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1. Abstract 
 

A collection of videos can be seen as a source of large amounts of information especially if the 

content of those videos are lectures.  The presented project works specifically with videos from math 

lectures. For each lecture, two videos are provided: one captured with a camera on the classroom, and 

the second captured by the software of a Mimio device. Both videos record everything that the 

professor writes on the whiteboard. An application for extraction and retrieval of that content written 

on the whiteboard is presented.  

However, there are different challenges involved in the process of extracting whiteboard content 

from the videos, and once that the content has been obtained in the form of images, it is required to 

compute and index different features that will describe the math that is found on those images. Queries 

come in the form of images of part of the content of the whiteboard as well. The proposed method, 

however, is recognition-free which means that no optical character recognition is performed. Then, 

matching of the content between a given query and the extracted images is based on visual similarity 

only. Compared to standard content based image retrieval, the proposed method cannot rely on 

features of color or texture to match visual similarity of math formulas, and for this reason sketch based 

image retrieval methods must be applied. 
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2. Introduction 
 

A video can store an important amount of information in the form of sequences of images and 

audio channels. This information may be relevant to any field in general, and one example would be 

education if the video belongs to a math class lecture. During a math lecture, the instructor can be 

recorded as he or she speaks his thoughts and writes notes and formulas on the whiteboard. This record 

could be accessed later by students who want to watch again the explanation of a topic taught on that 

lecture. The problem arises when it comes to find a short explanation that may last a few seconds on a 

collection of videos that may last for more than one hour each. Therefore, it is important to know the 

content of each video and to define a way to access randomly this content as required. The main goal of 

the project Math Expression Retrieval Implemented Through Sketches is to develop a procedure that 

given a section of a frame of the video of a lecture in math, the procedure will then return a ranked set 

of images content related to one on the input given. Such procedure will require a way of indexing the 

videos in terms of key frames and features of the content, and also a search algorithm that has to be 

able to rank the similarity between the content of the input query and the content of any segment of 

video in the collection. 

A procedure for indexation and retrieval of videos of math lectures could easily become part of 

a larger project designed to help students in general. Moreover, students with special disabilities could 

become the more benefited from the application of an algorithm of this kind. For example, imagine the 

case of a student that is visually impaired, but is still able to use an iPad during a math lecture. He or she 

might not be able to see directly what is written on the board, but could be able to see it indirectly using 

an iPad application that has access to the video of a camera recording the board. Searching information 

taught on previous lectures is a difficult task for students with this kind of disabilities, but the difficulty 

could be greatly reduced using a system that applies video search. The student can take a snapshot of 

the video of the board and use it to query information from past lectures in a very fast and convenient 

way. With all this information available in real-time, the student could be able to keep up with the rest 

of the class. Of course, this kind of search would be helpful not only in the classroom but out of the 

classroom while studying and looking for specific content. 

However, the problem of searching for related videos based on the content can be classified 

into many categories except in the category of trivial problems. Basically, many video search algorithms 

are based on labels of the videos given by the users of the system, but this is not the current case. In the 

current problem, the user must be able to search for anything written in the content of the board, and it 

would be a long task for a human to label a segment of video with all the possible tags for the current 

content. What is more, standard systems based on labels do not consider any kind of spatial relationship 

between each individual label. For example, consider the case of figure 1, where two given numbers are 

given, and while tags can find these numbers, they might not be related in the expected way. It could be 

argued that a more complete labeling system would include these relationships as part of the tags, or 

even more, than LaTex or any other string representation of these formulas can be used as a tag. But the 

main problem persists where a human would be required to manually tag those formulas or a system 
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with a high level of accuracy for formula extraction would have to be applied. The proposed approach 

tries to be as automatic as possible by eliminating the need for human labeled data humans on its 

different subcomponents and algorithms. 

 

Figure 1. A few images containing 2 and 3. 
(a) On a sum 
(b) Combination 
(c) Power 
(d) Power 
(e) Column vector 

 

 The largest category where the proposed search procedure fits is into the category of 

information retrieval (IR) which deals with search of information inside of large collections of data. More 

specifically, the problem belongs to the subcategory of content-based video retrieval (CBVR) because 

the information to search for is stored in the form of video files. Since video is composed of both audio 

and images, usually a multi-modal search procedure could be applied, but in this case, the proposed 

search procedure will use only image information to describe the content of the video, and therefore it 

could be counted as a content-based image retrieval (CBIR) procedure. However, standard CBIR 

procedures use color and texture to describe the content of an image, and such information is not 

relevant for this application since the same content can be written using different colors, and it should 

be matched regardless the color used in the query and the color found on the videos. In addition, the 

important content of the images is mainly text, math formulas, and diagrams which makes the problem 

related to those found in many document image retrieval (DIR) applications, but given that most of the 

content belongs to the field of math, and it is composed of a high number of explicit math formulas, it 

would fit better in the subcategory of math recognition (MR). However, the proposed approach is 

recognition-free because it does not apply explicit optical character recognition (OCR) in the way that a 

standard MR application would do.  

One of the most important differences between the proposed application and many of the DIR 

applications is the fact that input images belong to handwritten text and handwritten math expressions 

instead of scanned images of printed text. What is more, as it has been described in the work by Liwicki 

and Bunke [1], handwriting on a whiteboard tends to be different compared to handwriting on paper or 

pen-based computer because the writer usually needs to stand in front of the board, and the patterns of 

the writing of a person in such condition are quite different to those of a person writing while sitting on 

a chair. Also, another important difference is that content can be written in many ways as there are no 

predefined layouts. With so much freedom for drawing on the whiteboard, and content that can be 

really varied, the proposed approach belongs to the category of sketch-based image retrieval (SBIR), 

where the content on a video of the whiteboard can be described as a sequence of sketches, and the 

input query is a sketch for which the most similar sketches need to be found. 

To start with a video file and to end with a database containing an index of sketches suitable for 

fast retrieval requires a processes pipeline composed of a few complex sub processes. Figure 2 shows a 

summary of the indexation pipeline of the proposed method. The first the sub processes in the 
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indexation pipeline is the one in charge of taking the input videos and detecting specific frames and 

regions of interest where the sketches will be extracted from. The criterion used to select each 

candidate region of interest is based on the changes made to the content of the whiteboard in the 

videos. This partitioning of the content of the video is not a trivial task, and it should be mentioned that 

the current input for the system will consist of two separated videos, the first of them belongs to a still 

camera located on a classroom recording the content of an entire whiteboard, and the second video 

belongs to the sequence of strokes captured by a MIMIO capture device. This second video has the 

advantage that only the strokes are recorded, but currently has a great disadvantage in terms of a 

reduced video resolution and noise. More details about these input videos will be given in section 3. 

Since two videos of the same content are given as inputs, a matching procedure is required that will 

identify the visual correspondence between the videos, and also will determine an offset of time to 

synchronize the videos because these are not guaranteed to start exactly on the same millisecond. 

The Indexation Pipeline 

 
Figure 2. Outline for the Indexation pipeline 

 

The second sub process in the indexing pipeline of the system is the content description 

generator that works for a given region of a frame. This description is important because the accuracy 

for the matching procedures is directly linked with the selection of features used to describe the 

regions. As mentioned before, the system is based on SBIR which means that the system treats the 

individual regions as hand drawn sketches, and consequently the descriptions used are based on the 

ones typically used for SBIR. A sketch is usually described at two levels: global level and local level. The 

first one, global level, provides general features of the sketch mainly related to the spatial layout. The 

second one, local level, provides specific features for each individual primitive of the sketch. In this case, 

these individual primitives are the connected components of the image. Local descriptions have to be 

generated for each of these connected components, and the result of this description will be in the form 

of a feature vector. While the system intends to be recognition free, features that are typically used for 

offline OCR can be used to describe the individual connected components in a way that two components 

should be considered similar if they also represent similar characters. Nevertheless, not only characters 

can be found as connected components, as there can be anything drawn on the board, and for this 

reason the local description also needs to be as generic as possible. Finally, the spatial layout between 

components is generally represent as a topology graph where each connected component is 

represented by node and each edge between two nodes is equivalent to some kind of spatial relation 

existing between these components. Because many types of spatial relations can be considered in the 

Sketch Extraction 

•Match input videos 

•Detect and Group changes into 
regions 

•Extract regions 

Sketch  Description 

•Local feature extraction 

•Spatial Layout Analysis 

Sketch Indexing 

•Key Frame generation 

•Storing For Optimal Retrieval 
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model, more than one topology graph can be built to describe the sketch, one per each kind of spatial 

relation considered. In the actual implementation only the neighbor relationship is considered. 

The third and last sub process of the indexing pipeline is the indexing component itself. This 

component will take the description of each sketch and will store this information in a way that it can be 

easily retrieved in the future. This part is also in charge of generating groups of sketches based on their 

time stamps to form key frames that can be used to describe the content of the entire video in just a 

few images. One of the main challenges for the indexing component is that given the description of a 

sketch query, the system has to be able to retrieve the most similar sketches in a fast and reliable way. 

The complicated part of this fast retrieval process is the fact that descriptions of sketches are complex 

and it usually requires some heavy processing to determine the exact similarity between two given 

sketches. If there are thousands of sketches on the database, and the time required to compare the 

similarity between two sketches is exactly one second, then comparing the input query with all the 

sketches stored in the database will take several minutes or even hours. For this reason, an ideal 

indexing procedure must be able to make a fast estimation of the similarity between a given sketch and 

several sketches in the database, and then retrieve only those ones that are worth the time required for 

a more detailed comparison. In section 2, some methods used for indexing will be described, and it will 

be shown how a common factor between these methods is that they are directly related to the selected 

measurement of similarity between sketches. This makes sense because different similarity 

measurement approaches will depend on different features to define when two sketches are very 

similar, and consequently the indexing procedure must capture the most heavily weighted features and 

use them to make this fast similarity estimation. Because of time restrictions, the final index used in the 

current implementation does not apply any kind of speed up based on fast similarity testing, and while 

optimizations of this kind are left for future work, the current system does create an index file with pre 

computed elements that if it was not there, the whole retrieval process would take several minutes for 

every input query. 

The indexation pipeline represents all the preprocessing required to convert input videos into 

something that can be search and retrieved. The second main component of the project is the search 

and retrieval procedure. To start with a region of an image and to end with a ranked list of similar 

segments of video also requires a small pipeline of sub processes which is outlined in Figure 3. The first 

process required is the content description generator, the same one used to generate the descriptions 

of the sketches during the preprocessing phase. After the description of the input query has been 

generated, the next step is to find similar sketches on the index created during the preprocessing phase. 

Since no special method for fast testing of similarity was implemented on the current scope, the system 

will apply a similarity measurement procedure between the input query and all the sketches stored on 

the index, and will use the resulting score to rank them by similarity and finally retrieve only the top N 

matches. The similarity measurement procedure is probably the most important element of the current 

project. Section 2 will describe different approaches that have been used for measurement of similarity 

between sketches. Some of these methods are easier to implement and run in faster time, but might 

produce more false positives, while other methods have better support for partial matching and will 

produce a more reliable measurement of similarity, but their time complexity is too high to be applied 
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over sketches with more than a hundred connected components. Partial matching refers to the case 

when a formula might have a very similar structure to another but a few components might be missing 

or be different between the query and the best candidate of the stored sketches, and if this is the case, 

the system should still consider this candidate as a strong one with just a small penalty for the missing 

parts. In practice, most of the related sketches are partial matches of content instead of complete 

perfect matches. 

Search and Retrieval Pipeline 

 
Figure 3. Outline for the Search and Retrieval pipeline. 

 

One of the main goals of the current project was to implement at least two different procedures 

of similarity measurement, and then select the procedure that offers the best trade-off between quality 

of retrieval results and running time, and finally to suggest and apply possible improvements to speed-

up the retrieval processed and/or increase the quality of the search results. In those terms, five different 

similarity measurements were tested and one of them, recall of matched pairs of the neighbor graph, 

was the one that produced the most satisfactory results. It is worth to mention that improvement of 

quality of the results can be obtained through relevance feedback. However, relevance feedback 

requires a high level of interaction with the user, and depending on the measure of similarity, it requires 

applying certain changes on the measurement of similarity or even in the query in order to make the 

feedback effective. However, due to time restrictions relevance feedback has not been implemented on 

the current project. 
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3. Background 
 

 The problem of finding specific information within videos of presentations accompanied with 

whiteboard handwritten notes has been studied before for different applications. One example are the 

four systems developed in the work by Marcus Liwicki and Horse Bunke [1], which also explains that 

these problems are multi-modal and need different algorithms for recognition at the level of speech, 

handwriting strokes, and images from the video in order to get the maximum possible accuracy on a 

search procedure. The proposed approach works only with the images extracted from the videos, but it 

still requires of different algorithms in order to implement its two main pipelines. None of the required 

algorithms represents a new problem, and some research has been done for each of them. This section 

contains a brief summary of some approaches used for each problem, and pays special attention to 

those that will be used as a base for the implementation of the current project. 

 

 3.1 Change Detection and Automatic Key Frame Extraction on videos 
 

 Probably the first problem that needs a solution is the automated detection and extraction of 

key frames from the videos of math lectures. The general problem of automatic key frame extraction 

has been heavily studied for different applications and different solutions have been proposed, but only 

a few of them are analyzed here. A key frame is a frame that can be used to describe an entire segment 

of a video, and therefore a subdivision of the original video file into segments has to be done in order to 

select these key frames. These subdivisions are usually created based on automated shot detection 

which can be done by calculating differences between continuous frames and applying thresholds to 

these differences. The approach by Calic and Izquierdo [2] uses statistics of the macro-blocks descriptors 

in the MPEG standard to find patterns of change over the data of a compressed video for real time key 

frame extraction. The approach by Mohanta et. al [3] uses various features and when the majority of 

them reflect an important change in the content of a video, then a change of shot is automatically 

assumed. Guang-sheng proposes a method [4] where the images of the video are divided into a grid, 

and then the amount of change is calculated for each cell of the grid. A model of visual attention is 

applied to estimate the amount of attention that each cell could get from a viewer, and this level of 

attention gives each individual cell a weight. The weighted change is then calculated for the entire 

frame, and when it surpasses a certain threshold then a new shot is assumed. Min et. al [5] use 

histograms of edges and colors as features, and find an adaptive threshold for theses feature to 

partition the video into segments. 

 From the analysis of the works like [2], [3], [4], and [5], it is easy to conclude that methods based 

on shoots and major changes in the video will not work for videos of math lectures which basically 

consist of a single shot of a whiteboard with a speaker writing on it for several minutes. Therefore, the 

selected approach has to be designed for this specific kind of videos in order to be effective. What is 

more, not only key frames of the video have to be extracted, but the specific region changed between 
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each pair of key frames needs to be identified. In this sense, only applications that work with similar 

data to the one used on this project will provide helpful information. For example, Talkminer [6] is a 

system that works with webcasts of lectures. They assume that these videos contain slides, and for that 

reason they designed a key frame detection system that finds candidate frames where a new slide is 

shown on the video. This approach is close to what is needed for the current project, but it was designed 

to work with data with higher levels of variation, and therefore a simpler approach focused on 

whiteboard videos might be a better fit.  

The same company that created Talkminer in 2010 also designed in 2009 a system called 

ReBoard [7], which is collaborative software to automatically index changes on the content of 

whiteboards in an office environment. The application is constantly capturing images of the whiteboard, 

detecting objects in motion as a way to estimate when the content is about to change. After the content 

is assumed to be changed, the system captures several images until it finally obtains one where the 

whiteboard is assumed to be free of obstructions. Given this obstruction-free image, and the previous 

key frame, the system can calculate the areas of the board that were changed. The image of the board is 

smoothed to avoid false positives on change detection caused by noisy pixels, and the detection of 

changes is made using two different resolutions of the whiteboard. In fact, this application does apply an 

algorithm with an output just as required in the current project, but the specific details required for its 

implementation are missing on their paper. 

Another system that works with whiteboard images is Thor [8] developed at Princeton 

University. In the Thor system, changes are detected at the pixel level, and pixels are classified between 

stroke and whiteboard. The neighborhood of a stroke pixel is used to confirm that it is indeed a stroke 

and not an isolated noisy pixel. A changed pixel can mean one of two things: a stroke was added or a 

stroke was erased. The reason of why the Thor system considers the changes made at the level of 

individual pixels is because it uses each pixel to make an estimation of the drawing strokes on its 

indexing procedure of the content of the whiteboard. One drawback of this approach is that it requires a 

process of 24 hours of calibration to train the system with the expected ranges of color for the 

whiteboard pixels under different lighting conditions.  

