

Rochester Institute of Technology

Department of Computer Science

MSc Project

Math Expression Retrieval Implemented Through Sketches

Presented by

Kenny Davila

Advisor:

Dr. Roger S. Gaborski

Reader:

Dr. Richard Zanibbi

Observer:

Dr. Peter Anderson

May 13, 2013

2

Table of Contents

1. Abstract ... 3

2. Introduction .. 4

3. Background ... 9

3.1 Change Detection and Automatic Key Frame Extraction on videos ... 9

3.2 Content-Based Image Retrieval .. 11

3.3 Document Image Retrieval and Classification .. 12

3.4 Identification of math regions in text documents .. 14

3.5 Off-line Math Recognition and Retrieval .. 15

3.6 Sketch-Based Image Retrieval ... 16

3.7 Measuring similarity between shapes .. 22

3.8 Similar applications ... 22

4. Dataset .. 25

5. Methodology .. 28

5.1 Sketch Extraction .. 28

5.1.1 Synchronization of videos .. 29

5.1.2 Finding the visual alignment between two videos .. 32

5.1.3 Speaker detection .. 37

5.1.4 Content change detection ... 38

5.1.5 Extraction of whiteboard content .. 41

5.2 Sketch Indexing ... 44

5.2.1 Extraction of connected components .. 45

5.2.2 Describing the connected components ... 47

5.2.3 Sketch Grouping Algorithm .. 51

5.2.4 Description of sketch structure .. 53

5.3 Sketch Retrieval .. 55

6. Results ... 61

7. Discussion .. 69

8. Conclusions ... 71

9. References .. 73

3

1. Abstract

A collection of videos can be seen as a source of large amounts of information especially if the

content of those videos are lectures. The presented project works specifically with videos from math

lectures. For each lecture, two videos are provided: one captured with a camera on the classroom, and

the second captured by the software of a Mimio device. Both videos record everything that the

professor writes on the whiteboard. An application for extraction and retrieval of that content written

on the whiteboard is presented.

However, there are different challenges involved in the process of extracting whiteboard content

from the videos, and once that the content has been obtained in the form of images, it is required to

compute and index different features that will describe the math that is found on those images. Queries

come in the form of images of part of the content of the whiteboard as well. The proposed method,

however, is recognition-free which means that no optical character recognition is performed. Then,

matching of the content between a given query and the extracted images is based on visual similarity

only. Compared to standard content based image retrieval, the proposed method cannot rely on

features of color or texture to match visual similarity of math formulas, and for this reason sketch based

image retrieval methods must be applied.

4

2. Introduction

A video can store an important amount of information in the form of sequences of images and

audio channels. This information may be relevant to any field in general, and one example would be

education if the video belongs to a math class lecture. During a math lecture, the instructor can be

recorded as he or she speaks his thoughts and writes notes and formulas on the whiteboard. This record

could be accessed later by students who want to watch again the explanation of a topic taught on that

lecture. The problem arises when it comes to find a short explanation that may last a few seconds on a

collection of videos that may last for more than one hour each. Therefore, it is important to know the

content of each video and to define a way to access randomly this content as required. The main goal of

the project Math Expression Retrieval Implemented Through Sketches is to develop a procedure that

given a section of a frame of the video of a lecture in math, the procedure will then return a ranked set

of images content related to one on the input given. Such procedure will require a way of indexing the

videos in terms of key frames and features of the content, and also a search algorithm that has to be

able to rank the similarity between the content of the input query and the content of any segment of

video in the collection.

A procedure for indexation and retrieval of videos of math lectures could easily become part of

a larger project designed to help students in general. Moreover, students with special disabilities could

become the more benefited from the application of an algorithm of this kind. For example, imagine the

case of a student that is visually impaired, but is still able to use an iPad during a math lecture. He or she

might not be able to see directly what is written on the board, but could be able to see it indirectly using

an iPad application that has access to the video of a camera recording the board. Searching information

taught on previous lectures is a difficult task for students with this kind of disabilities, but the difficulty

could be greatly reduced using a system that applies video search. The student can take a snapshot of

the video of the board and use it to query information from past lectures in a very fast and convenient

way. With all this information available in real-time, the student could be able to keep up with the rest

of the class. Of course, this kind of search would be helpful not only in the classroom but out of the

classroom while studying and looking for specific content.

However, the problem of searching for related videos based on the content can be classified

into many categories except in the category of trivial problems. Basically, many video search algorithms

are based on labels of the videos given by the users of the system, but this is not the current case. In the

current problem, the user must be able to search for anything written in the content of the board, and it

would be a long task for a human to label a segment of video with all the possible tags for the current

content. What is more, standard systems based on labels do not consider any kind of spatial relationship

between each individual label. For example, consider the case of figure 1, where two given numbers are

given, and while tags can find these numbers, they might not be related in the expected way. It could be

argued that a more complete labeling system would include these relationships as part of the tags, or

even more, than LaTex or any other string representation of these formulas can be used as a tag. But the

main problem persists where a human would be required to manually tag those formulas or a system

5

with a high level of accuracy for formula extraction would have to be applied. The proposed approach

tries to be as automatic as possible by eliminating the need for human labeled data humans on its

different subcomponents and algorithms.

Figure 1. A few images containing 2 and 3.
(a) On a sum
(b) Combination
(c) Power
(d) Power
(e) Column vector

 The largest category where the proposed search procedure fits is into the category of

information retrieval (IR) which deals with search of information inside of large collections of data. More

specifically, the problem belongs to the subcategory of content-based video retrieval (CBVR) because

the information to search for is stored in the form of video files. Since video is composed of both audio

and images, usually a multi-modal search procedure could be applied, but in this case, the proposed

search procedure will use only image information to describe the content of the video, and therefore it

could be counted as a content-based image retrieval (CBIR) procedure. However, standard CBIR

procedures use color and texture to describe the content of an image, and such information is not

relevant for this application since the same content can be written using different colors, and it should

be matched regardless the color used in the query and the color found on the videos. In addition, the

important content of the images is mainly text, math formulas, and diagrams which makes the problem

related to those found in many document image retrieval (DIR) applications, but given that most of the

content belongs to the field of math, and it is composed of a high number of explicit math formulas, it

would fit better in the subcategory of math recognition (MR). However, the proposed approach is

recognition-free because it does not apply explicit optical character recognition (OCR) in the way that a

standard MR application would do.

One of the most important differences between the proposed application and many of the DIR

applications is the fact that input images belong to handwritten text and handwritten math expressions

instead of scanned images of printed text. What is more, as it has been described in the work by Liwicki

and Bunke [1], handwriting on a whiteboard tends to be different compared to handwriting on paper or

pen-based computer because the writer usually needs to stand in front of the board, and the patterns of

the writing of a person in such condition are quite different to those of a person writing while sitting on

a chair. Also, another important difference is that content can be written in many ways as there are no

predefined layouts. With so much freedom for drawing on the whiteboard, and content that can be

really varied, the proposed approach belongs to the category of sketch-based image retrieval (SBIR),

where the content on a video of the whiteboard can be described as a sequence of sketches, and the

input query is a sketch for which the most similar sketches need to be found.

To start with a video file and to end with a database containing an index of sketches suitable for

fast retrieval requires a processes pipeline composed of a few complex sub processes. Figure 2 shows a

summary of the indexation pipeline of the proposed method. The first the sub processes in the

6

indexation pipeline is the one in charge of taking the input videos and detecting specific frames and

regions of interest where the sketches will be extracted from. The criterion used to select each

candidate region of interest is based on the changes made to the content of the whiteboard in the

videos. This partitioning of the content of the video is not a trivial task, and it should be mentioned that

the current input for the system will consist of two separated videos, the first of them belongs to a still

camera located on a classroom recording the content of an entire whiteboard, and the second video

belongs to the sequence of strokes captured by a MIMIO capture device. This second video has the

advantage that only the strokes are recorded, but currently has a great disadvantage in terms of a

reduced video resolution and noise. More details about these input videos will be given in section 3.

Since two videos of the same content are given as inputs, a matching procedure is required that will

identify the visual correspondence between the videos, and also will determine an offset of time to

synchronize the videos because these are not guaranteed to start exactly on the same millisecond.

The Indexation Pipeline

Figure 2. Outline for the Indexation pipeline

The second sub process in the indexing pipeline of the system is the content description

generator that works for a given region of a frame. This description is important because the accuracy

for the matching procedures is directly linked with the selection of features used to describe the

regions. As mentioned before, the system is based on SBIR which means that the system treats the

individual regions as hand drawn sketches, and consequently the descriptions used are based on the

ones typically used for SBIR. A sketch is usually described at two levels: global level and local level. The

first one, global level, provides general features of the sketch mainly related to the spatial layout. The

second one, local level, provides specific features for each individual primitive of the sketch. In this case,

these individual primitives are the connected components of the image. Local descriptions have to be

generated for each of these connected components, and the result of this description will be in the form

of a feature vector. While the system intends to be recognition free, features that are typically used for

offline OCR can be used to describe the individual connected components in a way that two components

should be considered similar if they also represent similar characters. Nevertheless, not only characters

can be found as connected components, as there can be anything drawn on the board, and for this

reason the local description also needs to be as generic as possible. Finally, the spatial layout between

components is generally represent as a topology graph where each connected component is

represented by node and each edge between two nodes is equivalent to some kind of spatial relation

existing between these components. Because many types of spatial relations can be considered in the

Sketch Extraction

•Match input videos

•Detect and Group changes into
regions

•Extract regions

Sketch Description

•Local feature extraction

•Spatial Layout Analysis

Sketch Indexing

•Key Frame generation

•Storing For Optimal Retrieval

7

model, more than one topology graph can be built to describe the sketch, one per each kind of spatial

relation considered. In the actual implementation only the neighbor relationship is considered.

The third and last sub process of the indexing pipeline is the indexing component itself. This

component will take the description of each sketch and will store this information in a way that it can be

easily retrieved in the future. This part is also in charge of generating groups of sketches based on their

time stamps to form key frames that can be used to describe the content of the entire video in just a

few images. One of the main challenges for the indexing component is that given the description of a

sketch query, the system has to be able to retrieve the most similar sketches in a fast and reliable way.

The complicated part of this fast retrieval process is the fact that descriptions of sketches are complex

and it usually requires some heavy processing to determine the exact similarity between two given

sketches. If there are thousands of sketches on the database, and the time required to compare the

similarity between two sketches is exactly one second, then comparing the input query with all the

sketches stored in the database will take several minutes or even hours. For this reason, an ideal

indexing procedure must be able to make a fast estimation of the similarity between a given sketch and

several sketches in the database, and then retrieve only those ones that are worth the time required for

a more detailed comparison. In section 2, some methods used for indexing will be described, and it will

be shown how a common factor between these methods is that they are directly related to the selected

measurement of similarity between sketches. This makes sense because different similarity

measurement approaches will depend on different features to define when two sketches are very

similar, and consequently the indexing procedure must capture the most heavily weighted features and

use them to make this fast similarity estimation. Because of time restrictions, the final index used in the

current implementation does not apply any kind of speed up based on fast similarity testing, and while

optimizations of this kind are left for future work, the current system does create an index file with pre

computed elements that if it was not there, the whole retrieval process would take several minutes for

every input query.

The indexation pipeline represents all the preprocessing required to convert input videos into

something that can be search and retrieved. The second main component of the project is the search

and retrieval procedure. To start with a region of an image and to end with a ranked list of similar

segments of video also requires a small pipeline of sub processes which is outlined in Figure 3. The first

process required is the content description generator, the same one used to generate the descriptions

of the sketches during the preprocessing phase. After the description of the input query has been

generated, the next step is to find similar sketches on the index created during the preprocessing phase.

Since no special method for fast testing of similarity was implemented on the current scope, the system

will apply a similarity measurement procedure between the input query and all the sketches stored on

the index, and will use the resulting score to rank them by similarity and finally retrieve only the top N

matches. The similarity measurement procedure is probably the most important element of the current

project. Section 2 will describe different approaches that have been used for measurement of similarity

between sketches. Some of these methods are easier to implement and run in faster time, but might

produce more false positives, while other methods have better support for partial matching and will

produce a more reliable measurement of similarity, but their time complexity is too high to be applied

8

over sketches with more than a hundred connected components. Partial matching refers to the case

when a formula might have a very similar structure to another but a few components might be missing

or be different between the query and the best candidate of the stored sketches, and if this is the case,

the system should still consider this candidate as a strong one with just a small penalty for the missing

parts. In practice, most of the related sketches are partial matches of content instead of complete

perfect matches.

Search and Retrieval Pipeline

Figure 3. Outline for the Search and Retrieval pipeline.

One of the main goals of the current project was to implement at least two different procedures

of similarity measurement, and then select the procedure that offers the best trade-off between quality

of retrieval results and running time, and finally to suggest and apply possible improvements to speed-

up the retrieval processed and/or increase the quality of the search results. In those terms, five different

similarity measurements were tested and one of them, recall of matched pairs of the neighbor graph,

was the one that produced the most satisfactory results. It is worth to mention that improvement of

quality of the results can be obtained through relevance feedback. However, relevance feedback

requires a high level of interaction with the user, and depending on the measure of similarity, it requires

applying certain changes on the measurement of similarity or even in the query in order to make the

feedback effective. However, due to time restrictions relevance feedback has not been implemented on

the current project.

Query Image Sketch Description

•Local feature extraction

•Spatial Layout Analysis

Similarity
Measurement

•Measure Similarity
between Query and
Candidates

•Rank Candidates

Present Results

9

3. Background

 The problem of finding specific information within videos of presentations accompanied with

whiteboard handwritten notes has been studied before for different applications. One example are the

four systems developed in the work by Marcus Liwicki and Horse Bunke [1], which also explains that

these problems are multi-modal and need different algorithms for recognition at the level of speech,

handwriting strokes, and images from the video in order to get the maximum possible accuracy on a

search procedure. The proposed approach works only with the images extracted from the videos, but it

still requires of different algorithms in order to implement its two main pipelines. None of the required

algorithms represents a new problem, and some research has been done for each of them. This section

contains a brief summary of some approaches used for each problem, and pays special attention to

those that will be used as a base for the implementation of the current project.

 3.1 Change Detection and Automatic Key Frame Extraction on videos

 Probably the first problem that needs a solution is the automated detection and extraction of

key frames from the videos of math lectures. The general problem of automatic key frame extraction

has been heavily studied for different applications and different solutions have been proposed, but only

a few of them are analyzed here. A key frame is a frame that can be used to describe an entire segment

of a video, and therefore a subdivision of the original video file into segments has to be done in order to

select these key frames. These subdivisions are usually created based on automated shot detection

which can be done by calculating differences between continuous frames and applying thresholds to

these differences. The approach by Calic and Izquierdo [2] uses statistics of the macro-blocks descriptors

in the MPEG standard to find patterns of change over the data of a compressed video for real time key

frame extraction. The approach by Mohanta et. al [3] uses various features and when the majority of

them reflect an important change in the content of a video, then a change of shot is automatically

assumed. Guang-sheng proposes a method [4] where the images of the video are divided into a grid,

and then the amount of change is calculated for each cell of the grid. A model of visual attention is

applied to estimate the amount of attention that each cell could get from a viewer, and this level of

attention gives each individual cell a weight. The weighted change is then calculated for the entire

frame, and when it surpasses a certain threshold then a new shot is assumed. Min et. al [5] use

histograms of edges and colors as features, and find an adaptive threshold for theses feature to

partition the video into segments.

 From the analysis of the works like [2], [3], [4], and [5], it is easy to conclude that methods based

on shoots and major changes in the video will not work for videos of math lectures which basically

consist of a single shot of a whiteboard with a speaker writing on it for several minutes. Therefore, the

selected approach has to be designed for this specific kind of videos in order to be effective. What is

more, not only key frames of the video have to be extracted, but the specific region changed between

10

each pair of key frames needs to be identified. In this sense, only applications that work with similar

data to the one used on this project will provide helpful information. For example, Talkminer [6] is a

system that works with webcasts of lectures. They assume that these videos contain slides, and for that

reason they designed a key frame detection system that finds candidate frames where a new slide is

shown on the video. This approach is close to what is needed for the current project, but it was designed

to work with data with higher levels of variation, and therefore a simpler approach focused on

whiteboard videos might be a better fit.

The same company that created Talkminer in 2010 also designed in 2009 a system called

ReBoard [7], which is collaborative software to automatically index changes on the content of

whiteboards in an office environment. The application is constantly capturing images of the whiteboard,

detecting objects in motion as a way to estimate when the content is about to change. After the content

is assumed to be changed, the system captures several images until it finally obtains one where the

whiteboard is assumed to be free of obstructions. Given this obstruction-free image, and the previous

key frame, the system can calculate the areas of the board that were changed. The image of the board is

smoothed to avoid false positives on change detection caused by noisy pixels, and the detection of

changes is made using two different resolutions of the whiteboard. In fact, this application does apply an

algorithm with an output just as required in the current project, but the specific details required for its

implementation are missing on their paper.

