
Leveraging Formulae and Text for Improved Math Retrieval

by

Behrooz Mansouri

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

July 2022

Leveraging Formulae and Text for Improved Math Retrieval

by

Behrooz Mansouri

Committee Approval:

We, the undersigned committee members, certify that we have advised and/or supervised the candidate on the work

described in this dissertation. We further certify that we have reviewed the dissertation manuscript and approve it in

partial fulfillment of the requirements of the degree of Doctor of Philosophy in Computing and Information Sciences.

Dr. Richard Zanibbi Date

Dissertation Co-Advisor

Dr. Douglas W. Oard Date

Dissertation Co-Advisor

Dr. Cecilia Alm Date

Dissertation Committee Member

Dr. Yu Kong Date

Dissertation Committee Member

Dr. Jimmy Lin Date

Dissertation Committee Member

Dr. Dan Phillips Date

Dissertation Defense Chairperson

Certified by:

Dr. Pengcheng Shi Date

Ph.D. Program Director, Computing and Information Sciences

ii

iii

©2022, Behrooz Mansouri

All rights reserved.

Leveraging Formulae and Text for Improved Math Retrieval

by

Behrooz Mansouri

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences Ph.D. Program in

Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

Large collections containing millions of math formulas are available online. Retrieving math expres-

sions from these collections is challenging. Users can use formula, formula+text, or math questions

to express their math information needs. The structural complexity of formulas requires specialized

processing. Despite the existence of math search systems and online community question-answering

websites for math, little is known about mathematical information needs. This research first ex-

plores the characteristics of math searches using a general search engine. The findings show how

math searches are different from general searches.

Then, test collections for math-aware search are introduced. The ARQMath test collections have

two main tasks: 1) finding answers for math questions and 2) contextual formula search. In each

test collection (ARQMath-1 to -3) the same collection is used, Math Stack Exchange posts from

2010 to 2018, introducing different topics for each task. Compared to the previous test collections,

ARQMath has a much larger number of diverse topics, and improved evaluation protocol.

Another key role of this research is to leverage text and math information for improved math

information retrieval. Three formula search models that only use the formula, with no context are

introduced. The first model is an n-gram embedding model using both symbol layout tree and

operator tree representations. The second model uses tree-edit distance to re-rank the results

from the first model. Finally, a learning-to-rank model that leverages full-tree, sub-tree, and

vector similarity scores is introduced. To use context, Math Abstract Meaning Representation

(MathAMR) is introduced, which generalizes AMR trees to include math formula operations and

arguments. This MathAMR is then used for contextualized formula search using a fine-tuned

Sentence-BERT model. The experiments show tree-edit distance ranking achieves the current state-

of-the-art results on contextual formula search task, and the MathAMR model can be beneficial

iv

v

for re-ranking.

This research also addresses the answer retrieval task, introducing a two-step retrieval model in

which similar questions are first found and then answers previously given to those similar questions

are ranked. The proposed model, fine-tunes two Sentence-BERT models, one for finding similar

questions and another one for ranking the answers. For Sentence-BERT model, raw text as well as

MathAMR are used.

Acknowledgments

I am deeply grateful to Dr. Richard Zanibbi and Dr. Douglas W. Oard for their constant support.

Dr. Anurag Agarwal, who provided me useful feedback on my research. I would like to express my

sincere gratitude to Dr. C Lee Giles, Dr. Jian Wu and Shaurya Rohatgi with whom I collaborated

on the MathSeer project.

I would like to extend my sincere thanks to Dr. Nicola Ferro and Dr. Kevyn Collins-Thompson

who were my mentors during the SIGIR 2021 Doctoral Consortium [96].

Each member of the Document and Pattern Recognition Lab (DPRL) at Rochester Institute of

Technology (RIT), including Abishai Dmello, Gavin Nishizawa, and Yancarlos Diaz, very often

provided useful feedback and new interesting ideas that helped me improved my work.

