtml
ℝ
(
ρ
1
,
…
,
ρ
n
)
Doc 4
1.0000
-1.0000
6.0000
1.0000
testing/NTCIR/xhtml5/9/1310.1645/1310.1645_1_1.xhtml
ℚ
(
a
1
,
…
,
a
l
)
Doc 5
1.0000
-1.0000
6.0000
1.0000
testing/NTCIR/xhtml5/5/0704.2824/0704.2824_1_47.xhtml
ℚ
(
l
1
,
…
,
l
r
)
Doc 6
1.0000
-2.0000
7.0000
1.0000
testing/NTCIR/xhtml5/5/0710.1280/0710.1280_1_99.xhtml
diag
(
r
1
,
…
,
r
n
)
,
Doc 7
1.0000
-2.0000
7.0000
1.0000
testing/NTCIR/xhtml5/5/0810.2925/0810.2925_1_73.xhtml
η
:=
(
d
1
,
⋯
,
d
r
)
Doc 8
1.0000
-2.0000
7.0000
1.0000
testing/NTCIR/xhtml5/7/1007.3007/1007.3007_1_31.xhtml
u
≡
(
c
1
,
…
,
c
n
)
Doc 9
1.0000
-3.0000
8.0000
1.0000
testing/NTCIR/xhtml5/3/math0305183/math0305183_1_37.xhtml
K
(
p
1
*
,
…
,
p
r
*
)
Doc 10
1.0000
-3.0000
8.0000
1.0000
testing/NTCIR/xhtml5/5/0709.2001/0709.2001_1_28.xhtml
ℚ
(
p
1
,
…
,
p
r
)
/
ℚ
Doc 11
1.0000
-3.0000
7.0000
1.0000
testing/NTCIR/xhtml5/3/math0308069/math0308069_1_38.xhtml
K
=
k
(
r
1
,
…
,
r
n
)
Doc 12
1.0000
-3.0000
7.0000
1.0000
testing/NTCIR/xhtml5/3/math0308069/math0308069_1_52.xhtml
K
=
ℚ
(
r
1
,
…
,
r
n
)
Doc 13
1.0000
-3.0000
7.0000
1.0000
testing/NTCIR/xhtml5/3/math0308069/math0308069_1_44.xhtml
K
=
k
(
r
1
,
…
,
r
n
)
Doc 14
1.0000
-4.0000
9.0000
1.0000
testing/NTCIR/xhtml5/3/math-ph0312044/math-ph0312044_1_4.xhtml
p
↦
2
(
p
1
,
…
,
p
n
)
,
Doc 15
1.0000
-4.0000
7.0000
1.0000
testing/NTCIR/xhtml5/5/0805.1975/0805.1975_1_22.xhtml
ℚ
(
n
1
4
,
⋯
,
n
k
4
)
.
Doc 16
1.0000
-5.0000
8.0000
1.0000
testing/NTCIR/xhtml5/9/1303.0281/1303.0281_1_64.xhtml
<
1
~
|
=
(
p
1
,
…
,
p
N
)
Doc 17
1.0000
-5.0000
6.0000
1.0000
testing/NTCIR/xhtml5/3/math0312526/math0312526_1_72.xhtml
x
1
/
2
=
(
x
1
,
…
,
x
d
)
Doc 18
1.0000
-5.0000
6.0000
1.0000
testing/NTCIR/xhtml5/3/math0401417/math0401417_1_92.xhtml
x
1
/
2
=
(
x
1
,
…
,
x
d
)
Doc 19
1.0000
-6.0000
7.0000
1.0000
testing/NTCIR/xhtml5/3/math0304170/math0304170_1_21.xhtml
φ
(
ρ
)
:=
2
(
ρ
1
,
…
,
ρ
n
)
.