Another system that works with whiteboard images is Thor [8] developed at Princeton

University. In the Thor system, changes are detected at the pixel level, and pixels are classified between

stroke and whiteboard. The neighborhood of a stroke pixel is used to confirm that it is indeed a stroke

and not an isolated noisy pixel. A changed pixel can mean one of two things: a stroke was added or a

stroke was erased. The reason of why the Thor system considers the changes made at the level of

individual pixels is because it uses each pixel to make an estimation of the drawing strokes on its

indexing procedure of the content of the whiteboard. One drawback of this approach is that it requires a

process of 24 hours of calibration to train the system with the expected ranges of color for the

whiteboard pixels under different lighting conditions.

 Finally, the whiteboard capture system [9] developed by Microsoft uses an approach that can be

easily implemented for the current input data. Similarly to ReBoard [7], the system by Microsoft divides

the whiteboard image using a grid, and changes are detected at the level of grid cells. The system uses

an estimation of the whiteboard color based on the predominant color on each cell. Also, similar to Thor

[8], each cell is classified between stroke and whiteboard, but an additional class is added to account for

obstructions on the image. Spatial and temporal information is used to refine the classification results

and separate stroke cells from obstructed cells, especially based on the fact that it is not possible for an

important stroke to be on the whiteboard on isolation or for less than a second, and given this

assumption the system will assume cells that became stroke cells for a short period of time to belong to

the obstructed cells class. The final algorithm implemented on the project does change detection using a

method with a grid and cells very similar to the method detailed in [9], but the major differences come

from the fact that change detection in this project is done over a video that does not contain

obstructions of the content on the whiteboard.

11

 3.2 Content-Based Image Retrieval

 The problem of retrieving images from large datasets based on their content has been studied

for a while now. Many approaches have been tested and results are varied depending on the restrictions

of the data being retrieved. Some approaches are based on descriptions of the dominant colors on the

images as for example the work by Arjunan et. al [10] which is based on color histograms on HSV space

only. Other approaches consider the fact that even the same color might represent two or more

different objects and therefore texture must be taken into account. For example, the work by Chiu et. Al

[11] combines fuzzy logic to assign linguistic terms like low, high, very high to the Tamura features of

texture: coarseness, contrast, directionality, line-likeness, regularity, and roughness. For some

applications, there might be many images representing exactly the same object but rotated, translated

or scaled. To achieve a certain level of matching for that kind of applications, the scale invariant feature

transform (SIFT) [12] have been proposed and used by other authors as for example in [13] where

several pictures of a specific building are found using a picture of the building as the input query.

 More sophisticated approaches for CBIR consider that it is important to match not only general

features of the image but also specific information about the objects found on it. However, identifying

all the concrete objects inside of an image is a challenging task, and for that reason some approaches

based on segmentation consider the regions obtained as blobs and not as concrete objects. The work by

Carson et. al [14] applies a segmentation algorithm first to obtain blobs, and then for each blob the color

and texture features are calculated. Matching is done by finding images that contain blobs with similar

characteristics to those found in the query image. Other approaches try to go a step further by

automated labeling of images based on features of its sub-regions, like for example the work by Jin et. al

[15] which applies segmentation, and with a few labeled regions on some images and using clustering, it

automatically assigns labels to each region of the image based on similarity in color and texture to the

examples given.

 Just a few approaches have been mentioned here, but a more exhaustive list of approaches can

be found in the survey by Datta et. al [16]. In fact, according to the definitions given on the survey, from

the point of view of the user, the current application has a query modality based on images, the data

scope is domain-specific and the user intent is that of a searcher. From the system perspective, the

current application has a content-based query processing, with relevance ordered visualization and

domain-specific data scope. In terms of image signature, it is a region-based signature composed by a

set of vectors that describe each individual primitive and some kind of optimal matching procedure has

to be applied for measurement of the similarity between images. A huge difference between the current

application and many general CBIR applications is that for the current system texture and color are

almost useless for the generation of image signatures, and that is the reason of why the proposed

approach is mainly based on SBIR and DIR instead of general CBIR.

12

3.3 Document Image Retrieval and Classification

Retrieving specific images of documents from large collections is a problem that has been

studied by many researchers. While the most simplistic approaches would rely on human-labeled

images, many approaches have been proposed requiring a minimal human interaction. Some of these

approaches would require an OCR algorithm to recognize the text before doing any kind of retrieval, but

other are considered recognition-free because they are based only on features of the content without

doing explicit OCR. Since the current application intends to be recognition-free, most of the approaches

analyzed on this section are recognition-free as well. Two general problems exist on this area: document

retrieval and document classification. Document classification deals with assigning a class or type of

document to a given document image, while document retrieval consists on finding specific documents

based on their layout and/or content.

In terms of document image classification, the usual goal is to characterize a document and use

this description to classify between a predefined set of types of documents. A few of these approaches

for document image classification are purely based on layout descriptions. This kind of approach usually

provides interesting algorithms to analyze and describe the layout of a free-form document image.

Modified X-Y trees are used in the work by Cesarini et. al [17] to describe the layout of text-blocks found

by an external OCR in a document image, and then these trees are encoded into fixed-length vectors by

summarizing patterns found on them. These encoded vectors are used as inputs of a multi-layer

perceptron (MLP) that classifies the page as one of 5 possible classes. In the work by Gordo et. Al [18],

an interesting cyclic polar representation of page layout is used. This representation is translation

invariant and can be scale invariant if the distances are normalized using the size of the page. It is

important to consider different layout representations because these provide alternatives that could be

used to describe the layout of the math formulas during the indexation and retrieval processes of the

current project.

Other approaches for document image classification are based on semantics of the content in

the documents. While this task seems to require OCR to find common frequent words between

documents, recognition-free approaches have been proposed to solve this task. In the work by Barbu et.

al [19], a system of “bags of symbols” is used where each connected component is described by a set of

features, and then clustering is applied to group similar connected components assigning nominal labels

to each cluster. Then, each page is represented by a graph where nodes correspond to labeled

connected component and edges are added based on proximity between connected components. Graph

mining techniques are applied to find common sub-graphs on graphs from the collection of documents.

The common sub-graphs founds are considered symbols and the measurement of distance between two

documents is given in terms of common symbols. A support vector classifier is then used for the final

classification of documents in the collection.

In terms of DIR, the usual goal is to retrieve pages of documents based on its content, but it can

also be based on the layout of the document. The work by Hu et. al [20] proposes a method for DIR

where each page in the document is divided into a grid, and then each cell is catalogued as text cell or

13

blank space based on its black pixel density. A distance metric is provided to compare grids of different

pages, and this metric is used to rank similarity between an input page and other pages stored in the

database. The system will then return the pages with the most similar layout. Similarly, the work by van

Beusekom et. al [21] uses abstractions of the text paragraphs by representing them as blocks. Different

measurements of distance based on position, area and dimensions are provided to compare the

similarity between two blocks of two different pages. Given the distance between all pair of blocks, a

final assignment between pairs of blocks is made trying to minimize the sum of all distances. The final

distance can be used to rank similarity between one page and several pages in the database, and finally

the most similar are retrieved. However, while two pages can have exactly the same layout, their

content might be completely different, and a document with exactly the same content might be

represented using a completely different layout. For the context of math formulas, spatial layout

between elements is important, but the specific elements present on the formula are important as well,

and for this reason an approach purely based on layout cannot be applied.

Different approaches have been proposed for recognition-free DIR based on the content of

documents. In the work by Rath et. al [22], a word-spotting approach is proposed which uses ink

projection profiles to describe individual words, and then applying dynamic time warping (DTW) the

system estimates the minimum distance between the profiles of two words. Using this measurement of

distance between pairs of words, the system can cluster words found in historical handwritten

documents for automatic indexation. Labels can be assigned to each cluster for later retrieval of these

documents using keywords. Li et. al [23] proposes a method for word encoding for printed text which

allows to represent individual words in terms of coded strokes. With this coding system, is possible to

find keywords on documents and do retrieval based on keywords. A major drawback of the system of

encoding used is that it works with a limited set of printed fonts only, and it will not work with italics. An

improved version of this method is presented in [24], where the authors modified the encoding system

to make it more robust than their previous work, but it is still designed to work with images of printed

documents.

The current discussion of works is by no means exhaustive and more detailed information

containing a larger list of approaches used for document image retrieval and classification can be found

in the survey by Marinai et. al [25]. What can be concluded from the analysis of these works is that DIR

is closer to provide useful solutions for the individual problems found in the current application than

general CBIR. However, many of the general DIR approaches are designed to work with printed

documents images, and many of them are designed for text-only documents. Given that an image of the

content of the whiteboard contains text paragraphs only, it is possible to apply a word-spotting

approach [22] to retrieve other images that contain many common words. However, it is not easy for

the application to decide if a given image contains text only or math formulas only, and for to

accomplish this task an approach for region classification between text and math formulas would be

required.

14

 3.4 Identification of math regions in text documents

 As mentioned before, an algorithm that helps to distinguish between text regions and math

regions would be really useful in the current application. This problem has been studied by some

researchers before under the contexts of document image retrieval and math recognition. Standard OCR

systems can achieve a great accuracy over text regions, but when the text contains math formulas their

performance usually decays considerably [26]. This effect might be due to typical segmentation

algorithms that assume that the text to recognize is organized in text columns, paragraphs, and lines

which is not the case for math formulas. A common motivation to classify regions between text and

formulas is to use an OCR system on text regions and a different approach for math recognition on math

regions [26].

 Kacem et. al [26] identify two different kind of math formulas that can be found in documents:

Isolated formulas and embedded formulas. An isolated formula is a math formula that usually appears

centered, on its own line and surrounded by considerable blank space. Embedded formulas are the

math formulas that appear inside of text lines. The separation of math formulas from text is done in two

steps: a global step that separates text paragraphs from isolated formulas, and a local step that

separates words from embedded formulas in text lines. A set of symbols frequently found in math

formulas is defined as possible labels, and each connected component is labeled using fuzzy

memberships for each label. Text lines are segmented and then the isolated formulas are identified

using certain features of each text line. For embedded formulas, a second labeling process is required

that will identify the spatial relationship between connected components of the same text-line, and

based on these then the system can separate possible embedded formulas from words.

 In the work by Drake et. all [27], a neighbor graph is used to describe all text-lines found in a

document image. On this graph, nodes correspond to connected components and edges between nodes

reflect that these components are neighbors on the same text-line. Then, a set of features is extracted

for each node and for each edge. With these features, two separate classifiers are used, one to classify

each vertex as math vertex or text vertex using a total of 77 input features, and the second one to

classify each edge as math edge or text edge using a total of 29 input features. A third classifier is then

applied to combine these results and yield a final classification for the entire text-line as either math

formula or text line. Note that the vertex classifier is not a symbol classifier, it just outputs whether a

given connected component might be part of a math symbol or not based on its features.

 Garain [29] also makes the distinction between isolated formulas and embedded formulas, and

proposes a method for each. In the case of isolated formulas, these are identified using some basic

features: white space surrounding the line, scattered-ness of the symbols in the line, relative height and

occurrences of selected math operators in the text-lines. For embedded formulas, the system also uses

some features for classification: confidence of OCR for recognized words, inclination of a sentence to

contain words likely to be math formulas, type style of words, scattered-ness of symbols in a word, and

15

inter-character distance within the word. Note that a major requirement of this method is the assistance

of an external OCR system.

 Methods like the one by Kacem et. al [26] and Drake et. al [27] could work for the current

application. In general, it is desirable for the final approach to be recognition-free in a way it does not

need to use an external OCR like the method by Garain [29]. Also, it is important to note that these

method as well a few others that might have been proposed are mainly designed for images of printed

documents and not for handwritten symbols which means that some adaptions would be required to

make them work with images of handwriting on a whiteboard. Because of restrictions of time, no

classification between math regions and text regions was applied on the current system.

 3.5 Off-line Math Recognition and Retrieval

 The field of off-line math recognition corresponds to algorithms that can extract math structure

from 2D images. There are several challenges associated with this problem, especially when automated

evaluation of expressions is required. Probably, one of the most difficult challenges is being able to

capture the entire hierarchy implied by the relative location of operators and operands in a math

formula. Spatial hierarchy of elements in math is really important, and the current system could try to

capture such hierarchy for later similarity matching, and to make this possible, similar methods to the

ones used to capture the hierarchy of operations in off-line math recognition should be used. Moreover,

the current application could be extended to apply math recognition, and do retrieval based on

estimation of similarity between two math expressions, but for the current scope the application will try

to find similar expressions without explicitly recognizing them specially because text and math are mixed

and to apply math recognition, the text would need to be detected and filtered first.

 In the work by Ha et. al [29], a method for math expression understanding is presented. This

system starts with the connected component of the image, and then with these elements a process with

two phases is executed to create the expression tree that would represent all elements with their

corresponding operator hierarchy. The first phase is a top-down sub-process that builds an initial tree

using a recursive X-Y cutting procedure based on the bounding boxes of each element. The resulting tree

captures the more general relationships between elements, but a second phase bottom up is required

to correctly represent the hierarchy between immediate neighbors and to respect the order of

evaluation of operators.

 A method for formula recognition for a large collection of mathematical literatures is presented

in the work by Ashida et. al [30]. Given the bounding box that contains a math formula, the connected

components are labeled, and the symbols are normalized to a predefined resolution. Four different

features are used for classification of each symbol. Because their method is designed to work with off-

line data, it might be the case that two or more symbols are touching each other, and one single

connected component might belong to more than one symbol. A procedure to detect and correct these

touching symbols through morphological operations is applied. The hierarchy of the math formula is

16

then extracted based on the recursive application of a set of heuristics rules based on bounding box and

relative positioning between elements. What is interesting about this method is the fact that it has been

tested with large collections of papers and has a really high accuracy for recognition of the spatial

relationships.

 A recognition-free method for math retrieval from handwritten queries is presented in the work

by Zanibbi and Yu [31]. X-Y trees are used to represent the hierarchy between elements in whole regions

of pages, but this method measure similarity between regions using visual similarity instead of hierarchy

based. The visual similarity is measured using a method similar to word-spotting [22] which is based on

Dynamic time warping of vertical projections of pixels, but in this case two vertical projections are used:

one for the top half and one for the bottom half. However, if the results of this method are similar to the

ones in word-spotting [22] and structural similarity is not very important, then two large expressions

with the same structure but using different operands (numbers and/or constants) would not be

considered similar as they should for current application.

 Only a few approaches were mentioned on this section but an exhaustive analysis of works

published on this area of math recognition and retrieval can be found in the survey by Zanibbi and

Blostein [32]. As it was mentioned before, the current application is intended to be recognition-free, and

only recognition-free methods of math retrieval can be considered for implementation. Also, the system

needs to be able to work with handwritten formulas, and also it has to work with many kinds of

mathematical expressions, especially with vectors and matrices for linear algebra courses. The final

approach could be a hybrid taking ideas from the fields of math recognition for formulas, DIR for text,

and sketch retrieval for other kind of elements that could be drawn on the whiteboard. However, as it

was stated before, because of time restrictions no math recognition was performed on the current

project.

 3.6 Sketch-Based Image Retrieval

 In the field of SBIR the usual goal is to retrieve images using hand-drawn sketches as input

queries, and the images to retrieve in many cases might be hand-drawn sketches as well. Very different

kinds of approaches have been tested on this field, but a common idea across many of them is the fact

that sketches are build using a set of primitive elements with a certain hierarchical or spatial relationship

that gives them a specific meaning. Special attention is given to this field since the developed system is

based on SBIR. This subsection presents some approaches in the field of SBIR and similar applications.

 There are a few specific domains where methods similar to SBIR have been applied. Usually

these domains include drawings with certain structural restrictions. One example is the case of

recognition of handwritten chemical diagrams [33]. A chemical diagram is intended to represent a

specific chemical compound, and therefore the spatial relationship between elements used and even

the types of lines have specific meanings in that field. Also, many domain restrictions will apply since not

all possible combinations of symbols are legal. The approach presented in [33] for recognition of

handwritten chemical diagrams relies on certain processes made on-line as the writer is creating the

17

diagram which is something that cannot be done on the current approach without possible loss of

accuracy on trying to approximate on-line strokes from the videos. Another example of applications of

SBIR with predefined domain is the recognition of handwritten concept maps [34]. On this approach the

strokes are first classified between labels and content vertices. The structure of concept map is already

similar to that of a graph where nodes represent concepts and edges represent the connections

between concepts. If the strokes representing a concept node are correctly identified and the text is

recognized with a high accuracy, it is possible to make an index of concept maps for further retrieval.

 Ideally, using an approach with restrictions of structures and symbols would be able to reach

higher accuracy in the domain of math expression retrieval. However, in the current application, the

content written on the board can be of many kinds, and it is never restricted to specific formulas as

there can be literally anything drawn on the board. Therefore, more general approaches for SBIR are

needed which are able to adapt to any unrestraint structure of the input drawing and can provide ways

to consider two drawings similar if and only if they have a similar structure. One example of a method

for SBIR without restrictions of layout is the work by Sciascio et. al [35] which uses what they called

modified Θ R-Strings to represent a given drawing by listing the description of its elements in counter

clock-wise order as viewed from the center of mass of the sketch. However, this representation of

structure does not seem to be the most adequate when describing math formulas with very complex

structure since it is based on angles only and it losses the relationships between pairs of primitives, and

therefore other possible representations based on graphs might be more adequate. Other systems for

more general SBIR have been designed without specific restrictions of domain, and some of them can be

easily adapted to work in specific domains like in this case math expression retrieval.