  Finally, the whiteboard capture system [9] developed by Microsoft uses an approach that can be 

easily implemented for the current input data. Similarly to ReBoard [7], the system by Microsoft divides 

the whiteboard image using a grid, and changes are detected at the level of grid cells. The system uses 

an estimation of the whiteboard color based on the predominant color on each cell. Also, similar to Thor 

[8], each cell is classified between stroke and whiteboard, but an additional class is added to account for 

obstructions on the image. Spatial and temporal information is used to refine the classification results 

and separate stroke cells from obstructed cells, especially based on the fact that it is not possible for an 

important stroke to be on the whiteboard on isolation or for less than a second, and given this 

assumption the system will assume cells that became stroke cells for a short period of time to belong to 

the obstructed cells class. The final algorithm implemented on the project does change detection using a 

method with a grid and cells very similar to the method detailed in [9], but the major differences come 

from the fact that change detection in this project is done over a video that does not contain 

obstructions of the content on the whiteboard.  
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 3.2 Content-Based Image Retrieval 
 

 The problem of retrieving images from large datasets based on their content has been studied 

for a while now. Many approaches have been tested and results are varied depending on the restrictions 

of the data being retrieved. Some approaches are based on descriptions of the dominant colors on the 

images as for example the work by Arjunan et. al [10] which is based on color histograms on HSV space 

only. Other approaches consider the fact that even the same color might represent two or more 

different objects and therefore texture must be taken into account. For example, the work by Chiu et. Al 

[11] combines fuzzy logic to assign linguistic terms like low, high, very high to the Tamura features of 

texture: coarseness, contrast, directionality, line-likeness, regularity, and roughness. For some 

applications, there might be many images representing exactly the same object but rotated, translated 

or scaled. To achieve a certain level of matching for that kind of applications, the scale invariant feature 

transform (SIFT) [12] have been proposed and used by other authors as for example in [13] where 

several pictures of a specific building are found using a picture of the building as the input query. 

 More sophisticated approaches for CBIR consider that it is important to match not only general 

features of the image but also specific information about the objects found on it. However, identifying 

all the concrete objects inside of an image is a challenging task, and for that reason some approaches 

based on segmentation consider the regions obtained as blobs and not as concrete objects. The work by 

Carson et. al [14] applies a segmentation algorithm first to obtain blobs, and then for each blob the color 

and texture features are calculated. Matching is done by finding images that contain blobs with similar 

characteristics to those found in the query image. Other approaches try to go a step further by 

automated labeling of images based on features of its sub-regions, like for example the work by Jin et. al 

[15] which applies segmentation, and with a few labeled regions on some images and using clustering, it 

automatically assigns labels to each region of the image based on similarity in color and texture to the 

examples given.  

 Just a few approaches have been mentioned here, but a more exhaustive list of approaches can 

be found in the survey by Datta et. al [16]. In fact, according to the definitions given on the survey, from 

the point of view of the user, the current application has a query modality based on images, the data 

scope is domain-specific and the user intent is that of a searcher. From the system perspective, the 

current application has a content-based query processing, with relevance ordered visualization and 

domain-specific data scope. In terms of image signature, it is a region-based signature composed by a 

set of vectors that describe each individual primitive and some kind of optimal matching procedure has 

to be applied for measurement of the similarity between images. A huge difference between the current 

application and many general CBIR applications is that for the current system texture and color are 

almost useless for the generation of image signatures, and that is the reason of why the proposed 

approach is mainly based on SBIR and DIR instead of general CBIR. 
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3.3 Document Image Retrieval and Classification 
 

Retrieving specific images of documents from large collections is a problem that has been 

studied by many researchers. While the most simplistic approaches would rely on human-labeled 

images, many approaches have been proposed requiring a minimal human interaction.  Some of these 

approaches would require an OCR algorithm to recognize the text before doing any kind of retrieval, but 

other are considered recognition-free because they are based only on features of the content without 

doing explicit OCR. Since the current application intends to be recognition-free, most of the approaches 

analyzed on this section are recognition-free as well. Two general problems exist on this area: document 

retrieval and document classification. Document classification deals with assigning a class or type of 

document to a given document image, while document retrieval consists on finding specific documents 

based on their layout and/or content.  

In terms of document image classification, the usual goal is to characterize a document and use 

this description to classify between a predefined set of types of documents. A few of these approaches 

for document image classification are purely based on layout descriptions. This kind of approach usually 

provides interesting algorithms to analyze and describe the layout of a free-form document image. 

Modified X-Y trees are used in the work by Cesarini et. al [17] to describe the layout of text-blocks found 

by an external OCR in a document image, and then these trees are encoded into fixed-length vectors by 

summarizing patterns found on them. These encoded vectors are used as inputs of a multi-layer 

perceptron (MLP) that classifies the page as one of 5 possible classes. In the work by Gordo et. Al [18], 

an interesting cyclic polar representation of page layout is used. This representation is translation 

invariant and can be scale invariant if the distances are normalized using the size of the page. It is 

important to consider different layout representations because these provide alternatives that could be 

used to describe the layout of the math formulas during the indexation and retrieval processes of the 

current project. 

Other approaches for document image classification are based on semantics of the content in 

the documents. While this task seems to require OCR to find common frequent words between 

documents, recognition-free approaches have been proposed to solve this task. In the work by Barbu et. 

al [19], a system of “bags of symbols” is used where each connected component is described by a set of 

features, and then clustering is applied to group similar connected components assigning nominal labels 

to each cluster. Then, each page is represented by a graph where nodes correspond to labeled 

connected component and edges are added based on proximity between connected components. Graph 

mining techniques are applied to find common sub-graphs on graphs from the collection of documents. 

The common sub-graphs founds are considered symbols and the measurement of distance between two 

documents is given in terms of common symbols. A support vector classifier is then used for the final 

classification of documents in the collection. 

In terms of DIR, the usual goal is to retrieve pages of documents based on its content, but it can 

also be based on the layout of the document.  The work by Hu et. al [20] proposes a method for DIR 

where each page in the document is divided into a grid, and then each cell is catalogued as text cell or 
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blank space based on its black pixel density. A distance metric is provided to compare grids of different 

pages, and this metric is used to rank similarity between an input page and other pages stored in the 

database. The system will then return the pages with the most similar layout. Similarly, the work by van 

Beusekom et. al [21] uses abstractions of the text paragraphs by representing them as blocks. Different 

measurements of distance based on position, area and dimensions are provided to compare the 

similarity between two blocks of two different pages. Given the distance between all pair of blocks, a 

final assignment between pairs of blocks is made trying to minimize the sum of all distances. The final 

distance can be used to rank similarity between one page and several pages in the database, and finally 

the most similar are retrieved. However, while two pages can have exactly the same layout, their 

content might be completely different, and a document with exactly the same content might be 

represented using a completely different layout. For the context of math formulas, spatial layout 

between elements is important, but the specific elements present on the formula are important as well, 

and for this reason an approach purely based on layout cannot be applied. 

Different approaches have been proposed for recognition-free DIR based on the content of 

documents. In the work by Rath et. al [22], a word-spotting approach is proposed which uses ink 

projection profiles to describe individual words, and then applying dynamic time warping (DTW) the 

system estimates the minimum distance between the profiles of two words. Using this measurement of 

distance between pairs of words, the system can cluster words found in historical handwritten 

documents for automatic indexation. Labels can be assigned to each cluster for later retrieval of these 

documents using keywords. Li et. al [23] proposes a method for word encoding for printed text which 

allows to represent individual words in terms of coded strokes. With this coding system, is possible to 

find keywords on documents and do retrieval based on keywords. A major drawback of the system of 

encoding used is that it works with a limited set of printed fonts only, and it will not work with italics. An 

improved version of this method is presented in [24], where the authors modified the encoding system 

to make it more robust than their previous work, but it is still designed to work with images of printed 

documents. 

The current discussion of works is by no means exhaustive and more detailed information 

containing a larger list of approaches used for document image retrieval and classification can be found 

in the survey by Marinai et. al [25]. What can be concluded from the analysis of these works is that DIR 

is closer to provide useful solutions for the individual problems found in the current application than 

general CBIR. However, many of the general DIR approaches are designed to work with printed 

documents images, and many of them are designed for text-only documents. Given that an image of the 

content of the whiteboard contains text paragraphs only, it is possible to apply a word-spotting 

approach [22] to retrieve other images that contain many common words. However, it is not easy for 

the application to decide if a given image contains text only or math formulas only, and for to 

accomplish this task an approach for region classification between text and math formulas would be 

required. 
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 3.4 Identification of math regions in text documents 
 

 As mentioned before, an algorithm that helps to distinguish between text regions and math 

regions would be really useful in the current application. This problem has been studied by some 

researchers before under the contexts of document image retrieval and math recognition. Standard OCR 

systems can achieve a great accuracy over text regions, but when the text contains math formulas their 

performance usually decays considerably [26]. This effect might be due to typical segmentation 

algorithms that assume that the text to recognize is organized in text columns, paragraphs, and lines 

which is not the case for math formulas. A common motivation to classify regions between text and 

formulas is to use an OCR system on text regions and a different approach for math recognition on math 

regions [26]. 

 

 Kacem et. al [26] identify two different kind of math formulas that can be found in documents: 

Isolated formulas and embedded formulas. An isolated formula is a math formula that usually appears 

centered, on its own line and surrounded by considerable blank space. Embedded formulas are the 

math formulas that appear inside of text lines. The separation of math formulas from text is done in two 

steps: a global step that separates text paragraphs from isolated formulas, and a local step that 

separates words from embedded formulas in text lines. A set of symbols frequently found in math 

formulas is defined as possible labels, and each connected component is labeled using fuzzy 

memberships for each label. Text lines are segmented and then the isolated formulas are identified 

using certain features of each text line. For embedded formulas, a second labeling process is required 

that will identify the spatial relationship between connected components of the same text-line, and 

based on these then the system can separate possible embedded formulas from words. 

 

 In the work by Drake et. all [27], a neighbor graph is used to describe all text-lines found in a 

document image. On this graph, nodes correspond to connected components and edges between nodes 

reflect that these components are neighbors on the same text-line. Then, a set of features is extracted 

for each node and for each edge. With these features, two separate classifiers are used, one to classify 

each vertex as math vertex or text vertex using a total of 77 input features, and the second one to 

classify each edge as math edge or text edge using a total of 29 input features. A third classifier is then 

applied to combine these results and yield a final classification for the entire text-line as either math 

formula or text line. Note that the vertex classifier is not a symbol classifier, it just outputs whether a 

given connected component might be part of a math symbol or not based on its features.  

 

 Garain [29] also makes the distinction between isolated formulas and embedded formulas, and 

proposes a method for each. In the case of isolated formulas, these are identified using some basic 

features: white space surrounding the line, scattered-ness of the symbols in the line, relative height and 

occurrences of selected math operators in the text-lines. For embedded formulas, the system also uses 

some features for classification: confidence of OCR for recognized words, inclination of a sentence to 

contain words likely to be math formulas, type style of words, scattered-ness of symbols in a word, and 
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inter-character distance within the word. Note that a major requirement of this method is the assistance 

of an external OCR system. 

 

 Methods like the one by Kacem et. al [26] and Drake et. al [27] could work for the current 

application. In general, it is desirable for the final approach to be recognition-free in a way it does not 

need to use an external OCR like the method by Garain [29]. Also, it is important to note that these 

method as well a few others that might have been proposed are mainly designed for images of printed 

documents and not for handwritten symbols which means that some adaptions would be required to 

make them work with images of handwriting on a whiteboard. Because of restrictions of time, no 

classification between math regions and text regions was applied on the current system. 

 

 3.5 Off-line Math Recognition and Retrieval 
   

 The field of off-line math recognition corresponds to algorithms that can extract math structure 

from 2D images. There are several challenges associated with this problem, especially when automated 

evaluation of expressions is required. Probably, one of the most difficult challenges is being able to 

capture the entire hierarchy implied by the relative location of operators and operands in a math 

formula. Spatial hierarchy of elements in math is really important, and the current system could try to 

capture such hierarchy for later similarity matching, and to make this possible, similar methods to the 

ones used to capture the hierarchy of operations in off-line math recognition should be used. Moreover, 

the current application could be extended to apply math recognition, and do retrieval based on 

estimation of similarity between two math expressions, but for the current scope the application will try 

to find similar expressions without explicitly recognizing them specially because text and math are mixed 

and to apply math recognition, the text would need to be detected and filtered first.  

 In the work by Ha et. al [29], a method for math expression understanding is presented. This 

system starts with the connected component of the image, and then with these elements a process with 

two phases is executed to create the expression tree that would represent all elements with their 

corresponding operator hierarchy. The first phase is a top-down sub-process that builds an initial tree 

using a recursive X-Y cutting procedure based on the bounding boxes of each element. The resulting tree 

captures the more general relationships between elements, but a second phase bottom up is required 

to correctly represent the hierarchy between immediate neighbors and to respect the order of 

evaluation of operators. 

 A method for formula recognition for a large collection of mathematical literatures is presented 

in the work by Ashida et. al [30]. Given the bounding box that contains a math formula, the connected 

components are labeled, and the symbols are normalized to a predefined resolution. Four different 

features are used for classification of each symbol. Because their method is designed to work with off-

line data, it might be the case that two or more symbols are touching each other, and one single 

connected component might belong to more than one symbol. A procedure to detect and correct these 

touching symbols through morphological operations is applied. The hierarchy of the math formula is 
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then extracted based on the recursive application of a set of heuristics rules based on bounding box and 

relative positioning between elements. What is interesting about this method is the fact that it has been 

tested with large collections of papers and has a really high accuracy for recognition of the spatial 

relationships.  

 A recognition-free method for math retrieval from handwritten queries is presented in the work 

by Zanibbi and Yu [31]. X-Y trees are used to represent the hierarchy between elements in whole regions 

of pages, but this method measure similarity between regions using visual similarity instead of hierarchy 

based. The visual similarity is measured using a method similar to word-spotting [22] which is based on 

Dynamic time warping of vertical projections of pixels, but in this case two vertical projections are used: 

one for the top half and one for the bottom half. However, if the results of this method are similar to the 

ones in word-spotting [22] and structural similarity is not very important, then two large expressions 

with the same structure but using different operands (numbers and/or constants) would not be 

considered similar as they should for current application.  

 Only a few approaches were mentioned on this section but an exhaustive analysis of works 

published on this area of math recognition and retrieval can be found in the survey by Zanibbi and 

Blostein [32]. As it was mentioned before, the current application is intended to be recognition-free, and 

only recognition-free methods of math retrieval can be considered for implementation. Also, the system 

needs to be able to work with handwritten formulas, and also it has to work with many kinds of 

mathematical expressions, especially with vectors and matrices for linear algebra courses. The final 

approach could be a hybrid taking ideas from the fields of math recognition for formulas, DIR for text, 

and sketch retrieval for other kind of elements that could be drawn on the whiteboard. However, as it 

was stated before, because of time restrictions no math recognition was performed on the current 

project.  

 3.6 Sketch-Based Image Retrieval 
 

 In the field of SBIR the usual goal is to retrieve images using hand-drawn sketches as input 

queries, and the images to retrieve in many cases might be hand-drawn sketches as well. Very different 

kinds of approaches have been tested on this field, but a common idea across many of them is the fact 

that sketches are build using a set of primitive elements with a certain hierarchical or spatial relationship 

that gives them a specific meaning. Special attention is given to this field since the developed system is 

based on SBIR. This subsection presents some approaches in the field of SBIR and similar applications.  

