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Abstract

Video CAPTCHA improves the usability while reducing the attack success rate compared to a con-
ventional text-based CAPTCHA, however remains vulnerable to OCR attacks. Thus, we proposed to
use inpainting algorithms to remove the contained text in the video frames, so that the OCR success rate
can be reduced without introducing unwanted artifacts that displease the endusers. We implemented
Bertalmio’s Image Inpainting for our particular case of text inpainting, and were managed to prove
through OCR attacks on inpainted text-containing image that inpainting can potentially help to improve
the security of Video CAPTCHA.
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1 Introduction

1.1 Objectives

The motivation of this senior project is to improve the reliability of the current Video CAPTCHA by
implementing an image inpainting algorithm to eliminate visible text within the video, thus reduce the
risk of being bypassed using OCR attacks while avoiding visual artifacts to be shown to the endusers. We
completed the following work to prototype a pipeline that we take in images or decomposed video frames
that contain text, inpaint the specified text region, and eventually evaluate the inpainting performance.

1. Investigated four major inpainting algorithms, and chose Bertalmio’s Image Inpainting [1] for our
inpainting step

2. Concluded a proper stop point of the iteration and a optimal dilation size for the text region mask for
our particular case of inpainting, because those are not specified in the Bertaalmio’s paper [1]

3. Developed framework to pre-process the inpainted images for the OCR attack

4. OCR attacked the pre-processed images and measured the attack success rate using the string edit
distance.

5. Assessed the inpainting through perceptual appearance of the inapinted image.

1.2 Conventional artwork inpainting

In art world, the word ”inpainting” referred to the process of precise restoring of the lost or damaged part
of paintings. This technique has been widely used by skilled art conservators to recover valuable paintings
Figure 1. A typical inpainting process, in both traditional and modern sense, has the goal of restoring the
unity of the image.

Figure 1: An inpainting example shown in [8]

As described in [8], a typical workflow of inpainting is consisted of the following steps:

1. Defining the inpainting region

2. Since structure near the boundary needs to be propagating into the area, contour lines intercept at the
boundary are extended into the region.

3. Different areas inside the inpainting region segmented by the contour lines are filled with the corre-
sponding colors matched at the boundary.

4. Textural details are extended into the region.
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1.3 Digital Image inpainting

Bertalmio’s [1] Imaging Inpainting is arguably the first paper on digital image inpainting. The algorithm
proposed in the paper exactly follows the fundamental inpainting principles stated above.

Given the inpainting region and boundary of the inpainting region, the goal of such algorithm is to
prolong the isophote lines (the contour lines of different gray-scale level) arriving at the boundary, while
maintaining the angle of arrival (Figure 2).

Figure 2: Contour line propagation process

Therefore, this algorithm proceeds drawing from the boundary inward in this way, while curving the
prolongation lines progressively to prevent them from crossing each other. [1] A sample inpainting process
from the paper is shown in Figure 3.

Figure 3: Inpainting process shown in Bertalmio’s paper [1]

1.4 CAPTCHA

CAPTCHA, or Completely Automated Public Turing test to tell Computers and Humans Apart, is a human-
easy and AI-hard test that widely used nowadays to avoid machine generated spams or attacks to online
services while letting human users to pass through.

The most common use cases of CAPTCHA can be preventing bots registering thousands of accounts at
free email services, avoiding cheating at online polls or preventing a login portal from dictionary attacks.

1.4.1 Text-based CAPTCHA

The most commonly used CAPTCHAs are the text-based ones shown in Figure 4, where the users are
prompted to type the words that are contained in the figure. The words are in a twisted fashion, so that
it is not easy for the computer to perform a OCR, but it should be easy for human to recognize. However,
the two major disadvantages about this method are low human success rate and the insecurity against OCR
attack.

1.4.2 Video CAPTCHA

To solve the problems conventional text-based CAPTCHAs have, Kluever and Zanibbi [9] developed a novel
video-based CAPTCHA method.