In the Thor system [8], a method for indexation and later retrieval of whiteboard content is

presented. A very complete preprocessing is applied to make an estimation of the strokes used to draw

each connected component in the whiteboard image. Once that the strokes have been obtained, the

system generates a description for each stroke based on histograms of distances between random

points, square root of the area of the triangle formed by three random points, and angle between three

random points. Random combinations of three points are generated and then these features are

calculated for each combination to build a distribution that, according to the authors, is stable if

thousands of random combinations are used and it also will be similar between strokes with a similar

shape. Additional features are added by comparing the strokes with what they call proxy shapes or ideal

shapes like rectangles and circles, and generating a distance between the current shape and the ideal

shape. The distance between histogram features is calculated using the earth mover’s distance (EMD).

Final retrieval is made by generating these features for the input query and then finding indexed strokes

with high similarity, the images with high numbers of strokes matched are then retrieved. One major

drawback of this approach is that it does not consider spatial relations which can lead to retrieval of

many unrelated sketches when applied to math retrieval.

 The work by Leung et. Al [36][37] using hierarchical matching is one of the most interesting

approaches tried on this field. On this approach, the strokes or primitives are considered to be arranged

in certain hierarchy which also needs to be matched before assuming that two sketches are similar.

First, the strokes are subdivided into smaller pieces similar to ideal shapes as lines and arcs to create a

18

multi-form representation of the sketch, one with original strokes, the next one using these subdivisions

of strokes, and the last one by merging all the stroke subdivisions that form basic shapes. Then, a graph

is built for every representation where each sub-stroke represents a node and each edge represents a

relationship between two strokes. The kind of relationship considered is inclusion where one stroke is

considered inside another stroke if it is contained on its convex hull. Figure 4 shows an example of the

hierarchical representation of the strokes used to draw a simple house with two windows and a door

which contains a knob. The spatial relationship between two strokes is described using a displacement

vector. Some general features combined with domain-specific features can be used to describe the

individual strokes. Two sketches are compared using local and global matching. For local matching, the

features of a stroke from one sketch can be compared against the features of a stroke from another

sketch. Using this comparison, the distance between all pairs of strokes from the two sketches is

obtained and arranged into a matrix. The next step is to find the best matching pairs, and since it is

assumed that one stroke from one sketch can corresponding to at most one stroke from the other

sketch then the final problem is reduced to the assignment or marriage problem from graph theory. A

solution for this problem can be found using the Hungarian method [38], but since this method requires

the cost matrix to be squared, then dummy rows or columns have to be added if the numbers of strokes

on each sketch are different. There are two possible approaches to consider spatial relationships on this

matching process, one is to do it at the time of calculating the similarity between two individual strokes,

and the second one is to make it after the assignment has been made as an additional cost above the

cost for local matching, and the way it is done in [37] is by adding the spatial matching cost after the

assignment has been made. Once that similarity has been calculated between each of the three

representations of the sketch, these similarities are combined using weights to yield a final

measurement of similarity between the two sketches.

Figure 4. Hierarchical representation of a sketch. Extracted from [37]

 This method by Leung seemed like a very interesting option to try on the current system since it

is a general method and it also can be adapted to any specific domain just by modifying the selection of

features used for local matching. One difference between this approach and the current system is the

19

fact that the input sketches on the current system are in an off-line format since they will be extracted

from images and not from raw stroke data. One of the possible advantages of this method is the fact

that it takes the spatial relationships between all pairs of primitives into account, which is desirable for

“perfect” matching of formulas with certain arrangement. One foreseen drawback of this method is that

making the local matching without considering the spatial relationships first might lead to cases where

the estimated similarity is lower than it should. This is due to the fact that constants and variables can

appear many times on a single math formula, and there can be cases like the one presented in figure 5.

Since the assignment is done using only local matching for visual similarity, and the spatial layout is then

compared based on this specific assignment, the system will tell that these two sketches are less similar

of what they really are. Another possible disadvantage of this method may be the running time due to

all comparisons that have to be performed. Still, this method has the advantage of working with partial

matching of sketches which is desirable for the current application. For these reasons, the current

system has a partial implementation of this method on its search by recall of matched connected

components described in the methodology section.

Figure 5. Applying local matching without
considering spatial layout first result in cases
where two sketches will not be consider as
similar as they should.

 In general, any measurement of similarity between sketches represented using graphs will

require testing several possible combinations and these can grow exponentially as the number of

acceptable assignments increases. The general problem of finding the best match that reduces the cost

of matching to its minimum both locally and globally can be even worse than the graph isomorphism

problem which is known to be an NP problem. However, sometimes approximations of these algorithms

can provide feasible solutions for certain applications. An example of these approximations is the test

for graph isomorphism proposed in work by Cordella et. al [39] which also has been tested on retrieval

of exact matches on technical drawings.

 Standard graph isomorphism can determine whether two given graphs are identical or not, but

in SBIR the desired goal is to provide a measurement of how similar two graphs are and not only if they

are identical. Methods for graph embedding can be used to measure graph similarity and have been

applied on many works. The concept of graph embedding consist on creating a vector representation of

a graph in a feature space, where a graph represents a point and for any other graph, the more similar it

is to the first graph, the closer its points should be to the point that represents the first graph [40]. There

are two ways to make graph embedding: implicit and explicit. For the explicit way, an explicit function is

20

provided which takes one input graph and converts it into a vector representation. For the implicit way,

a kernel function is given which takes two graphs as inputs and applies some kind of dot product directly

in the graph space producing a final result in vector space. The works by luqman et al. [40][41] represent

applications of graph embedding for attributed graphs (graphs with sets of attributes assigned to its

nodes and edges) used for retrieval of electronic and architectural diagrams [40][41], letters,

fingerprints, molecules for mutagenicity analysis, and general databases of objects [41].

 Other methods based on explicit graph embedding have been used before for the field of SBIR.

The works by Fonseca et. al [42][43][44][45] describe a method that uses graph spectra to create a

vector representation for any given graph. The generation of graph spectra refers to the extraction of

the Eigen values of the adjacency matrix [42][45] or Laplacian matrix [43] of a graph and it has been

proposed as a really fast approximation of the isomorphism problem. An example of this graph spectra

extraction process is shown in Figure 6. The absolute magnitudes of the Eigen values of the adjacency

matrices of two graphs tend to be very close for graphs with similar structure. Note that if two graphs

have different spectra they are guaranteed not to be isomorphic, but two graphs with the same spectra

are not guaranteed to be isomorphic either. In any case, the graph spectra can be thought as some kind

of hashing function for graphs with a low collision rate. Also, note that the number of Eigen values

depends on the number of columns and rows of the squared matrix from which they calculated, and two

graphs with different number of nodes will produce different numbers of Eigen values. However,

according to [42] the largest Eigen values tend to be stable for small changes in number of edges and

nodes.

(a)

(b)

Figure 6. Getting the graph spectrum of a sketch. Figures extracted from [46]
 (a) from the input sketch to a topology graph
 (b) from topology graph to graph spectrum

21

The application of graph spectra to SBIR requires a graph representation similar to the one

described by Leung in [36][37] where two vertices (connected components or strokes) are considered

adjacent if certain kind of spatial relationship exists. Also, to account for partial matching, the method in

[42] describes a multilevel representation which extracts and indexes the graph spectra values

measured at different levels in the hierarchy of the graph of a drawing. It is important to mention that

graph spectra is used only to match similar topologies between sketches and that additional features

have to be used to describe each node for local similarity matching between pairs of components. In the

case of [42], geometric features are used to describe each individual strokes.

 The method by Fonseca et. al [42][43][44][45] is one of the most interesting approaches since

matching topology using graph spectra is faster than methods based on exact graph isomorphism and

still faster than methods based on the assignment problem like the work by Leung [36][37]. The method

also accounts for partial matching which is required for the current application and domain specific

features can be used to match the individual components locally, and therefore a variation of this

approach could be used in the future for this project. Given that a set of graphs of sketches from the

board have spectra similar to the spectra of an input query, a more sophisticated graph matching

procedure can be applied to rank them by detailed similarity.

 A variation of the original method proposed by Fonseca et. al [45] is defined in the work by Liang

et. al [46][47][48]. Since graph spectra of graphs with different numbers of nodes will be composed by a

different number of Eigen values, Liang et. al propose using the norm of the vector formed by the Eigen

values as a way to describe the entire topology using a single value. Using this approach, it is expected

to have a higher number of collisions of graphs that are similar but not isomorphic. However, one huge

advantage of this method is the provision of a really compact, fixed-length representation for the entire

topology of a graph. Another important and very interesting difference between this work and the

original work by Fonseca is that separated graphs can be used to represent different kinds of

hierarchical and spatial relationships between all pairs of elements on a sketch. To be more specific, in

[45] eight specific relationships between strokes are used: cross, half-cross, adjacency, parallelism, cut,

tangency, embody and ellipse-ellipse intersection. For each graph representation the graph spectra is

extracted, and the norm is calculated. At the end of the process, a vector with 8 different values is used

to globally describe a sketch, and rough similarity between sketches can be determined using the

Euclidean distance between their corresponding vectors. No local-level matching is performed, and no

adaptations for partial matching are provided.

 Since the work by Liang et. al [46][47][48] is based on the method by Fonseca et. al [45], some of

the extensions added in the later works by Fonseca et. al [42][43], like for example partial matching,

could be easily adapted on this approach. Also, given the idea that a single sketch can be represented

using different graphs, it is possible to adapt the graphs to be used depending on the specific domain

where the method is applied. In the case of math retrieval, more specific relationships like super index,

sub index, horizontal and vertical neighbors among others, are more adequate to describe the hierarchy

of the sketch of a math formula.

22

 In the work by Cao et. al [49] from Microsoft Research, a completely different approach for SBIR

is provided. The system creates what they called an “edgel Index” to do fast matching and retrieval of

sketches on large databases with millions of images. An “edgel” is a pixel that lies on an edge of an

object in an image and it is represented using three values: x-coordinate, y-coordinate, and orientation

of the edge. For a given image, the indexation process will first subsample the image to a predefined size

of 200x200 and then it will apply an edge detection algorithm generating a list of edgels found. A

reversed indexation is done by storing in the index references to the image, one entry for each edgel

found as if they were keywords contained on a document. Later retrieval can be done by looking for

images containing specific edgels, and ranking of the most similar images to an input sketch is done

based on the total number of edgels from the query that were found on each candidate image. The

method has been tested on large databases and its really fast retrieving images that generally look like

the input sketch, but it has the major drawback of not being translation invariant. With this said, it is

evident that this method cannot be used for the current application.

 3.7 Measuring similarity between shapes

 The measurement of similarity between two given shapes or primitives is really important for

the current application. This, however, is one of the most studied problems and several different

descriptions have been used and proposed over the years. The same approaches used for SBIR provide

their own methods to measure similarity between two given shapes [8][35][36][37][42][43][44][45].

Some of these methods propose using geometric features [42], while other features based on statistics

[8]. The number of possibilities is really high, and certain features can yield good results for some

specific applications. Since most of the shapes expected on the board represent math symbols and text

characters, the final selection will have to be based on different features mainly used previously for OCR

[1][50][51]. Only test and error can reveal which of these features will be the strongest for the current

application. A very exhaustive list of shape features that could be applied for general shape matching is

found in the survey by Yang et. all [52].

3.8 Similar applications

 It is important to describe research made that provide solutions for the different problems

found in the current application, but it is also important to analyze other similar applications because

they can provide additional solutions to the same problems. The application developed in the work by

Liwicki and Bunke [1] is a system for automatic indexation of whiteboard notes for a smart meeting

room. On this application, three approaches are used: off-line, on-line and hybrid. The kind of input data

used in this case is obtained by capturing the strokes as the writer uses the whiteboard. For the off-line

approach, the authors convert the on-line data to an off-line format before applying an off-line OCR

system. In the proposed project, the data is also obtained partially through a capture device, but no

23

stroke data is available because the current device used, a MIMIO device, lacks the required API’s to

capture this raw data directly from the hardware. Another important difference is the use of OCR for

indexation of the content of the notes while the current application intends to be recognition-free.

However, in their work are identified certain challenges particular to recognition of handwriting on

whiteboards that other similar works do not consider at all. One of these challenges is the lack of base

lines for text lines in long text paragraphs written on a board, making the segmentation in lines a harder

problem than it would be for other handwriting applications. In their work, a very complete algorithm

for segmentation of text-lines which can overcome this issue to some extent is provided.

 Another similar application that works with videos from lectures is Talkminer [6]. In the case of

Talkminer, the input videos are less restricted and contain a variety of shots from lectures from different

fields, not only math like in the current application. However, the methods used for indexation rely on

OCR of slides present on the video, which means that this content is more similar to printed text than

handwritten text. Of course, given the freedom in format of the videos, just identifying slides and text

content is already a hard challenge. Another difference is that Talkminer uses keyword indexation which

means it will not work for retrieval of math formulas with specific structures unless LaTeX or a similar

string representation of math expressions is used.

 The Reboard system [7] is specifically focused on indexation and retrieval of whiteboard notes.

These notes, however, are not indexed in terms of its content which makes the system less similar to the

current application. In the other hand, indexation in Reboard system is made by detecting sets of

changes in the whiteboard which is required in the current application too. Only general ideas about the

design of such algorithm are present in their paper [7] without including other specific details for its

implementation. However, these general ideas were still useful in finding a good approach on the

current project.

 Thor system [8] is another application that works with indexation and retrieval of whiteboard

drawings. This application is one of the most similar in the sense that it can do retrieval of anything

written on a whiteboard from off-line data with the difference that it does not consider hierarchy or

spatial distribution between strokes, and therefore using the same procedure for math retrieval will

result in retrieving math formulas that contain the same elements but not necessarily with the same

hierarchy of operations resulting in many non-relevant sketches being retrieved. Also, many similar

structures using different operators will not be retrieved, which can lead to many relevant segments not

being retrieved. An important contribution of the Thor system [8] is the very detailed description of its

preprocessing algorithms which take an input image of the whiteboard and extract stroke data, in other

words, on-line data is estimated from off-line data using very sophisticated algorithms which are also

provided.

 Another related system is the whiteboard capture system developed by Microsoft [9] that works

for automatic visual indexation of whiteboard notes on videos from meetings. This system is comparable

to the Reboard system [7] in terms of system functionality, and it also does not perform indexation

based on the content of the images but based on changes on the whiteboard. In addition, input data for

this system comes in the form of video and audio channels, which makes it more related to the current

24

system. A change detection algorithm from the video of the whiteboard is provided including many

details required for its implementation.

 Finally, the work by Leung [37] is one of the most related applications in the sense that it was

designed to work for retrieval of content written on a whiteboard considering the spatial hierarchy of

the elements in the drawing. The kind of drawing that were used to test the system in [37] were Chinese

characters and very simple drawings which are very different from math formulas, and therefore

applying this approach to a new type of drawing, math formulas, is an interesting research direction.

 The presented list of approaches is not exhaustive at all as it only contains a few applications

that were considered relevant to the current system because they provide solutions to specific problems

found in the current data. It is also important to keep in mind that the proposed methodology intends to

be recognition-free and that leaves out many possible approaches while it does not necessarily puts an

upper bound to the accuracy that the system could obtain using approaches originally designed for

sketch retrieval. The next section discusses the datasets that were used during the development and

testing of the final system and will provide a few examples of the input data.

25

4. Dataset

The dataset used for the developed application consist on a small collection of videos from linear

algebra lectures recorded at Rochester Institute of Technology. For each lecture, a still camera has been

set in the classroom to record exactly one whiteboard and everything the professor writes on it. As an

additional input, each recording comes with an auxiliary video of the strokes of the board captured using

a Mimio Capture device and the Mimio software. Figure 7 and Figure 8 illustrate these two video

sources. In figure 7 is shown an electronic device attached to the left side of the whiteboard which is the

Mimio Capture device mentioned before.

Figure 7. An example of a frame extracted from a video of the still camera in a math lecture

The video coming from the still camera represents the main source that will be used for most of the

algorithms to implement for SBIR. An example of a frame extracted from a video of this type is

presented on figure 7. Since the goal is to be able to retrieve parts of these videos using the content

written on the whiteboard, the quality of the image is critical. For this reason, a full HD camera was used

to record each video using a resolution of 1440x1080 pixels. Also, as it was noted in works like the

Reboard system [7] and Thor system [8], one typical feature of digital cameras is autofocusing which is

completely undesirable for this application because it produces changes on the quality of the traces

drawn on the board every time that the speaker moves in front of the board. To avoid this undesired

change in quality and to make the input image more stable, the autofocusing feature of the digital

camera was turned off before every recording, and manual focusing was used instead. The quality

obtained on most of the videos using the current resolution is good enough to expect that a well-

developed system will be able to retrieve most of its content. However, there are some drawbacks on

these videos, and one of them is that it captures everything between the camera and the whiteboard

including all the movements made by the speaker in front of the board, and then identifying specific

regions that have been changed is a difficult task, and requires an approach similar to the one applied in

26

[9]. Another drawback is the changes on lighting as the lecture goes because ambient light is never

constant over time as it has been noted on [8].