 There are a few specific domains where methods similar to SBIR have been applied. Usually 

these domains include drawings with certain structural restrictions. One example is the case of 

recognition of handwritten chemical diagrams [33]. A chemical diagram is intended to represent a 

specific chemical compound, and therefore the spatial relationship between elements used and even 

the types of lines have specific meanings in that field. Also, many domain restrictions will apply since not 

all possible combinations of symbols are legal. The approach presented in [33] for recognition of 

handwritten chemical diagrams relies on certain processes made on-line as the writer is creating the 
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diagram which is something that cannot be done on the current approach without possible loss of 

accuracy on trying to approximate on-line strokes from the videos.  Another example of applications of 

SBIR with predefined domain is the recognition of handwritten concept maps [34]. On this approach the 

strokes are first classified between labels and content vertices. The structure of concept map is already 

similar to that of a graph where nodes represent concepts and edges represent the connections 

between concepts. If the strokes representing a concept node are correctly identified and the text is 

recognized with a high accuracy, it is possible to make an index of concept maps for further retrieval. 

 Ideally, using an approach with restrictions of structures and symbols would be able to reach 

higher accuracy in the domain of math expression retrieval. However, in the current application, the 

content written on the board can be of many kinds, and it is never restricted to specific formulas as 

there can be literally anything drawn on the board. Therefore, more general approaches for SBIR are 

needed which are able to adapt to any unrestraint structure of the input drawing and can provide ways 

to consider two drawings similar if and only if they have a similar structure. One example of a method 

for SBIR without restrictions of layout is the work by Sciascio et. al [35] which uses what they called 

modified Θ R-Strings to represent a given drawing by listing the description of its elements in counter 

clock-wise order as viewed from the center of mass of the sketch. However, this representation of 

structure does not seem to be the most adequate when describing math formulas with very complex 

structure since it is based on angles only and it losses the relationships between pairs of primitives, and 

therefore other possible representations based on graphs might be more adequate. Other systems for 

more general SBIR have been designed without specific restrictions of domain, and some of them can be 

easily adapted to work in specific domains like in this case math expression retrieval.  

In the Thor system [8], a method for indexation and later retrieval of whiteboard content is 

presented. A very complete preprocessing is applied to make an estimation of the strokes used to draw 

each connected component in the whiteboard image. Once that the strokes have been obtained, the 

system generates a description for each stroke based on histograms of distances between random 

points, square root of the area of the triangle formed by three random points, and angle between three 

random points. Random combinations of three points are generated and then these features are 

calculated for each combination to build a distribution that, according to the authors, is stable if 

thousands of random combinations are used and it also will be similar between strokes with a similar 

shape. Additional features are added by comparing the strokes with what they call proxy shapes or ideal 

shapes like rectangles and circles, and generating a distance between the current shape and the ideal 

shape. The distance between histogram features is calculated using the earth mover’s distance (EMD). 

Final retrieval is made by generating these features for the input query and then finding indexed strokes 

with high similarity, the images with high numbers of strokes matched are then retrieved. One major 

drawback of this approach is that it does not consider spatial relations which can lead to retrieval of 

many unrelated sketches when applied to math retrieval. 

 The work by Leung et. Al [36][37] using hierarchical matching is one of the most interesting 

approaches tried on this field. On this approach, the strokes or primitives are considered to be arranged 

in certain hierarchy which also needs to be matched before assuming that two sketches are similar. 

First, the strokes are subdivided into smaller pieces similar to ideal shapes as lines and arcs to create a 
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multi-form representation of the sketch, one with original strokes, the next one using these subdivisions 

of strokes, and the last one by merging all the stroke subdivisions that form basic shapes. Then, a graph 

is built for every representation where each sub-stroke represents a node and each edge represents a 

relationship between two strokes. The kind of relationship considered is inclusion where one stroke is 

considered inside another stroke if it is contained on its convex hull. Figure 4 shows an example of the 

hierarchical representation of the strokes used to draw a simple house with two windows and a door 

which contains a knob. The spatial relationship between two strokes is described using a displacement 

vector. Some general features combined with domain-specific features can be used to describe the 

individual strokes. Two sketches are compared using local and global matching. For local matching, the 

features of a stroke from one sketch can be compared against the features of a stroke from another 

sketch. Using this comparison, the distance between all pairs of strokes from the two sketches is 

obtained and arranged into a matrix. The next step is to find the best matching pairs, and since it is 

assumed that one stroke from one sketch can corresponding to at most one stroke from the other 

sketch then the final problem is reduced to the assignment or marriage problem from graph theory. A 

solution for this problem can be found using the Hungarian method [38], but since this method requires 

the cost matrix to be squared, then dummy rows or columns have to be added if the numbers of strokes 

on each sketch are different. There are two possible approaches to consider spatial relationships on this 

matching process, one is to do it at the time of calculating the similarity between two individual strokes, 

and the second one is to make it after the assignment has been made as an additional cost above the 

cost for local matching, and the way it is done in [37] is by adding the spatial matching cost after the 

assignment has been made. Once that similarity has been calculated between each of the three 

representations of the sketch, these similarities are combined using weights to yield a final 

measurement of similarity between the two sketches. 

 
Figure 4. Hierarchical representation of a sketch. Extracted from [37] 

  

 This method by Leung seemed like a very interesting option to try on the current system since it 

is a general method and it also can be adapted to any specific domain just by modifying the selection of 

features used for local matching. One difference between this approach and the current system is the 
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fact that the input sketches on the current system are in an off-line format since they will be extracted 

from images and not from raw stroke data. One of the possible advantages of this method is the fact 

that it takes the spatial relationships between all pairs of primitives into account, which is desirable for 

“perfect” matching of formulas with certain arrangement. One foreseen drawback of this method is that 

making the local matching without considering the spatial relationships first might lead to cases where 

the estimated similarity is lower than it should. This is due to the fact that constants and variables can 

appear many times on a single math formula, and there can be cases like the one presented in figure 5. 

Since the assignment is done using only local matching for visual similarity, and the spatial layout is then 

compared based on this specific assignment, the system will tell that these two sketches are less similar 

of what they really are. Another possible disadvantage of this method may be the running time due to 

all comparisons that have to be performed. Still, this method has the advantage of working with partial 

matching of sketches which is desirable for the current application. For these reasons, the current 

system has a partial implementation of this method on its search by recall of matched connected 

components described in the methodology section. 

 

Figure 5. Applying local matching without 
considering spatial layout first result in cases 
where two sketches will not be consider as 
similar as they should. 

 

 In general, any measurement of similarity between sketches represented using graphs will 

require testing several possible combinations and these can grow exponentially as the number of 

acceptable assignments increases. The general problem of finding the best match that reduces the cost 

of matching to its minimum both locally and globally can be even worse than the graph isomorphism 

problem which is known to be an NP problem. However, sometimes approximations of these algorithms 

can provide feasible solutions for certain applications. An example of these approximations is the test 

for graph isomorphism proposed in work by Cordella et. al [39] which also has been tested on retrieval 

of exact matches on technical drawings. 

 Standard graph isomorphism can determine whether two given graphs are identical or not, but 

in SBIR the desired goal is to provide a measurement of how similar two graphs are and not only if they 

are identical. Methods for graph embedding can be used to measure graph similarity and have been 

applied on many works. The concept of graph embedding consist on creating a vector representation of 

a graph in a feature space, where a graph represents a point and for any other graph, the more similar it 

is to the first graph, the closer its points should be to the point that represents the first graph [40]. There 

are two ways to make graph embedding: implicit and explicit. For the explicit way, an explicit function is 
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provided which takes one input graph and converts it into a vector representation. For the implicit way, 

a kernel function is given which takes two graphs as inputs and applies some kind of dot product directly 

in the graph space producing a final result in vector space. The works by luqman et al. [40][41] represent 

applications of graph embedding for attributed graphs (graphs with sets of attributes assigned to its 

nodes and edges) used for retrieval of electronic and architectural diagrams [40][41], letters, 

fingerprints, molecules for mutagenicity analysis, and general databases of objects [41]. 

 

 Other methods based on explicit graph embedding have been used before for the field of SBIR. 

The works by Fonseca et. al [42][43][44][45] describe a method that uses graph spectra to create a 

vector representation for any given graph. The generation of graph spectra refers to the extraction of 

the Eigen values of the adjacency matrix [42][45] or Laplacian matrix [43] of a graph  and it has been 

proposed as a really fast approximation of the isomorphism problem. An example of this graph spectra 

extraction process is shown in Figure 6. The absolute magnitudes of the Eigen values of the adjacency 

matrices of two graphs tend to be very close for graphs with similar structure. Note that if two graphs 

have different spectra they are guaranteed not to be isomorphic, but two graphs with the same spectra 

are not guaranteed to be isomorphic either. In any case, the graph spectra can be thought as some kind 

of hashing function for graphs with a low collision rate. Also, note that the number of Eigen values 

depends on the number of columns and rows of the squared matrix from which they calculated, and two 

graphs with different number of nodes will produce different numbers of Eigen values. However, 

according to [42] the largest Eigen values tend to be stable for small changes in number of edges and 

nodes.  

 

 
(a) 

 
(b) 

 
Figure 6. Getting the graph spectrum of a sketch. Figures extracted from [46] 
      (a) from the input sketch to a topology graph 
      (b) from topology graph to graph spectrum 
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The application of graph spectra to SBIR requires a graph representation similar to the one 

described by Leung in [36][37] where two vertices (connected components or strokes) are considered 

adjacent if certain kind of spatial relationship exists. Also, to account for partial matching, the method in 

[42] describes a multilevel representation which extracts and indexes the graph spectra values 

measured at different levels in the hierarchy of the graph of a drawing. It is important to mention that 

graph spectra is used only to match similar topologies between sketches and that additional features 

have to be used to describe each node for local similarity matching between pairs of components. In the 

case of [42], geometric features are used to describe each individual strokes. 

 

 The method by Fonseca et. al [42][43][44][45] is one of the most interesting approaches since 

matching topology using graph spectra is faster than methods based on exact graph isomorphism and 

still faster than methods based on the assignment problem like the work by Leung [36][37]. The method 

also accounts for partial matching which is required for the current application and domain specific 

features can be used to match the individual components locally, and therefore a variation of this 

approach could be used in the future for this project. Given that a set of graphs of sketches from the 

board have spectra similar to the spectra of an input query, a more sophisticated graph matching 

procedure can be applied to rank them by detailed similarity. 

 

 A variation of the original method proposed by Fonseca et. al [45] is defined in the work by Liang 

et. al [46][47][48]. Since graph spectra of graphs with different numbers of nodes will be composed by a 

different number of Eigen values, Liang et. al propose using the norm of the vector formed by the Eigen 

values as a way to describe the entire topology using a single value. Using this approach, it is expected 

to have a higher number of collisions of graphs that are similar but not isomorphic. However, one huge 

advantage of this method is the provision of a really compact, fixed-length representation for the entire 

topology of a graph. Another important and very interesting difference between this work and the 

original work by Fonseca is that separated graphs can be used to represent different kinds of 

hierarchical and spatial relationships between all pairs of elements on a sketch. To be more specific, in 

[45] eight specific relationships between strokes are used: cross, half-cross, adjacency, parallelism, cut, 

tangency, embody and ellipse-ellipse intersection. For each graph representation the graph spectra is 

extracted, and the norm is calculated. At the end of the process, a vector with 8 different values is used 

to globally describe a sketch, and rough similarity between sketches can be determined using the 

Euclidean distance between their corresponding vectors. No local-level matching is performed, and no 

adaptations for partial matching are provided. 

 

 Since the work by Liang et. al [46][47][48] is based on the method by Fonseca et. al [45], some of 

the extensions added in the later works by Fonseca et. al [42][43], like for example partial matching, 

could be easily adapted on this approach. Also, given the idea that a single sketch can be represented 

using different graphs, it is possible to adapt the graphs to be used depending on the specific domain 

where the method is applied. In the case of math retrieval, more specific relationships like super index, 

sub index, horizontal and vertical neighbors among others, are more adequate to describe the hierarchy 

of the sketch of a math formula. 
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 In the work by Cao et. al [49] from Microsoft Research, a completely different approach for SBIR 

is provided. The system creates what they called an “edgel Index” to do fast matching and retrieval of 

sketches on large databases with millions of images. An “edgel” is a pixel that lies on an edge of an 

object in an image and it is represented using three values: x-coordinate, y-coordinate, and orientation 

of the edge. For a given image, the indexation process will first subsample the image to a predefined size 

of 200x200 and then it will apply an edge detection algorithm generating a list of edgels found. A 

reversed indexation is done by storing in the index references to the image, one entry for each edgel 

found as if they were keywords contained on a document. Later retrieval can be done by looking for 

images containing specific edgels, and ranking of the most similar images to an input sketch is done 

based on the total number of edgels from the query that were found on each candidate image. The 

method has been tested on large databases and its really fast retrieving images that generally look like 

the input sketch, but it has the major drawback of not being translation invariant. With this said, it is 

evident that this method cannot be used for the current application.  

       

 3.7 Measuring similarity between shapes 
 

 The measurement of similarity between two given shapes or primitives is really important for 

the current application. This, however, is one of the most studied problems and several different 

descriptions have been used and proposed over the years. The same approaches used for SBIR provide 

their own methods to measure similarity between two given shapes [8][35][36][37][42][43][44][45]. 

Some of these methods propose using geometric features [42], while other features based on statistics 

[8]. The number of possibilities is really high, and certain features can yield good results for some 

specific applications. Since most of the shapes expected on the board represent math symbols and text 

characters, the final selection will have to be based on different features mainly used previously for OCR 

[1][50][51]. Only test and error can reveal which of these features will be the strongest for the current 

application. A very exhaustive list of shape features that could be applied for general shape matching is 

found in the survey by Yang et. all [52].  

 

3.8 Similar applications 
 

 It is important to describe research made that provide solutions for the different problems 

found in the current application, but it is also important to analyze other similar applications because 

they can provide additional solutions to the same problems. The application developed in the work by 

Liwicki and Bunke [1] is a system for automatic indexation of whiteboard notes for a smart meeting 

room. On this application, three approaches are used: off-line, on-line and hybrid. The kind of input data 

used in this case is obtained by capturing the strokes as the writer uses the whiteboard. For the off-line 

approach, the authors convert the on-line data to an off-line format before applying an off-line OCR 

system. In the proposed project, the data is also obtained partially through a capture device, but no 
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stroke data is available because the current device used, a MIMIO device, lacks the required API’s to 

capture this raw data directly from the hardware. Another important difference is the use of OCR for 

indexation of the content of the notes while the current application intends to be recognition-free. 

However, in their work are identified certain challenges particular to recognition of handwriting on 

whiteboards that other similar works do not consider at all. One of these challenges is the lack of base 

lines for text lines in long text paragraphs written on a board, making the segmentation in lines a harder 

problem than it would be for other handwriting applications. In their work, a very complete algorithm 

for segmentation of text-lines which can overcome this issue to some extent is provided.  

 Another similar application that works with videos from lectures is Talkminer [6]. In the case of 

Talkminer, the input videos are less restricted and contain a variety of shots from lectures from different 

fields, not only math like in the current application. However, the methods used for indexation rely on 

OCR of slides present on the video, which means that this content is more similar to printed text than 

handwritten text. Of course, given the freedom in format of the videos, just identifying slides and text 

content is already a hard challenge. Another difference is that Talkminer uses keyword indexation which 

means it will not work for retrieval of math formulas with specific structures unless LaTeX or a similar 

string representation of math expressions is used. 

 The Reboard system [7] is specifically focused on indexation and retrieval of whiteboard notes. 

These notes, however, are not indexed in terms of its content which makes the system less similar to the 

current application. In the other hand, indexation in Reboard system is made by detecting sets of 

changes in the whiteboard which is required in the current application too. Only general ideas about the 

design of such algorithm are present in their paper [7] without including other specific details for its 

implementation. However, these general ideas were still useful in finding a good approach on the 

current project.  

 Thor system [8] is another application that works with indexation and retrieval of whiteboard 

drawings. This application is one of the most similar in the sense that it can do retrieval of anything 

written on a whiteboard from off-line data with the difference that it does not consider hierarchy or 

spatial distribution between strokes, and therefore using the same procedure for math retrieval will 

result in retrieving math formulas that contain the same elements but not necessarily with the same 

hierarchy of operations resulting in many non-relevant sketches being retrieved. Also, many similar 

structures using different operators will not be retrieved, which can lead to many relevant segments not 

being retrieved. An important contribution of the Thor system [8] is the very detailed description of its 

preprocessing algorithms which take an input image of the whiteboard and extract stroke data, in other 

words, on-line data is estimated from off-line data using very sophisticated algorithms which are also 

provided.  