Doc 20
1.0000
-6.0000
7.0000
1.0000
testing/NTCIR/xhtml5/7/1007.3007/1007.3007_1_54.xhtml
u
≡
(
c
1
2
p
,
…
,
c
n
2
p
)
Doc 21
1.0000
-7.0000
9.0000
1.0000
testing/NTCIR/xhtml5/1/math0002139/math0002139_1_77.xhtml
[
K
(
p
1
,
⋯
,
p
t
)
:
K
]
=
2
t
Doc 22
1.0000
-7.0000
7.0000
1.0000
testing/NTCIR/xhtml5/8/1110.6882/1110.6882_1_158.xhtml
D
1
/
2
:
=
diag
(
d
1
,
…
,
d
n
)
Doc 23
1.0000
-7.0000
7.0000
1.0000
testing/NTCIR/xhtml5/8/1110.6882/1110.6882_1_166.xhtml
D
1
/
2
:
=
diag
(
d
1
,
…
,
d
n
)
Doc 24
1.0000
-8.0000
7.0000
1.0000
testing/NTCIR/xhtml5/9/1401.2597/1401.2597_1_28.xhtml
(
β
1
μ
(
A
1
)
,
⋯
,
β
I
μ
(
A
I
)
)
Doc 25
1.0000
-9.0000
7.0000
1.0000
testing/NTCIR/xhtml5/3/math0308069/math0308069_1_102.xhtml
[
ℚ
(
r
1
,
…
,
r
n
)
:
ℚ
]
=
2
n
n
!
Doc 26
1.0000
-11.0000
8.0000
1.0000
testing/NTCIR/xhtml5/6/0901.4138/0901.4138_1_91.xhtml
(
Z
1
,
⋯
,
Z
M
)
=
d
(
p
1
,
…
,
p
M
)
Z
Doc 27
1.0000
-14.0000
8.0000
1.0000
testing/NTCIR/xhtml5/6/0901.4138/0901.4138_1_83.xhtml
=
(
p
1
,
…
,
p
M
)
𝚺
0
(
p
1
,
…
,
p
M
)
′
Doc 28
0.8944
-7.0000
6.0000
0.8944
testing/NTCIR/xhtml5/7/1010.6056/1010.6056_1_21.xhtml
𝐋
=
(
λ
1
𝜸
1
,
⋯
,
λ
k
𝜸
k
)
Doc 29
0.8944
-7.0000
6.0000
0.8944
testing/NTCIR/xhtml5/9/1305.7007/1305.7007_1_13.xhtml
𝐁
=
(
λ
1
𝜸
1
,
⋯
,
λ
k
𝜸
k
)
Doc 30
0.8944
-7.0000
6.0000
0.8944
testing/NTCIR/xhtml5/9/1305.7007/1305.7007_1_84.xhtml
𝐁
=
(
λ
1
𝜸
1
,
⋯
,
λ
k
𝜸
k
)
Doc 31
0.6829
-2.0000
5.0000
0.6829
testing/NTCIR/xhtml5/7/1007.3584/1007.3584_1_11.xhtml
(
1
,
…
,
n
max
)
Doc 32
0.6829
-2.0000
4.0000
0.6829
testing/NTCIR/xhtml5/3/hep-th0311075/hep-th0311075_1_30.xhtml
(
s
0
,
p
,
m
3
)
Doc 33
0.6829
-3.0000
6.0000
0.6829
testing/NTCIR/xhtml5/7/1103.1365/1103.1365_1_39.xhtml
(
1
,
⋯
,
n
max
)
:
Doc 34
0.6557
-4.0000
5.0000
0.6557
testing/NTCIR/xhtml5/4/hep-ph0505028/hep-ph0505028_1_6.xhtml
(
m
e
,
m
μ
,
m
τ
)
Doc 35
0.6557
-5.0000
6.0000
0.6557
testing/NTCIR/xhtml5/9/1310.6606/1310.6606_1_82.xhtml
ℚ
(
d
1
,
d
2
,
d
3
)
Doc 36
0.6195
-7.0000
6.0000
0.6195
testing/NTCIR/xhtml5/8/1205.4062/1205.4062_1_15.xhtml
𝝁
=
(
1
n
,
…
,
1
n
)
Doc 37
0.5769
-3.0000
5.0000
0.5769
testing/NTCIR/xhtml5/9/1212.6221/1212.6221_1_62.xhtml