In this method, the system will take in a video clip from user-contributed video sites, i.e. YouTube1, then
ask the user to watch the clip and type in three keywords about the video. After the keywords are entered,
the system will then compare them with the keywords tagged on YouTube. If the result match, then the

1So far this application is for internal academic-purpose use, we have not started looking at copyright issues yet. But once
it goes public, this will be a important issue to concern.
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Figure 4: Text-based CAPTCHAs [18]

test is passed. This method efficiently increased the human success rate while reducing machine-attack pass
rate, because scene understanding is an easy task for humans, but a considerably difficult task for machines.

However, there are still potential problems of this method. The most obvious one as mentioned above
is that videos are very likely to contain not only the scene but also the text, which can be highly related
to the tagged keywords. The existence of text in the scene makes it possible for the computer to crack
the CAPTCHA by performing an OCR attack. In such case, the OCR attack might be even easier than
text-based CAPTCHA, because the text remains unprocessed. Therefore it is crucial that we can remove
the text sufficiently and naturally for a valid video CAPTCHA

Figure 5: Samples of video CAPTCHA, the right might lead to higher attack success rate due to the contained
text [15]
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Also this method brings the possibility of word frequency attack. For instant, keywords “music” and
“video” have much higher chance to appear [9] than other tags. Using these two keywords to attack gives
you higher probability to succeed. So we need to survey the keywords tagged on YouTube, and exclude those
words from the list of valid keywords.

2 Methodology

2.1 Inpainting Algorithms

We examined four inpainting algorithms which will be discussed in this section, including the Image Inpaint-
ing [1] and Simultaneous structure and texture image inpainting [2] by Bertalmio, et al, Region filling and
object removal by exemplar-based image inpainting [6] by Criminisi, et al, and Total Variation-based method
proposed by Chambolle [3].

2.1.1 Image Inpainting by Bertalmio et al [1].

We first implemented Bertalmio et al’s Image Inpainting [1]. This iterative algorithm is basically consisted
of two steps: Inpainting and Diffusion.

Inapinting Step
Given the nature of the manual inpainting procedures, Bertalmio, et al developed a iterative digital

inpainting algorithm that can be generally described below using [Equation 7]. Given a 2D greyscale image
I of size M ×N ,

In+1(i, j) = In(i, j) + ∆tInt (i, j) (1)

where (i, j) are the pixel coordinates, which needs to be inpainted within the inpainting regionΩ, In(i, j)
is the input image at each iteration and Int (i, j) is the update to the input image, and ∆t is the rate of
improvement. Therefore at each iteration, the output In+1(i, j) is the improved version of the input In(i, j).
Ideally at as n increases, the result is getting finer, to a certain n that the improvement is too small to be
noticed by a human observer, thus should be considered as the stopping point of the algorithm.

As stated in the previous section, we need to smoothly propagating information Ln(i, j) from outside

the inpainting region Ω into the region Ω across the inpainting boundary δΩ along the direction ~Nn(i, j), so
that

Int (i, j) = ~δLn(i, j) · ~Nn(i, j) (2)

where ~δLn(i, j) is a measure of the change in the information Ln(i, j).
To make to propagation smooth, Ln(i, j) should be a image smoothness estimator. Thus we can use the

discrete Laplacian shown in 3

Ln(i, j) = Inxx(i, j) + Inyy(i, j) (3)

where the subscripts represent the derivatives. Therefore, the change ~δLn(i, j) of the discrete Laplacian
Ln(i, j) is calculated using

~δLn(i, j) = (Ln(i+ 1; j)− Ln(i− 1, j), (Ln(i; j + 1)− Ln(i, j − 1), (4)

The direction ~Nn(i, j) is the key element is our propagating process, simply using the direction that is
perpendicular to δΩ can be problematic because as [Figure 6] shows, lines arriving at the boundary can be

falsely inpainted. Therefore, the isophotes direction is chosen since isophotes tend to align with ~N .
We use then a time varying estimation of the isophotes direction field suggested in the paper. For any

point (i,j) in the region, the discretized gradient vector ∇In(i, j) gives the direction of largest spatial change,
while its 90 degrees rotation∇⊥In(i, j) is the direction of smallest spatial, therefore is the isophotes direction.