 Another related system is the whiteboard capture system developed by Microsoft [9] that works 

for automatic visual indexation of whiteboard notes on videos from meetings. This system is comparable 

to the Reboard system [7] in terms of system functionality, and it also does not perform indexation 

based on the content of the images but based on changes on the whiteboard. In addition, input data for 

this system comes in the form of video and audio channels, which makes it more related to the current 



24 
 

system. A change detection algorithm from the video of the whiteboard is provided including many 

details required for its implementation.  

 Finally, the work by Leung [37] is one of the most related applications in the sense that it was 

designed to work for retrieval of content written on a whiteboard considering the spatial hierarchy of 

the elements in the drawing. The kind of drawing that were used to test the system in [37] were Chinese 

characters and very simple drawings which are very different from math formulas, and therefore 

applying this approach to a new type of drawing, math formulas, is an interesting research direction.  

 The presented list of approaches is not exhaustive at all as it only contains a few applications 

that were considered relevant to the current system because they provide solutions to specific problems 

found in the current data. It is also important to keep in mind that the proposed methodology intends to 

be recognition-free and that leaves out many possible approaches while it does not necessarily puts an 

upper bound to the accuracy that the system could obtain using approaches originally designed for 

sketch retrieval. The next section discusses the datasets that were used during the development and 

testing of the final system and will provide a few examples of the input data. 
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4. Dataset 
 

The dataset used for the developed application consist on a small collection of videos from linear 

algebra lectures recorded at Rochester Institute of Technology. For each lecture, a still camera has been 

set in the classroom to record exactly one whiteboard and everything the professor writes on it. As an 

additional input, each recording comes with an auxiliary video of the strokes of the board captured using 

a Mimio Capture device and the Mimio software. Figure 7 and Figure 8 illustrate these two video 

sources. In figure 7 is shown an electronic device attached to the left side of the whiteboard which is the 

Mimio Capture device mentioned before. 

 
Figure 7. An example of a frame extracted from a video of the still camera in a math lecture 

 

The video coming from the still camera represents the main source that will be used for most of the 

algorithms to implement for SBIR. An example of a frame extracted from a video of this type is 

presented on figure 7. Since the goal is to be able to retrieve parts of these videos using the content 

written on the whiteboard, the quality of the image is critical. For this reason, a full HD camera was used 

to record each video using a resolution of 1440x1080 pixels. Also, as it was noted in works like the 

Reboard system [7] and Thor system [8], one typical feature of digital cameras is autofocusing which is 

completely undesirable for this application because it produces changes on the quality of the traces 

drawn on the board every time that the speaker moves in front of the board. To avoid this undesired 

change in quality and to make the input image more stable, the autofocusing feature of the digital 

camera was turned off before every recording, and manual focusing was used instead. The quality 

obtained on most of the videos using the current resolution is good enough to expect that a well-

developed system will be able to retrieve most of its content.  However, there are some drawbacks on 

these videos, and one of them is that it captures everything between the camera and the whiteboard 

including all the movements made by the speaker in front of the board, and then identifying specific 

regions that have been changed is a difficult task, and requires an approach similar to the one applied in 
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[9]. Another drawback is the changes on lighting as the lecture goes because ambient light is never 

constant over time as it has been noted on [8].  

 
Figure 8. frame extracted from the video of a math lecture as captured by Mimio Software 

 

 The video coming from the Mimio software represents an auxiliary source that can be used for 

purposes that are harder to accomplish on the video from the still camera. The quality of this video is 

variable as it is basically a screen-captured video and the quality depends on the resolution of the 

window of the Mimio software. In other words, a computer with a high resolution display plugged to it 

can capture a video with high resolution too. This video has the great advantage of being cleaner than 

the video from the still camera in terms of obstructions since it is not affected by the presence of the 

writer. However, there are some important disadvantages of this video. The first is that the usual quality 

is not as good as it is required to identify all the strokes as separated connected components on the 

image. The second is that artifacts can appear from time to time because the Mimio device is very 

sensible and sometimes just putting the tip on the whiteboard markers makes the system believe that 

the user is writing, and random points or even small traces are added to the video and stay there for 

long because they correspond to areas of the board that the writer might have never used in reality.  

Figure 9 shows an example of these artifacts. The last disadvantage and probably the most important is 

that Mimio device can miss strokes from time to time producing random incomplete symbols on this 

source of video, and therefore it is not a reliable source for content. However, since it is cleaner in the 

sense that the speaker is not recorded within the image, it is a good source for a change detection 

algorithm that identifies the modified regions and the timestamps of these major changes in content 

that can be used to extract key frames from the main video. This change detection algorithm has to be 

aware of the noise present on the video and ignore small random changes. 
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Figure 9. The red box highlights an example of artifacts usually found in Mimio software videos. 

 

The collection of videos used is relatively small in the sense that videos of only 6 lectures were 

collected. This small quantity of videos is due to the fact that the dataset was still in construction at 

Rochester Institute of Technology, but in the future larger collections will be available. Also, each video 

belongs to lectures that last for at least 40 minutes each, making a single video a source of several 

sketches. Currently 543 sketches were extracted from only 6 videos which mean that 90 sketches in 

average are extracted from each individual lecture. The input queries are selected by rejection sampling 

which means that the system selects a random image from the dataset and then the user can accept or 

reject that image being used as query.  
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5.  Methodology 
 

 The process of making available for retrieval the information inside a video of a lecture requires 

of the combination of different sub processes. Initially, the system starts only with the available videos 

from the lectures, and by the end of the process, a database of the content in a format that allows its 

fast retrieval is available. To generate such database, it is required to identify the content on the videos 

and then add the description of that content to the database. However, just identifying the content 

inside of the video of a lecture implies many challenges that have to be overcome. The most relevant of 

these challenges are: synchronization of videos from different sources, visual alignment of content 

between videos, speaker detection, content change detection, content extraction, and finally content 

description. Each of these challenges will be described in detail on the following subsections. 

 

 5.1 Sketch Extraction 
 

 The first part of the process is related to all the work required in order to extract the regions of 

content from the input videos. For this task, different sub-processes are applied and at the end the 

system will produce a set of regions of content or sketches that can be further processed for indexation 

and retrieval. Since the input of the algorithms consists in videos that come from two different sources, 

certain conciliation tasks must be performed in order to establish an accurate alignment between the 

content from the two sources in terms of both time and space. Figure 10 shows how the different 

processes are related to finally end with the extraction of sketches from the main video. 

 

 

Figure 10. Tasks involved in 
the first process of converting 
the input videos into region of 
content or sketches that will 
be indexed by later process. 
Note that certain processes 
like audio synchronization, 
speaker detection, and change 
detection could be executed in 
parallel as they do not depend 
on any other task, but the 
later tasks have dependencies 
on the results from the 
previous tasks. 
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5.1.1 Synchronization of videos 

 

 For each lecture in the current dataset, there will be a video that comes from a still camera in 

the classroom and another that comes from the software of the Mimio capture device. While the two 

videos are recorded over the same content on the same lecture, these are never guaranteed to start at 

the same time. Actually, it would be pretty difficult to ensure that both videos will start recording the 

lecture on the same millisecond or even with less than just three seconds of difference. This is due to 

the fact that manual operators are required to start each recording and is very difficult to obtain perfect 

synchronization on this task. Therefore, it is better to assume that these videos are out of synchrony and 

to apply some method to account for this difference in timing. 

 One possible option would be to manually edit one of the videos, the one that starts early, and 

manually remove the additional portion at the beginning to make them start in synchrony. However, it 

was required to make the entire process as automatized as possible. Actually, the only manual 

operations applied to input videos are converting them to Windows Media Video format (.wmv) 

because it is compatible with the OpenCV library for python, and also the extraction of the audio 

streams as separated files in Wave format (.wav) to process them using the wave library of python.  

 In order to synchronize two videos of the same content that come from two different sources, it 

is required to find specific features to describe the timeline of each video, and then use these features 

to find the best alignment between the two timelines by treating them as sequences. In terms of the 

content of the video, one could say that by identifying the sequence of times at which the writing and 

erasing events take place on each video, it could be possible to synchronize the videos by finding the 

best alignment between these two sequences of events. However, while it is easy to identify writing and 

erasing events on the video captured by the Mimio device, it is pretty hard to identify the exact times at 

which the instructor starts and stops writing on the video from the still camera. An easier approach to 

synchronize two videos is obtained by using the audio streams to find the best alignment between 

them. As it is show in figure 11, the result of this synchronization is a time offset that will be required to 

align the timelines of the videos in future processes. 

 

Figure 11. Process of synchronization 
of videos which is done by aligning 
their audio streams. An additional 
parameter that limits the range of 
the search for the best alignment is 
required and the result is a time 
offset that must be applied to the 
auxiliary video to match the timing in 
the main video. 
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 To use audio for synchronization, it is important to understand how the digital audio works and 

then find a way to efficiently match two different sequences of audio. The sound in our world travels 

through the air in the form of waves. These waves have different frequencies and amplitudes which 

translate into different sounds and volumes. In digital audio, these waves are stored by sampling the 

amplitude of the waves at thousands of points inside a single second of audio. Currently the videos are 

recording using a quality of 44,100 Hz which means that 44,100 points are used to describe the sound of 

a single second of audio. Figure 12 illustrates the audio waves for just 5 frames from a video.  

 
Figure 12. Audio waves for only 5 frames of a video, around 0.16 seconds of audio 

 

Given that so many points are used to describe a single second of audio, using directly these 

points to align two videos would be computationally expensive. For this reason, a method for 

subsampling the audio is required to increase the efficiency of the alignment. Normally subsampling 

would imply either taking a uniformly selected subset of the samples or obtaining a subset by averaging 

groups of samples. However in this case none of these would work to describe the sound on a region of 

time, specially averaging since the waves change sign constantly and the average is likely to become 

close to zero for most regions. Instead, what is done in the current approach is dividing each second of 

audio on a fixed number of intervals, in this case 10, and then for each interval obtain the highest peak 

of amplitude of the audio waves. With these values, is possible to describe one second of audio using 

only a few peeks, which results in a faster computation of the best alignment for two audio streams with 

only a small loss of accuracy that can be measured in milliseconds. Another optimization of running time 

is done by selecting a window of time that limits the maximum expected difference between two videos. 

In other words, it is known that the videos will start at different times, but the difference is expected to 

be probably less than a minute. Also, it is not required to use the entire audio stream for 

synchronization since aligning the sound at the beginning of the video should result in aligned sound at 

any other part of the video, and for this reason only a small portion of around 8 minutes of sound is 

currently being used to calculate this alignment. 

Even though the two videos represent the same lecture, and are captured on the same place, 

the audio stream will never be identical even for the exact same portion of time. This is due to the fact 

that different devices are capturing each stream and the quality of the sound recorded by each of these 
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devices will vary as also will vary the amount of noise present on each recording. For this reason, the 

alignments are calculated by taking the absolute difference between corresponding peaks on a 

candidate alignment, and adding those absolute differences to estimate a total cost for that alignment. 

Different alignments are then tested by systematically trying all possible offsets inside of a given window 

of time, and then the alignment with the lower cost is selected as the best alignment for the two videos. 

This alignment is described by an offset which corresponds to a certain difference of time between the 

two videos. This difference will be positive if the second video started recording after the first video or 

negative if it started recording before. Figure 13 shows an example of the best alignment for two input 

sequences with a positive offset of 6. Note that while the method is not the most optimal for this task, it 

still produces acceptable results and the running times in practice can be measured in seconds which is 

good for a pre-processing step executed only once per lecture. 

 
(a) Input sequence 1 

 

 
(b) Input sequence 2 

 

 
( c ) Best alignment found for sequences 1 and 2. Current offset is +6. 

 
Figure 13. An example of the best alignment for two given sequences of peaks for two streams of audio 

 

 Synchronization between videos is possible only after a correspondence in time has been found. 

This synchronization will be required for later algorithms, like the sketch extraction algorithm, that work 

with specific intervals of time marked with time stamps relative to the timeline of one of the videos, 

then the offset is used to find the same time stamp relative to the other video. 
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5.1.2 Finding the visual alignment between two videos 

 

 The second challenge found in the process of extraction of the whiteboard content from the 

videos of the lectures was that since the two videos come from different sources, they have the same 

content on the whiteboard but at different locations. These locations change in terms of absolute pixels 

at which each character or symbol on the whiteboard can be found on each video, but the relative 

locations between elements are still the same. In other words, since the two videos have different 

resolutions and margins for the whiteboard content, it is hard to tell which specific set of pixels from 

one video correspond to which set pixels on the second video. An algorithm to find such matching was 

required in order to make possible the mapping of content between videos. This is also known in the 

literature as the problem of image registration [53]. 

The main goal of visual alignment of videos is to find a mapping between regions of content of 

the two videos. This mapping is obtained by applying a transformation to the images of the content on 

one of the videos to match the content on the second one. For the video captured by software, the 

whiteboard region is represented by a perfect rectangle. For the video captured by the still camera, the 

whiteboard region is more like a trapezoidal area due to perspective. In practice, it is still possible to use 

a rectangular mapping between regions and still achieve acceptable results on some videos. A 

rectangular mapping can be found by doing a full-search that would test several scaling and translation 

parameters until a combination that minimizes the difference between the images is obtained. If an 

image of only the content of the whiteboard is given for each video, it is possible to obtain horizontal 

and vertical profiles of pixels that describe that content, and using a similar technique to the one applied 

for video synchronization, an alignment for these pixel profiles can be found.  However, after applying 

this procedure to videos from different lectures it was discovered that the error produced for some of 

them was too high to be acceptable and that a different technique had to be applied. The technique 

currently in use is based on extraction of Speeded Up Robust Features (SURF) [54] from different pairs of 

images to obtain a projection matrix that is used as the final alignment. Also, to ensure a higher 

accuracy, the SURF are extracted over the images of only the content of the whiteboard on each video. 

 For the video that comes from a still camera in the classroom, to identify the content of the 

whiteboard requires some special work since the speaker is present on the image most of the time, and 

that means that he or she will be obstructing at least one section of that content while present on the 

image. If it is possible to tell where the speaker is at every frame, then it is also possible to locate frames 

on the video that contain the whiteboard without obstruction from the speaker. The next subsection 

describes an algorithm used to estimate the location of the speaker on every frame of the main video, 

but for now it is just required to know that it is possible to use the output of such algorithm to extract 

frames from the main video where it is believed to be obstruction-free.  Figure 14 contains an example 

of one frame that was detected as obstruction-free by the speaker detector algorithm. Note that even if 

the speaker is not present, there are other objects surrounding the board that could interfere with the 

extraction of the content. Therefore, it is important to remove these objects from the image before 

generating any feature of the content. 
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Figure 14. An obstruction-free frame from the still camera video. 

  

Given an image where the content is obstruction free as the example in figure 14, the system 

can apply a few image operations to extract only the content. Algorithms in image processing usually 

work with a grayscale version of the image, and the current application is not the exception. With the 

grayscale version of the image, it is possible to apply a threshold of luminosity to separate dark things 

like the writing from light things like the whiteboard. However, the whiteboard does not represent a 

region with uniform brightness. What is more, there will be regions of the board that will be dark 

enough to be considered writing if just a simple threshold is applied. Also, similarly to dark regions on 

the board, there will be parts of writing where the traces have a very low level of contrast and these can 

even represent tones that are lighter than some regions of the board. Figure 15 shows an example of 

the result of just applying a threshold on a portion of the image in figure 14. 

 

 

Figure 15. Converting a region of the board 
to black and white using a threshold 
without any other pre-processing more 
than the initial conversion to grayscale. 

 

 Since just applying a threshold on the grays-scale image of the video would not help on 

identifying the exact content on the board, then a different approach is required for this task. It is 

important to consider that every pixel in the image belongs to exactly one of three possible elements: 

content, whiteboard and scene background. The current goal is to separate content pixels from the 

other two kinds of pixels. To achieve this clean separation, the first operation applied is edge detection 

using the Canny method. Closed regions are needed to separate the edges of the content from other 

kind of edges on the scene, but the edges obtained with Canny method are not guaranteed to produce 
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closed regions, and therefore it is required to apply additional morphological operations in order to 

obtain such closed regions. In this case, a dilation operation using a structural element of 5x5 pixels is 

applied to close all edges found in the image. After dilation of the edges, the image is then inverted to 

make large closed region become individual connected components. One example of the results at this 

point of the process is shown in the image in figure 16.C. Since the whiteboard will usually represent the 

largest connected component on that image, this largest component will be extracted and threated as 

whiteboard. The black regions on the image of only the whiteboard connected component can be either 

part of the content or part of the scene background. Given that regions that belong to the content are 

usually smaller than background regions, every black region with area above 5% of the total area of the 

image is considered as background region and is filtered. At the end, the remaining black regions are 

considered content and used to calculate the SURF for the visual alignment between videos. Figure 16 

show the results of each of the steps described before. 