ℚ
(
5
,
i
,
2
)
Doc 38
0.5769
-3.0000
5.0000
0.5769
testing/NTCIR/xhtml5/9/1212.6221/1212.6221_1_60.xhtml
ℚ
(
5
,
i
,
2
)
Doc 39
0.5769
-6.0000
5.0000
0.5769
testing/NTCIR/xhtml5/4/math0609572/math0609572_1_37.xhtml
(
|
P
1
|
,
…
,
|
P
k
|
)
Doc 40
0.5769
-7.0000
6.0000
1.1538
testing/NTCIR/xhtml5/3/math0312483/math0312483_1_72.xhtml
E
(
2
a
1
,
⋯
,
2
a
n
)
(
α
+
ϵ
)
E
(
2
a
1
,
⋯
,
2
a
n
)
Doc 41
0.5769
-7.0000
6.0000
1.1538
testing/NTCIR/xhtml5/3/math0312483/math0312483_1_74.xhtml
E
(
2
a
1
,
⋯
,
2
a
n
)
(
α
+
ϵ
)
E
(
2
a
1
,
⋯
,
2
a
n
)
Doc 42
0.5437
-3.0000
5.0000
0.5437
testing/NTCIR/xhtml5/10/math9904179/math9904179_1_70.xhtml
(
s
,
t
,
s
t
)
Doc 43
0.5106
-7.0000
6.0000
0.8743
testing/NTCIR/xhtml5/9/1212.4532/1212.4532_1_49.xhtml
K
:=
ℚ
(
p
1
,
p
2
,
⋯
)
p
1
,
p
2
,
⋯
Doc 44
0.5106
-8.0000
6.0000
0.5106
testing/NTCIR/xhtml5/9/1212.4532/1212.4532_1_58.xhtml
K
α
:=
F
(
p
1
,
p
2
,
⋯
)
Doc 45
0.5106
-10.0000
4.0000
0.5106
testing/NTCIR/xhtml5/5/0808.2136/0808.2136_1_19.xhtml
diag
(
Λ
1
,
Λ
2
,
⋯
,
Λ
n
)
.
Doc 46
0.4706
-2.0000
6.0000
0.9412
testing/NTCIR/xhtml5/5/0712.3784/0712.3784_1_130.xhtml
(
|
x
1
|
,
⋯
,
|
x
n
|
)
(
|
y
1
|
,
⋯
,
|
y
n
+
p
|
)
Doc 47
0.4706
-2.0000
6.0000
0.9412
testing/NTCIR/xhtml5/5/0712.3784/0712.3784_1_129.xhtml
(
|
x
1
|
,
⋯
,
|
x
n
|
)
(
|
y
1
|
,
⋯
,
|
y
n
+
p
|
)
Doc 48
0.4706
-2.0000
6.0000
0.4706
testing/NTCIR/xhtml5/6/0912.1194/0912.1194_1_38.xhtml
(
|
Z
1
|
,
⋯
,
|
Z
n
|
)
Doc 49
0.4706
-2.0000
6.0000
0.4706
testing/NTCIR/xhtml5/6/0912.1194/0912.1194_1_83.xhtml
(
|
Z
1
|
,
⋯
,
|
Z
n
|
)
Doc 50
0.4706
-2.0000
6.0000
0.4706
testing/NTCIR/xhtml5/10/math9804022/math9804022_1_44.xhtml
(
|
I
1
|
,
⋯
,
|
I
n
|
)
Doc 51
0.4706
-3.0000
4.0000
0.4706
testing/NTCIR/xhtml5/9/1401.2863/1401.2863_1_91.xhtml
ℚ
(
2
,
i
,
u
)
Doc 52
0.4706
-3.0000
4.0000
0.4706
testing/NTCIR/xhtml5/9/1401.2863/1401.2863_1_90.xhtml
ℚ
(
2
,
i
,
v
)
Doc 53
0.4706
-3.0000
4.0000
0.4706
testing/NTCIR/xhtml5/4/math0512610/math0512610_1_30.xhtml
(
2
,
i
,
-
i
)
Doc 54
0.4706
-4.0000
6.0000
0.9412
testing/NTCIR/xhtml5/7/1006.2679/1006.2679_1_93.xhtml
f
^
(
[
x
1
]
,
⋯
,
[
x
n
]
)
f
^
(
[
y
1
]
,
⋯
,
[
y
n
]
)
.