So our field ~N then can be calculated by ~N(i, j, n) = ∇⊥In(i, j). We are using a time-varying estimation
that is coarse at the beginning but progressively achieves the desired continuity at δΩ, in stead of a fixed field
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Figure 6: Failure case of inpainting, if the inpainting is done along the direction that is perpendicular to the
isophote direction, as shown in [1]

~N(i, j) that is set at the beginning. We choose not to normalize our direction field as the paper suggested
to help ensure the numerical stability of the algorithm, the reasons of which are explained in [11], [14].

Hence the calculation of the isophotes direction becomes

~Nn(i, j, n)

| ~Nn(i, j, n)|
:=

−Iny (i, j), Inx (i, j)√
(Iny (i, j))2 + (Inx (i, j))2

(5)

To summarize, we estimate a variation of the smoothness, by using a discretization of the 2D Laplacian,
and project this variation into the isophotes direction, where the projection only affect pixels within the
region Ω. As a result, the discrete calculation of Int (i, j) becomes

Int (i, j) =

(
~δLn(i, j) ·

~Nn(i, j, n)

| ~Nn(i, j, n)|

)
(6)

Finally, we multiply it by a slope-limited version of the norm of the gradient of the image |∇In(i, j)|

Int (i, j) =

(
~δLn(i, j) ·

~Nn(i, j, n)

| ~Nn(i, j, n)|

)
|∇In(i, j)| (7)

We used the slope-limited version of the norm of the gradient of the image because a central differences
realization would turn the scheme unstable. So for each pixel, we calculate

|∇In(i, j, n)| =


√

(Inxbm)2 + (InxfM )2 + (Inybm)2 + (InyfM )2, when βn > 0√
(InxbM )2 + (Inxfm)2 + (InybM )2 + (Inyfm)2, whenβn < 0

where

βn(i, j) = ~δLn(i, j) ·
~Nn(i, j, n)

| ~Nn(i, j, n)|
(8)

The subindexes b and f denote backward and forward differences respectively, while the subindexes m
and M denote the minimum or maximum, respectively, between the derivative and zero.

Diffusion Step
To further propagate information into the region and ensure the smoothness of the propagation, a diffusion

step is suggested to be applied after each iteration of inpainting by the paper. Anisotropic diffusion is used
in order to achieve goal without losing sharpness in the reconstruction. The discrete anisotropic diffusion
can be described using the following equation.

dI

dt
(x, y, t) = gεκ(x, y, t)|∇I(x, y, t)| (9)

where(x,y) is the pixel coordinate in the δΩ, which is the dilation of Ω with a ball of radius ε
Implementation
We implemented this algorithm, we set the total iteration T = 3000, with inpainting iteration t = 17

and diffusion iteration d = 2. The inpainting results are shown below in Figure 7 and 8.
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(a) The original image (b) Marked inpainting region (c) Inpainting result

Figure 7: Result of the Bertalmio’s inpainting algorithm on damaged image

(a) The original image (b) Inpainting result

Figure 8: Result of the Bertalmio’s inpainting algorithm on text-imposed image

2.1.2 Simultaneous structure and texture image inpainting

Though performing well in most cases, a major disadvantage of the original Bertalmio’s method is that
the details can’t not be well preserved as we propagate information from outside the boundary δΩ into
the inpainting region Ω through iteratively filling and blurring process. A revised version of the original
inpainting algorithm are proposed by Bertalmio, et al. [2] later in 2003 titled Simultaneous Structure and
Texture Image Inpainting.

Decomposition
The key innovation of this algorithm is that it first decomposes the target image to two sub-images: a

structural sub-image and a textural sub-image. For the structural sub-image, the algorithm will treat the
inpainting task the same as the original algorithm, while for the textural sub-image, it uses texture synthesis
technique to directly duplicate the fine details from the surrounding region.

As we can see, the critical step in the new inpainting algorithm is the image decomposition. Bertalmio,
et al based their decomposition algorithm on Vese, et al’s texture modeling method descirbed in Modeling
Textures with Total Variation Minimization and Oscillating Patterns in Image Processing [16].