 

   
(a) Gray scale image (b) Edges detected ( c ) Dilation and Negation 

 

   
(d) The whiteboard ( e ) Scene background ( f ) Content extracted 

 
Figure 16. Steps applied to extract content of the board for profile alignments 

 

 There is no speaker present on the video that comes from the Mimio software, but there are 

still a few additional objects surrounding the content captured from the whiteboard that must be 

removed in order to extract only that content. The timestamp on every frame extracted from the main 

video is used to extract its corresponding frame on the auxiliary video. The same steps are applied to the 

images extracted from this video and similar results are produced. Figure 17 shows the frame extracted 

from the auxiliary video that corresponds to the frame shown in figures 14 and 15. 
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Figure 17. A frame from the auxiliary video that can be used for visual alignment between videos. 

 

 When the content from two corresponding frames has been successfully extracted, the points of 

interest or key points are calculated on each frame and the SURF are extracted for each of these key 

points on each frame. The OpenCV library for python contains all the functionality required to easily 

obtain these features. The next step is to use nearest neighbors to find the best matches between key 

points of the two images. Since a lot of noise is usually present on the content, especially on the content 

captured by the Mimio device, the system cannot rely on the matching points of just one pair of frames 

mainly because on many cases only a small portion of the whiteboard is filled with content. For that 

reason, different pairs of frames are selected for the process, each of them taken from a different 

segment of the video. Currently the system uses a total of 25 pairs of frames, and these pairs are 

selected from different parts of the timeline of the video. After the best matches for a pair of frames 

have been identified, the next step is to calculate a projection that is consistent with most of these 

matches, and this is done using the RANSAC method [55]. The way that the method works is by 

randomly selecting four matching points, getting a projection for them, and then calculating the total of 

inliers for that projection. The method finally keeps the selection of points with the projection that 

maximized the total of inliers and returns that projection. 

Note that different matching points will produce different projections, and that if 25 pairs of 

frames are used, then 25 different projections will be obtained. Since the system needs to work with a 

single final alignment, something needs to be done in order to combine those 25 different results. One 

option could be to try to average them somehow, but just taking the average of the projection matrices 

does not work. Another option is to accumulate all the best matching points from the 25 pairs of frames 

and calculating a single final projection with them. This last approach works to certain extend but the 

threshold used to select the best matches has a great impact on the results, and finding a particular 

value that worked for all cases in the current dataset was not possible. Another solution is to rank the 25 

alignments and just keep the best one as the final alignment, and this is exactly what the final 
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application does. The score for a given projection over a pair of frames can be computed in terms of 

recall as follows: 

       
                                             

                                         
 

 This value is calculated for every projection over every pair of frames, and then the average over 

all pairs is used to give a final score to each projection. The next step is to pick the projection with the 

highest average recall as the final projection. This alignment is required for extraction of the content 

from the main video using the changes detected on the secondary video, and it represents a way to map 

specific pixels from one video to the other one. Figure 18 shows an example of the projection found 

between two frames.  

(a) Content extracted from main video 
 

 
(b) Content Extracted from auxiliary video 

  
(c ) Key Points and projection ( d ) Final projection of content  

 
Figure 18. Example of the alignment between two frames 
      a) Image of content extracted from the still camera video (1440x1080 pixels) 
      b) Image of content extracted from the auxiliary video (1280x720 pixels) 
      c) Best matches of Key points found used for alignment marked with red dots 
      d) Final projection. Grayscale of main is using blue channel and projected grayscale of auxiliary is 

using green channel. Common background is marked white and common content is marked black. 
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5.1.3 Speaker detection 

 

 To do a full detection of the speaker and separate him or her from the rest of the elements on 

the video of a lecture is a difficult task. However, for the purpose of the current project it is not required 

to identify where the speaker is at the level of exact pixels. Currently, the system only needs to know a 

good estimation of the position of the speaker in the video to avoid extracting elements from the 

content of the whiteboard while the speaker is blocking them. For this reason, the current approach is 

relatively simple and is based on simple frame differencing to locate individual pixels on the image that 

have suffered major changes in colors from one frame to another. Large changes in color in one pixel 

from one frame to another are good indicators of motion found in the video, and no detection of those 

changes over a region for a long period of time means that the speaker might not be on that region 

unless he or she is able to stay completely steady for several seconds, which is very unlikely in the 

current application. 

 Each single frame on the video of the still camera contains 1440x1080 pixels which is above a 

million pixels per frame, and also has 29 frames per second with an average length of about 45 minutes. 

In those terms it can be seen that to process every single frame on the video would be computationally 

expensive. However, since it is not required to identify the exact pixels where the speaker is present, a 

subsampling of those frames can help to avoid unnecessary computations. Currently the system only 

takes 3 frames per second to do its estimations of motion and the results obtained are very reliable. 

Also, the system does not need to measure the difference between all pixels on two sampled frames 

because the speaker is large enough in the image to be detected at a very coarse level. For that reason, 

the system subsamples the frames before calculating the difference, and this subsampling is made by 

dividing the frame using a grids and then using only one pixel to represent each cell of that grid for the 

further calculations of motion.  

(a) (b) 
 

Figure 19. Some examples of the speaker detector algorithm. The Yellow pixels represent subsampled 
pixels where motion was detected. The red box represents the area where the speaker is 
believed to be present based on the center and standard deviation of the pixels with motion. (a) 
and (b) are two contiguous subsampled frames. 
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The difference between select pixels is then calculated and if it surpasses certain threshold then 

motion is assumed on that pixel.  The system calculates the average and standard deviation of the 

coordinates of all pixels where motion was assumed, and uses these parameters to calculate the region 

where the speaker might be present at that time. Note that because of fast variations of lighting in the 

room as well because of other factors, there might be pixels where motion was assume when there was 

none, but since the system takes the average of all those pixels and uses a limited number of standard 

deviations both in x and y axis, then it is able to discard most of these small variations as simple noise 

and not as part of the speaker. The speaker position is represented in this case by a box with center 

equal to the average of coordinates of motion-detected pixels, width equal to 6 standard deviations of 

the x coordinates, and height equal to 6 standard deviations of the y coordinates of those pixels. Figure 

19 shows some results of the current algorithm. 

5.1.4 Content change detection 

 

 The detection of changes in the content written on the whiteboard is probably one of the most 

important steps in the current application. Since the speaker will write several things on the board and 

to do that it is required to erase the content more than once during the entire lecture, the system needs 

to be able to tell at which time the content appears on the board and at which time it is erased. This 

content detection could be performed over the main videos, but because the speaker is present on most 

of the frames the detection of changes on specific areas becomes more complex. What is more, the 

main video has gradual changes of lighting that could confuse a change detection algorithm. In the other 

hand, the video that comes from the Mimio software does not have the speaker on it, nor it has 

variations in the lighting of the board, and for those reasons it was decided to implement the change 

detection algorithm over this set of videos. 

 The auxiliary video that comes from the Mimio software currently has a resolution of 1280 x 720 

pixels which is still high definition but not as high as the definition of the video that comes from the still 

camera. The number of pixels present on each frame is still high and to perform the detection of 

changes on every pair of consecutive frames would unnecessarily expensive. For that reason, the total 

frames of the video are subsampled to only 3 out of 25 frames per second. The detection of changes 

using three channels of color is also expensive and for that reason the images are converted to grayscale 

first and then changes are detected in terms of variations of luminosity of pixels. 

 If the luminosity of a pixel has a change greater than certain threshold then the pixel is assumed 

to be changed, either written or erased. While there are not changes of lighting on the video captured 

by the Mimio software, the software itself seems to try to predict the writing and erasing events as they 

start taking place. This prediction produces light pixels becoming darker and then lighter again if the 

writer deviates from the predicted trace. A similar behavior occurs with some pixels when erasing 

events are detected as they can become lighter but if the direction of erasing changes the software sets 

them darker again. These small changes can cause confusion on the change detection algorithm by 

making it believe that erasing events take place while the speaker is writing or vice versa, and for that 

reason the threshold for changes must be large enough to avoid capturing this kind of noise as real 
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events, but also small enough to capture real events when the writer uses colors like green that has a 

very high level of luminosity close to the luminosity of the background.   

The changes are detected at the level of individual pixels, but these pixels are grouped into cells 

that will forms regions of changes. The current size of the cells used is on this implementation is 4x4 

pixels. The system first uses simple frame differencing to identify pixels with changes in luminosity. 

Modified pixels are determined using a threshold over the absolute change in luminosity. If the absolute 

difference is above the threshold then the pixel is considered a modified pixel. Afterward, the list of 

modified cells is calculated using the list of modified pixels. For each modified cell the system calculates 

the minimum luminosity and selects it as the luminosity for the entire cell which means that if at least 

one single pixel in the cell is dark enough to be considered writing then the entire cell is assumed to be 

written. There are only two possible events for the cells, and these are: was written and was erased. If a 

cell becomes written, the system adds it to a region of content. If a cell is erased, different things can 

happen depending on the state of the content region to which it belongs. 

A region of content is a group of written cells and it has four time stamps associated: creation 

time, last modification time, locked time and erased time. These regions of content are important 

because they will become the sketches that will be extracted and described by the system. Content 

regions have three main states: active (or modifiable), locked and erased. An active region is one that 

has been recently created and is still accepting changes whether these are additions or deletions. Cells 

can be added to the region through merging, and cells can be deleted from the region through small 

erasing events. If a modifiable region loses all of its cells because of an erasing event, then the entire 

region is just deleted permanently. Note that a region of content that has been deleted will not be 

extracted from the video because it is considered that nothing important could be written and erased 

on such short lapse of time.  

A locked region is a region of content that stopped accepting changes after that a certain lapse 

of time has passed without being modified. The system locks the regions after a threshold of time when 

a new change comes that could overwrite or erase the content present on that region. When a region is 

locked, the system releases all cells that were part of that region and these cells now can become part of 

new regions. When erasing events are detected over cells that previously belonged to a region currently 

in locked state, the system registers that time as erasing time for that region and the region passes to 

the erased state. 

The content regions have boxes that define a merging area where all the newly written cells 

found on this area will become part of the content region. This merging area is illustrated on figure 20. 

The area is sensible to the expected order of writing by being larger at the right side. When a cell is 

written and there are no active regions or if it does not fall into the merging area of any active region 

then the system will create a new region of content for that cell. If a newly written cell falls into the 

merging area of two or more active content regions then all these regions will be merged into a single 

larger content region. However, there are a few exceptions to this rule in order to restrict the horizontal 

growing of these regions to avoid entire columns of content becoming a single content region, and also 
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to prevent content regions to be merged with special regions like vertical lines drawn by the speaker to 

separate the content on the board into sections. 

 

Figure 20. Margins of a content region. On this 
figure, the orange cells are the cells detected as 
written on a content region while the blue cells are 
the non-written cells that form part of the same 
content region. The brown area is the merging area 
where if any change is detected then it will be 
merged with the content region and the green cells 
are the ones out of the range of the content region 

 

The life cycle of a content region is important because the system will use the detected times for 

creation, last modification, locking and erasing to groups this regions into key frames. Also, the system 

needs these time stamps to find frames on the video where the content region is free of obstructions in 

order to extract them for indexation.  

Note that while real content will be grouped into regions that will make it easy to handle, noise 

is also likely to create its owns regions which have to be detected and removed to keep the index as 

clean as possible. There are certain properties of the content regions that can be used to separate real 

content regions from noisy regions. The first property to look at is the size in terms of number of cells 

used. Real content regions have a certain average size and most regions below 20 cells of content are 

just noise. The second property is the edition time which is equal to the difference between creation 

time and last modification time. The edition time is at least 10,000 milliseconds for most of the 

important content regions. However, there are important regions of content that can be written in less 

time. For the current application, all regions with edition time lower than 400 milliseconds are 

considered noise. Density is the third factor used to filter regions, and it is calculated dividing the total 

number of written cells by the total number of cells on the region. Most of the real content regions will 

have at least 10% of density of written cells. Finally, the aspect ratio is very important as content regions 

are neither too long nor too wide. Currently, anything that has an aspect ratio above 10.0 or below 

1/10.0 is considered a divisor line on the board and removed from the list of content regions. Of course, 

there must be exceptions to some of these rules as there are regions that can fail on one or more rules 

but fulfill the others too well to be considered noise. One example could be a region with size of less 

than 20 cells but edition time of 5000 milliseconds, such region could not be considered noise because 

even though it is very small, it took too long to be edited as to be considered random noise. 

It is important to note that the current algorithm is far from perfect. Some parts of the content 

are split into more regions than they should and sometimes the erasing times are registered before the 

real erasing times making the system believe that content regions have shorter life spans than what they 

actually do. However, results are still acceptable in most of the cases and the resulting regions are very 

useful divisions of content that make the whole indexation process a lot easier to handle. An additional 

algorithm to group these content regions into key frames base on their time stamps is applied during 
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the indexation process described on section 5.2. Figure 21 shows an example of the results of the 

change detection algorithm over a period of time. 

(a) (b) 
 

Figure 21. Results of the change detection algorithm: (a) An image from a certain segment of a video, 
     (b) The corresponding regions formed by the change detection algorithm shown with different colors 
  

5.1.5 Extraction of whiteboard content 

 

 The extraction of the content is probably one of the most important elements on this project 

since sketch retrieval will be done over the content detected and extracted from the videos. Basically, all 

the tasks described before are just auxiliary tasks required in order to make extraction of content 

possible. The content on the whiteboard is present on both the main and the auxiliary videos, and while 

the auxiliary video has the great advantage of having the content free of obstructions, it also has the 

great disadvantage of being really noisy in the practice. Figure 22 shows an example of how noisy the 

auxiliary video can become due to sensor errors among other problems. For the reason mentioned 

before, the extraction of the content is done over the main video instead of using the auxiliary videos. 

The mapping of content between the two videos is mainly required because the process of change 

detection and the process of content extraction are executed over different sets of videos. 

 

 

 

 
Figure 22. Presence of really noisy data on the Mimio video. On the left, part of a frame from the main 
video On the right, the parallel frame from the auxiliary video as captured by the Mimio device.  
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 Different elements are involved in the process of sketch extraction. Figure 23 shows the 

minimum input required for the sketch extraction algorithm. First of all, the algorithm needs to receive 

the list of the names of the files that compose the main video considering that the camera automatically 

splits the video every time the current recording reaches 2GB of size. The next element is the time offset 

calculated to synchronize the videos because the time stamps associated to each regions of content are 

relative to the auxiliary video, and to find the corresponding frames on the main video the system needs 

the synchronization time offset. The filtered regions of content represent what the algorithm must 

extract from the main video and the motion detected on the main video is required to find frames 

where these regions are not being blocked by the speaker.  Finally, because the regions of content have 

boundaries relative to the auxiliary video, the visual alignment is needed to make the extraction of their 

corresponding pixels on the main video. The boundaries of the regions of content are projected over the 

main video to extract the box that contains the entire region.  

 
Figure 23. The inputs and the output of the Sketch extraction algorithm. 

 

Note that while changes are detected at the level of cells, the system will extract the final 

sketches as rectangular images. What is more, these estimated rectangles are expanded by some small 

margin just to count for small errors in the projection of the visual alignment to avoid cutting connected 

components. In some cases the final sketches can contain parts of content that were inside of that 

rectangular region but were not part of the original cells that represented the region. These parts of the 

content can be considered as noise and they are also hard to remove in most of the cases. Figure 24 

shows an example of this kind of noise. 