Doc 55
0.4706
-4.0000
6.0000
0.9412
testing/NTCIR/xhtml5/7/1006.2679/1006.2679_1_88.xhtml
f
^
(
[
x
1
]
,
⋯
,
[
x
n
]
)
f
~
(
[
x
1
]
,
⋯
,
[
x
n
]
)
Doc 56
0.4286
-4.0000
6.0000
0.8571
testing/NTCIR/xhtml5/5/math0703324/math0703324_1_34.xhtml
ℚ
(
2
,
π
,
p
)
N
=
ℚ
(
2
,
π
,
p
)
.
Doc 57
0.4286
-4.0000
5.0000
0.4286
testing/NTCIR/xhtml5/3/math0403417/math0403417_1_81.xhtml
ℚ
(
α
,
β
,
γ
)
Doc 58
0.4286
-5.0000
5.0000
0.4286
testing/NTCIR/xhtml5/2/math0106271/math0106271_1_65.xhtml
ℚ
(
5
,
-
1
,
τ
)
Doc 59
0.4286
-5.0000
5.0000
0.4286
testing/NTCIR/xhtml5/4/math0507065/math0507065_1_34.xhtml
W
(
a
,
b
,
c
)
∧
Doc 60
0.4286
-6.0000
6.0000
0.4286
testing/NTCIR/xhtml5/9/1310.6599/1310.6599_1_53.xhtml
L
=
ℚ
(
p
,
q
,
ρ
)
Doc 61
0.4286
-6.0000
6.0000
0.4286
testing/NTCIR/xhtml5/5/math0703324/math0703324_1_99.xhtml
N
=
ℚ
(
2
,
π
,
p
)
Doc 62
0.4286
-7.0000
6.0000
0.4286
testing/NTCIR/xhtml5/5/math0703324/math0703324_1_110.xhtml
M
=
ℚ
(
2
,
-
1
,
p
)
Doc 63
0.4286
-7.0000
5.0000
0.4286
testing/NTCIR/xhtml5/8/1205.3424/1205.3424_1_89.xhtml
𝐐
(
-
1
,
m
1
,
m
2
)
Doc 64
0.4000
-2.0000
4.0000
0.4000
testing/NTCIR/xhtml5/3/hep-th0405247/hep-th0405247_1_65.xhtml
(
ξ
,
0
,
1
)
Doc 65
0.4000
-3.0000
4.0000
0.4000
testing/NTCIR/xhtml5/5/0801.4714/0801.4714_1_48.xhtml
(
n
,
n
,
ε
)
Doc 66
0.3636
-14.0000
4.0000
0.7273
testing/NTCIR/xhtml5/9/1212.4532/1212.4532_1_62.xhtml
z
∈
D
n
:=
F
(
α
,
p
1
,
⋯
,
p
n
)
=
F
n
(
x
1
,
⋯
,
x
n
,
p
1
,
⋯
,
p
n
)
.