In this final project, we will focus on the optimization component of decomposition step in the image
inpainting algorithm mentioned above.

Let I : R2 → R be a given image I ∈ L2(R), we can decompse it into two sub-image: 1) structural part
that looks like the cartoon of the image u(x, y), 2) textural part v(x, y) that contains the fine detail of the
image. Then,

I(x, y) = u(x, y) + v(x, y) (10)

We can take the problem of reconstructing u from I as a minimization problem in the space of functions
of bounded variation, allowing for edges:

infu∈BV

[
F (u) =

∫
|∇u|+ λ||v||2L2 , I = u+ v

]
(11)
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where λ > 0 is a tuning parameter. The first term here in the enegy function is a regularizing term, and
the second term is afidelity term, so that we can remove noise and small details while keeping important
features and sharp deges.

The paper suggests that a small λ in the enegy function will remove the texture. Since the goal is
to extract both the u ∈ BV component (structural cartoon), and the v component (oscillating function
representing texture of noise) from I, the model then should be conducted using a different space of function.
The idea is that if (2) is used , then v will not just contain oscillations, but also undesired brightness deges.
The following definition is introduced:

Let G denote the Banach space consisting of all generalized function v(x, y) which can be written as

v(x, y) = ∂xg1(x, y) + ∂yg2(x, y), g1, g2 ∈ L∞(R2) (12)

induced by the norm ||I||∗ defined as the lower bound of all L∞ norms of the unction |g| where g = (g1, g2),
|g(x, y)| =

√
g1(x, y)2, g2(x, y)2 and where the infimum is computed over all decompositions (3) of I.

Therefore the now model becomes

infu∈BV

[
F (u) =

∫
|∇u|+ λ||v||∗, I = u+ v

]
(13)

The authors provided the solution of a variant of this model using only of simple partial differential
equations.

infu,g1,g2

[
Gp(u, g1, g2) =

∫
|∇u|+ λ

∫
|I − u− ∂xg1 − ∂yg2|2dxdy + µ

[∫ (√
(g21 + g22)

)p
dxdy

] 1
p

]
(14)

where λ, µ are tuning parameters, and p→. The first term ensures that u ∈ BV , the second term makes
I approximately equal to u+ div(g1, g2) while the third term is a penalty on the norm in G of v = div(g1, g2

For the p = 1 case used in the paper, the corresponding Euler-Lagrange equations are

u = I − ∂xg1 − ∂yg2 +
1

wλ
div

(
∇u
|∇u|

)
(15)

µ
g1√
g21 + g22

= 2λ

[
∂

∂x
(u− I) + ∂2xxg1 + ∂2xyg2

]
(16)

µ
g2√
g21 + g22

= 2λ

[
∂

∂y
(u− I) + ∂2xyg1 + ∂2yyg2

]
(17)

Inpainting and texture synthesis
Once the decomposition is finished, we then can inpaint the structural sub-image using the algorithm

proposed in Bertalmio et al’s original inpainting paper [1] and conduct texture synthesis for the textural
sub-image. The smiler patch searching and replacing process can be done by looking and comparing the
adjacent the patches outside the inpainting region Ω and replacing it with the corresponding patches at same
relative geometric location. The scheme is shown in Figure 9a, and an example result given in the paper is
shown in Figure 9b

2.1.3 Region filling and object removal by exemplar-based image inpainting

2.1.4 Inpainting by minimizing the total variation (TV)

Given the fact that the minimization procedures used in the other inpainting algorithms we examined are
brute force search based, we studied TV-based inpainting algorithm with the hope that it can increase the
efficiency of the inpainting, because TV minimization can be easily modeled as convex optimization problem.
We then can have a large variety of highly efficient convex optimization tools to choose from.