Figure 8. frame extracted from the video of a math lecture as captured by Mimio Software

 The video coming from the Mimio software represents an auxiliary source that can be used for

purposes that are harder to accomplish on the video from the still camera. The quality of this video is

variable as it is basically a screen-captured video and the quality depends on the resolution of the

window of the Mimio software. In other words, a computer with a high resolution display plugged to it

can capture a video with high resolution too. This video has the great advantage of being cleaner than

the video from the still camera in terms of obstructions since it is not affected by the presence of the

writer. However, there are some important disadvantages of this video. The first is that the usual quality

is not as good as it is required to identify all the strokes as separated connected components on the

image. The second is that artifacts can appear from time to time because the Mimio device is very

sensible and sometimes just putting the tip on the whiteboard markers makes the system believe that

the user is writing, and random points or even small traces are added to the video and stay there for

long because they correspond to areas of the board that the writer might have never used in reality.

Figure 9 shows an example of these artifacts. The last disadvantage and probably the most important is

that Mimio device can miss strokes from time to time producing random incomplete symbols on this

source of video, and therefore it is not a reliable source for content. However, since it is cleaner in the

sense that the speaker is not recorded within the image, it is a good source for a change detection

algorithm that identifies the modified regions and the timestamps of these major changes in content

that can be used to extract key frames from the main video. This change detection algorithm has to be

aware of the noise present on the video and ignore small random changes.

27

Figure 9. The red box highlights an example of artifacts usually found in Mimio software videos.

The collection of videos used is relatively small in the sense that videos of only 6 lectures were

collected. This small quantity of videos is due to the fact that the dataset was still in construction at

Rochester Institute of Technology, but in the future larger collections will be available. Also, each video

belongs to lectures that last for at least 40 minutes each, making a single video a source of several

sketches. Currently 543 sketches were extracted from only 6 videos which mean that 90 sketches in

average are extracted from each individual lecture. The input queries are selected by rejection sampling

which means that the system selects a random image from the dataset and then the user can accept or

reject that image being used as query.

28

5. Methodology

 The process of making available for retrieval the information inside a video of a lecture requires

of the combination of different sub processes. Initially, the system starts only with the available videos

from the lectures, and by the end of the process, a database of the content in a format that allows its

fast retrieval is available. To generate such database, it is required to identify the content on the videos

and then add the description of that content to the database. However, just identifying the content

inside of the video of a lecture implies many challenges that have to be overcome. The most relevant of

these challenges are: synchronization of videos from different sources, visual alignment of content

between videos, speaker detection, content change detection, content extraction, and finally content

description. Each of these challenges will be described in detail on the following subsections.

 5.1 Sketch Extraction

 The first part of the process is related to all the work required in order to extract the regions of

content from the input videos. For this task, different sub-processes are applied and at the end the

system will produce a set of regions of content or sketches that can be further processed for indexation

and retrieval. Since the input of the algorithms consists in videos that come from two different sources,

certain conciliation tasks must be performed in order to establish an accurate alignment between the

content from the two sources in terms of both time and space. Figure 10 shows how the different

processes are related to finally end with the extraction of sketches from the main video.

Figure 10. Tasks involved in
the first process of converting
the input videos into region of
content or sketches that will
be indexed by later process.
Note that certain processes
like audio synchronization,
speaker detection, and change
detection could be executed in
parallel as they do not depend
on any other task, but the
later tasks have dependencies
on the results from the
previous tasks.

29

5.1.1 Synchronization of videos

 For each lecture in the current dataset, there will be a video that comes from a still camera in

the classroom and another that comes from the software of the Mimio capture device. While the two

videos are recorded over the same content on the same lecture, these are never guaranteed to start at

the same time. Actually, it would be pretty difficult to ensure that both videos will start recording the

lecture on the same millisecond or even with less than just three seconds of difference. This is due to

the fact that manual operators are required to start each recording and is very difficult to obtain perfect

synchronization on this task. Therefore, it is better to assume that these videos are out of synchrony and

to apply some method to account for this difference in timing.

 One possible option would be to manually edit one of the videos, the one that starts early, and

manually remove the additional portion at the beginning to make them start in synchrony. However, it

was required to make the entire process as automatized as possible. Actually, the only manual

operations applied to input videos are converting them to Windows Media Video format (.wmv)

because it is compatible with the OpenCV library for python, and also the extraction of the audio

streams as separated files in Wave format (.wav) to process them using the wave library of python.

 In order to synchronize two videos of the same content that come from two different sources, it

is required to find specific features to describe the timeline of each video, and then use these features

to find the best alignment between the two timelines by treating them as sequences. In terms of the

content of the video, one could say that by identifying the sequence of times at which the writing and

erasing events take place on each video, it could be possible to synchronize the videos by finding the

best alignment between these two sequences of events. However, while it is easy to identify writing and

erasing events on the video captured by the Mimio device, it is pretty hard to identify the exact times at

which the instructor starts and stops writing on the video from the still camera. An easier approach to

synchronize two videos is obtained by using the audio streams to find the best alignment between

them. As it is show in figure 11, the result of this synchronization is a time offset that will be required to

align the timelines of the videos in future processes.

Figure 11. Process of synchronization
of videos which is done by aligning
their audio streams. An additional
parameter that limits the range of
the search for the best alignment is
required and the result is a time
offset that must be applied to the
auxiliary video to match the timing in
the main video.

30

 To use audio for synchronization, it is important to understand how the digital audio works and

then find a way to efficiently match two different sequences of audio. The sound in our world travels

through the air in the form of waves. These waves have different frequencies and amplitudes which

translate into different sounds and volumes. In digital audio, these waves are stored by sampling the

amplitude of the waves at thousands of points inside a single second of audio. Currently the videos are

recording using a quality of 44,100 Hz which means that 44,100 points are used to describe the sound of

a single second of audio. Figure 12 illustrates the audio waves for just 5 frames from a video.

Figure 12. Audio waves for only 5 frames of a video, around 0.16 seconds of audio

Given that so many points are used to describe a single second of audio, using directly these

points to align two videos would be computationally expensive. For this reason, a method for

subsampling the audio is required to increase the efficiency of the alignment. Normally subsampling

would imply either taking a uniformly selected subset of the samples or obtaining a subset by averaging

groups of samples. However in this case none of these would work to describe the sound on a region of

time, specially averaging since the waves change sign constantly and the average is likely to become

close to zero for most regions. Instead, what is done in the current approach is dividing each second of

audio on a fixed number of intervals, in this case 10, and then for each interval obtain the highest peak

of amplitude of the audio waves. With these values, is possible to describe one second of audio using

only a few peeks, which results in a faster computation of the best alignment for two audio streams with

only a small loss of accuracy that can be measured in milliseconds. Another optimization of running time

is done by selecting a window of time that limits the maximum expected difference between two videos.

In other words, it is known that the videos will start at different times, but the difference is expected to

be probably less than a minute. Also, it is not required to use the entire audio stream for

synchronization since aligning the sound at the beginning of the video should result in aligned sound at

any other part of the video, and for this reason only a small portion of around 8 minutes of sound is

currently being used to calculate this alignment.

Even though the two videos represent the same lecture, and are captured on the same place,

the audio stream will never be identical even for the exact same portion of time. This is due to the fact

that different devices are capturing each stream and the quality of the sound recorded by each of these

31

devices will vary as also will vary the amount of noise present on each recording. For this reason, the

alignments are calculated by taking the absolute difference between corresponding peaks on a

candidate alignment, and adding those absolute differences to estimate a total cost for that alignment.

Different alignments are then tested by systematically trying all possible offsets inside of a given window

of time, and then the alignment with the lower cost is selected as the best alignment for the two videos.

This alignment is described by an offset which corresponds to a certain difference of time between the

two videos. This difference will be positive if the second video started recording after the first video or

negative if it started recording before. Figure 13 shows an example of the best alignment for two input

sequences with a positive offset of 6. Note that while the method is not the most optimal for this task, it

still produces acceptable results and the running times in practice can be measured in seconds which is

good for a pre-processing step executed only once per lecture.

(a) Input sequence 1

(b) Input sequence 2

(c) Best alignment found for sequences 1 and 2. Current offset is +6.

Figure 13. An example of the best alignment for two given sequences of peaks for two streams of audio

 Synchronization between videos is possible only after a correspondence in time has been found.

This synchronization will be required for later algorithms, like the sketch extraction algorithm, that work

with specific intervals of time marked with time stamps relative to the timeline of one of the videos,

then the offset is used to find the same time stamp relative to the other video.

32

5.1.2 Finding the visual alignment between two videos

 The second challenge found in the process of extraction of the whiteboard content from the

videos of the lectures was that since the two videos come from different sources, they have the same

content on the whiteboard but at different locations. These locations change in terms of absolute pixels

at which each character or symbol on the whiteboard can be found on each video, but the relative

locations between elements are still the same. In other words, since the two videos have different

resolutions and margins for the whiteboard content, it is hard to tell which specific set of pixels from

one video correspond to which set pixels on the second video. An algorithm to find such matching was

required in order to make possible the mapping of content between videos. This is also known in the

literature as the problem of image registration [53].

The main goal of visual alignment of videos is to find a mapping between regions of content of

the two videos. This mapping is obtained by applying a transformation to the images of the content on

one of the videos to match the content on the second one. For the video captured by software, the

whiteboard region is represented by a perfect rectangle. For the video captured by the still camera, the

whiteboard region is more like a trapezoidal area due to perspective. In practice, it is still possible to use

a rectangular mapping between regions and still achieve acceptable results on some videos. A

rectangular mapping can be found by doing a full-search that would test several scaling and translation

parameters until a combination that minimizes the difference between the images is obtained. If an

image of only the content of the whiteboard is given for each video, it is possible to obtain horizontal

and vertical profiles of pixels that describe that content, and using a similar technique to the one applied

for video synchronization, an alignment for these pixel profiles can be found. However, after applying

this procedure to videos from different lectures it was discovered that the error produced for some of

them was too high to be acceptable and that a different technique had to be applied. The technique

currently in use is based on extraction of Speeded Up Robust Features (SURF) [54] from different pairs of

images to obtain a projection matrix that is used as the final alignment. Also, to ensure a higher

accuracy, the SURF are extracted over the images of only the content of the whiteboard on each video.

 For the video that comes from a still camera in the classroom, to identify the content of the

whiteboard requires some special work since the speaker is present on the image most of the time, and

that means that he or she will be obstructing at least one section of that content while present on the

image. If it is possible to tell where the speaker is at every frame, then it is also possible to locate frames

on the video that contain the whiteboard without obstruction from the speaker. The next subsection

describes an algorithm used to estimate the location of the speaker on every frame of the main video,

but for now it is just required to know that it is possible to use the output of such algorithm to extract

frames from the main video where it is believed to be obstruction-free. Figure 14 contains an example

of one frame that was detected as obstruction-free by the speaker detector algorithm. Note that even if

the speaker is not present, there are other objects surrounding the board that could interfere with the

extraction of the content. Therefore, it is important to remove these objects from the image before

generating any feature of the content.

33

Figure 14. An obstruction-free frame from the still camera video.

Given an image where the content is obstruction free as the example in figure 14, the system

can apply a few image operations to extract only the content. Algorithms in image processing usually

work with a grayscale version of the image, and the current application is not the exception. With the

grayscale version of the image, it is possible to apply a threshold of luminosity to separate dark things

like the writing from light things like the whiteboard. However, the whiteboard does not represent a

region with uniform brightness. What is more, there will be regions of the board that will be dark

enough to be considered writing if just a simple threshold is applied. Also, similarly to dark regions on

the board, there will be parts of writing where the traces have a very low level of contrast and these can

even represent tones that are lighter than some regions of the board. Figure 15 shows an example of

the result of just applying a threshold on a portion of the image in figure 14.

Figure 15. Converting a region of the board
to black and white using a threshold
without any other pre-processing more
than the initial conversion to grayscale.

 Since just applying a threshold on the grays-scale image of the video would not help on

identifying the exact content on the board, then a different approach is required for this task. It is

important to consider that every pixel in the image belongs to exactly one of three possible elements:

content, whiteboard and scene background. The current goal is to separate content pixels from the

other two kinds of pixels. To achieve this clean separation, the first operation applied is edge detection

using the Canny method. Closed regions are needed to separate the edges of the content from other

kind of edges on the scene, but the edges obtained with Canny method are not guaranteed to produce

34

closed regions, and therefore it is required to apply additional morphological operations in order to

obtain such closed regions. In this case, a dilation operation using a structural element of 5x5 pixels is

applied to close all edges found in the image. After dilation of the edges, the image is then inverted to

make large closed region become individual connected components. One example of the results at this

point of the process is shown in the image in figure 16.C. Since the whiteboard will usually represent the

largest connected component on that image, this largest component will be extracted and threated as

whiteboard. The black regions on the image of only the whiteboard connected component can be either

part of the content or part of the scene background. Given that regions that belong to the content are

usually smaller than background regions, every black region with area above 5% of the total area of the

image is considered as background region and is filtered. At the end, the remaining black regions are

considered content and used to calculate the SURF for the visual alignment between videos. Figure 16

show the results of each of the steps described before.

(a) Gray scale image (b) Edges detected (c) Dilation and Negation

(d) The whiteboard (e) Scene background (f) Content extracted

Figure 16. Steps applied to extract content of the board for profile alignments

 There is no speaker present on the video that comes from the Mimio software, but there are

still a few additional objects surrounding the content captured from the whiteboard that must be

removed in order to extract only that content. The timestamp on every frame extracted from the main

video is used to extract its corresponding frame on the auxiliary video. The same steps are applied to the

images extracted from this video and similar results are produced. Figure 17 shows the frame extracted

from the auxiliary video that corresponds to the frame shown in figures 14 and 15.

35

Figure 17. A frame from the auxiliary video that can be used for visual alignment between videos.

 When the content from two corresponding frames has been successfully extracted, the points of

interest or key points are calculated on each frame and the SURF are extracted for each of these key

points on each frame. The OpenCV library for python contains all the functionality required to easily

obtain these features. The next step is to use nearest neighbors to find the best matches between key

points of the two images. Since a lot of noise is usually present on the content, especially on the content

captured by the Mimio device, the system cannot rely on the matching points of just one pair of frames

mainly because on many cases only a small portion of the whiteboard is filled with content. For that

reason, different pairs of frames are selected for the process, each of them taken from a different

segment of the video. Currently the system uses a total of 25 pairs of frames, and these pairs are

selected from different parts of the timeline of the video. After the best matches for a pair of frames

have been identified, the next step is to calculate a projection that is consistent with most of these

matches, and this is done using the RANSAC method [55]. The way that the method works is by

randomly selecting four matching points, getting a projection for them, and then calculating the total of

inliers for that projection. The method finally keeps the selection of points with the projection that

maximized the total of inliers and returns that projection.

Note that different matching points will produce different projections, and that if 25 pairs of

frames are used, then 25 different projections will be obtained. Since the system needs to work with a

single final alignment, something needs to be done in order to combine those 25 different results. One

option could be to try to average them somehow, but just taking the average of the projection matrices

does not work. Another option is to accumulate all the best matching points from the 25 pairs of frames

and calculating a single final projection with them. This last approach works to certain extend but the

threshold used to select the best matches has a great impact on the results, and finding a particular

value that worked for all cases in the current dataset was not possible. Another solution is to rank the 25

alignments and just keep the best one as the final alignment, and this is exactly what the final

36

application does. The score for a given projection over a pair of frames can be computed in terms of

recall as follows:

 This value is calculated for every projection over every pair of frames, and then the average over

all pairs is used to give a final score to each projection. The next step is to pick the projection with the

highest average recall as the final projection. This alignment is required for extraction of the content

from the main video using the changes detected on the secondary video, and it represents a way to map

specific pixels from one video to the other one. Figure 18 shows an example of the projection found

between two frames.

(a) Content extracted from main video

(b) Content Extracted from auxiliary video

(c) Key Points and projection (d) Final projection of content

Figure 18. Example of the alignment between two frames
 a) Image of content extracted from the still camera video (1440x1080 pixels)
 b) Image of content extracted from the auxiliary video (1280x720 pixels)
 c) Best matches of Key points found used for alignment marked with red dots
 d) Final projection. Grayscale of main is using blue channel and projected grayscale of auxiliary is

using green channel. Common background is marked white and common content is marked black.

37

5.1.3 Speaker detection

 To do a full detection of the speaker and separate him or her from the rest of the elements on

the video of a lecture is a difficult task. However, for the purpose of the current project it is not required

to identify where the speaker is at the level of exact pixels. Currently, the system only needs to know a

good estimation of the position of the speaker in the video to avoid extracting elements from the

content of the whiteboard while the speaker is blocking them. For this reason, the current approach is

relatively simple and is based on simple frame differencing to locate individual pixels on the image that

have suffered major changes in colors from one frame to another. Large changes in color in one pixel

from one frame to another are good indicators of motion found in the video, and no detection of those

changes over a region for a long period of time means that the speaker might not be on that region

unless he or she is able to stay completely steady for several seconds, which is very unlikely in the

current application.

 Each single frame on the video of the still camera contains 1440x1080 pixels which is above a

million pixels per frame, and also has 29 frames per second with an average length of about 45 minutes.

In those terms it can be seen that to process every single frame on the video would be computationally

expensive. However, since it is not required to identify the exact pixels where the speaker is present, a

subsampling of those frames can help to avoid unnecessary computations. Currently the system only

takes 3 frames per second to do its estimations of motion and the results obtained are very reliable.