Doc 67
0.3077
-4.0000
5.0000
0.3077
testing/NTCIR/xhtml5/7/1012.0197/1012.0197_1_32.xhtml
(
2
,
0
,
2
)
T
Doc 68
0.3077
-5.0000
5.0000
0.3077
testing/NTCIR/xhtml5/6/0909.1377/0909.1377_1_351.xhtml
ℚ
(
2
,
3
,
5
)
Doc 69
0.3077
-6.0000
5.0000
0.6154
testing/NTCIR/xhtml5/2/math0110343/math0110343_1_36.xhtml
ℚ
(
-
11
,
5
,
29
)
ℚ
(
-
7
,
5
,
29
)
Doc 70
0.3077
-6.0000
5.0000
0.3077
testing/NTCIR/xhtml5/2/math0110343/math0110343_1_29.xhtml
ℚ
(
-
1
,
5
,
89
)
Doc 71
0.3077
-6.0000
5.0000
0.3077
testing/NTCIR/xhtml5/2/math0110343/math0110343_1_20.xhtml
ℚ
(
-
3
,
13
,
61
)
Doc 72
0.3077
-6.0000
5.0000
0.3077
testing/NTCIR/xhtml5/5/math0703324/math0703324_1_96.xhtml
ℚ
(
2
,
ϵ
,
-
1
)
Doc 73
0.3077
-8.0000
5.0000
0.3077
testing/NTCIR/xhtml5/2/math0110343/math0110343_1_21.xhtml
ℚ
(
-
3
,
13
,
61
)
/
k
Doc 74
0.2857
-3.0000
4.0000
0.2857
testing/NTCIR/xhtml5/7/1007.2997/1007.2997_1_6.xhtml
(
2
,
0
,
0
)
Doc 75
0.2857
-4.0000
4.0000
0.2857
testing/NTCIR/xhtml5/8/1207.4849/1207.4849_1_52.xhtml
(
2
,
2
,
1
)
Doc 76
0.2857
-4.0000
4.0000
0.2857
testing/NTCIR/xhtml5/8/1207.4849/1207.4849_1_53.xhtml
(
2
,
2
,
1
)
Doc 77
0.2857
-5.0000
4.0000
0.2857
testing/NTCIR/xhtml5/6/0908.0920/0908.0920_1_25.xhtml
(
2
/
3
,
1
,
0
)
Doc 78
0.2857
-5.0000
4.0000
0.2857
testing/NTCIR/xhtml5/6/0908.0920/0908.0920_1_29.xhtml
(
2
/
3
,
1
,
0
)
Doc 79
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0601749/math0601749_1_9.xhtml
(
1
,
⋯
,
1
)
Doc 80
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/8/1205.2789/1205.2789_1_104.xhtml
(
1
,
⋯
,
n
)
Doc 81
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0605686/math0605686_1_151.xhtml
(
0
,
⋯
,
0
)
Doc 82
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/math0110253/math0110253_1_162.xhtml
(
1
,
⋯
,
1
)
Doc 83
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1012.2377/1012.2377_1_133.xhtml
(
0
,
⋯
,
0
)
Doc 84
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0912.2435/0912.2435_1_66.xhtml
(
1
,
⋯
,
n
)
Doc 85
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/8/1205.2789/1205.2789_1_70.xhtml
(
1
,
⋯
,
n
)
Doc 86
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9706158/hep-th9706158_1_62.xhtml
(
0
,
⋯
,
0
)
Doc 87
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0909.1419/0909.1419_1_54.xhtml
(
1
,
⋯
,
1
)
Doc 88
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0902.2500/0902.2500_1_79.xhtml
(
1
,
⋯
,
n
)
Doc 89
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/5/0705.2343/0705.2343_1_23.xhtml
(
1
,
⋯
,
1
)
Doc 90
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/8/1111.2804/1111.2804_1_137.xhtml
(
1
,
⋯
,
1
)
Doc 91
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0909.1419/0909.1419_1_53.xhtml
(
1
,
⋯
,
1
)
Doc 92
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/1/math0310379/math0310379_1_49.xhtml
(
0
,
⋯
,
0
)
Doc 93
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/1/1212.3534/1212.3534_1_19.xhtml
(
0
,
⋯
,
0
)
Doc 94
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/1/1212.3534/1212.3534_1_17.xhtml
(
0
,
⋯
,
0
)
Doc 95
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/math0011069/math0011069_1_72.xhtml
(
1
,
⋯
,
1
)
Doc 96
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/9/alg-geom9203002/alg-geom9203002_1_54.xhtml
(
1
,
⋯
,
1
)
Doc 97
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/math0501272/math0501272_1_166.xhtml
(
0
,
⋯
,
0
)
Doc 98
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/hep-th0607141/hep-th0607141_1_14.xhtml
(
1
,
⋯
,
n
)
Doc 99
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/math-ph0401047/math-ph0401047_1_137.xhtml
(
1
,
⋯
,
n
)
Doc 100
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0505587/math0505587_1_135.xhtml
(
0
,
⋯
,
0
)
Doc 101
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0506324/math0506324_1_43.xhtml
(
1
,
⋯
,
1
)
Doc 102
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/math0501272/math0501272_1_165.xhtml
(
0
,
⋯
,
0
)
Doc 103
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/math9809034/math9809034_1_266.xhtml