 

Figure 24. An example where parts of other 
sketches are accidentally extracted because 
they fall inside the projected rectangle of 
the current region. The red rectangle marks 
the location of this noise. 
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One procedure tested for removal of this noise was to generate a mask using the cells that 

represented the region on the Mimio video and then applying a projected version of that mask over the 

main video during the extraction, but this led to other problems that needed to be solved. First of all, 

the projection is not guaranteed to fit perfectly the content, and for this reason some dilation 

operations were applied to the projected mask to ensure that it would cover all the content pixels. The 

next problem is that the mask only defines which pixels should be extracted, but then something must 

be placed instead of the pixels that were filtered by the mask, and that filler is important because the 

wrong filler will generate false edges on the extracted image. White or black colors are examples of 

wrong fillers because their contrast with the average color of the whiteboard is too large and generates 

edges. Then, another option is to replace those pixels with the color of the whiteboard that is not 

constant but can be estimated for each region by averaging the color of the pixels that were filtered out. 

This works in most of cases but still generates edges especially on large sketches. The last option tested 

was to blur a copy of the whole image and use the fuzzy version as the filler for the filtered pixels. This 

blurred version limits the edge detection on additional components contained on the rectangle. Figure 

25 shows some results of this procedure. 

(a) 
 

(b) 

 
( c ) 

 
Figure 25. Successful removal of noise.  
      a) Original input region, noise to remove marked by red rectangle 
      b) Mask generated by projecting the cells of the content region over the whiteboard 
      c) Final result by replacing the black pixels on the mask with a blurred version of the image. 

 

While the algorithm described before represents a potential solution to the problem of 

additional connected components, at the end it was decided to keep those additional components as 

part of the content as there are also many cases where Mimio misses strokes of the writing on the 

whiteboard, and then applying the previous method makes the system to miss those strokes on the 

main video too. Figure 26 illustrate one case of many missed strokes over a single region. Note that in 

general terms, it can be said that it is worst to lose real content than to keep noisy content. 
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( a ) 

 

 
( b ) 

 

 
( c ) 

 

 
( d ) 

Figure 26. Missed strokes by the Mimio device.  
a) The whiteboard as captured by the Mimio device. Many strokes went missing. 
b) The real state of the whiteboard. 
c)  The projected mask created by the algorithm of noise elimination. 
d) The resulting region with real content erased as noise. 

 

 Many of the extracted regions will therefore contain some noisy connected components that 

still could be detected and erased by a more sophisticated method, but for now that belongs to future 

work. Once that all the regions have been extracted and their time stamps are known, the system is 

ready for indexation of content. The next section describes the process of sketch indexing and all the 

challenges faced during the development of this second process of the system. 

 

 5.2 Sketch Indexing 
 

 After the different regions of content have been identified and extracted from the videos, the 

system must describe the content found on those regions and store those pre-computed descriptions in 

a format that will make fast search possible. The indexing procedure is directly related to retrieval 

method since all information needed for retrieval must be pre-computed at indexing time to avoid 

unnecessary repeated calculations at search time. The current implementation stores the individual 

connected components found on each sketch, and also their corresponding features. Then, the system 

also generates estimated key frames based on the time stamps stored along with each sketch, and these 

key frames are stored on the index for later searches by key frame. Finally, the system also stores 

neighbor graphs that are generated over the sketches and key frames to describe their structure for 

partial structural matching.  The following subsections describe each of these processes in detail.  
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5.2.1 Extraction of connected components 

 

 Connected components represent the basic units of content on the current application and their 

extraction must be as accurate as possible. Ideally, a connected component should be created for each 

individual symbol but this is hard to accomplish on many cases. Also, the input images represent 

handwriting and compared to images of printed text the level of variation is much higher. For example, 

the speaker can use print and cursive writing interchangeably as shown in figure 27, the result is a mix 

where many symbols are written using a single trace and many traces represent a single symbol. The 

case where a single symbol is written with many traces does not represent a problem as long as the 

writer is consistent with that writing style. The real problem is when two or more symbols are written 

using a single trace or if the traces of two or more symbols are touching traces because separating them 

into individual connected components is a hard problem out of the current scope of this project.  

 

Figure 27. A single region of content with high 
variations in writing style. The red rectangles 
enclose print characters while the green 
rectangles enclose cursive writing. Note that the 
word “of” appears twice on this region written in 
two different ways. 

 

Different image processing techniques must be applied in order to extract the connected 

components of the content written on the whiteboard. Each of these techniques is error prone and the 

resulting connected components are not always representations of individual symbols written on the 

board especially because of many touching symbols present on the board. However, the results for most 

of the math formulas are good enough to allow them to be retrieved even by partial matching with 

queries. In general terms, the algorithm to extract the connected components is as follows: Find the 

potential content, remove the background, classify remaining pixels as either whiteboard or content, 

and then use connected components labeling to find the resulting components.  

To find the potential content the system uses edge detection to locate pixels that surrounding 

the writing. The edges are detected using Canny edge detection algorithm. Note that it could be possible 

to apply first a threshold over the grayscale image but the results would be similar to the problem 

described on content extraction for visual alignment of the videos. There are pixels of writing with 

higher luminosity than some pixels of the whiteboard, and for that reason edges detection is required to 

detect potential content pixels based on the local contrast of each pixel instead of using a single 

threshold of luminosity.  
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The content pixels are enclosed by the edges detected but these edges usually do not form 

completely closed regions. A dilation operation is then applied to close the regions found by the edges, 

but note that this operation not only will close the content pixels, it will also expand the edge pixels 

toward the whiteboard pixels. At this point most of the real content pixels should be inside the 

expanded edges, and also the large black regions should be part of the whiteboard. The next step is to 

get the negated version of the dilated edges image, and then to label the connected components on 

that image. For each connected component, if it is above certain threshold then it is considered a 

whiteboard region. After all whiteboard regions have been identified, they are merged to create a single 

mask which is dilated as much as the edges were dilated before. The result is a mask that contains only 

pixels that can be safely assumed as whiteboard pixels. The main reason of why a threshold is applied 

before adding a region to the mask is because sometimes holes inside of the characters get expanded 

too much and end up with including content pixels as part of the whiteboard. All the steps described 

before produce the partial result shown in figure 28.e.  

 
( a ) 

 
( b ) 

 
( c ) 

 
( d ) 

 
( e ) 

 
( f ) 

 
( g ) 

 
( h ) 

 

 

Figure 28. Steps to extract connected components. ( a ) input image, ( b ) converted to grayscale, ( c ) 
Edge Detection, (d) Dilation of edges, (e) Whiteboard Mask, ( f ) Adaptive Histogram Equalization, (g) 
Applying the mask ( e) to equalized ( f ), ( h ) final connected components after labeling. 
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 Most of the pixels of the whiteboard should be correctly identified at this part of the process, 

but now it is required to separate the remaining whiteboard pixels from the content pixels. It is possible 

to apply a threshold over the remaining pixels and the noise present is for sure smaller than when the 

process began. However, the problem of certain parts of the content with lower luminosity than certain 

parts of the board remains. A way to overcome this problem is by applying adaptive histogram 

equalization on a copy of the original image to enhance the local contrast between the writing and the 

whiteboard, and then apply the threshold over the image with enhanced contrast. Note that using mask 

of the whiteboard becomes mandatory when using adaptive histogram equalization since it will make 

some regions of the whiteboard really darker specially when there are no dark pixels of content on the 

region. The equalized image will have a darker background than the original, but the background will 

become lighter on the pixels surrounding the writing. After the image is equalized, the whiteboard mask 

is applied, and then a threshold is used to separate the final pixels of content. The last step is to find the 

connected components on the resulting image, and this will be the final connected component used by 

the system. Figure 28 illustrates the entire process, from an input sketch to the extraction of the 

individual connect component. 

5.2.2 Describing the connected components 

 

 The next step after the connected components have been successfully extracted is to generate 

their descriptions. This is done using different features and combining all of them into a single feature 

vector. The features to use are really important as bad features result in low accuracy when trying to 

find similar elements on the index. The current set of features is very simple and in practice achieves 

reasonable results. The features used are based on features applied for offline optical character 

recognition, and while the current system does not apply classification to identify the individual 

symbols, it needs to be able to tell how similar two symbols are.  

The only preprocessing applied to the characters before the extraction of its features is to 

normalize their images to a standardized size of 128x128 pixels. If the input image has a size of less than 

12x12 pixels then the character is padded with black pixels to make the input image have a size of at 

least 12x12 pixels. This padding is done with the purpose of avoiding some extra small components 

being expanded more than 10 times their original sizes. Also, if the input image is not squared, then it is 

padded with black pixels to make it squared to avoid changing the aspect ratio at the time of resizing. 

After the image has been resized, the system extracts the following features: aspect ratio (1 value), 

center of mass (2 values), covariance matrix (3 values), crossings (16x3x2 = 96 values), and 2D 

histograms (5x5 = 25 values).  The current length of the feature vector is 127 values.  

General Features 

These features correspond to general values that are calculated over all the white pixels of the 

normalized image. These features are: aspect ratio, center of mass, and covariance matrix. The first 

feature is the aspect ratio of the bounding box of white pixels which could be obtained by dividing the 

width by the height of that box. Horizontal and vertical lines are the most extreme values for this 
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feature while squared components should be in the middle of the scale. However, if width is always the 

numerator and height is always the denominator, the system will fail to measure the real similarity 

between pairs of components. For example, if two elements are given, one of them is 20x10 and the 

second is 30x10, their aspect ratios would be 2.0 and 3.0 respectively, and the difference would be 3.0 – 

2.0 = 1.0. In the other hand, if the same elements are rotated 90 degrees, the first one would become 

10x20 and the second 10x30, with aspect ratios of 0.5 and 0.333… respectively, and the new difference 

would be just 0.5 – 0.333… = 0.1667… which means that the same two components would be 

considered more similar by just rotating them, and that is completely wrong. A best way to get the 

aspect ratio is by swapping the numerator and denominator by using always the largest one as 

numerator and the smaller one as numerator. As a result, the value will be always greater than or equal 

to 1.0. Of course, a difference must be made to make 20x10 different from 10x20, and this can be done 

by swapping the sign of the aspect ratio when the denominator changes. This change creates a 

discontinuity on the function when the aspect ratio approximates -1.0 and then it changes to 1.0. To 

solve the discontinuity, 1.0 can be subtracted from the value of the division before swapping the sign, 

and it results on a continuous function equal to 0 when the input size is a perfect square, negative when 

the input is longer than wider and positive otherwise. Finally, some scaling factor is applied to control 

the influence of this value on the final distance. The final formula is as follows: 
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 The second general feature is the center of mass which is simply getting the average of all x and 

y coordinates of all white pixels P on the normalized image. If the raw average is used the resulting scale 

would be too large and it would heavily affect the measurement of distance. For that reason, the value 

is scaled and translated in a way that it will be in the range between -1 to 1 for each axis. The final 

formula is as follows: 
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 The last general feature is the covariance matrix of the coordinates of pixels. Basically, these 

values would roughly describe the distribution of the white pixels on the image. Note that the 

covariance matrix is symmetric, and therefore if there are only two dimensions then only three different 

values would be needed to describe the matrix. The first value is the covariance (x, x) which is also the 

variance of the x coordinates, the second value is the covariance (x, y) and the last value is the 

covariance (y, y) which is the variance of the y coordinates. The formula is as follows: 
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 Crossings 

 This is a very simple but effective feature used to describe shapes of the connected 

components. The general idea is to use lines at certain predefined positions and then for each line count 

the number of times that the line crosses the connected component. Also, additional values can be 

extracted that help to produce a more complete description of the component at that position and 

these values are the relative position of the first and the last time that the line crossed the connected 

component. The system currently uses 16 horizontal lines and 16 vertical lines for a total of 32 lines 

generating 3 values each. In total, 96 values are generated by the crossings features. The scaled images 

usually make the connected components very thick and for that reason the system will use always the 

center of the interval of white pixels crossed as the position of the crossing. One special case arises 

when a line has 0 crossings with the connected component since the first and last crossings are 

technically undefined. In that case, the system creates an assignment that cannot be obtained in normal 

circumstances by making first and last equal to the highest and lowest possible values respectively. 

Normally these two values would be equal if the count of crossings is equal to 1, but position of last 

would never be smaller than position of first. Figure 29 shows an illustration of the crossing features. 

 

 

 

Figure 29. Examples of two vertical crossings to describe an A at fixed x coordinates. The Green line is 
the first crossing, and the yellow line is the second crossing. The red axes represent the center of the 
normalized image. The dark red circles represent the center of the crossing interval at which the 
position is extracted.  
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 Note that if the raw values of counts are used in the feature vector then the counts would 

become heavily weighted over other features. Then, a normalization process is applied to get the values 

of the counts on a smaller range currently from -3 to 3 where 0 crossings becomes -3 and 10 or more 

crossings becomes 3. 

 2D Histograms 

 The last feature used is the 2D histogram of pixels which describes the distribution of the white 

pixels on the normalized images. The system divides the normalized image into a grid of 5 x 5 cells, and 

then for each cell it counts the total number of white pixels found on that cell. Then, the total of white 

pixels is used to normalize the values of each cell. At this point the sum of all cells is equal to 1.0. In this 

case the average value for each cell is on a very small range because most of the cells will be equal to 0.0 

and usually the others are never above 0.2. It was tested empirically that the contribution made by this 

vector to the measurement of distance is not significant unless the values are scaled to make them 

larger. It was found that a scale of 10 times the original value makes them have an important weight on 

the calculation of similarity distances between connected components. Figure 30 illustrates this feature 

for a connected component representing the A symbol. 

 
Figure 30. 2D Histogram feature example for the letter A. 

 

 When all the features described before have been computed for each connected component, 

the system can store them and just load the pre-computed values at the time of retrieval. The time 

required to compute these features for a single connected component is relatively small but when it 

comes to index a video which contains about 1,200 connected components then the entire process 

might take several minutes to complete. At the retrieval time the only features computed are the 

features that describe the query, for everything else is much faster to load the 1,200 feature vectors 

from a file than computing them on the fly. Currently, the computed features are stored in hash tables 

indexed by the id of the video and then by the id of the sketch where these were found. However, no 

other special structure is being applied, but some more sophisticated structures could make it possible 
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to find the nearest neighbors of a symbol in faster times, and that is definitively part of the future work. 

After the connected components are added to the index, the next task is to generate the virtual key 

frames of the video by grouping content regions based on their life spans on the board. 

5.2.3 Sketch Grouping Algorithm 

 

The sketches formed by the content change detection algorithm are a good way to divide all the 

content of the board into small units that make the indexation process much easier than handling all 

connected components individually. However, since the creation of these regions is sensitive not only to 

spatial locations of the connected component but also to edition times, sometimes some elements that 

should be part of a single region get split into multiple regions due to long pauses of the speaker during 

the writing process. One way to overcome this problem is by generating groups of sketches that were 

present in the board at a given time. If the times used to generate these reconstructions of the state of 

the whiteboard are consistent with certain events on the video like massive erasing of content, then we 

could say that these groups represent the key frames of the entire lecture. One advantage of these key 

frames is that each of them can be used to describe an entire segment of the video. Another advantage 

is that they allow large queries to be completely matched using parts of different sketches that were 

present on the board at the same time. 

The system needs to work with the time stamps stored along with each sketch in order to 

reconstruct the state of the whiteboard at a given time. Note that while the system could try to just 

extract a frame from the video at that given time, there are no guarantees that the speaker will not be 

present on the video on that specific frame. Since the sketches are extracted from different frames 

where the system detected that the speaker was not blocking that specific sub region of the board, then 

we could say that multiple frames are usually required to reconstruct the image of just the content of 

the whiteboard at a given time. Two time stamps are important for reconstruction of content, the first 

one is the last modification time as before that time the sketch was not present on the whiteboard or it 

was being edited, and the second is erasing time which tells the system when the sketch is no longer 

present on the whiteboard.  

The process of reconstruction is done as follows: First, the system generates a sorted list that 

contains all edition and erasing times of all the sketches on the board. Each of these times represents a 

candidate time for a key frame insertion. Then, for each time stamp the system evaluates which 

sketches have reached their last modification time and adds the completed sketches to the list of 

current sketches. Then, the system also checks which sketches have completed their erasing time, if 

there are no new erased sketched then the system continues with the next time stamp on the list. When 

the erasing time of any of the sketches on the list of current sketches is reached by the algorithm, then 

the system will insert a key frame at the current time stamps which will contain a copy of the list of 

current sketches. The next step is to remove the erased sketch from the list of current sketches. Usually 

the speaker deletes entire sections of the whiteboard which results on many sketches with erasing times 

close to another. The system cannot insert a new key frame for every erasing event. Instead, the system 

will insert a new key frame on an erasing event if and only if new sketches have been added after the 
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last key frame insertion. At the end of the process, there might be sketches that were written on the 

board by the end of the lecture and never got erased on the video. If this is the case and new sketches 

have been added after the last key frame insertion, then the system will take this final group of sketches 

and will create the last key frame using the ending time of the video as the corresponding time stamp.  