Definition
According to [5] and [17], for a real-valued continuous function f, defined on an interval [a, b] ∈ R, its

total variation on the interval of definition is a measure of the one-dimensional arc-length of the curve with
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(a) Texture synthesis process [2]

(b) top left: original input image; top right final inpaint-
ing result; middle left: decomposed strutral sub-image;
middle right: decomposed textural sub-image; bottom
left: inpainted structral sub-image; bottom right: texture-
synthesised textural sub-image [2]

Figure 9: Concept of texture synthesis process in [2] (left), and the sample inpainting result (right)

parametric equation. x → f(x), for x ∈ [a, b]. In the case of image processing, we can define the total
variation as the L1 norm of the magnitude of the gradient

Formulation of the problem
As proposed by Rudin et al [14], if we assume the noise or damages in the input signal (i.e. image) to be

sparse and excessive, then it tends to increase the total variation, as we expect the ideal signal to be smooth.
Therefore, we can remove the unwanted noise by reducing the total variation, while ensure that it deviates
from the original signal within a certain range. In this way, we can remove the unwanted detail while still
preserving important details such as edges.

Thus, for a input signal x, we can derive a de-noised signal s, when the total variation of the input signal
x is minimized:

s = min
x
||t(x)||TV (18)

such that

||b−Ax||2 ≤ ε (19)

where x is the calculated signal, t(x) is the transfomation that convert the 2-D image into 1-D signal,
|| · ||TV is the L1 norm of the magnitude of the gradient, b is the original signal with noised added, A is a
identifier for the target inpainting area.

Implementation
We can chose Douglas Rachford method [7] to solve the optimization problem, as it can optimize the

objective functions with the form of min
x∈R

f1(x) + f2(x)

We set or objective function as

min
x∈RN

f1(x) + f2(x) (20)
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where
f1 = ||t(x)||TV (21)

and

f2 = ic2(x) =

{
0, if ||Ax− b||2 ≤ ε
1, otherwise

(22)

Our designed variable is simply the signal x.
We used MATLAB convex optimization tool box UNLocBox to implement this inpainting algorithm.

Following the instruction of the toolbox manual [13], we define the objective function as above and the
proximate solvers required by the program as following:

prox(f1,γ)(z) = argmin
x

1

2
|x− z|22 + γ||z||TV (23)

prox(f2,γ)(z) = argmin
x

1

2
|x− z|22 + γiS(x) (24)

where iS(x) has the same piece wise definition as (22), according to the user manual, for the form
s = min

z
||x− z||22 s.t ||w · z||1 ≤ ε, the integrated proj B2 command for projection on B2-ball operator can be

used. We damaged 50% of pixels of the Lena grayscale image, and use the TV-based inpainting algorithm
to inpaint the image, and the result is shown below in Figure 10

(a) The original image without
overlaid noise

(b) 50% random noise damaged im-
age

(c) Inpainting result of the 50%
noise-damaged image

Figure 10: Result of the TV-based inpainting on gray-scale image

2.2 Implementing and modifying Bertalmio’s Image Inpainting

We chose to incorporate Bertalmio’s original image inpainting algorithm [1] to our text removal pipeline
because of the low complexity of the algorithm. More importantly, this algorithm deliver’s assumption of
distinguishable contour lines agrees with the fact that text in images or video frames of natural scenes or
artificially imposed to an image or video frames usually are of bold color on a smooth background (Figure 11).
As the original inpainting algorithm was not proposed for the purpose of text removal, certain modifications
have to be made to accommodate our need.

2.2.1 Number of total iteration

The original paper suggests 17 times inpainting followed by 2 times of diffusion in each loop to achieve a good
result, however, it doesn’t specify a certain number of total iterations or a stop point criterion. Figure 7c
shows the result of inpainting an aged photo with cracks, as was used in the paper, at 3000 times of total
inpainting iterations, which is quite visually satisfying. However, we noticed that after a certain number of
iteration, no changes seemed to be made to the image. Therefore, it is necessary for us to find a good timing
to stop the iteration.
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(a) Text in natural scene image (b) Artificially imposed text on a video frame

Figure 11: Samples of text seen in images or videos

To testify our hypothesis, we inpainted the text-imposed image, and printed out the image at each
iteration and plotted out the Mean Square Error (MSE) between the result at each iteration and original
images in Figure 12 and 13.