(
0
,
⋯
,
0
)
Doc 104
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/8/1205.2789/1205.2789_1_136.xhtml
(
1
,
⋯
,
n
)
Doc 105
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/5/0811.3392/0811.3392_1_3.xhtml
(
1
,
⋯
,
1
)
Doc 106
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0911.1093/0911.1093_1_53.xhtml
(
1
,
⋯
,
1
)
Doc 107
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0910.5298/0910.5298_1_23.xhtml
(
1
,
⋯
,
1
)
Doc 108
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/11/math-ph9910047/math-ph9910047_1_9.xhtml
(
1
,
⋯
,
n
)
Doc 109
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1004.5023/1004.5023_1_24.xhtml
(
1
,
⋯
,
n
)
Doc 110
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0906.5133/0906.5133_1_131.xhtml
(
0
,
⋯
,
0
)
Doc 111
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0906.5133/0906.5133_1_132.xhtml
(
0
,
⋯
,
0
)
Doc 112
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/8/1205.2789/1205.2789_1_135.xhtml
(
1
,
⋯
,
n
)
Doc 113
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1007.3730/1007.3730_1_42.xhtml
(
0
,
⋯
,
0
)
Doc 114
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/math0412007/math0412007_1_160.xhtml
(
1
,
⋯
,
1
)
Doc 115
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0906.5133/0906.5133_1_136.xhtml
(
0
,
⋯
,
0
)
Doc 116
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/math0211400/math0211400_1_124.xhtml
(
1
,
⋯
,
1
)
Doc 117
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/math0412007/math0412007_1_183.xhtml
(
1
,
⋯
,
1
)
Doc 118
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/math9712294/math9712294_1_84.xhtml
(
0
,
⋯
,
0
)
Doc 119
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/5/0706.2686/0706.2686_1_73.xhtml
(
0
,
⋯
,
0
)
Doc 120
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/9/1312.1433/1312.1433_1_14.xhtml
(
1
,
⋯
,
n
)
Doc 121
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1004.5023/1004.5023_1_17.xhtml
(
1
,
⋯
,
n
)
Doc 122
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1004.5023/1004.5023_1_28.xhtml
(
1
,
⋯
,
n
)
Doc 123
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1007.3730/1007.3730_1_41.xhtml
(
0
,
⋯
,
0
)
Doc 124
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/hep-th0607141/hep-th0607141_1_15.xhtml
(
1
,
⋯
,
n
)
Doc 125
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/9/1302.4244/1302.4244_1_15.xhtml
(
1
,
⋯
,
n
)
Doc 126
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/nlin0110045/nlin0110045_1_77.xhtml
(
1
,
⋯
,
1
)
Doc 127
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/5/0709.2483/0709.2483_1_27.xhtml
(
0
,
⋯
,
0
)
Doc 128
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/1/math0002139/math0002139_1_73.xhtml
(
1
,
⋯
,
1
)
Doc 129
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/math0211400/math0211400_1_143.xhtml
(
0
,
⋯
,
0
)
Doc 130
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/5/0808.3105/0808.3105_1_19.xhtml
(
1
,
⋯
,
n
)
Doc 131
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9707045/hep-th9707045_1_16.xhtml
(
1
,
⋯
,
n
)
Doc 132
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/math9712294/math9712294_1_83.xhtml
(
0
,
⋯
,
0
)
Doc 133
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/hep-th0108020/hep-th0108020_1_64.xhtml
(
1
,
⋯
,
1
)
Doc 134
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1012.2377/1012.2377_1_134.xhtml
(
0
,
⋯
,
0
)
Doc 135
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/8/1205.2789/1205.2789_1_107.xhtml
(
1
,
⋯
,
n
)
Doc 136
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1007.2029/1007.2029_1_4.xhtml
(
1
,
⋯
,
1
)
Doc 137
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0902.2500/0902.2500_1_4.xhtml
(
1
,
⋯
,
n
)
Doc 138
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/math9805153/math9805153_1_13.xhtml
(
0
,
⋯
,
0
)
Doc 139
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1012.2377/1012.2377_1_132.xhtml
(
0
,
⋯
,
0
)
Doc 140