This material is based upon work supported by the National Science Foundation (USA) under

Grant No. IIS-1717997 and the Alfred P. Sloan Foundation under Grant No. G-2017-9827.

vi

Dedicated to my father, who always supported me, and to my mother, who always encouraged me

to do my best. Endless thanks to my three sisters for their support

I would like to thank Ricardo and Mohammad Sadegh for the insight they brought to me about doing

a PhD. Finally, I would like to thank all my friends in Rochester for their support

vii

Contents

1 Introduction 1

1.1 Research Questions . 6

1.2 Contributions . 7

1.3 Test Collections and Source Code . 8

1.4 Publication and Co-Authorship . 9

1.5 Outline . 9

2 Characterizing Math Searches 12

2.1 Related Work . 13

2.2 Query Log Analysis . 14

2.2.1 Math Queries . 15

2.2.2 Clicked Pages . 19

2.2.3 Math Search Sessions . 22

2.3 Summary . 26

3 Test Collections for Math-Aware Search 28

3.1 Related Work . 29

viii

CONTENTS ix

3.1.1 Queries and Documents . 30

3.1.2 Pooling . 32

3.1.3 Judging and Encoding Relevance . 32

3.1.4 Evaluation Protocols . 34

3.2 The ARQMath Test Collections . 34

3.2.1 Contextual Formula Search Task . 37

3.2.2 Answer Retrieval Task . 45

3.2.3 ARQMath Reusablity . 51

3.3 Summary . 51

4 Formula Search 54

4.1 Formula Representations . 55

4.2 Related Work . 59

4.2.1 Text-Based Formula Search . 59

4.2.2 Tree-Based: Full and Sub-tree Matching Formula Search 61

4.2.3 Embedding-Based Formula Search . 63

4.2.4 Contextual Formula Search . 64

4.3 Isolated Formula Search . 66

4.3.1 Tangent-CFT . 66

4.3.2 Tangent-CFTED . 70

4.3.3 Learning-to-rank . 71

4.3.4 Evaluation of Models . 73

CONTENTS x

4.4 Contextual Formula Search . 76

4.4.1 Abstract Meaning Representation . 77

4.4.2 MathAMR . 79

4.4.3 Using MathAMR for Formula Search . 81

4.4.4 Evaluation of Models . 82

4.4.5 Additional Experiments for Sentence-BERT Training and Configuration . . . 91

4.5 Summary . 94

5 Formula+Text Search 96

5.1 Related Problems . 97

5.2 Related Work . 99

5.2.1 Ad-hoc Search Models . 99

5.2.2 Answer Retrieval Models for Math Questions 101

5.3 Answer Retrieval for Math Questions . 103

5.3.1 Raw Text for Answer Retrieval . 104

5.3.2 MathAMR for Answer Retrieval . 108

5.4 Experiment Results . 109

5.4.1 ARQMath-2 Results . 110

5.4.2 ARQMath-3 Results . 113

5.5 Summary . 115

6 Conclusion 117

6.1 Limitations . 119

CONTENTS xi

6.2 Future work . 120

6.3 Broader Impact . 122

Fixes in ARQMath-3 141

List of Figures

1.1 Math information need example. 2

1.2 MathDeck search interface. 3

1.3 Dissertation contributions. 8

2.1 Distribution of math query frequencies. 19

2.2 Average click entropy for math queries by their frequency. 20

3.1 Turkle assessment interface for ARQMath Formula Search task. 43

3.2 Histogram of Topic Counts over 3 Categories in ARQMath-1, -2 and -3 Task 1. . . 48

4.1 Presentation and Content MathML for formula x2 + 4x + 4 = 0. 57

4.2 Symbol layout tree and operator tree representations example. 59

4.3 Categorization of the previous approaches on formula search. 60

4.4 Training Tangent-CFT model. 68

4.5 Retrieval with Tangent-CFT model. 69

4.6 AMR for summarization task. 78

4.7 Incorrect AMR for text with formula. 79

xii

LIST OF FIGURES xiii

4.8 Generating MathAMR. 80

4.9 Learning curves for different representation using Sentence-BERT model. 83

4.10 P′@10 per topic for MathAMR model with different context window. 88

5.1 Sentence-BERT Cross-Encoder. 106

List of Tables