(a) Original (b) T=5 (c) T=10 (d) T=15

(e) T=20 (f) T=25 (g) T=30 (h) T=35

Figure 12: Samples of text seen in images or videos

The resulting image and the MSE curve did confirm us that the inpainting algorithm converges at a
certain point. To conclude a proper stop point, we inpainted randomly selected 109 images from the ICDAR
datasets with defined text inpainting region, and plotted out the MSE value as well as the difference in MSE
between the current iteration and previous iteration, and the results are shown in Figure 15

From Figure 15c, we set MSE difference of 0.1× 10−4 as the stop criterion of the inpainting procedure.
Also, since most of the images converge before 1500th iteration, we set our maximum iteration to 1500.

2.2.2 Text mask Size

Another important factor we found that affects the final inpainting results greatly is the size of the defined
inpainting region (text mask in our case). For a small mask, it’s possible that the mask is smaller then the
actual region, resulting in the final inpainted image containing obvious rings of the original texts, making
it vulnerable to OCR attack (Figure ??). On the other hand, if the dilation is too big, though the texts
are fully covered, it’s hard for the inpainting algorithm to propagate information into the inpainting region,
thus making the results contain considerable amount of visual artifacts in the inpainting region, as well as
making it harder for the algorithm to converge.

Therefore, we ran the inpainting algorithm on different text mask size to find the optimal dilation size.
We dilated the masks with disk of radius of 1 pixel, 5 pixels, and 1 percent, 5 percent of the biggest bounding
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Figure 13: MSE of the red channel of the inapinting text-imposed image at each iteration

(a) Image inpainted with a too-
small inpainting region
(1-pixel dilation)

(b) Image inpainted with a too-big
inpainting region
(5-percent max width of bounding
box dilation)

(c) Image inpainted with a properly
sized inpainting region
(1-percent max width of bounding
box dilation)

Figure 14: Image inpainted with different size of defined inpainting region

box within the image, and inpainted 50 randomly selected ICDAR testing images with those differently sized
masks. We visually observed the results and found the 1 percent width of bounding box dilation delivered
the best result. Therefore, we chose this size as our mask size for our future experiments and evaluations.

2.2.3 Color Images

Since most of our input images are color image while our algorithm works with grayscale images, we simply
decompose the color images into red, green and blue channels and perform the inapinting on each channel.
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Figure 15: MSE values at each iteration as well as the difference in MSE between the current iteration and
previous iteration of the randomly selected 109 ICDAR testing image
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3 Experimental Results and Evaluation

3.1 Pipeline

As shown in Figure 16, our framework of text inpainting and evaluation is consisted of the following steps.

Text-­‐containing	
  
images	
   Inpain1ng	
   Inpainted	
  image	
  

pre-­‐processing	
   OCR	
  a7ack	
   Evalua1on	
  

Figure 16: Pipeline of our proposed system

3.1.1 Testing datasets

The testing datasets we used for our experiments were the ICDAR robust reading and text locating testing
datasets2, which contain 251 images of natural scenes that contains in total 517 lines of text (five images
without text were also included) We resize the oversized image (longest size > 480 pixels) to 480p resolution
which resembles the resolution of a typical online video. The text regions are provided by [15] and dilated
with a disk that has radius of 1 % of width the of the biggest text bounding box within in the image.
(Figure 17)

(a) Image for inpainting (b) Dilated text region mask

Figure 17: Sample image from the ICDAR datasets and dilated text mask

3.1.2 Inpainting algorithm

Our pipeline starts with a text-containing image and the defined corresponding text regions. We inpaint the
text region with the modified Bertalmio’s algorithm demonstrated above, where the algorithm stops when
the difference in MSE is smaller than 0.1× 10−4 after 1500 iterations.