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/math0206054/math0206054_1_94.xhtml
(
1
,
⋯
,
1
)
Doc 141
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0605686/math0605686_1_116.xhtml
(
0
,
⋯
,
0
)
Doc 142
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1012.2377/1012.2377_1_135.xhtml
(
0
,
⋯
,
0
)
Doc 143
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/math9805153/math9805153_1_38.xhtml
(
0
,
⋯
,
0
)
Doc 144
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0911.1093/0911.1093_1_52.xhtml
(
1
,
⋯
,
1
)
Doc 145
0.1739
-2.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0903.0892/0903.0892_1_87.xhtml
(
0
,
⋯
,
0
)
Doc 146
0.1739
-4.0000
4.0000
0.3478
testing/NTCIR/xhtml5/9/hep-th9303111/hep-th9303111_1_23.xhtml
(
p
0
,
⋯
,
p
n
)
(
p
1
,
⋯
,
p
n
)
Doc 147
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_73.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 148
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/math9811126/math9811126_1_20.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 149
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/math9811126/math9811126_1_22.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 150
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_79.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 151
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1105.3648/1105.3648_1_289.xhtml
(
p
1
,
⋯
,
p
v
)
Doc 152
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_97.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 153
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_99.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 154
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/1001.2190/1001.2190_1_22.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 155
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_90.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 156
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_88.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 157
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0505691/math0505691_1_26.xhtml
(
p
1
,
⋯
,
p
m
)
Doc 158
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_114.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 159
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/9/1305.5006/1305.5006_1_92.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 160
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0505691/math0505691_1_24.xhtml
(
p
1
,
⋯
,
p
m
)
Doc 161
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_107.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 162
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_92.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 163
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1010.1936/1010.1936_1_82.xhtml
(
p
0
,
⋯
,
p
n
)
Doc 164
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/math0107119/math0107119_1_20.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 165
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1105.3648/1105.3648_1_244.xhtml
(
p
1
,
⋯
,
p
v
)
Doc 166
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0505587/math0505587_1_66.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 167
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1107.2288/1107.2288_1_58.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 168
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0909.2571/0909.2571_1_40.xhtml
(
p
1
,
⋯
,
p
m
)
Doc 169
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/5/0809.3470/0809.3470_1_176.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 170
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/9/1307.4860/1307.4860_1_4.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 171
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/quant-ph0409012/quant-ph0409012_1_44.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 172
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/quant-ph0409012/quant-ph0409012_1_41.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 173