Also, the system does not need to measure the difference between all pixels on two sampled frames

because the speaker is large enough in the image to be detected at a very coarse level. For that reason,

the system subsamples the frames before calculating the difference, and this subsampling is made by

dividing the frame using a grids and then using only one pixel to represent each cell of that grid for the

further calculations of motion.

(a) (b)

Figure 19. Some examples of the speaker detector algorithm. The Yellow pixels represent subsampled
pixels where motion was detected. The red box represents the area where the speaker is
believed to be present based on the center and standard deviation of the pixels with motion. (a)
and (b) are two contiguous subsampled frames.

38

The difference between select pixels is then calculated and if it surpasses certain threshold then

motion is assumed on that pixel. The system calculates the average and standard deviation of the

coordinates of all pixels where motion was assumed, and uses these parameters to calculate the region

where the speaker might be present at that time. Note that because of fast variations of lighting in the

room as well because of other factors, there might be pixels where motion was assume when there was

none, but since the system takes the average of all those pixels and uses a limited number of standard

deviations both in x and y axis, then it is able to discard most of these small variations as simple noise

and not as part of the speaker. The speaker position is represented in this case by a box with center

equal to the average of coordinates of motion-detected pixels, width equal to 6 standard deviations of

the x coordinates, and height equal to 6 standard deviations of the y coordinates of those pixels. Figure

19 shows some results of the current algorithm.

5.1.4 Content change detection

 The detection of changes in the content written on the whiteboard is probably one of the most

important steps in the current application. Since the speaker will write several things on the board and

to do that it is required to erase the content more than once during the entire lecture, the system needs

to be able to tell at which time the content appears on the board and at which time it is erased. This

content detection could be performed over the main videos, but because the speaker is present on most

of the frames the detection of changes on specific areas becomes more complex. What is more, the

main video has gradual changes of lighting that could confuse a change detection algorithm. In the other

hand, the video that comes from the Mimio software does not have the speaker on it, nor it has

variations in the lighting of the board, and for those reasons it was decided to implement the change

detection algorithm over this set of videos.

 The auxiliary video that comes from the Mimio software currently has a resolution of 1280 x 720

pixels which is still high definition but not as high as the definition of the video that comes from the still

camera. The number of pixels present on each frame is still high and to perform the detection of

changes on every pair of consecutive frames would unnecessarily expensive. For that reason, the total

frames of the video are subsampled to only 3 out of 25 frames per second. The detection of changes

using three channels of color is also expensive and for that reason the images are converted to grayscale

first and then changes are detected in terms of variations of luminosity of pixels.

 If the luminosity of a pixel has a change greater than certain threshold then the pixel is assumed

to be changed, either written or erased. While there are not changes of lighting on the video captured

by the Mimio software, the software itself seems to try to predict the writing and erasing events as they

start taking place. This prediction produces light pixels becoming darker and then lighter again if the

writer deviates from the predicted trace. A similar behavior occurs with some pixels when erasing

events are detected as they can become lighter but if the direction of erasing changes the software sets

them darker again. These small changes can cause confusion on the change detection algorithm by

making it believe that erasing events take place while the speaker is writing or vice versa, and for that

reason the threshold for changes must be large enough to avoid capturing this kind of noise as real

39

events, but also small enough to capture real events when the writer uses colors like green that has a

very high level of luminosity close to the luminosity of the background.

The changes are detected at the level of individual pixels, but these pixels are grouped into cells

that will forms regions of changes. The current size of the cells used is on this implementation is 4x4

pixels. The system first uses simple frame differencing to identify pixels with changes in luminosity.

Modified pixels are determined using a threshold over the absolute change in luminosity. If the absolute

difference is above the threshold then the pixel is considered a modified pixel. Afterward, the list of

modified cells is calculated using the list of modified pixels. For each modified cell the system calculates

the minimum luminosity and selects it as the luminosity for the entire cell which means that if at least

one single pixel in the cell is dark enough to be considered writing then the entire cell is assumed to be

written. There are only two possible events for the cells, and these are: was written and was erased. If a

cell becomes written, the system adds it to a region of content. If a cell is erased, different things can

happen depending on the state of the content region to which it belongs.

A region of content is a group of written cells and it has four time stamps associated: creation

time, last modification time, locked time and erased time. These regions of content are important

because they will become the sketches that will be extracted and described by the system. Content

regions have three main states: active (or modifiable), locked and erased. An active region is one that

has been recently created and is still accepting changes whether these are additions or deletions. Cells

can be added to the region through merging, and cells can be deleted from the region through small

erasing events. If a modifiable region loses all of its cells because of an erasing event, then the entire

region is just deleted permanently. Note that a region of content that has been deleted will not be

extracted from the video because it is considered that nothing important could be written and erased

on such short lapse of time.

A locked region is a region of content that stopped accepting changes after that a certain lapse

of time has passed without being modified. The system locks the regions after a threshold of time when

a new change comes that could overwrite or erase the content present on that region. When a region is

locked, the system releases all cells that were part of that region and these cells now can become part of

new regions. When erasing events are detected over cells that previously belonged to a region currently

in locked state, the system registers that time as erasing time for that region and the region passes to

the erased state.

The content regions have boxes that define a merging area where all the newly written cells

found on this area will become part of the content region. This merging area is illustrated on figure 20.

The area is sensible to the expected order of writing by being larger at the right side. When a cell is

written and there are no active regions or if it does not fall into the merging area of any active region

then the system will create a new region of content for that cell. If a newly written cell falls into the

merging area of two or more active content regions then all these regions will be merged into a single

larger content region. However, there are a few exceptions to this rule in order to restrict the horizontal

growing of these regions to avoid entire columns of content becoming a single content region, and also

40

to prevent content regions to be merged with special regions like vertical lines drawn by the speaker to

separate the content on the board into sections.

Figure 20. Margins of a content region. On this
figure, the orange cells are the cells detected as
written on a content region while the blue cells are
the non-written cells that form part of the same
content region. The brown area is the merging area
where if any change is detected then it will be
merged with the content region and the green cells
are the ones out of the range of the content region

The life cycle of a content region is important because the system will use the detected times for

creation, last modification, locking and erasing to groups this regions into key frames. Also, the system

needs these time stamps to find frames on the video where the content region is free of obstructions in

order to extract them for indexation.

Note that while real content will be grouped into regions that will make it easy to handle, noise

is also likely to create its owns regions which have to be detected and removed to keep the index as

clean as possible. There are certain properties of the content regions that can be used to separate real

content regions from noisy regions. The first property to look at is the size in terms of number of cells

used. Real content regions have a certain average size and most regions below 20 cells of content are

just noise. The second property is the edition time which is equal to the difference between creation

time and last modification time. The edition time is at least 10,000 milliseconds for most of the

important content regions. However, there are important regions of content that can be written in less

time. For the current application, all regions with edition time lower than 400 milliseconds are

considered noise. Density is the third factor used to filter regions, and it is calculated dividing the total

number of written cells by the total number of cells on the region. Most of the real content regions will

have at least 10% of density of written cells. Finally, the aspect ratio is very important as content regions

are neither too long nor too wide. Currently, anything that has an aspect ratio above 10.0 or below

1/10.0 is considered a divisor line on the board and removed from the list of content regions. Of course,

there must be exceptions to some of these rules as there are regions that can fail on one or more rules

but fulfill the others too well to be considered noise. One example could be a region with size of less

than 20 cells but edition time of 5000 milliseconds, such region could not be considered noise because

even though it is very small, it took too long to be edited as to be considered random noise.

It is important to note that the current algorithm is far from perfect. Some parts of the content

are split into more regions than they should and sometimes the erasing times are registered before the

real erasing times making the system believe that content regions have shorter life spans than what they

actually do. However, results are still acceptable in most of the cases and the resulting regions are very

useful divisions of content that make the whole indexation process a lot easier to handle. An additional

algorithm to group these content regions into key frames base on their time stamps is applied during

41

the indexation process described on section 5.2. Figure 21 shows an example of the results of the

change detection algorithm over a period of time.

(a) (b)

Figure 21. Results of the change detection algorithm: (a) An image from a certain segment of a video,
 (b) The corresponding regions formed by the change detection algorithm shown with different colors

5.1.5 Extraction of whiteboard content

 The extraction of the content is probably one of the most important elements on this project

since sketch retrieval will be done over the content detected and extracted from the videos. Basically, all

the tasks described before are just auxiliary tasks required in order to make extraction of content

possible. The content on the whiteboard is present on both the main and the auxiliary videos, and while

the auxiliary video has the great advantage of having the content free of obstructions, it also has the

great disadvantage of being really noisy in the practice. Figure 22 shows an example of how noisy the

auxiliary video can become due to sensor errors among other problems. For the reason mentioned

before, the extraction of the content is done over the main video instead of using the auxiliary videos.

The mapping of content between the two videos is mainly required because the process of change

detection and the process of content extraction are executed over different sets of videos.

Figure 22. Presence of really noisy data on the Mimio video. On the left, part of a frame from the main
video On the right, the parallel frame from the auxiliary video as captured by the Mimio device.

42

 Different elements are involved in the process of sketch extraction. Figure 23 shows the

minimum input required for the sketch extraction algorithm. First of all, the algorithm needs to receive

the list of the names of the files that compose the main video considering that the camera automatically

splits the video every time the current recording reaches 2GB of size. The next element is the time offset

calculated to synchronize the videos because the time stamps associated to each regions of content are

relative to the auxiliary video, and to find the corresponding frames on the main video the system needs

the synchronization time offset. The filtered regions of content represent what the algorithm must

extract from the main video and the motion detected on the main video is required to find frames

where these regions are not being blocked by the speaker. Finally, because the regions of content have

boundaries relative to the auxiliary video, the visual alignment is needed to make the extraction of their

corresponding pixels on the main video. The boundaries of the regions of content are projected over the

main video to extract the box that contains the entire region.

Figure 23. The inputs and the output of the Sketch extraction algorithm.

Note that while changes are detected at the level of cells, the system will extract the final

sketches as rectangular images. What is more, these estimated rectangles are expanded by some small

margin just to count for small errors in the projection of the visual alignment to avoid cutting connected

components. In some cases the final sketches can contain parts of content that were inside of that

rectangular region but were not part of the original cells that represented the region. These parts of the

content can be considered as noise and they are also hard to remove in most of the cases. Figure 24

shows an example of this kind of noise.

Figure 24. An example where parts of other
sketches are accidentally extracted because
they fall inside the projected rectangle of
the current region. The red rectangle marks
the location of this noise.

43

One procedure tested for removal of this noise was to generate a mask using the cells that

represented the region on the Mimio video and then applying a projected version of that mask over the

main video during the extraction, but this led to other problems that needed to be solved. First of all,

the projection is not guaranteed to fit perfectly the content, and for this reason some dilation

operations were applied to the projected mask to ensure that it would cover all the content pixels. The

next problem is that the mask only defines which pixels should be extracted, but then something must

be placed instead of the pixels that were filtered by the mask, and that filler is important because the

wrong filler will generate false edges on the extracted image. White or black colors are examples of

wrong fillers because their contrast with the average color of the whiteboard is too large and generates

edges. Then, another option is to replace those pixels with the color of the whiteboard that is not

constant but can be estimated for each region by averaging the color of the pixels that were filtered out.

This works in most of cases but still generates edges especially on large sketches. The last option tested

was to blur a copy of the whole image and use the fuzzy version as the filler for the filtered pixels. This

blurred version limits the edge detection on additional components contained on the rectangle. Figure

25 shows some results of this procedure.

(a)

(b)

(c)

Figure 25. Successful removal of noise.
 a) Original input region, noise to remove marked by red rectangle
 b) Mask generated by projecting the cells of the content region over the whiteboard
 c) Final result by replacing the black pixels on the mask with a blurred version of the image.

While the algorithm described before represents a potential solution to the problem of

additional connected components, at the end it was decided to keep those additional components as

part of the content as there are also many cases where Mimio misses strokes of the writing on the

whiteboard, and then applying the previous method makes the system to miss those strokes on the

main video too. Figure 26 illustrate one case of many missed strokes over a single region. Note that in

general terms, it can be said that it is worst to lose real content than to keep noisy content.

44

(a)

(b)

(c)

(d)

Figure 26. Missed strokes by the Mimio device.
a) The whiteboard as captured by the Mimio device. Many strokes went missing.
b) The real state of the whiteboard.
c) The projected mask created by the algorithm of noise elimination.
d) The resulting region with real content erased as noise.

 Many of the extracted regions will therefore contain some noisy connected components that

still could be detected and erased by a more sophisticated method, but for now that belongs to future

work. Once that all the regions have been extracted and their time stamps are known, the system is

ready for indexation of content. The next section describes the process of sketch indexing and all the

challenges faced during the development of this second process of the system.

 5.2 Sketch Indexing

 After the different regions of content have been identified and extracted from the videos, the

system must describe the content found on those regions and store those pre-computed descriptions in

a format that will make fast search possible. The indexing procedure is directly related to retrieval

method since all information needed for retrieval must be pre-computed at indexing time to avoid

unnecessary repeated calculations at search time. The current implementation stores the individual

connected components found on each sketch, and also their corresponding features. Then, the system

also generates estimated key frames based on the time stamps stored along with each sketch, and these

key frames are stored on the index for later searches by key frame. Finally, the system also stores

neighbor graphs that are generated over the sketches and key frames to describe their structure for

partial structural matching. The following subsections describe each of these processes in detail.

45

5.2.1 Extraction of connected components

 Connected components represent the basic units of content on the current application and their

extraction must be as accurate as possible. Ideally, a connected component should be created for each

individual symbol but this is hard to accomplish on many cases. Also, the input images represent

handwriting and compared to images of printed text the level of variation is much higher. For example,

the speaker can use print and cursive writing interchangeably as shown in figure 27, the result is a mix

where many symbols are written using a single trace and many traces represent a single symbol. The

case where a single symbol is written with many traces does not represent a problem as long as the

writer is consistent with that writing style. The real problem is when two or more symbols are written

using a single trace or if the traces of two or more symbols are touching traces because separating them

into individual connected components is a hard problem out of the current scope of this project.

Figure 27. A single region of content with high
variations in writing style. The red rectangles
enclose print characters while the green
rectangles enclose cursive writing. Note that the
word “of” appears twice on this region written in
two different ways.

Different image processing techniques must be applied in order to extract the connected

components of the content written on the whiteboard. Each of these techniques is error prone and the

resulting connected components are not always representations of individual symbols written on the

board especially because of many touching symbols present on the board. However, the results for most

of the math formulas are good enough to allow them to be retrieved even by partial matching with

queries. In general terms, the algorithm to extract the connected components is as follows: Find the

potential content, remove the background, classify remaining pixels as either whiteboard or content,

and then use connected components labeling to find the resulting components.

To find the potential content the system uses edge detection to locate pixels that surrounding

the writing. The edges are detected using Canny edge detection algorithm. Note that it could be possible

to apply first a threshold over the grayscale image but the results would be similar to the problem

described on content extraction for visual alignment of the videos. There are pixels of writing with

higher luminosity than some pixels of the whiteboard, and for that reason edges detection is required to

detect potential content pixels based on the local contrast of each pixel instead of using a single

threshold of luminosity.

46

The content pixels are enclosed by the edges detected but these edges usually do not form

completely closed regions. A dilation operation is then applied to close the regions found by the edges,

but note that this operation not only will close the content pixels, it will also expand the edge pixels

toward the whiteboard pixels. At this point most of the real content pixels should be inside the

expanded edges, and also the large black regions should be part of the whiteboard. The next step is to

get the negated version of the dilated edges image, and then to label the connected components on

that image. For each connected component, if it is above certain threshold then it is considered a

whiteboard region. After all whiteboard regions have been identified, they are merged to create a single

mask which is dilated as much as the edges were dilated before. The result is a mask that contains only

pixels that can be safely assumed as whiteboard pixels. The main reason of why a threshold is applied

before adding a region to the mask is because sometimes holes inside of the characters get expanded

too much and end up with including content pixels as part of the whiteboard. All the steps described

before produce the partial result shown in figure 28.e.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 28. Steps to extract connected components. (a) input image, (b) converted to grayscale, (c)
Edge Detection, (d) Dilation of edges, (e) Whiteboard Mask, (f) Adaptive Histogram Equalization, (g)
Applying the mask (e) to equalized (f), (h) final connected components after labeling.

47

 Most of the pixels of the whiteboard should be correctly identified at this part of the process,

but now it is required to separate the remaining whiteboard pixels from the content pixels. It is possible

to apply a threshold over the remaining pixels and the noise present is for sure smaller than when the

process began. However, the problem of certain parts of the content with lower luminosity than certain

parts of the board remains. A way to overcome this problem is by applying adaptive histogram

equalization on a copy of the original image to enhance the local contrast between the writing and the

whiteboard, and then apply the threshold over the image with enhanced contrast. Note that using mask

of the whiteboard becomes mandatory when using adaptive histogram equalization since it will make

some regions of the whiteboard really darker specially when there are no dark pixels of content on the

region. The equalized image will have a darker background than the original, but the background will

become lighter on the pixels surrounding the writing. After the image is equalized, the whiteboard mask

is applied, and then a threshold is used to separate the final pixels of content. The last step is to find the

connected components on the resulting image, and this will be the final connected component used by

the system. Figure 28 illustrates the entire process, from an input sketch to the extraction of the

individual connect component.