3.1.3 Pre-processing of the inpainted image

The following pre-processing procedures were applied to the inpainted images to ensure OCR success rate.
A sample pre-processing result is shown in Figure 18

1. Extracting the text regions of the image to smaller images

2http://algoval.essex.ac.uk/icdar/Datasets.html
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2. Mean shift filtering to reduce the noise and segment the text out [4]

3. Convert the segmented color images to gray-scale

4. Image binarization using Otsu’s method [12]

Figure 18: Sample pre-processing result, left column: original image, right column from top to bottom:
extracted text region, mean shifted image, gray-scale image, Otsu’s method binarization

3.1.4 OCR attacks

Finally, we ran OCR attacks on the pre-processed images. We chose the Tesseract OCR engine3 for its better
performance among the open source OCR engines. For the parameters of the OCR, we set the language to
English and page segmentation to treat the image as a single text line.

3.1.5 Evaluation

We used Levenshtein distance (a.k.a string edit distance)[10] as the metric for OCR attack assessment. Since
by definition, the Levenshtein distance is the minimum number of single-character edits between two strings,
greater Levenshtein distance between the inpainted image and the original image represents a lower OCR
success rate, thus a better performance of the inpainting algorithm

3.2 Results

In Figure 19, we showed five samples of inpainting results, and the corresponding OCR results, including
the recognized text and the Levenshtein with and without inapinting are shown in Table 1.

Table 1: Sample OCR Attack Results

Inpainted Image Text Ground Truth OCR Before Inapinting Distance Before OCR After Distance After
Example 1 ARTIFICIAL ARTIFICIAL 0 - 10
Example 2 No mobile No mobile 0 - 9
Example 3 Panasonic Panasonic 0 - 9
Example 4 Need a Bolly? Need a Bolly? 0 - 14
Example 5 WHSmith WHSmith 0 n HSmith 4

As one can see in Figure 19 and Table 1, before the inpainting, the OCR attack rate is fairly high,
but after the inpainting, the characters are barely recognizable, increasing the Levenshtein distance to the
character length of text line.

Plotting out the histograms of the Levenshtein distance between the ground truth text and OCR results
with and without inpainting for all 517 text lines in the 250 testing images in Figure 22 and 23, we can

3https://code.google.com/p/tesseract-ocr/
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clearly see that inpainting successfully reduced the OCR attack success rate from 38.29% to 3.8%, if we
count exact match between OCR result and ground truth as a successful attack.

To quantitatively evaluate the visual impact of the inpainting algorithm, we manually overlaid text
on the image and perform inpainting over the text region. We then compared the result image with the
original image using Peak Signal-to-Noise Ratio(PSNR), and Perceptual Image Difference [19] utility under
the setting of 2.2 display Gamma correction, 100 cd/m2, and 45 degree visual angle. The result are shown
in Figure 21. The PSNR of the inpainted image compared to the original image is 27.56dB, and the PDIFF
utility indicated that 53998 pixels are different under the specified observing environment.

We also applied the inpainting algorithm a text-overlaid video to simulate a video CAPTCHA scenario,
and the result is shown in Figure 20. As one can see, visually it is fairly satisfying.

4 Conclusion

We proposed and developed a pipeline that utilize image inpainting technique to remove the text within
the images, which has the potential application of removing the text in a video CAPTCHA to avoid OCR
attacks. Therefore, we test the efficacy of the our text inpainting in preventing OCR attack, and result is
encouraging: it can successfully reduce the chance of the video CAPTCHA being comprised, as the OCR
success rate was greatly reduced after we applied inpainting to the target image.
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(a) Inpainting example 1

(b) Inpainting example 2

(c) Inpainting example 3

(d) Inpainting example 4

(e) Inpainting example 5

Figure 19: Inpainting result samples
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Figure 20: Video Inpainting Results. Inpainted with 51 total iterations and inpainting number of iterations
was set to 17 and number of diffusion iterations was set to 2.

(a) Text overlaid image (b) Original image

(c) Inpainting result

Figure 21: Inpainting the text overlaid image
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Figure 22: Histogram of the Levenshtein distance between the ground truth text and the OCR text before
the inpainting
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Figure 23: Histogram of the Levenshtein distance between the ground truth text and the OCR text after
the inpainting
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