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9504052/hep-th9504052_1_83.xhtml
(
p
n
,
⋯
,
p
1
)
Doc 174
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/quant-ph0409012/quant-ph0409012_1_37.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 175
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9504052/hep-th9504052_1_80.xhtml
(
p
n
,
⋯
,
p
1
)
Doc 176
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/5/0708.4189/0708.4189_1_133.xhtml
(
p
1
,
⋯
,
p
t
)
Doc 177
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0609001/math0609001_1_35.xhtml
(
p
1
,
⋯
,
p
m
)
Doc 178
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0505587/math0505587_1_64.xhtml
(
p
1
,
⋯
,
p
n
)
Doc 179
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/4/math0609001/math0609001_1_7.xhtml
(
p
1
,
⋯
,
p
m
)
Doc 180
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/math9712240/math9712240_1_68.xhtml
(
p
1
,
⋯
,
p
a
)
Doc 181
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/1/math0306090/math0306090_1_22.xhtml
(
p
1
,
⋯
,
p
k
)
Doc 182
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/1/math0306090/math0306090_1_27.xhtml
(
p
1
,
⋯
,
p
k
)
Doc 183
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/1/math0306090/math0306090_1_20.xhtml
(
p
1
,
⋯
,
p
k
)
Doc 184
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/1/math-ph0001017/math-ph0001017_1_31.xhtml
(
p
1
,
⋯
,
p
g
)
Doc 185
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/6/0908.3335/0908.3335_1_111.xhtml
(
p
1
,
⋯
,
p
m
)
Doc 186
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/math0409224/math0409224_1_27.xhtml
(
p
1
,
⋯
,
p
s
)
Doc 187
0.1739
-4.0000
4.0000
0.1739
testing/NTCIR/xhtml5/3/math0409224/math0409224_1_42.xhtml
(
p
1
,
⋯
,
p
k
)
Doc 188
0.1739
-5.0000
4.0000
0.3478
testing/NTCIR/xhtml5/10/hep-th9505083/hep-th9505083_1_20.xhtml
B
(
p
n
,
⋯
,
p
1
)
B
XXZ
(
p
n
,
⋯
,
p
1
)
Doc 189
0.1739
-5.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1007.1037/1007.1037_1_47.xhtml
(
p
1
,
⋯
,
p
n
2
)
Doc 190
0.1739
-5.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9504052/hep-th9504052_1_49.xhtml
B
(
p
n
,
⋯
,
p
1
)
Doc 191
0.1739
-5.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9504052/hep-th9504052_1_22.xhtml
B
(
p
n
,
⋯
,
p
1
)
Doc 192
0.1739
-5.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9504052/hep-th9504052_1_39.xhtml
B
(
p
n
,
⋯
,
p
1
)
Doc 193
0.1739
-5.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1105.4246/1105.4246_1_21.xhtml
𝒱
(
p
1
,
⋯
,
p
n
)
Doc 194
0.1739
-6.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/math-ph0201057/math-ph0201057_1_42.xhtml
F
^
(
p
1
,
⋯
,
p
n
)
Doc 195
0.1739
-6.0000
4.0000
0.1739
testing/NTCIR/xhtml5/5/0805.3594/0805.3594_1_25.xhtml
F
n
(
p
1
,
⋯
,
p
n
)
Doc 196
0.1739
-6.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9505083/hep-th9505083_1_31.xhtml
(
p
n
,
⋯
,
p
1
)
=
ϕ
Doc 197
0.1739
-6.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/q-alg9608006/q-alg9608006_1_123.xhtml
(
p
1
,
⋯
,
p
n
)
∈
K
Doc 198
0.1739
-6.0000
4.0000
0.1739
testing/NTCIR/xhtml5/2/math0201317/math0201317_1_33.xhtml
F
^
(
p
1
,
⋯
,
p
n
)
Doc 199
0.1739
-6.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9504052/hep-th9504052_1_21.xhtml
(
p
n
,
⋯
,
p
1
)
=
ϕ
Doc 200
0.1739
-7.0000
4.0000
0.1739
testing/NTCIR/xhtml5/8/1207.1579/1207.1579_1_39.xhtml
(
p
1
,
⋯
,
p
n
)
∈
ℕ
n
Doc 201
0.1739
-7.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1107.2288/1107.2288_1_55.xhtml
(
p
1
,
⋯
,
p
n
)
∈
ℕ
n
Doc 202
0.1739
-7.0000
4.0000
0.1739
testing/NTCIR/xhtml5/8/1207.1579/1207.1579_1_41.xhtml
(
p
1
,
⋯
,
p
n
)
∈
ℕ
n
Doc 203
0.1739
-7.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9504052/hep-th9504052_1_48.xhtml
B
≥
0
(
p
n
,
⋯
,
p
1
)
Doc 204
0.1739
-7.0000
4.0000
0.1739
testing/NTCIR/xhtml5/10/hep-th9412111/hep-th9412111_1_13.xhtml
Γ
(
n
)
(
p
1
,
⋯
,
p
n
)
Doc 205
0.1739
-8.0000
4.0000
0.1739
testing/NTCIR/xhtml5/7/1009.6048/1009.6048_1_9.xhtml
Γ
κ
(
n
)
(
p
1
,
⋯
,
p
n
)