5.2.2 Describing the connected components

 The next step after the connected components have been successfully extracted is to generate

their descriptions. This is done using different features and combining all of them into a single feature

vector. The features to use are really important as bad features result in low accuracy when trying to

find similar elements on the index. The current set of features is very simple and in practice achieves

reasonable results. The features used are based on features applied for offline optical character

recognition, and while the current system does not apply classification to identify the individual

symbols, it needs to be able to tell how similar two symbols are.

The only preprocessing applied to the characters before the extraction of its features is to

normalize their images to a standardized size of 128x128 pixels. If the input image has a size of less than

12x12 pixels then the character is padded with black pixels to make the input image have a size of at

least 12x12 pixels. This padding is done with the purpose of avoiding some extra small components

being expanded more than 10 times their original sizes. Also, if the input image is not squared, then it is

padded with black pixels to make it squared to avoid changing the aspect ratio at the time of resizing.

After the image has been resized, the system extracts the following features: aspect ratio (1 value),

center of mass (2 values), covariance matrix (3 values), crossings (16x3x2 = 96 values), and 2D

histograms (5x5 = 25 values). The current length of the feature vector is 127 values.

General Features

These features correspond to general values that are calculated over all the white pixels of the

normalized image. These features are: aspect ratio, center of mass, and covariance matrix. The first

feature is the aspect ratio of the bounding box of white pixels which could be obtained by dividing the

width by the height of that box. Horizontal and vertical lines are the most extreme values for this

48

feature while squared components should be in the middle of the scale. However, if width is always the

numerator and height is always the denominator, the system will fail to measure the real similarity

between pairs of components. For example, if two elements are given, one of them is 20x10 and the

second is 30x10, their aspect ratios would be 2.0 and 3.0 respectively, and the difference would be 3.0 –

2.0 = 1.0. In the other hand, if the same elements are rotated 90 degrees, the first one would become

10x20 and the second 10x30, with aspect ratios of 0.5 and 0.333… respectively, and the new difference

would be just 0.5 – 0.333… = 0.1667… which means that the same two components would be

considered more similar by just rotating them, and that is completely wrong. A best way to get the

aspect ratio is by swapping the numerator and denominator by using always the largest one as

numerator and the smaller one as numerator. As a result, the value will be always greater than or equal

to 1.0. Of course, a difference must be made to make 20x10 different from 10x20, and this can be done

by swapping the sign of the aspect ratio when the denominator changes. This change creates a

discontinuity on the function when the aspect ratio approximates -1.0 and then it changes to 1.0. To

solve the discontinuity, 1.0 can be subtracted from the value of the division before swapping the sign,

and it results on a continuous function equal to 0 when the input size is a perfect square, negative when

the input is longer than wider and positive otherwise. Finally, some scaling factor is applied to control

the influence of this value on the final distance. The final formula is as follows:

{

 ((

))

 ((

))

 The second general feature is the center of mass which is simply getting the average of all x and

y coordinates of all white pixels P on the normalized image. If the raw average is used the resulting scale

would be too large and it would heavily affect the measurement of distance. For that reason, the value

is scaled and translated in a way that it will be in the range between -1 to 1 for each axis. The final

formula is as follows:

 ⟨
∑

()

|
∑

()

⟩

 The last general feature is the covariance matrix of the coordinates of pixels. Basically, these

values would roughly describe the distribution of the white pixels on the image. Note that the

covariance matrix is symmetric, and therefore if there are only two dimensions then only three different

values would be needed to describe the matrix. The first value is the covariance (x, x) which is also the

variance of the x coordinates, the second value is the covariance (x, y) and the last value is the

covariance (y, y) which is the variance of the y coordinates. The formula is as follows:

49

 ()

∑ ((
()

) (
()

))

 Crossings

 This is a very simple but effective feature used to describe shapes of the connected

components. The general idea is to use lines at certain predefined positions and then for each line count

the number of times that the line crosses the connected component. Also, additional values can be

extracted that help to produce a more complete description of the component at that position and

these values are the relative position of the first and the last time that the line crossed the connected

component. The system currently uses 16 horizontal lines and 16 vertical lines for a total of 32 lines

generating 3 values each. In total, 96 values are generated by the crossings features. The scaled images

usually make the connected components very thick and for that reason the system will use always the

center of the interval of white pixels crossed as the position of the crossing. One special case arises

when a line has 0 crossings with the connected component since the first and last crossings are

technically undefined. In that case, the system creates an assignment that cannot be obtained in normal

circumstances by making first and last equal to the highest and lowest possible values respectively.

Normally these two values would be equal if the count of crossings is equal to 1, but position of last

would never be smaller than position of first. Figure 29 shows an illustration of the crossing features.

Figure 29. Examples of two vertical crossings to describe an A at fixed x coordinates. The Green line is
the first crossing, and the yellow line is the second crossing. The red axes represent the center of the
normalized image. The dark red circles represent the center of the crossing interval at which the
position is extracted.

50

 Note that if the raw values of counts are used in the feature vector then the counts would

become heavily weighted over other features. Then, a normalization process is applied to get the values

of the counts on a smaller range currently from -3 to 3 where 0 crossings becomes -3 and 10 or more

crossings becomes 3.

 2D Histograms

 The last feature used is the 2D histogram of pixels which describes the distribution of the white

pixels on the normalized images. The system divides the normalized image into a grid of 5 x 5 cells, and

then for each cell it counts the total number of white pixels found on that cell. Then, the total of white

pixels is used to normalize the values of each cell. At this point the sum of all cells is equal to 1.0. In this

case the average value for each cell is on a very small range because most of the cells will be equal to 0.0

and usually the others are never above 0.2. It was tested empirically that the contribution made by this

vector to the measurement of distance is not significant unless the values are scaled to make them

larger. It was found that a scale of 10 times the original value makes them have an important weight on

the calculation of similarity distances between connected components. Figure 30 illustrates this feature

for a connected component representing the A symbol.

Figure 30. 2D Histogram feature example for the letter A.

 When all the features described before have been computed for each connected component,

the system can store them and just load the pre-computed values at the time of retrieval. The time

required to compute these features for a single connected component is relatively small but when it

comes to index a video which contains about 1,200 connected components then the entire process

might take several minutes to complete. At the retrieval time the only features computed are the

features that describe the query, for everything else is much faster to load the 1,200 feature vectors

from a file than computing them on the fly. Currently, the computed features are stored in hash tables

indexed by the id of the video and then by the id of the sketch where these were found. However, no

other special structure is being applied, but some more sophisticated structures could make it possible

51

to find the nearest neighbors of a symbol in faster times, and that is definitively part of the future work.

After the connected components are added to the index, the next task is to generate the virtual key

frames of the video by grouping content regions based on their life spans on the board.

5.2.3 Sketch Grouping Algorithm

The sketches formed by the content change detection algorithm are a good way to divide all the

content of the board into small units that make the indexation process much easier than handling all

connected components individually. However, since the creation of these regions is sensitive not only to

spatial locations of the connected component but also to edition times, sometimes some elements that

should be part of a single region get split into multiple regions due to long pauses of the speaker during

the writing process. One way to overcome this problem is by generating groups of sketches that were

present in the board at a given time. If the times used to generate these reconstructions of the state of

the whiteboard are consistent with certain events on the video like massive erasing of content, then we

could say that these groups represent the key frames of the entire lecture. One advantage of these key

frames is that each of them can be used to describe an entire segment of the video. Another advantage

is that they allow large queries to be completely matched using parts of different sketches that were

present on the board at the same time.

The system needs to work with the time stamps stored along with each sketch in order to

reconstruct the state of the whiteboard at a given time. Note that while the system could try to just

extract a frame from the video at that given time, there are no guarantees that the speaker will not be

present on the video on that specific frame. Since the sketches are extracted from different frames

where the system detected that the speaker was not blocking that specific sub region of the board, then

we could say that multiple frames are usually required to reconstruct the image of just the content of

the whiteboard at a given time. Two time stamps are important for reconstruction of content, the first

one is the last modification time as before that time the sketch was not present on the whiteboard or it

was being edited, and the second is erasing time which tells the system when the sketch is no longer

present on the whiteboard.

The process of reconstruction is done as follows: First, the system generates a sorted list that

contains all edition and erasing times of all the sketches on the board. Each of these times represents a

candidate time for a key frame insertion. Then, for each time stamp the system evaluates which

sketches have reached their last modification time and adds the completed sketches to the list of

current sketches. Then, the system also checks which sketches have completed their erasing time, if

there are no new erased sketched then the system continues with the next time stamp on the list. When

the erasing time of any of the sketches on the list of current sketches is reached by the algorithm, then

the system will insert a key frame at the current time stamps which will contain a copy of the list of

current sketches. The next step is to remove the erased sketch from the list of current sketches. Usually

the speaker deletes entire sections of the whiteboard which results on many sketches with erasing times

close to another. The system cannot insert a new key frame for every erasing event. Instead, the system

will insert a new key frame on an erasing event if and only if new sketches have been added after the

52

last key frame insertion. At the end of the process, there might be sketches that were written on the

board by the end of the lecture and never got erased on the video. If this is the case and new sketches

have been added after the last key frame insertion, then the system will take this final group of sketches

and will create the last key frame using the ending time of the video as the corresponding time stamp.

The algorithm of generation of key frames by grouping sketches is very simple and produces

acceptable results on most of the cases. However, it is sensible to errors in time stamps of the sketches

which become evident when certain sketches stop appearing on the key frames before they were

erased on the video. This is due to some errors that occur when only small portions of the sketch are

erased, and then the system assumes that the entire sketch was erased or that what remains does not

represent the original sketch anymore, and for that reason registers an erasing time stamp earlier than

the real one for those sketches. Even though such kind of errors occur, the results are still useful as ways

to represent the content on segments of video and also to be used as retrievable units. Figure 31

contains some examples of key frames generated by the algorithm. It is also important to notice that

since the sketches are extracted from different frames of the video some important variations in the

lighting of the scene occur making the average color of the whiteboard darker or lighter on some

specific regions of content, and that becomes more obvious on these key frames.

(a)

(b)

(c)
(d)

Figure 31. Examples of different key frames extracted from a lecture. Note how each of them shares at
least one region with the previous key frames as usually the speaker erases only a portion of the board
and keeps intact other parts of the content. In the case from (c) to (d) the speaker did erase the right
side and wrote new content over it, but also edited part of the old content making the system believe
that the entire content region was erased.

53

 After the creation of the key frames, the system stores these groups of sketches as part of the

index to avoid computing them again for every new query. These structures usually require small

amounts of memory as they only represent groups of what is already stored on the index. At this point

the system has indexed sketches with their corresponding connected components, and also the key

frames. The next step is to describe the spatial structure of the sketches and key frames and add those

descriptions to the index. This description of spatial structure is achieved through neighbor graphs as

specified in the next section.

5.2.4 Description of sketch structure

The description of the individual connected components is very important on the current

application because a good description can help the system to achieve good matches on the retrieval

process. However, the best matches usually require more spatial information to be taken into account

since math formulas are involved and the structure of an expression is a fundamental matter in math.

There are many possible approaches on how to describe the structure of a sketch. A possible approach

is using a hierarchy between elements like the method described in [36]. Another possibility is to

describe certain relationships between neighbors and one or even many graphs to describe these

relationships [46]. Through observation of the input data it was determined that isomorphism of

sketches is not necessarily what makes pairs of regions to be related as it is shown in figure 32.

Figure 32. Example of two sketches that can be considered related to each other but have a completely
different visual structure.

It is true that to some extend two regions need to share different elements to be considered

matching regions. It is also true that good matches usually have a very similar structure, but it is also

true that these structures do not need to be isomorphic to be potentially related. In the example shown

in figure 32 it can be seen that two non-isomorphic structures can be considered related, and this is

mainly because they have some isomorphic sub structures in common like for example the vector

notation for v1, v2 and v3. Based on this reasoning, one of the retrieval methods implemented works with

neighbor graphs to define pairs of related symbols that should be matched between the query and the

54

content stored in the index. The generation of these graphs is better done at the preprocessing stage

and the results are saved within the index file.

Graphs are defined on this application by creating a vertex per each individual connected

component on the region being described. Then, the edges are created and their weights are assigned in

terms of visual proximity between their corresponding connected components. Probably one of the

most obvious methods to define visual proximity between connected components is using the Euclidean

distance between the centers of the connected components. However, there are cases where using the

distance between centers can make two connected components that are very close to look really far

away. Another possible measurement of visual proximity is the distance between the bounding boxes of

the connected components. This distance is defined by the smaller distance between sides of the

bounding boxes of two connected components, and when these bounding boxes overlap the distance is

equal to 0. The system currently uses a combination of both measurements of visual proximity.

The distance between all pairs of vertices is calculated and then the system filters edges

between pairs of components that are not visually close. A way to know which edges to keep and which

to remove is by applying a Minimum Spanning Tree (MST) algorithm over the graph. A MST is

guaranteed to be the sub-graph that keeps all the vertices connected while minimizing the sum of the

distance of all remaining edges. Depending on the measurement of distance between components used

to create the graph, it is possible to obtain different MSTs for the same sketch. Since the goal is just to

keep all edges between a vertex and its closest neighbors, the system can simply merge the edges found

on each MST to form a neighbor graph. This graph will have a reduced number of connections while

keeping a vertex connected to its closest neighbors as determined by the two measurements of

distance. Figure 33 shows the neighbor graph obtained for the sketch of a matrix.

Figure 33. The graph generate for the sketch of a matrix. At the left the original sketch, at the right the
graph obtained connecting the components that are visually close by distance between centers or by
distance between the borders of the bounding boxes.

The same process applied for individual sketches is also applied to key frames to genera bigger

graphs that not only connect the closest connected components inside of the sketches but also connect

55

the closest components between pairs of sketches found on the same key frame. This will allow a single

query to match pairs of elements from different sketches located on the same key frame. Figure 34

shows the results of the graph generation algorithm over a key frame.

Figure 34. Neighbor graphs formed on a key frame. The left image is the original key frame, the right
image is the graph formed for that key frame. The green edges represent standard edges between
connected components of the same sketch. The red edges represent edges between connected
components from different sketches.

The graphs are the last kind of the structure computed and stored on the index. Once that all

graphs have been computed for the sketches and key frames of a video, these are stored for later

retrieval processes. At this point the video is completely indexed and the content found on it can be

retrieved using the different sketch retrieval methods implemented which are described on the

following section.

5.3 Sketch Retrieval

After the content of all videos in the collection has been indexed, the system is ready to accept

queries. A query in this system comes in the form of an input image or sketch, and the system will try to

find either sketches or key frames that seem to have similar content. The current system is recognition

free and all matching is done in terms of visual similarity between the query and the stored content. For

testing purposes, the system allows the user to specify one sketch from the index as the input query. If

the user does not specify a query, the system can also select a random query from the stored sketches.

On the current scope the system is not allowing external images to be used as queries, but this is a

feature that could be included as future work.

All content on the index is stored in forms of individual sketches and also in the form of groups

of sketches or key frames. The different retrieval methods were developed to allow the search by the

56

two kinds of content. However, there are some methods that work with sketches but lack the scalability

required to be applied at the level of key frames. When the search is limited to the level of individual

sketches, it has the advantage that some of these non-scalable methods like the search by F-Measure

works fine because of the small numbers of connected components. The disadvantage of looking for

individual sketches is that divisions of content are not optimal and the query could not be matched if the

same content is found in parts of different sketches. When key frames are used, the greatest advantage

is that the query can be completely matched by partially matching different sketches on the key frame.

The disadvantage is the increased running time because the number of possible matches is higher, and

this is due to the fact that some sketches belong to multiple key frames increasing the total number of

comparisons required for this type of search.

More than just finding specific images, the general idea is to use the time stamps of the images

found to relate them to the specific segments of the video from which they were extracted. In general,

sketches represent very short regions of the video generally measured in seconds while key frames

represent larger segments of the video generally measured in minutes. It is out of the scope of this

project to create the user interface required to visualize these segments of videos. However, the current

system could be easily modified in the future to interact with an external application that displays the

segments of video as final results. The next sub section explains the different measurements of similarity

that were implemented for retrieval of sketches and key frames.

 Measurements of similarity applied for retrieval

The method used to measure the similarity between two given regions of content is really

important and it will define the performance in terms of quality of results and running time. Different

methods were tested and some of them produced interesting results while other did not, and these

methods were: Count of hits by nearest neighbors, recall of connected components matching, F-

Measure of connected components matching, recall of SURF matching, and recall of pairs of neighbors

matching. All these method produce a score of similarity between regions, and then the resulting values

are used to rank the regions stored in the index finally retrieving only the best N matches, where N is a

number defined by the user. Each of these methods is explained here.

Count of hits by K nearest neighbors

This was the most naïve approach implemented and it is only applied on sketch versus sketch

matching. The basic idea is simple, take all of the connected components on the query, and for each of

them get the first K nearest neighbors whose distance is below a given threshold. For all of those K

connected components, a hit point is assigned to the sketch to which they belong. If the query has 10

connected components, and K is set to 100, then 1000 nearest neighbors will be obtained in total which

will generate 1000 hit points distributed among the different sketches where those components were

found, and then the sketches are ranked by their number of hits in descendent order. The method is

very simple and since it does not count for unique matches, it usually gives really high scores to some

regions if they contain several nearest neighbors of a single connected component of the query. Some of

the results obtained can be considered good matches, but it will also retrieve many unrelated things just

57

because they contained several copies of one or more elements found in the query. In the other hand,

the method is really fast and it was a good point to start the process of retrieval of sketches. Given that

repeated connected components is a problem for this method, testing it over key frames would just

have made the problem worst because they are likely to contain even more copies of each component.