1.1 Publication list. 10

2.1 Parsijoo transaction logs. 15

2.2 Frequency of common content type terms in math queries. 16

2.3 Frequent question words and accompanying terms in math question queries. 18

2.4 User effort metrics for math vs. general search. 23

2.5 User satisfaction metrics for math vs. general search. 23

2.6 Math query reformulation frequencies. 25

3.1 Example of ARQMath Contextual Formula Search task query and results. 38

3.2 Concrete query complexity for NTCIR-10/12 and ARQMath. 39

3.3 Visually-identical formulas with different LATEX representations. 39

3.4 Formula retrieval test collections . 40

3.5 Relevance scores, ratings, and definitions for ARQMath task 2. 41

3.6 ARQMath answer retrieval task example. 45

3.7 Relevance assessment criteria for the ARQMath Answer Retrieval task. 51

xiv

LIST OF TABLES xv

4.1 Presentation and Content MathML tags used to represent x2 + 4x + 4 = 0. 58

4.2 SLT and OPT tuples for formula x− y2 = 0 . 67

4.3 ARQMath Contextual Formula Search Task results. 74

4.4 ARQMath-2 Contextual Formula Search Task results. 85

4.5 ARQMath Contextual Formula Search Task results with Smatch Scores. 85

4.6 ARQMath-1 and -2 Contextual Formula Search results. 86

4.7 ARQMath-2 and -3 Contextual Formula Search Task results with different context

window using MathAMR. 87

4.8 ARQMath-2 and -3 Contextual Formula Search Task results. 89

4.9 Top-10 Formulas Retrieved by RRF(Tangent-CFT2ED+MathAMR) for topic (B.338). 91

5.1 An example of accepted answer for a question similar to ARQMath topic (A.21 in

ARQMath-1), assessed as not relevant. 107

5.2 Answer retrieval results on ARQMath-2 . 111

5.3 Comparison of approaches for different topic question categories in Answer Retrieval

Task. 111

5.4 MathSE answer retrieval comparison. 112

5.5 Answer retrieval results on ARQMath-3 . 113

5.6 Comparison of approaches for different topic question categories in Answer Retrieval

Task. 115

5.7 Comparison of MathAmr with raw text. 116

Chapter 1

Introduction

Math information retrieval is simply information retrieval where the user’s information need involves

math. There are several ways users might express their information need. Figure 1.1 shows a user

with an information need about finding a limit. They could use an isolated formula as the query,

a combination of formulas and text, or they could post a fluent math question on a community

question answering (CQA) website. The goal is to find relevant information, in this case that helps

to find the value for the limit. When users choose an isolated formula as the query, the task is

called formula search and the goal is to find relevant formulas, hopefully associated with contexts

that can help to address the user’s information need. In our example, the related formula is in the

dashed line in the retrieved answer.

Another example of math search is a real search session on a general search engine [106] in which

a user issued the following queries:

• C(10,5)

• C(n,K)

• How can I select 5 items from list of 10 item

• Selecting k items from n items

• Solving C(n, k).

As can be seen, the user started with a specific formula, moved to a general one, and then perhaps

as the search engine failed to support formula search or provided just general information about

1

CHAPTER 1. INTRODUCTION 2Math Information Retrieval: Example from MathStackExchange

Information need

Post a Math Question on CQA

Formula Query

Retrieved Answer

lim
→ஶ

(27)(𝑛!)ଷ

3𝑛 !

Finding value of lim
→ஶ

(27)(𝑛!)ଷ

3𝑛 !