The algorithm of generation of key frames by grouping sketches is very simple and produces 

acceptable results on most of the cases. However, it is sensible to errors in time stamps of the sketches 

which become evident when certain sketches stop appearing on the key frames before they were 

erased on the video. This is due to some errors that occur when only small portions of the sketch are 

erased, and then the system assumes that the entire sketch was erased or that what remains does not 

represent the original sketch anymore, and for that reason registers an erasing time stamp earlier than 

the real one for those sketches. Even though such kind of errors occur, the results are still useful as ways 

to represent the content on segments of video and also to be used as retrievable units. Figure 31 

contains some examples of key frames generated by the algorithm. It is also important to notice that 

since the sketches are extracted from different frames of the video some important variations in the 

lighting of the scene occur making the average color of the whiteboard darker or lighter on some 

specific regions of content, and that becomes more obvious on these key frames.  

 
(a) 

 
(b) 

 

 
 

( c ) 
(d) 

 
Figure 31. Examples of different key frames extracted from a lecture. Note how each of them shares at 
least one region with the previous key frames as usually the speaker erases only a portion of the board 
and keeps intact other parts of the content. In the case from (c ) to (d) the speaker did erase the right 
side and wrote new content over it, but also edited part of the old content making the system believe 
that the entire content region was erased.  
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 After the creation of the key frames, the system stores these groups of sketches as part of the 

index to avoid computing them again for every new query. These structures usually require small 

amounts of memory as they only represent groups of what is already stored on the index. At this point 

the system has indexed sketches with their corresponding connected components, and also the key 

frames. The next step is to describe the spatial structure of the sketches and key frames and add those 

descriptions to the index. This description of spatial structure is achieved through neighbor graphs as 

specified in the next section. 

5.2.4 Description of sketch structure 

 

The description of the individual connected components is very important on the current 

application because a good description can help the system to achieve good matches on the retrieval 

process. However, the best matches usually require more spatial information to be taken into account 

since math formulas are involved and the structure of an expression is a fundamental matter in math. 

There are many possible approaches on how to describe the structure of a sketch. A possible approach 

is using a hierarchy between elements like the method described in [36]. Another possibility is to 

describe certain relationships between neighbors and one or even many graphs to describe these 

relationships [46]. Through observation of the input data it was determined that isomorphism of 

sketches is not necessarily what makes pairs of regions to be related as it is shown in figure 32.  

 

 
Figure 32. Example of two sketches that can be considered related to each other but have a completely 
different visual structure. 
 

It is true that to some extend two regions need to share different elements to be considered 

matching regions. It is also true that good matches usually have a very similar structure, but it is also 

true that these structures do not need to be isomorphic to be potentially related. In the example shown 

in figure 32 it can be seen that two non-isomorphic structures can be considered related, and this is 

mainly because they have some isomorphic sub structures in common like for example the vector 

notation for v1, v2 and v3. Based on this reasoning, one of the retrieval methods implemented works with 

neighbor graphs to define pairs of related symbols that should be matched between the query and the 
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content stored in the index. The generation of these graphs is better done at the preprocessing stage 

and the results are saved within the index file. 

Graphs are defined on this application by creating a vertex per each individual connected 

component on the region being described. Then, the edges are created and their weights are assigned in 

terms of visual proximity between their corresponding connected components. Probably one of the 

most obvious methods to define visual proximity between connected components is using the Euclidean 

distance between the centers of the connected components. However, there are cases where using the 

distance between centers can make two connected components that are very close to look really far 

away. Another possible measurement of visual proximity is the distance between the bounding boxes of 

the connected components. This distance is defined by the smaller distance between sides of the 

bounding boxes of two connected components, and when these bounding boxes overlap the distance is 

equal to 0. The system currently uses a combination of both measurements of visual proximity. 

The distance between all pairs of vertices is calculated and then the system filters edges 

between pairs of components that are not visually close. A way to know which edges to keep and which 

to remove is by applying a Minimum Spanning Tree (MST) algorithm over the graph.  A MST is 

guaranteed to be the sub-graph that keeps all the vertices connected while minimizing the sum of the 

distance of all remaining edges. Depending on the measurement of distance between components used 

to create the graph, it is possible to obtain different MSTs for the same sketch. Since the goal is just to 

keep all edges between a vertex and its closest neighbors, the system can simply merge the edges found 

on each MST to form a neighbor graph. This graph will have a reduced number of connections while 

keeping a vertex connected to its closest neighbors as determined by the two measurements of 

distance. Figure 33 shows the neighbor graph obtained for the sketch of a matrix. 

  
 

Figure 33. The graph generate for the sketch of a matrix. At the left the original sketch, at the right the 
graph obtained connecting the components that are visually close by distance between centers or by 
distance between the borders of the bounding boxes.  

 

The same process applied for individual sketches is also applied to key frames to genera bigger 

graphs that not only connect the closest connected components inside of the sketches but also connect 
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the closest components between pairs of sketches found on the same key frame. This will allow a single 

query to match pairs of elements from different sketches located on the same key frame. Figure 34 

shows the results of the graph generation algorithm over a key frame.  

  
 

Figure 34. Neighbor graphs formed on a key frame. The left image is the original key frame, the right 
image is the graph formed for that key frame. The green edges represent standard edges between 
connected components of the same sketch. The red edges represent edges between connected 
components from different sketches. 
 

The graphs are the last kind of the structure computed and stored on the index. Once that all 

graphs have been computed for the sketches and key frames of a video, these are stored for later 

retrieval processes. At this point the video is completely indexed and the content found on it can be 

retrieved using the different sketch retrieval methods implemented which are described on the 

following section.  

 

5.3 Sketch Retrieval 
 

After the content of all videos in the collection has been indexed, the system is ready to accept 

queries. A query in this system comes in the form of an input image or sketch, and the system will try to 

find either sketches or key frames that seem to have similar content. The current system is recognition 

free and all matching is done in terms of visual similarity between the query and the stored content. For 

testing purposes, the system allows the user to specify one sketch from the index as the input query. If 

the user does not specify a query, the system can also select a random query from the stored sketches. 

On the current scope the system is not allowing external images to be used as queries, but this is a 

feature that could be included as future work.  

All content on the index is stored in forms of individual sketches and also in the form of groups 

of sketches or key frames. The different retrieval methods were developed to allow the search by the 
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two kinds of content. However, there are some methods that work with sketches but lack the scalability 

required to be applied at the level of key frames. When the search is limited to the level of individual 

sketches, it has the advantage that some of these non-scalable methods like the search by F-Measure 

works fine because of the small numbers of connected components. The disadvantage of looking for 

individual sketches is that divisions of content are not optimal and the query could not be matched if the 

same content is found in parts of different sketches. When key frames are used, the greatest advantage 

is that the query can be completely matched by partially matching different sketches on the key frame. 

The disadvantage is the increased running time because the number of possible matches is higher, and 

this is due to the fact that some sketches belong to multiple key frames increasing the total number of 

comparisons required for this type of search.  

More than just finding specific images, the general idea is to use the time stamps of the images 

found to relate them to the specific segments of the video from which they were extracted. In general, 

sketches represent very short regions of the video generally measured in seconds while key frames 

represent larger segments of the video generally measured in minutes. It is out of the scope of this 

project to create the user interface required to visualize these segments of videos. However, the current 

system could be easily modified in the future to interact with an external application that displays the 

segments of video as final results. The next sub section explains the different measurements of similarity 

that were implemented for retrieval of sketches and key frames.  

 Measurements of similarity applied for retrieval 

The method used to measure the similarity between two given regions of content is really 

important and it will define the performance in terms of quality of results and running time. Different 

methods were tested and some of them produced interesting results while other did not, and these 

methods were: Count of hits by nearest neighbors, recall of connected components matching, F-

Measure of connected components matching, recall of SURF matching, and recall of pairs of neighbors 

matching. All these method produce a score of similarity between regions, and then the resulting values 

are used to rank the regions stored in the index finally retrieving only the best N matches, where N is a 

number defined by the user. Each of these methods is explained here.  

Count of hits by K nearest neighbors  

This was the most naïve approach implemented and it is only applied on sketch versus sketch 

matching. The basic idea is simple, take all of the connected components on the query, and for each of 

them get the first K nearest neighbors whose distance is below a given threshold. For all of those K 

connected components, a hit point is assigned to the sketch to which they belong. If the query has 10 

connected components, and K is set to 100, then 1000 nearest neighbors will be obtained in total which 

will generate 1000 hit points distributed among the different sketches where those components were 

found, and then the sketches are ranked by their number of hits in descendent order. The method is 

very simple and since it does not count for unique matches, it usually gives really high scores to some 

regions if they contain several nearest neighbors of a single connected component of the query. Some of 

the results obtained can be considered good matches, but it will also retrieve many unrelated things just 
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because they contained several copies of one or more elements found in the query. In the other hand, 

the method is really fast and it was a good point to start the process of retrieval of sketches. Given that 

repeated connected components is a problem for this method, testing it over key frames would just 

have made the problem worst because they are likely to contain even more copies of each component. 

 Recall of matched connected components  

 The second method was designed to correct one of the biggest problems of the previous one, 

and it is that a single connected component of the query was being matched multiple times by many 

similar connected components on some large sketches. This resulted on some regions with higher scores 

than the actual level of visual similarity perceived. To correct this problem, the next goal was to ensure 

the uniqueness of the matches which means that one connected component from the query can match 

at much exactly one connected component of another region. If a connected component on the query 

can only match one connected component of the tested region, then the recall of matched connected 

components can be obtained dividing the total number of matches by the number of connected 

components on the query. 

       
                             

                               
 

 Note that this method only ensures that a connected component on the query will be matched 

by exactly one connected component on the tested region, but it does not ensure that a connected 

component on the candidate region will not match multiple connected components of the input query. 

In other words, the previous method allowed relations many-to-many between connected components 

on the query region and the candidate region, but this second method just allows one-to-many. The 

search method was test with sketch versus sketch matching and sketch versus key frames matching, but 

since a better method was found for sketch versus sketch matching, it was kept only for sketch versus 

key frame matching. It is also fast and usually produces better results than the previous method. 

 F-Measure and the assignment problem  

 A more accurate version of the previous method is obtained by replacing the recall by the F-

measure or F-Score of the connected components. The F-measure is the harmonic weighted average of 

the recall and the precision. Recall is measured in terms of components matched against the total of 

connected components in the query sketch while precision is measured in terms of components 

matched against the total of connected components in the candidate sketch. However, the only way to 

get the exact the recall and precision is to modify the matching system to force it to accept one-to-one 

matches only. Ideally these one-to-one matches should be made in a manner that the sum of the total 

distance between matched connected components is minimal.  To obtain that minimal distance, the 

entire matrix of distances between all candidate matches can be calculated, and then the Hungarian 

method can be applied to solve the assignment problem [38] over that matrix. This method requires the 

distances matrix to be squared, and since the number of connected component on the query and on the 

candidate region are going be different in most of the cases, some padding columns or rows must be 

added using a distance value that is higher than any other expected distance between connected 
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components. Note that all the assignments that include values found on those padded columns or rows 

imply that no real matching was found for that connected component. When all the assignments have 

been computed, the system can apply a threshold of distance and accept only the matches with a 

distance below the threshold. This final number of assignments is used as the numerator of both 

precision and recall, and then the f-measure is finally computed. A value of 0.0 is the worst value for an 

F-Measure while 1.0 is the best value or a perfect match. 

       
                             

                               
 

          
                             

                                       
 

              
                  

                
 

While the results obtained by this method seems very interesting, it is way too heavy to be 

applied in practice as a single query can take from a few minutes to even a few hours. The problem is 

that the assignment problems has a complexity of O( N3 ) on its best implementation, and since some 

sketches have as much as a 100 connected components the matching between those sketches takes 

many seconds which is too much for just comparing a pair of sketches. What is more, the approach 

cannot be scaled to be used on sketch versus key frames matching because the total number of 

connected components that is usually found on a single key frame is much higher than just 100 

connected components.  

SURF  

 The SURF were successfully applied to visually align the content between the two sources of 

video on this project, and one experiment was to use them as a way to find queries inside the key 

frames. The SURF work by finding key points on two images that will be compared, and then these key 

points are matched to find one image inside of another. However, not all pairs of matches are really 

good matches and the system need several good matches to be found before it can really find an image 

inside of another. Ideally, a high percentage of good matches should mean that the image has been 

found, but in practice many key points can be matched on the current data and that does not mean that 

the candidate region contains the query. As a test to define a method for retrieval using SURF, the recall 

of key points matched is being used to rank the similarity between pairs of sketches and between a 

sketch and a key frame. The method works for perfect matches, which is when the query is present on 

the candidate region, but it usually does not work for partial matches making this method a bad option 

for retrieval as most of the related content for a query will be partial matches. 

Something good about these features is the fact that they can be computed and matched really 

fast. For example the queries presented in the results section took less than 10 seconds to be executed 

which is really fast considering that these features were not stored on the index and the system had to 

calculate them on the fly as the query was being executed. If the key points and their SURF were store 
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on the index, the execution time would be really small, but the reason for not adding these to the index 

was the unacceptable results obtained on different queries tested. 

 Recall of matched pairs on neighbor graphs  

The last method developed for retrieval uses the neighbor graphs obtained during the 

indexation process to attempt to match partial structures. One of the common problems of the previous 

methods is that when they match connected components from the query on the candidate region, they 

usually match any connected component regardless the actual relationships between them, and that 

produces undesirable matches like for example the number 32 matching 23 because the individual 

connected components are the same. A partial solution to this unrestrained matching problem is to add 

some basic restrictions by matching pairs of connected components with the same spatial relationship. 

Applying this restriction in the previous example would mean that a 3 and a 2 would only match if 

another 3 is found along with another 2 with the same spatial relationship between them. In a sketch 

with 10 connected components there will be 45 potential pairs of elements to consider, but since the 

neighbor graphs are being calculated first, then probably the number of pairs to use for the actual 

matching will be reduced to about only 12 pairs making this method scalable even for large graphs. 

The spatial relationship between two connected components that are linked in the neighbor 

graphs is defined by the angle formed by the location of the center of one of them relative to the center 

of the other one. This angle basically defines an orientation between the pair regardless of which of the 

connected components is being used as the center of reference. The idea is that matching will be limited 

only to pairs that have almost the same angular orientation with some small degree of tolerance for 

variation. If a pair of connected components on the query has certain angle orientation, and a pair of 

connected components on the candidate region has an angular orientation close enough to the 

orientation of the first pair, the system will compare the corresponding connected components to get a 

measurement of total distance by averaging the distances obtained between the pairs of corresponding 

connected components. Figure 35 shows an illustration of this process of matching edges. 

 
 

Figure 35. The process of matching edges to estimate similarity between sketches. 
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 The total measurement of distance between a query and a candidate region, either a sketch or a 

key frame, is obtained using the recall of pairs of edges on the graph of the query that were matched 

with edges found in the candidate region. Note that there are no further spatial restrictions applied 

between these edges and as a result it can be the case that two edges that have a vertex in common on 

the query could match two edges with no vertex in common on the candidate region. However, in 

practice the results obtained with this method are still much better than the ones obtained using 

completely unrestrained matching of connected components. 

The running time required for this matching is higher than the time required by some other 

methods as each single connected component is tested for matching more than once. Nevertheless, this 

running time is not that bad and can be improved by using a more sophisticated method of indexation 

optimized for matching edges. 
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6. Results 
 

The different methods were tested against predefined queries to compare the results that each 

of them would return for the each of them. As expected, these results were usually very different 

between methods as each of them ranks similarity using different criterions. All of the tests described on 

this section were executed on a laptop running with windows 7, with 8 GB of ram and Quad core 

processor of 2.4 GHz with turbo boost up to 3.1 GHz. Even though most of the methods allow 

parallelization, this was not implemented and all running times are measured on all comparisons being 

made on a single thread. The index file used for all tests contains the information of 6 lectures for a total 

of 96 key frames, 543 sketches and 8,732 connected components. 