 Recall of matched connected components

 The second method was designed to correct one of the biggest problems of the previous one,

and it is that a single connected component of the query was being matched multiple times by many

similar connected components on some large sketches. This resulted on some regions with higher scores

than the actual level of visual similarity perceived. To correct this problem, the next goal was to ensure

the uniqueness of the matches which means that one connected component from the query can match

at much exactly one connected component of another region. If a connected component on the query

can only match one connected component of the tested region, then the recall of matched connected

components can be obtained dividing the total number of matches by the number of connected

components on the query.

 Note that this method only ensures that a connected component on the query will be matched

by exactly one connected component on the tested region, but it does not ensure that a connected

component on the candidate region will not match multiple connected components of the input query.

In other words, the previous method allowed relations many-to-many between connected components

on the query region and the candidate region, but this second method just allows one-to-many. The

search method was test with sketch versus sketch matching and sketch versus key frames matching, but

since a better method was found for sketch versus sketch matching, it was kept only for sketch versus

key frame matching. It is also fast and usually produces better results than the previous method.

 F-Measure and the assignment problem

 A more accurate version of the previous method is obtained by replacing the recall by the F-

measure or F-Score of the connected components. The F-measure is the harmonic weighted average of

the recall and the precision. Recall is measured in terms of components matched against the total of

connected components in the query sketch while precision is measured in terms of components

matched against the total of connected components in the candidate sketch. However, the only way to

get the exact the recall and precision is to modify the matching system to force it to accept one-to-one

matches only. Ideally these one-to-one matches should be made in a manner that the sum of the total

distance between matched connected components is minimal. To obtain that minimal distance, the

entire matrix of distances between all candidate matches can be calculated, and then the Hungarian

method can be applied to solve the assignment problem [38] over that matrix. This method requires the

distances matrix to be squared, and since the number of connected component on the query and on the

candidate region are going be different in most of the cases, some padding columns or rows must be

added using a distance value that is higher than any other expected distance between connected

58

components. Note that all the assignments that include values found on those padded columns or rows

imply that no real matching was found for that connected component. When all the assignments have

been computed, the system can apply a threshold of distance and accept only the matches with a

distance below the threshold. This final number of assignments is used as the numerator of both

precision and recall, and then the f-measure is finally computed. A value of 0.0 is the worst value for an

F-Measure while 1.0 is the best value or a perfect match.

While the results obtained by this method seems very interesting, it is way too heavy to be

applied in practice as a single query can take from a few minutes to even a few hours. The problem is

that the assignment problems has a complexity of O(N3) on its best implementation, and since some

sketches have as much as a 100 connected components the matching between those sketches takes

many seconds which is too much for just comparing a pair of sketches. What is more, the approach

cannot be scaled to be used on sketch versus key frames matching because the total number of

connected components that is usually found on a single key frame is much higher than just 100

connected components.

SURF

 The SURF were successfully applied to visually align the content between the two sources of

video on this project, and one experiment was to use them as a way to find queries inside the key

frames. The SURF work by finding key points on two images that will be compared, and then these key

points are matched to find one image inside of another. However, not all pairs of matches are really

good matches and the system need several good matches to be found before it can really find an image

inside of another. Ideally, a high percentage of good matches should mean that the image has been

found, but in practice many key points can be matched on the current data and that does not mean that

the candidate region contains the query. As a test to define a method for retrieval using SURF, the recall

of key points matched is being used to rank the similarity between pairs of sketches and between a

sketch and a key frame. The method works for perfect matches, which is when the query is present on

the candidate region, but it usually does not work for partial matches making this method a bad option

for retrieval as most of the related content for a query will be partial matches.

Something good about these features is the fact that they can be computed and matched really

fast. For example the queries presented in the results section took less than 10 seconds to be executed

which is really fast considering that these features were not stored on the index and the system had to

calculate them on the fly as the query was being executed. If the key points and their SURF were store

59

on the index, the execution time would be really small, but the reason for not adding these to the index

was the unacceptable results obtained on different queries tested.

 Recall of matched pairs on neighbor graphs

The last method developed for retrieval uses the neighbor graphs obtained during the

indexation process to attempt to match partial structures. One of the common problems of the previous

methods is that when they match connected components from the query on the candidate region, they

usually match any connected component regardless the actual relationships between them, and that

produces undesirable matches like for example the number 32 matching 23 because the individual

connected components are the same. A partial solution to this unrestrained matching problem is to add

some basic restrictions by matching pairs of connected components with the same spatial relationship.

Applying this restriction in the previous example would mean that a 3 and a 2 would only match if

another 3 is found along with another 2 with the same spatial relationship between them. In a sketch

with 10 connected components there will be 45 potential pairs of elements to consider, but since the

neighbor graphs are being calculated first, then probably the number of pairs to use for the actual

matching will be reduced to about only 12 pairs making this method scalable even for large graphs.

The spatial relationship between two connected components that are linked in the neighbor

graphs is defined by the angle formed by the location of the center of one of them relative to the center

of the other one. This angle basically defines an orientation between the pair regardless of which of the

connected components is being used as the center of reference. The idea is that matching will be limited

only to pairs that have almost the same angular orientation with some small degree of tolerance for

variation. If a pair of connected components on the query has certain angle orientation, and a pair of

connected components on the candidate region has an angular orientation close enough to the

orientation of the first pair, the system will compare the corresponding connected components to get a

measurement of total distance by averaging the distances obtained between the pairs of corresponding

connected components. Figure 35 shows an illustration of this process of matching edges.

Figure 35. The process of matching edges to estimate similarity between sketches.

60

 The total measurement of distance between a query and a candidate region, either a sketch or a

key frame, is obtained using the recall of pairs of edges on the graph of the query that were matched

with edges found in the candidate region. Note that there are no further spatial restrictions applied

between these edges and as a result it can be the case that two edges that have a vertex in common on

the query could match two edges with no vertex in common on the candidate region. However, in

practice the results obtained with this method are still much better than the ones obtained using

completely unrestrained matching of connected components.

The running time required for this matching is higher than the time required by some other

methods as each single connected component is tested for matching more than once. Nevertheless, this

running time is not that bad and can be improved by using a more sophisticated method of indexation

optimized for matching edges.

61

6. Results

The different methods were tested against predefined queries to compare the results that each

of them would return for the each of them. As expected, these results were usually very different

between methods as each of them ranks similarity using different criterions. All of the tests described on

this section were executed on a laptop running with windows 7, with 8 GB of ram and Quad core

processor of 2.4 GHz with turbo boost up to 3.1 GHz. Even though most of the methods allow

parallelization, this was not implemented and all running times are measured on all comparisons being

made on a single thread. The index file used for all tests contains the information of 6 lectures for a total

of 96 key frames, 543 sketches and 8,732 connected components.

Using count of hits by K nearest neighbors

One example of a query using the method of counting hits by k nearest neighbors with its top 5

results can be found in figure 36. The total of nearest neighbors K was set to 1000. That amount of

nearest neighbors was selected to ensure that the search would limit the final number of nearest

neighbors retrieved based on the threshold of similarity instead of just the top K nearest neighbors. The

running time was only 3.52 seconds for this query with 10 connected components.

(a)

(b)

(c)

(d) (e)

(f)

Figure 36. Query executed using the counts of hits by K nearest neighbors: (a) The input query, (b) First
match: 78 hits, (c) Second match: 49 hits, (d) Third match: 43 hits, (e) Fourth match: 38 hits, (f) Fifth
match: 33 hits

62

 A second query is shown in figure 37. This one took 3.27 seconds in running time. As it can be

seen, some of the retrieve results can be considered related like figure 37.d, but others do not seem

related at all like for example figure 37.e. Note this last one was probably high ranked by the large

number of horizontal bars that it contains matching the horizontal bars on the query.

(a) (b)

(c)

(d)

 (e) (f)

Figure 37. Query executed using the counts of hits by K nearest neighbors: (a) The input query, (b) First
match: 29 hits, (c) Second match: 28 hits, (d) Third match: 27 hits, (e) Fourth match: 26 hits, (f) Fifth
match: 24 hits.

 Using recall of matched connected components

Figure 38 shows an example of the application of this method for the same query of figure 36

but this time the search is done with sketch versus key frame matching. The time required to execute

this query was 5.88 seconds. Since a single sketch can be included in multiple key frames, 2 out of 3 of

the top 7 best matches are excluded here because all of them contained the query sketch. Additional

coloring is added to visualize the connected components being matched. Note that since there are no

structural restrictions for the matches, the system will retrieve key frames as long as they contain many

of the connected components found in the query independently of the positions at which they are

located resulting on many matches that at first glance seem to be unrelated.

63

(a)

(b)

(c)

(d)

(e)

(f)

Figure 38. Results for Sketch versus Key Frame matching using the Recall of matched connected
components: (a) Input Query, (b) Top 1 match: 100% recall (contains the query), (c) Top 4 match: 100%
recall, (d) Top 5 match: 100% recall, (e) Top 6 match: 100% recall, (f) Top 7 match: 100% recall.

 A second query is shown in figure 39. This second query took 5.84 seconds. Again, 4 out of the

top 5 matches are not present here as all of them contained the input query. Similarly to the first query

shown, most of the results seem to be unrelated because connected components are being matched

without spatial restrictions.

64

(a)

(b)

(c)

(d)

(e)

(f)

Figure 39. Results for Sketch versus Key Frame matching using the Recall of matched connected
components: (a) Input Query, (b) Top 1 match: 100% recall (contains the query), (c) Top 6 match: 90%
recall, (d) Top 7 match: 90% recall, (e) Top 8 match: 90% recall, (f) Top 9 match: 90% recall.

 Using F-Measure and the assignment problem

Figure 40 contains an example of a query using the F-Measure. It took 3 minutes and 7 seconds

to complete this query which is 37 times the time that Recall method required for matching the same

sketch versus complete key frames. The average time required per single comparison is usually small,

but the problem is the complexity of the assignment algorithm which makes it take several seconds on

certain sketches with a high number of connected components.

65

(a)

(b)

(c)

(d)

(e) (f)

Figure 40. Results of a query using the F-Measure of matched connected components: (a) The input
query, (b) Match #1, F-Measure: 1.0, (c) Match #2, F-Measure: 0.58, (d) Match #3, F-Measure: 0.58,
(e) Match #4, F-Measure: 0.52, (f) Match #5, F-Measure: 0.51.

 The results obtained by the F-Measure on the query shown in figure 40 reflect that forcing the

system matches to be one-to-one is good. However, since no structural restrictions are being applied to

these matches, some regions can be matched with a high F-score as long as they share many connected

components independently of their structure. Another query is show in figure 41 which took 3.11

minutes to complete. The fact that returned regions are also smaller than using the previous

measurements is thanks to the fact that F-measure considers precision and recall at the same time.

(a)

 (b)

(c)

(d)

(e)

(f)

Figure 41. Results of a query using the F-Measure of matched connected components: (a) The input
query, (b) Match #1, F-Measure: 1.0, (c) Match #2, F-Measure: 0.56, (d) Match #3, F-Measure: 0.52,
(e) Match #4, F-Measure: 0.47, (f) Match #5, F-Measure: 0.44.

66

 Using SURF

Figure 42 shows some results for a query using the recall of the SURF matches. It took 9.95

seconds to run this query and the results are not acceptable.

(a) (b) (c)

(d) (e) (f)

Figure 42. Example of a query using SURF: (a) Input Query, (b) Match #1, Recall: 100%, (c) Match #1,
Recall: 100%, (d) Match #1, Recall: 100%, (e) Match #1, Recall: 100%, (f) Match #1, Recall: 100%.

A second query is shown in figure 43. This one took 13.10 seconds and results are also bad.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 43. Example of a query using SURF: (a) Input Query, (b) Match #1, Recall: 100%, (c) Match #1,
Recall: 100%, (d) Match #1, Recall: 100%, (e) Match #1, Recall: 100%, (f) Match #1, Recall: 100%.

67

Using Recall of matched pairs on neighbors graphs

Some results using this method can be seen on figure 44. The running time required for this

matching was 17.36 seconds.

(a) (b) (C)

(d)

(e)

(f)

Figure 44. Query executed using the recall of matched pairs on neighbor graphs: (a) Input query, (b)
Match #1, Recall = 100%, (c) Match #2, Recall = 63%, (d) Match #3, Recall = 45%, (e) Match #4, Recall =
45%, (f) Match #5, Recall = 45%.

68

It is worth to mention that the input query used for the different tests to compare all methods is

actually hard to match in terms of meaning as it simply represents a matrix. The results of the recall of

matched pairs on neighbor graphs can be considered the best because the images retrieved by the

system were matrices as well, but more important matrices that contains combinations of the same

elements most of the time with the same arrangement as for example some matrices that also contain

zeros on the right side.

Another example of this method applied is shown in figure 45. This time the query simply

contains the notation for three vectors. Note that all the top matches contain vectors, and even if they

have different arrangements, they can be considered as valid matches because in most of the cases they

even have the same sub-indices for the vectors.

(a) (b)

(c)

(d)

(e)

(f)

Figure 45. Query executed using the recall of matched pairs on neighbor graph: (a) Input Query, (b)
Match #1, Recall: 100%, (c) Match #2, Recall: 66%, (d) Match #3, Recall: 66%, (e) Match #4, Recall: 55%,
(f) Match #5, Recall: 55%.

Currently there are many errors in the matching process specially pairs of edges that should

have not been matched and others that could have been matched and they were not. Also, the method

is very sensible to cases where touching symbols become a single connected component and therefore

something that should have been matched as a pair now can only match be matched as a single

connected component. The confusion errors can be removed or mitigated with further refinement of

the parameters for the matching of pairs. Also, additional features that describe the pair as a single

connected component could help to refine that matching or even allow matching with touching symbols

that became a single connected component. However, even with those current limitations, the system

achieves acceptable results for many queries making it the most promising method of all the methods

tested so far, and also a good start for future work.

69

7. Discussion

Five different methods to measure the similarity between queries and candidate regions were

implemented and tested. Some of them produce meaningful results while the others not always

produce meaningful results. The most naïve method, the count of hits of nearest neighbors show

reasonable results considering the simplicity of the method, however there were more meaningful

sketches on the index that other methods retrieved on their top 5 matches. The fact that the highly

rated regions on the count of hits of nearest neighbors are usually regions that contain many copies of

elements that are part of the query reflect that allowing one element from the query to match multiple

elements on the candidate regions is not a good idea.

The second method, the recall of matched connected components, showed more reasonable

results than the previous method. The fact that one element in the query counts for only one hit per

candidate region greatly affected the weighting system. In the other hand, the results shown that

measuring similarity only in terms of the components from the query that were matched resulted in

many regions with very similar scores. For example, the top 5 results for the first query show on figure

38 got a 100% of recall which means that since all of them contained a matching element per each

element on the query they got equally ranked, and that also means that the final order on which they

were listed was actually defined by the order on which they were matched, but all of them got the same

score and none was considered a better match than the others. From the perspective of the user not all

of them are good matches, if any of them can be considered a good match. The total number of

additional elements present on the sketches retrieved is one of the first elements that a human would

use to give a lower rating to some of these best matches.

The third method greatly improved the results by taking into account not only the recall but also

the precision using the combination of both through the F-Measure. This, however, was done at the

expense of using the Hungarian method to solve the assignment problem to make the matches of

connected components unique. This algorithm has a high complexity and results on non-scalable

running times if the number of connected components of a region is above 100 connected components.

The effect of using the F-Measure is that when two sketches have the same recall, they will be ranked by

highest precision which means that the system will prefer matches of about the same size of the query

or in general containing only a few additional unmatched elements. Probably, using a less optimistic

assignment of matches would result in much faster running times at the expense of losing some

accuracy for a few queries that will count less real matches than the optimal number of matches that

can be found using the Hungarian method. In the other hand, the best matches are still unrestricted in

terms of structure of the query, and for that reason the results with this method will never be as good as

the results obtained by methods that consider structure on the similarity measurement.

The method that applies SURF for matching of regions seems to be the most helpless of all

methods tested. The problem is that the SURF were made to match key points and the best matches for

these key points are not always real matches. In fact, the number of bad matches is usually very high

making the recall of good matches a bad measurement for similarity. Also, these features were designed

70

to match objects on images even if they are rotated which means that it will produce many matches of

key points that seem to be the rotated version of something from the query, but for the purpose of

math retrieval they do not represent a good match. For example, horizontal lines can be matched with

vertical lines using SURF, but in the context of math the orientation of a line gives it a specific meaning.

The last method tested, recall of matched pairs on graphs of neighbors, is the one that produced

the most satisfactory results, and this is because it applies a more restricted level of matching by

matching elements in pairs. The orientation of the line connecting the centers of the bounding boxes of

two connected components in a sketch is being used to filter possible matches which means that even if

a candidate region and a query contain the same connected components, but not a single pair is arrange

the same way in the two regions, then it is possible that the total of pairs matched becomes 0 and such

region would not be retrieved. Note that the example on figure 45 is a query containing notation of

three vectors, and the top 5 results only contain regions that had vector notation on them, and these

did not necessarily had the vector notation arranged in the same way, but because most of the pairs of

elements of the vector notation were matched independently, then these regions were considered the

best matches. In cases like vector notation, where specific pairs have a meaning by themselves,

matching pairs as if they were single units will produce better matches than other methods that do not

consider structure at all.