3

Value of lim
→ஶ

(ଶ)(!)య

ଷ !

Ad-hoc query

Figure 1.1: Example information need related to finding a limit. There are three different searches

the user can do using formula or ad-hoc queries or posting a math question on a forum. The goal

is to find relevant information, such as the answer shown on the right.

the formula, moved to ask the original question with words. Finally, the user used both a formula

and text, and ended the search session by clicking on a web page, perhaps finishing the session with

the information need satisfied.

There are platforms such as MathStackExchange1 and MathOverflow2 that are online communities

allowing users to ask questions and post answers. Also, there are several search engines that support

math search, such as SearchOnMath,3 WolframAlpha,4 Approach05 and MathDeck.6 Each of these

platforms provides an interface which users can express their mathematical information needs. For

example MathDeck [39, 119], provides different input means for text+formula queries. Once the

formula is inserted, the users can search. The users can also search for summary cards [40]. The

cards contain a formula chip, a title, and a short, focused description. Card data is taken from

Wikipedia. Figure 1.2 shows the MathDeck interface, where a user inserted c2 = a2+b2 as the input

query. The summary cards are shown, with the “Pythagorean Theorem” card being expanded. The

1https://math.stackexchange.com/
2https://mathoverflow.net/
3https://www.searchonmath.com/
4https://www.wolframalpha.com/
5https://approach0.xyz/search/
6https://mathdeck.org/

https://math.stackexchange.com/
https://mathoverflow.net/
https://www.searchonmath.com/
https://www.wolframalpha.com/
https://mathdeck.org/

CHAPTER 1. INTRODUCTION 3

Figure 1.2: MathDeck search interface. In this example, the user is searching for the formula

c2 = a2 + b2. Wikicards are showing the relevant formulas retrieved from a set of cards.

users of this search engine can save their formula as a favorite to avoid the effort of rewriting it

again. Also, each user has a profile that keeps a record of his/her searches. Users are also able

to search their log history. Currently, MathDeck principally uses the Tangent-CFT [105] system

(developed as part our research) for formula search.

Math information retrieval is more complicated than traditional information retrieval where user

information needs are expressed with only text. Users can use math notation to express math.

Math is highly structured, whereas text structure is linear [32]. Youssef [167] defines the objectives

of math search as:

• Math-awareness. Math search systems should be able to recognize mathematical symbols

and structures.

• A natural math-query language. The math query language used by the search system

should be similar to what scientists and engineers use to write math.

• Fine granularity of retrievable information units. The retrieval units should be tar-

geted toward fine-grained granularity of user need such as an equation, a definition, or a

theorem. A larger retrieval unit is not desirable for a user.

CHAPTER 1. INTRODUCTION 4

• Perfect ranking. The search system should aim to maximize both recall and precision. The

relevant hit(s) should appear before the non-relevant ones. Recall shows the ratio of relevant

retrieved units to all relevant items, while precision shows how much of the retrieved units

are relevant.

• Useful highlighting. The user should know why the retrieved unit is matched to the query.

Highlighting is one solution for the larger units such as articles.

The foundation of math search is a growing body of information retrieval research in which the

principal focus has been on matching mathematical notation [171]. Several challenges have been

addressed, most notably mapping between surface forms and logical forms of mathematical notation

[53], computing similarity based on logical forms [64], and linking mathematical notation with

associated text [75]. This work has led to the deployment of specialized search engines designed

to demonstrate the potential of this rapidly evolving search technology. For instance, “Search on

Math” searches Web pages, providing a keyboard that users can employ to include formulas in their

queries. There are also specialized search engines for mathematical content, such as Mathematics

Stack Exchange which supports search over previously created content in a community question

answering site focused on mathematics questions. Of course, users also employ general search

engines when looking for information about mathematics, or in which mathematical concepts might

be useful.