Using count of hits by K nearest neighbors 

One example of a query using the method of counting hits by k nearest neighbors with its top 5 

results can be found in figure 36. The total of nearest neighbors K was set to 1000. That amount of 

nearest neighbors was selected to ensure that the search would limit the final number of nearest 

neighbors retrieved based on the threshold of similarity instead of just the top K nearest neighbors. The 

running time was only 3.52 seconds for this query with 10 connected components. 

 
(a) 

 
(b) 

 
(c ) 

 
(d) (e) 

 
(f) 

 
Figure 36. Query executed using the counts of hits by K nearest neighbors: (a) The input query, (b) First 
match: 78 hits, (c) Second match: 49 hits, (d) Third match: 43 hits, (e) Fourth match: 38 hits, (f) Fifth 
match: 33 hits 
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 A second query is shown in figure 37. This one took 3.27 seconds in running time. As it can be 

seen, some of the retrieve results can be considered related like figure 37.d, but others do not seem 

related at all like for example figure 37.e. Note this last one was probably high ranked by the large 

number of horizontal bars that it contains matching the horizontal bars on the query. 

 
(a) (b) 

 
(c ) 

   

(d) 

 

 (e)  (f) 
 
Figure 37. Query executed using the counts of hits by K nearest neighbors: (a) The input query, (b) First 
match: 29 hits, (c) Second match: 28 hits, (d) Third match: 27 hits, (e) Fourth match: 26 hits, (f) Fifth 
match: 24 hits. 
 

 Using recall of matched connected components 

Figure 38 shows an example of the application of this method for the same query of figure 36 

but this time the search is done with sketch versus key frame matching. The time required to execute 

this query was 5.88 seconds. Since a single sketch can be included in multiple key frames, 2 out of 3 of 

the top 7 best matches are excluded here because all of them contained the query sketch. Additional 

coloring is added to visualize the connected components being matched. Note that since there are no 

structural restrictions for the matches, the system will retrieve key frames as long as they contain many 

of the connected components found in the query independently of the positions at which they are 

located resulting on many matches that at first glance seem to be unrelated. 
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(a) 

 
(b) 

  

 
( c ) 

 
(d) 

  

 
(e ) 

 
(f ) 

 
Figure 38. Results for Sketch versus Key Frame matching using the Recall of matched connected 
components: (a) Input Query, (b) Top 1 match: 100% recall ( contains the query ), (c ) Top 4 match: 100% 
recall, (d ) Top 5 match: 100% recall, (e ) Top 6 match: 100% recall, (f ) Top 7 match: 100% recall. 
 
 
 A second query is shown in figure 39. This second query took 5.84 seconds. Again, 4 out of the 

top 5 matches are not present here as all of them contained the input query. Similarly to the first query 

shown, most of the results seem to be unrelated because connected components are being matched 

without spatial restrictions. 
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(a) 

 
(b) 

  

 
( c ) 

 
(d) 

  

 
(e ) 

 
(f ) 

 
Figure 39. Results for Sketch versus Key Frame matching using the Recall of matched connected 
components: (a) Input Query,  (b) Top 1 match: 100% recall ( contains the query ),  (c ) Top 6 match: 90% 
recall,  (d ) Top 7 match: 90% recall, (e ) Top 8 match: 90% recall, (f ) Top 9 match: 90% recall. 
 
 

 Using F-Measure and the assignment problem 

Figure 40 contains an example of a query using the F-Measure. It took 3 minutes and 7 seconds 

to complete this query which is 37 times the time that Recall method required for matching the same 

sketch versus complete key frames. The average time required per single comparison is usually small, 

but the problem is the complexity of the assignment algorithm which makes it take several seconds on 

certain sketches with a high number of connected components. 



65 
 

 
(a) 

 
(b) 

 
(c ) 

   

 
(d) 

 
(e ) ( f ) 

   
Figure 40. Results of a query using the F-Measure of matched connected components: (a) The input 
query, (b) Match #1, F-Measure: 1.0, (c) Match #2, F-Measure: 0.58, (d) Match #3, F-Measure: 0.58,     
(e) Match #4, F-Measure: 0.52, ( f) Match #5, F-Measure: 0.51. 
 

 The results obtained by the F-Measure on the query shown in figure 40 reflect that forcing the 

system matches to be one-to-one is good. However, since no structural restrictions are being applied to 

these matches, some regions can be matched with a high F-score as long as they share many connected 

components independently of their structure. Another query is show in figure 41 which took 3.11 

minutes to complete. The fact that returned regions are also smaller than using the previous 

measurements is thanks to the fact that F-measure considers precision and recall at the same time.  

   
(a) 

 
 (b) 

 
(c ) 

   

 
(d) 

 
(e ) 

 
( f ) 

 
Figure 41. Results of a query using the F-Measure of matched connected components: (a) The input 
query, (b) Match #1, F-Measure: 1.0, (c) Match #2, F-Measure: 0.56, (d) Match #3, F-Measure: 0.52,     
(e) Match #4, F-Measure: 0.47, ( f) Match #5, F-Measure: 0.44. 
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 Using SURF 

Figure 42 shows some results for a query using the recall of the SURF matches. It took 9.95 

seconds to run this query and the results are not acceptable. 

 
(a) (b) (c ) 

   

(d) (e) (f) 
 
Figure 42. Example of a query using SURF: (a) Input Query, (b) Match #1, Recall: 100%, (c) Match #1, 
Recall: 100%, (d) Match #1, Recall: 100%, (e) Match #1, Recall: 100%, (f) Match #1, Recall: 100%. 

 

A second query is shown in figure 43. This one took 13.10 seconds and results are also bad. 

 
(a) 

  
(b) 

  
(c ) 

   

  
(d) 

  
(e) 

 
(f) 

 
Figure 43. Example of a query using SURF: (a) Input Query, (b) Match #1, Recall: 100%, (c) Match #1, 
Recall: 100%, (d) Match #1, Recall: 100%, (e) Match #1, Recall: 100%, (f) Match #1, Recall: 100%. 



67 
 

Using Recall of matched pairs on neighbors graphs 

Some results using this method can be seen on figure 44. The running time required for this 

matching was 17.36 seconds.  

  
(a) (b) (C ) 

   

 
(d) 

 

(e) 
 

(f) 
 
Figure 44. Query executed using the recall of matched pairs on neighbor graphs: (a) Input query, (b) 
Match #1, Recall = 100%, (c) Match #2, Recall = 63%, (d) Match #3, Recall = 45%, (e) Match #4, Recall = 
45%, (f) Match #5, Recall = 45%. 
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It is worth to mention that the input query used for the different tests to compare all methods is 

actually hard to match in terms of meaning as it simply represents a matrix. The results of the recall of 

matched pairs on neighbor graphs can be considered the best because the images retrieved by the 

system were matrices as well, but more important matrices that contains combinations of the same 

elements most of the time with the same arrangement as for example some matrices that also contain 

zeros on the right side.  

Another example of this method applied is shown in figure 45. This time the query simply 

contains the notation for three vectors. Note that all the top matches contain vectors, and even if they 

have different arrangements, they can be considered as valid matches because in most of the cases they 

even have the same sub-indices for the vectors.  

 
(a) (b) 

 
(c ) 

   

 
(d) 

 
(e ) 

 
(f ) 

   
Figure 45. Query executed using the recall of matched pairs on neighbor graph: (a) Input Query, (b) 
Match #1, Recall: 100%, (c) Match #2, Recall: 66%, (d) Match #3, Recall: 66%, (e) Match #4, Recall: 55%, 
(f) Match #5, Recall: 55%. 
 

Currently there are many errors in the matching process specially pairs of edges that should 

have not been matched and others that could have been matched and they were not. Also, the method 

is very sensible to cases where touching symbols become a single connected component and therefore 

something that should have been matched as a pair now can only match be matched as a single 

connected component. The confusion errors can be removed or mitigated with further refinement of 

the parameters for the matching of pairs. Also, additional features that describe the pair as a single 

connected component could help to refine that matching or even allow matching with touching symbols 

that became a single connected component. However, even with those current limitations, the system 

achieves acceptable results for many queries making it the most promising method of all the methods 

tested so far, and also a good start for future work.  
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7. Discussion 
 

Five different methods to measure the similarity between queries and candidate regions were 

implemented and tested. Some of them produce meaningful results while the others not always 

produce meaningful results. The most naïve method, the count of hits of nearest neighbors show 

reasonable results considering the simplicity of the method, however there were more meaningful 

sketches on the index that other methods retrieved on their top 5 matches.  The fact that the highly 

rated regions on the count of hits of nearest neighbors are usually regions that contain many copies of 

elements that are part of the query reflect that allowing one element from the query to match multiple 

elements on the candidate regions is not a good idea.  

The second method, the recall of matched connected components, showed more reasonable 

results than the previous method. The fact that one element in the query counts for only one hit per 

candidate region greatly affected the weighting system.  In the other hand, the results shown that 

measuring similarity only in terms of the components from the query that were matched resulted in 

many regions with very similar scores. For example, the top 5 results for the first query show on figure 

38 got a 100% of recall which means that since all of them contained a matching element per each 

element on the query they got equally ranked, and that also means that the final order on which they 

were listed was actually defined by the order on which they were matched, but all of them got the same 

score and none was considered a better match than the others. From the perspective of the user not all 

of them are good matches, if any of them can be considered a good match. The total number of 

additional elements present on the sketches retrieved is one of the first elements that a human would 

use to give a lower rating to some of these best matches.  

The third method greatly improved the results by taking into account not only the recall but also 

the precision using the combination of both through the F-Measure. This, however, was done at the 

expense of using the Hungarian method to solve the assignment problem to make the matches of 

connected components unique. This algorithm has a high complexity and results on non-scalable 

running times if the number of connected components of a region is above 100 connected components. 

The effect of using the F-Measure is that when two sketches have the same recall, they will be ranked by 

highest precision which means that the system will prefer matches of about the same size of the query 

or in general containing only a few additional unmatched elements. Probably, using a less optimistic 

assignment of matches would result in much faster running times at the expense of losing some 

accuracy for a few queries that will count less real matches than the optimal number of matches that 

can be found using the Hungarian method. In the other hand, the best matches are still unrestricted in 

terms of structure of the query, and for that reason the results with this method will never be as good as 

the results obtained by methods that consider structure on the similarity measurement. 

The method that applies SURF for matching of regions seems to be the most helpless of all 

methods tested. The problem is that the SURF were made to match key points and the best matches for 

these key points are not always real matches. In fact, the number of bad matches is usually very high 

making the recall of good matches a bad measurement for similarity. Also, these features were designed 
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to match objects on images even if they are rotated which means that it will produce many matches of 

key points that seem to be the rotated version of something from the query, but for the purpose of 

math retrieval they do not represent a good match. For example, horizontal lines can be matched with 

vertical lines using SURF, but in the context of math the orientation of a line gives it a specific meaning.  

The last method tested, recall of matched pairs on graphs of neighbors, is the one that produced 

the most satisfactory results, and this is because it applies a more restricted level of matching by 

matching elements in pairs. The orientation of the line connecting the centers of the bounding boxes of 

two connected components in a sketch is being used to filter possible matches which means that even if 

a candidate region and a query contain the same connected components, but not a single pair is arrange 

the same way in the two regions, then it is possible that the total of pairs matched becomes 0 and such 

region would not be retrieved. Note that the example on figure 45 is a query containing notation of 

three vectors, and the top 5 results only contain regions that had vector notation on them, and these 

did not necessarily had the vector notation arranged in the same way, but because most of the pairs of 

elements of the vector notation were matched independently, then these regions were considered the 

best matches. In cases like vector notation, where specific pairs have a meaning by themselves, 

matching pairs as if they were single units will produce better matches than other methods that do not 

consider structure at all.  
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8. Conclusions 
 

Extracting information from videos and then making this information available for retrieval can 

be a challenging task prone to errors at many steps of the process. Noise is a common factor on all steps 

and therefore special considerations have to be taken on every case. The procedures used for extraction 

of the information from its raw sources need to be very robust to work for most of the cases even for 

the noisiest ones. Also, variation is another important element that must be always considered in order 

to produce these robust methods. For example, on the current application two different methods for 

visual alignment were implemented, the first one worked fine for the first half of the dataset, but after 

the second half of the videos was introduced, the method stopped working correctly. A second more 

robust method for alignment was introduced which accounted for higher levels of variation. If such 

levels of variation had been considered from the very beginning, probably the first method would have 

never been used and the second method would had to come first. However, it is usually hard to visualize 

all possible kinds of noise and variations that come with the data from the very beginning and for that 

reason sometimes is better to create an initial naïve implementation that works for a few cases, and 

progressively increase its robustness as soon as variations and noise are identified. 

After all information has been extracted, the method employed for indexation is really 

important because while some methods require more time in the indexation process, they can also 

speed up the retrieval process by allowing faster matching. The index is also dependent on the method 

selected for matching as different methods would require different elements to be pre computed and 

available at the time of retrieval. As long as new methods for similarity measurements are tested, the 

structure for the index cannot be considered to be final. 

Many researchers have identified something that they have called the semantic gap [16] which 

in the current application means the difference between the best matches as defined by the system in 

terms of features and the best matches as defined by the user in terms of the meaning of the content 

matched. This is one gap that cannot be closed unless the system becomes smart enough to understand 

what the user is expecting to find with the current query.  Of course, to make the system to understand 

human semantics behind a query is something that would not happen even after many years of 

improvements of the system.  

In the other hand, different matching procedure can make the semantic gap larger or smaller 

depending on the level of the features of the query being considered by the system. The different 

features that can be extracted from a region of content can be considered as low level or high level 

based on what they describe. An example of a low level feature in this context would be the features 

used to match individual connected components, while something on a higher level could be the actual 

structure of a math expression. At the highest level we could say that a given query represents one 

specific topic in math, and as long as the system is not able to understand this kind of very high-level 

relationships, it is impossible to achieve the highest accuracy for an information retrieval system like the 

one presented on this report. 
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Future work 

Different task have been identified as open for further improvement on the developed system. 

The most obvious one could be the retrieval task as the system can improve in terms of running time 

and quality of the results. More sophisticated methods for matching of sketches need to be tested, and 

just as it was found that restrained matching is better than unrestrained matching, the new methods 

have to consider additional restrictions that ensure more meaningful matches. In the last method tested 

for retrieval, the recall of matched pairs on neighbor graphs, it might be possible to achieve better 

results if chains of matched edges are forced instead of accepting the first matches of each edge as the 

best match. A candidate region with large chains of edges matched can be considered much related to 

the query. For example, two candidates can have the same measurement for recall of matched pairs, 

but if one of them has larger chains of matched pairs than the other one then it should be considered a 

better match. Also, while the current features are able to match similar shapes, these could be modified 

or replaced in order to get higher accuracy in matching and/or faster comparisons that reduce the 

execution time of the queries. In addition, it was noticed that with the exception of the method of 

counting hits, the measurement of distance between a query and a candidate region is independent of 

the measurement of distance for other candidate regions, and therefore these measurements could be 

executed in parallel to reduce the total time required to match a query against the entire database.  

Other tasks that need to become more robust are the tasks that handle noise because 

independently of the method used for matching, the retrieval results will have limited improvement if 

the presence of noise is not reduced. For example, the additional connected components on extracted 

regions could not be removed using the proposed method because of the noise on the Mimio video, but 

a different procedure could be able to remove it even if the Mimio video is noisy. For that purpose, an 

interesting change could be to implement the detection of content changes using the main video 

instead of the auxiliary video. Also, the problem of the touching symbols that become single connected 

components need to be solved in the future because these will affect any possible method used for 

retrieval that assumes that symbols are separated connected components. 

Finally, the indexation task has to be modified in the feature to improve the times required for 

matching. The current index implementation is just a basic storage of all pre computed features, key 

frames and neighbor graphs, but no special structures that could improve the matching speed were 

implemented because of time restrictions and also because the current dataset is relatively small. 

However, in the future these special structures have to be implemented because the time required to 

execute a query will grow with the dataset if the index is kept the way it is now. 
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