71

8. Conclusions

Extracting information from videos and then making this information available for retrieval can

be a challenging task prone to errors at many steps of the process. Noise is a common factor on all steps

and therefore special considerations have to be taken on every case. The procedures used for extraction

of the information from its raw sources need to be very robust to work for most of the cases even for

the noisiest ones. Also, variation is another important element that must be always considered in order

to produce these robust methods. For example, on the current application two different methods for

visual alignment were implemented, the first one worked fine for the first half of the dataset, but after

the second half of the videos was introduced, the method stopped working correctly. A second more

robust method for alignment was introduced which accounted for higher levels of variation. If such

levels of variation had been considered from the very beginning, probably the first method would have

never been used and the second method would had to come first. However, it is usually hard to visualize

all possible kinds of noise and variations that come with the data from the very beginning and for that

reason sometimes is better to create an initial naïve implementation that works for a few cases, and

progressively increase its robustness as soon as variations and noise are identified.

After all information has been extracted, the method employed for indexation is really

important because while some methods require more time in the indexation process, they can also

speed up the retrieval process by allowing faster matching. The index is also dependent on the method

selected for matching as different methods would require different elements to be pre computed and

available at the time of retrieval. As long as new methods for similarity measurements are tested, the

structure for the index cannot be considered to be final.

Many researchers have identified something that they have called the semantic gap [16] which

in the current application means the difference between the best matches as defined by the system in

terms of features and the best matches as defined by the user in terms of the meaning of the content

matched. This is one gap that cannot be closed unless the system becomes smart enough to understand

what the user is expecting to find with the current query. Of course, to make the system to understand

human semantics behind a query is something that would not happen even after many years of

improvements of the system.

In the other hand, different matching procedure can make the semantic gap larger or smaller

depending on the level of the features of the query being considered by the system. The different

features that can be extracted from a region of content can be considered as low level or high level

based on what they describe. An example of a low level feature in this context would be the features

used to match individual connected components, while something on a higher level could be the actual

structure of a math expression. At the highest level we could say that a given query represents one

specific topic in math, and as long as the system is not able to understand this kind of very high-level

relationships, it is impossible to achieve the highest accuracy for an information retrieval system like the

one presented on this report.

72

Future work

Different task have been identified as open for further improvement on the developed system.

The most obvious one could be the retrieval task as the system can improve in terms of running time

and quality of the results. More sophisticated methods for matching of sketches need to be tested, and

just as it was found that restrained matching is better than unrestrained matching, the new methods

have to consider additional restrictions that ensure more meaningful matches. In the last method tested

for retrieval, the recall of matched pairs on neighbor graphs, it might be possible to achieve better

results if chains of matched edges are forced instead of accepting the first matches of each edge as the

best match. A candidate region with large chains of edges matched can be considered much related to

the query. For example, two candidates can have the same measurement for recall of matched pairs,

but if one of them has larger chains of matched pairs than the other one then it should be considered a

better match. Also, while the current features are able to match similar shapes, these could be modified

or replaced in order to get higher accuracy in matching and/or faster comparisons that reduce the

execution time of the queries. In addition, it was noticed that with the exception of the method of

counting hits, the measurement of distance between a query and a candidate region is independent of

the measurement of distance for other candidate regions, and therefore these measurements could be

executed in parallel to reduce the total time required to match a query against the entire database.

Other tasks that need to become more robust are the tasks that handle noise because

independently of the method used for matching, the retrieval results will have limited improvement if

the presence of noise is not reduced. For example, the additional connected components on extracted

regions could not be removed using the proposed method because of the noise on the Mimio video, but

a different procedure could be able to remove it even if the Mimio video is noisy. For that purpose, an

interesting change could be to implement the detection of content changes using the main video

instead of the auxiliary video. Also, the problem of the touching symbols that become single connected

components need to be solved in the future because these will affect any possible method used for

retrieval that assumes that symbols are separated connected components.

Finally, the indexation task has to be modified in the feature to improve the times required for

matching. The current index implementation is just a basic storage of all pre computed features, key

frames and neighbor graphs, but no special structures that could improve the matching speed were

implemented because of time restrictions and also because the current dataset is relatively small.

However, in the future these special structures have to be implemented because the time required to

execute a query will grow with the dataset if the index is kept the way it is now.

73

9. References

1. Liwicki, M.; Bunke, H.. Recognition of Whiteboard Notes: Online, Offline and Combination,

Singapore: World Scientific, 2008. Print.

2. Calic, J.; Izquierdo, E.; "Efficient key-frame extraction and video analysis" Information

Technology: Coding and Computing, 2002. Proceedings. International Conference on, pp. 28- 33,

8-10 April 2002.

3. Mohanta, P.P.; Saha, S.K.; Chanda, B.; "A Novel Key-Frame Detection Technique Using Statistical

Run Test and Majority Voting," Computer Vision, Graphics & Image Processing, 2008. ICVGIP '08.

Sixth Indian Conference on, pp.244-250, 16-19 Dec. 2008.

4. Zhao Guang-sheng; "A Novel Approach for Shot Boundary Detection and Key Frames Extraction"

MultiMedia and Information Technology, 2008. MMIT '08. International Conference on, pp.221-

224, 30-31 Dec. 2008.

5. Min, H.; Huazhong, S.; Jing, J.; "An algorithm of key-frame extraction based on adaptive

threshold detection of multi-features" Test and Measurement, 2009. ICTM '09. International

Conference on, vol.1, pp.149-152, 5-6 Dec. 2009

6. Adcock, J.; Cooper, M.; Denoue, L; Pirsiavash, H.; Rowe, L; “TalkMiner: a lecture webcast search

engine” Proceedings of the international conference on Multimedia (MM '10). ACM, New York,

NY, USA, pp. 241-250.

7. Golovchinsky, G; Carter, S; Biehl, J; “Beyond the Drawing Board: Toward More Effective Use of

Whiteboard Content”. arXiv preprint arXiv:0911.0039. 2009.

http://arxiv.org/ftp/arxiv/papers/0911/0911.0039.pdf

8. Parparita, M.; Rusinkiewicz, S.; “Thor: Efficient whiteboard capture and indexing,” Princeton

University, Tech. Rep., 2004.

9. He, LW.; Liu, Z; Zhang, Z.; "Why take notes? Use the whiteboard capture system," Acoustics,

Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International

Conference on, vol.5, pp. 776-785, 6-10 April 2003.

10. Arjunan, R.V.; Kumar, V.V.; "Image Classification in CBIR Systems with Color Histogram Features"

Advances in Recent Technologies in Communication and Computing, 2009. ARTCom '09.

International Conference on, pp.593-595, 27-28 Oct. 2009.

11. Chiu, CY; Lin, HC; Yang, SN; "A fuzzy logic CBIR system" Fuzzy Systems, 2003. FUZZ '03. The 12th

IEEE International Conference on, vol.2, pp. 1171- 1176, 25-28 May 2003.

12. Lowe, DG.; “Distinctive Image Features from Scale-Invariant Keypoints” International Journal of

Computer Vision, Volume 60, Issue 2, pp. 91-110, Nov. 2004.

13. Wangming, X; Jin, W; Xinhai, L; Lei, Z; Gang, S; "Application of Image SIFT Features to the

Context of CBIR" Computer Science and Software Engineering, 2008 International Conference on,

vol.4, pp.552-555, 12-14 Dec. 2008.

14. Carson, C.; Belongie, S.; Greenspan, H.; Malik, J.; "Region-based image querying" Content-Based

Access of Image and Video Libraries, 1997. Proceedings. IEEE Workshop on, pp.42-49, 20-20 June

1997.

http://arxiv.org/ftp/arxiv/papers/0911/0911.0039.pdf

74

15. Jin, C.; Yang, C; “Integrating hierarchical feature selection and classifier training for multi-label

image annotation” Research and development in Information Retrieval, Proceedings of the 34th

international ACM SIGIR conference on, (SIGIR '11). 2011. ACM, New York, NY, USA, pp. 515-

524.

16. Datta, R; Joshi, D; Li, J; Wang JZ; “Image retrieval: Ideas, influences, and trends of the new age”.

ACM Computing Surveys. Vol. 40, Issue 2, Article 5. 60 pages. May 2008.

17. Cesarini, F.; Lastri, M.; Marinai, S.; Soda, G.; "Encoding of modified X-Y trees for document

classification," Document Analysis and Recognition, 2001. Proceedings. Sixth International

Conference on, pp.1131-1136, 2001

18. Gordo, A.; Valveny, E.; "A Rotation Invariant Page Layout Descriptor for Document Classification

and Retrieval," Document Analysis and Recognition, 2009. ICDAR '09. 10th International

Conference on, pp.481-485, 26-29 July 2009.

19. Barbu, E; Héroux, P; Adam, S; Trupin, Ér; “Using Bags of Symbols for Automatic Indexing of

Graphical Document Image Databases,” Graphics Recognition. Ten Years Review and Future

Perspectives. pp 195-205, 2006.

20. Hu, J; Kashi, R.; Wilfong, G.; "Document image layout comparison and classification" Document

Analysis and Recognition, 1999. ICDAR '99. Proceedings of the Fifth International Conference on,

pp.285-288, 20-22 Sep 1999.

21. Van Beusekom, J.; Keysers, D.; Shafait, F.; Breuel, T.M.; "Distance measures for layout-based

document image retrieval," Document Image Analysis for Libraries, 2006. DIAL '06. Second

International Conference on, pp.11 pp.-242, 27-28 April 2006.

22. Rath, T.M.; Manmatha, R.; "Word image matching using dynamic time warping," Computer

Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,

vol.2, pp. 521-527, 18-20 June 2003.

23. Li, L; Lu, S; Tan, CL; "A Fast Keyword-Spotting Technique," Document Analysis and Recognition,

2007. ICDAR 2007. Ninth International Conference on, vol.1, pp.68-72, 23-26 Sept. 2007.

24. Lu, S; Li, L; Chew Lim Tan; "Document Image Retrieval through Word Shape Coding," Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol.30, no.11, pp.1913-1918, Nov. 2008.

25. Marinai, S; Miotti, B; Soda, G; “Digital Libraries and Document Image Retrieval Techniques: A

Survey,” Learning Structure and Schemas from Documents, pp. 181-204, 2011.

26. Kacem, A.; Belaïd, A.; Ben Ahmed, M.; “Automatic extraction of printed mathematical formulas

using fuzzy logic and propagation of context”, International Journal on Document Analysis and

Recognition, vol. 4, issue 2, pp. 97-108, Dec. 2001.

27. Drake, D.M.; Baird, H.S.; "Distinguishing mathematics notation from English text using

computational geometry," Document Analysis and Recognition, 2005. Proceedings. Eighth

International Conference on, vol. 2, pp.1270-1274, Aug. 31 2005-Sept. 1 2005.

28. Garain, U.; "Identification of Mathematical Expressions in Document Images," Document

Analysis and Recognition, 2009. ICDAR '09. 10th International Conference on, pp.1340-1344, 26-

29 July 2009

29. Ha, J; Haralick, R.M.; Phillips, I.T.; "Understanding mathematical expressions from document

images," Document Analysis and Recognition, 1995, Proceedings of the Third International

Conference on, vol.2, pp.956-959, 14-16 Aug 1995.

75

30. Ashida, K.; Okamoto, M.; Imai, H.; Nakatsuka, T.; "Performance evaluation of a mathematical

formula recognition system with a large scale of printed formula images," Document Image

Analysis for Libraries, 2006. DIAL '06. Second International Conference on, pp. 12, 27-28 April

2006.

31. Zanibbi, R.; Yu, L.; "Math Spotting: Retrieving Math in Technical Documents Using Handwritten

Query Images," Document Analysis and Recognition (ICDAR), 2011 International Conference on,

pp.446-451, 18-21 Sept. 2011.

32. Zanibbi, R.; Blostein, D.; “Recognition and Retrieval of Mathematical Expressions”, International

Journal on Document Analysis and Recognition (IJDAR), Vol. 15, Issue 4, pp. 331-357, Dec. 2012.

33. Ouyang, T.Y.; Davis, R.; “Recognition of Hand Drawn Chemical Diagrams”, Proceedings of AAAI,

pp. 846-851, 2007.

34. Jiang, Y.; Tian, F.; Zhang, X.; Dai, G.; Wang, H.; “Understanding, Manipulating and Searching

Hand-Drawn Concept Maps”, ACM Transactions on Intelligent Systems and Technology, Vol. 3,

No. 1, Article 11. 21 pages, Oct. 2011.

35. Sciascio, E.D.; Donini, F.M.; Mongiello, M.; “Spatial layout representation for query-by-sketch

content-based image retrieval”, Pattern Recognition Letters, Vol. 23, Issue 13, pp. 1599-1612,

Nov. 2002.

36. Leung, W.H.; Chen, T; “Hierarchical matching for retrieval of hand-drawn sketches,” Multimedia

and Expo, 2003. ICME'03. Proceedings. 2003 International Conference on, Vol. 2, pp. II-29. July

2003.

37. Leung, H.; “Representations, Feature Extraction, Matching and Relevance Feedback for Sketch

Retrieval”. Ph.D. Dissertation, Carnegie Mellon University, June 2003.

38. Kuhn, H. W., “The Hungarian Method for the Assignment Problem”, Naval Research Logistics

Quarterly, Vol. 2, pp. 83-97. 1955.

39. Cordella, L.P.; Foggia, P.; Sansone, C.; Vento, M.; "A (sub)graph isomorphism algorithm for

matching large graphs," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.26,

no.10, pp.1367-1372, Oct. 2004.

40. Luqman, M.M.; Ramel, J.; Llados, J.; Brouard, T., "Subgraph Spotting through Explicit Graph

Embedding: An Application to Content Spotting in Graphic Document Images," Document

Analysis and Recognition (ICDAR), 2011 International Conference on, pp.870-874, 18-21 Sept.

2011.

41. Luqman, M. M; Ramel, J.Y; Lladós, J; Brouard, T.; “Fuzzy multilevel graph embedding,” Pattern

Recognition, Vol. 46, Issue 2, pp. 551-565. Feb. 2013.

42. Fonseca, M.J.; Ferreira, A.; Jorge, J.A.; “Sketch-based retrieval of complex drawings using

hierarchical topology and geometry,” Computer-Aided Design, Vol. 41, Issue 12, pp. 1067-1081,

Dec. 2009.

43. Sousa, P.; Fonseca, M.J; “Sketch-based retrieval of drawings using spatial proximity,” Journal of

Visual Languages & Computing, Vol. 21, Issue 2, pp. 69-80, April 2010.

44. Fonseca, M.J; Ferreira, A.; Jorge, J.A.; “Sketch-based Retrieval of Vector Drawings,” in Sketch-

based Interfaces and Modeling, London, United Kingdom: Springer, 2011, ch. 7, pp. 181–201.

76

45. Fonseca, J. M; Jorge, A.J.; “Towards Content-based retrieval of technical drawings through high-

dimensional indexing”, Procedings of the 1st Ibero-American Symposium in Computer Graphics

(SIACG'02), Guimaraes, Portugal, pp. 263-270, July 2002.

46. Liang, S.; Sun, Z.X.; Li, B.; Feng, G.H; "Effective sketch retrieval based on its contents," Machine

Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on, vol.9, pp.

5266-5272, 18-21 Aug. 2005.

47. Liang, S.; Sun, Z.X.; Li, B.; "Sketch retrieval based on spatial relations," Computer Graphics,

Imaging and Vision: New Trends, 2005. International Conference on, pp.24-29, 26-29 July 2005.

48. Liang, S; Sun, Z.X.; “Sketch retrieval and relevance feedback with biased SVM classification,”

Pattern Recognition Letters, Vol. 29, Issue 12, pp. 1733-1741. Sept. 2008.

49. Cao, Y.; Wang, C.; Zhang, L.; Zhang, L.; "Edgel index for large-scale sketch-based image search,"

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 761,768, 20-25

June 2011.

50. Liwicki, M.; Bunke, H.; “Feature selection for HMM and BLSTM based handwriting recognition of

whiteboard notes”, International Journal of Pattern Recognition and Artificial Intelligence, vol.

23, no. 5, pp. 907–923, 2009.

51. Eikvil, L.; “Optical Character Recognition”. Norwegian Computing Center, Oslo, Norway. 1993.
52. Yang, M.; Kpalma, K.; Ronsin, J.; “A survey of shape feature extraction techniques,” Pattern

Recognition, pp. 43-90, 2008.
53. Szeliski, R.;. “Image alignment and stitching: a tutorial”, Foundations and Trends in Computer

Graphics. Vol. 2, Issue 1, pp. 1-104. January 2006
54. Bay, H.; Tuytelaars, T.; Van Gool, L.; “SURF: Speeded Up Robust Features”, 9th European

Conference on Computer vision, pp. 404-417, may 7-13, 2006.
55. Fischler, M; Bolles, R; “Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography”. Communications of the ACM. Vol.
24, Issue 6, pp. 381-395, June 1981.