A key focus of mathematical searching is formulas. In contrast to simple words or other objects,

a formula can have well-defined sets of properties, relations, and applications, and often also a ‘re-

sult’. There are many (mathematically) equivalent formulas which are structurally quite different.

Moreover, it is of fundamental importance to ask what information a user wants when searching for

x2 + y2 = 1: is it the value of the variables x and y that satisfy this equation, all indexed objects

that contain this formula, all indexed objects containing a2 + b2 = 1, or the geometric figure that

is represented by this equation?

Despite the existence of math-aware search systems, we have limited insight into the characteristics

of math searches. We still do not know much about user behavior in a math search session (i.e.

a series of search activities that the same user does, such as issuing the first query, changing the

query, and clicking on search results). Another challenge is the type of math queries users issue,

which has not yet been investigated. For example, there is no information on how often users prefer

to use a math question as their input query (known as a question query). Without knowing the

users’ behavior, designing a math-aware search system is not practical. One possible solution to

this is to use the query logs of a search engine to explore users’ behavior in math searches. Query

CHAPTER 1. INTRODUCTION 5

logs are valuable resources, keeping track of the users’ and search engine’s interactions.

Knowing the users’ behavior can help us design a math-aware search system, but how do we know

if our design is good? How do we know that one search system has better search results than

another one? To answer these questions, we need test collections. In a test collection, the goal is

to simulate a user and evaluate a search system. A user issues a query to a search system, then

the search system returns a set of results, and based on the relevance of the results to the user’s

information needs, the users information need may be satisfied. A test collection usually consists

of:

1. A Collection of items to be found. The search task is done over a collection, and a set

of ranked results are retrieved from it.

2. A Set of Topics. A topic in test collection is like a user in the real world. They issue a

query related to an information need. A topic typically includes a query together with some

further description of the information need. In some test collections, that description may be

manually generated, and in others, a description can be integrated into the query itself (e.g.,

a question query).

3. Relevance Judgements. Relevance indicates how well a retrieved item, such as a document,

a paragraph, or a formula, addresses the information need of the user. In a test collection,

multiple levels of relevance can be considered, such as full, partial, and non-relevant.

4. Evaluation Protocol. After knowing the relevance of results retrieved by a system, the

next question is which system is better? What evaluation measures should be used, and how

should they be applied? For this, a set of protocols known as evaluation protocol are defined.

One common way of developing test collections is through a shared-task. In shared-task labs, one

or more search tasks are defined with the components necessary for a test collection other than

the relevance judgements. Then participating search systems each provide their candidate results

for each topic (for each task). Assessing all the candidates is hard due to financial and timing

constraints. Therefore, a pooling strategy is defined to select the candidates to be assessed. For

example, the top-k results for each participating system can be pooled for assessment. Assessors

then create relevance judgements for those pooled candidates.

Despite the existence of math-aware search systems, efforts to enhance search quality for math

still continue. Math-aware search is hard, as there can be both formula(s) and text in queries and

CHAPTER 1. INTRODUCTION 6

collection. Formulas are usually represented as tree (see Chapter 4, Section 4.1) where text has

linear structure. Therefore, math-aware search can be considered as a multi-modal search task

where there can be data with different modalities in queries and in the collection. One approach

for multi-modal search is mapping different modalities to a unified space and searching over that

unified modality. These models are known as mono-modal search systems. Another approach is to

have a separate search model for each modality, and then combine the search results.

In this research, we focus on two math-aware search tasks. First, we study the contextual formula

retrieval task. In this task, given a formula as the input, the goal is to find relevant formulas. A

relevant formula is defined by the retrieved formula being associated with information that answers

user’s information need. We first consider three retrieval models, an n-gram embedding model, a

ranking model with tree-edit distance, and a rank-SVM model (see Chapter 4, Section 4.3). These

three models only consider formulas in isolation. We then introduce a mono-modal representation

of text+formula, MathAMR (Math Abstract Meaning Representation) and develop a search model

using this representation for the contextual formula search task.

Second, we investigate the answer retrieval task for math questions. We propose a two-step model,

first finding similar questions to the input question, and then rank the answers that had previ-

ously been given to similar questions with different ranking functions. We use both raw text and

MathAMR representations for this.

1.1 Research Questions

Here we summarize the main research questions we address in this dissertation.

1. How do users utilize existing general-purpose search engines for math-aware search, and what

types of information needs can we observe in their query logs?

2. How should we (1) define relevance for contextual formula search tasks and (2) evaluate

contextual formula search systems?

3. Can an embedding model (any model to map formulas to points in space) be used beneficially

for the formula search task?

4. Can a unified, single representation of text and formulas be beneficial for contextual formula

retrieval?

CHAPTER 1. INTRODUCTION 7

5. Can first finding similar questions and then ranking answers given to them be effective for

the math answer retrieval task?

6. Can answer retrieval be performed effectively using a unified representation for text and

formulas?

1.2 Contributions

Here we list our main contributions:

1. Conducted the first query log analysis on math searches and compared them to general

searches

2. Developed new design considerations for math-aware test collections and search systems

3. Created an annotated collection of Math Stack Exchange question and answer posts for math

information retrieval

4. Developed test collections for answer retrieval and contextual formula search. For each task:

(a) Developed over two hundred topics

(b) Used topic categories to increase diversity

(c) Defined evaluation protocol

(d) Designed pooling strategies

(e) Developed new relevance definitions

5. Proposed an efficient n-gram embedding model for math formulas

6. Developed the current state-of-the-art formula search model using tree-edit distance ranking

7. Introduced a rank-SVM model for formula search

8. Designed MathAMR, a novel mono-modal representation for text + formulas

9. Developed a mono-modal search model with MathAMR for the contextual formula search

and answer retrieval tasks

10. Designed a two-step search model for answer retrieval; first finding similar questions and then

ranking answers given to similar questions

CHAPTER 1. INTRODUCTION 8

Figure 1.3: Contributions of this dissertation to each component of a math information retrieval

research system.

Considering the main components of a search activity, Figure 1.3 shows our main contributions for

each component.

1.3 Test Collections and Source Code

The test collections and source code that we have made publicly available include:

1. Test Collections: We have introduced the ARQMath test collections over a period of three

years with hundreds of topics for the contexual formula search and answer retrieval tasks.

We have made all the code to generate these test collection publicly available on ARQMath

GitHub Repository.7 This includes annotating formulas with identifiers inside the collection

and providing different formula representations (Presentation and Content MathML). Also

the test collections including the topics with their relevance assessments, are available online.8

2. Retrieval Models:

7https://github.com/ARQMath/ARQMathCode
8https://www.cs.rit.edu/~dprl/ARQMath/

https://github.com/ARQMath/ARQMathCode
https://www.cs.rit.edu/~dprl/ARQMath/

CHAPTER 1. INTRODUCTION 9

(a) Tangent-CFT. An n-gram embedding model for math formulas.9

(b) Learning to Rank for Math Formulas. A learning to rank model for mathematical

formulas that combines different formula similarity matching scores, including sub-tree,

full-tree, and embedding.10

(c) MathFIRE. Math Formula Indexing and Retrieval for ElasticSearch11, framework for

indexing and retrieving formulas.

The details for these models can be found in Chapter 4, Section 4.3.

1.4 Publication and Co-Authorship

Table 1.1 provides a list of publications related to each chapter.

1.5 Outline

We have organized the chapters based on the steps needed to develop a math-aware search system;

starting by reviewing characteristics of user behaviors in math-aware search, then test collections

used for evaluating math-aware search systems (including collections created for this dissertation),

and finally retrieval models for formula search and math-aware formula+text search.

The first step for developing any information retrieval system is to know what are the information

needs and how users interact with the system. We need to know how users express their informa-

tion need, the type of queries they issue, the resources they are looking for, and the way they use

the search results. In Chapter 2, we study mathematical information needs and how users search

for math. We review the existing work on user behavior for math-aware searches and systems

supporting math search, and we present results from our query log analysis study.

After characterizing information needs, we move to the test collections for math-aware search tasks

in Chapter 3. This includes tasks such as formula search, formula+text search, answer retrieval,

and question answering for math questions. We review the existing test collection that predate our

9https://github.com/BehroozMansouri/TangentCFT
10https://github.com/BehroozMansouri/LtRMathIR
11https://gitlab.com/dprl/mathfire

https://github.com/BehroozMansouri/TangentCFT
https://github.com/BehroozMansouri/LtRMathIR
https://gitlab.com/dprl/mathfire

CHAPTER 1. INTRODUCTION 10

Table 1.1: List of publications related to each chapter of this dissertation.

Title Venue Year Authors

Chapter 1

The MathDeck Formula Editor [39] CHI 2020 Diaz, Y., Nishizawa, G., Mansouri,

B., Davila, K. and Zanibbi, R.

Chapter 2

Characterizing Searches for Mathematical Concepts [106] JCDL 2019 Mansouri, B., Zanibbi, R. and

Oard, D.W.

Chapter 3

Finding old answers to new math questions: the ARQMath lab

at CLEF 2020 [97]

ECIR 2020 Mansouri, B., Agarwal, A., Oard,

D. and Zanibbi, R.

Overview of ARQMath 2020: CLEF Lab on Answer Retrieval

for Questions on Math [173]

CLEF 2020 Zanibbi, R., Oard, D.W., Agarwal,

A. and Mansouri, B.

ARQMath: A New Benchmark for Math-Aware CQA and Math

Formula Retrieval

SIGIR Forum 2020 Zanibbi, R., Mansouri, B., Agar-

wal, A. and Oard, D.W.

Advancing Math-Aware Search: The ARQMath-2 Lab at CLEF

2021 [98]

ECIR 2021 Mansouri, B., Agarwal, A., Oard,

D.W. and Zanibbi, R.

Overview of ARQMath-2 (2021): Second CLEF Lab on Answer

Retrieval for Questions on Math [108]

CLEF 2021 Mansouri, B., Zanibbi, R., Oard,

D.W. and Agarwal, A.

Effects of Context, Complexity, and Clustering on Evaluation for

Math Formula Retrieval [101]

ArXiv 2021 Mansouri, B., Oard, D.W., Agar-

wal, A. and Zanibbi, R.

Advancing Math-Aware Search: The ARQMath-3 Lab at CLEF

2022 [99]

ECIR 2022 Mansouri, B., Agarwal, A., Oard,

D.W. and Zanibbi, R.

Overview of ARQMath-3 (2022): Third CLEF Lab on Answer

Retrieval for Questions on Math [100]

CLEF 2022 Mansouri, B., Novotný, V., Agar-

wal, A., Oard, D.W. and Zanibbi,

R.

Chapter 4

Tangent-CFT: An Embedding Model for Mathematical Formulas

[105]

ICTIR 2019 Mansouri, B., Rohatgi, S., Oard,

D.W., Wu, J., Giles, C.L. and

Zanibbi, R.

DPRL Systems in the CLEF 2020 ARQMath Lab [102] CLEF 2020 Mansouri, B., Oard, D.W. and

Zanibbi, R.

DPRL Systems in the CLEF 2021 ARQMath Lab [103] CLEF 2021 Mansouri, B., Oard, D.W. and

Zanibbi, R.

Learning to Rank for Mathematical Formula Retrieval [107] SIGIR 2021 Mansouri, B., Zanibbi, R. and

Oard, D.W.

Contextualized Formula Search Using Abstract Meaning Repre-

sentation

CIKM 2022 Mansouri, B., Oard, D.W. and

Zanibbi, R.

Chapter 5

DPRL Systems in the CLEF 2021 ARQMath Lab [103] CLEF 2021 Mansouri, B., Oard, D.W. and

Zanibbi, R.

DPRL Systems in the CLEF 2022 ARQMath Lab [104] CLEF 2022 Mansouri, B., Oard, D.W. and

Zanibbi, R.

work. We then address the need for developing a new test collection and introduce the ARQMath

CHAPTER 1. INTRODUCTION 11

test collections that we have built.

Chapter 4 focuses on the formula search task. For that, we first introduce the representations

commonly used for mathematical formulas in systems. We then review and categorize the existing

formula search models. We consider two tasks of isolated and contextual formula search. Finally,

we introduce our proposed formula search systems for both isolated and contextual formula search

tasks and present our experiment results on ARQMath test collection.

In Chapter 5 we review systems supporting formula+text search. We first call attention to the

similarities of multi-modal information retrieval and formula+text search task. Then we summarize

existing models for formula+text search and for answer retrieval tasks. Finally, we explain our

approaches for answer retrieval for math questions and present experiment results on ARQMath

test collection.

Finally, chapter 6 summarizes this dissertation. We review the research goals, the limitations of

our work and we describe possible future work that our research has enabled.

Chapter 2

Characterizing Math Searches

To develop an information retrieval system, it is essential to know the users’ behavior. There are

different aspects of users’ behavior that can be explored to improve the design of an information

retrieval system. For example, it is essential to understand how often queries issued to a search

engine are questions. A high ratio of question queries indicates the need to have a system that

supports answer retrieval. This is not only useful for the design of search systems, but it is also

beneficial for the design of test collections, as it indicates the importance of answer retrieval systems.

Another example is to study how users change their input queries, known as query reformulation.

Knowing what type of reformulation leads to a successful search can be beneficial for search engine

when suggesting queries to the users.

Some specifications for developing a math search system have been proposed by researchers. Their

validity is not yet confirmed. In this research, we conduct the first query log analysis on math

searches, using query logs from a general-purpose search engine, Parsijoo.1 We have studied three

main aspects of users’ search behavior: (1) queries, (2) clicked pages, and (3) search sessions. We

have made a comparison between math and general searches and have shown that users’ behavior

is different in math searches. In the next section, we review user studies on math information

retrieval and then introduce our study on query logs investigating how math search is done.

1http://parsijoo.ir/

12

http://parsijoo.ir/

CHAPTER 2. CHARACTERIZING MATH SEARCHES 13

2.1 Related Work

There have been a few attempts to understand how users search for math. Zhao et al. [176] in-

terviewed a small group of people to provide insight into user requirements in math information

retrieval. The study was conducted with 13 individuals affiliated with the Math Department at the

National University of Singapore. Participants included two undergraduate students, seven gradu-

ate students, one professor, and three librarians. They were interviewed with questions regarding

the kind of material they look for, what resources they use, and how they do the search.

The main findings of this work can be summarized as follows:

• The participant’s information-seeking behavior for finding mathematical concepts can be

categorized into three approaches: doing a search with a general search engine using math

keywords, browsing math-specific resources like books to find material, and finding people

they know, such as the student’s advisor to locate information.

• With one exception, the participants had doubts about the value of having input and retrieval

of formulas. The participants expressed several reasons, including the lack of mathematical

expressions in their research, the inconvenience of entering expressions, or the high specificity

of formulas.

• The users were looking for two categories of material: (1) information such as definition,

explanation, example, and application, (2) resources such as a paper, tutorial, toolkit, and

book.

This was the first study of math information retrieval user requirements, but the sample size was

small, and all participants had a strong mathematical background. The study of Tausczik et al. [153]

is less focused on information-seeking behavior, but it investigates how users collaborate to solve a

math problem on MathOverflow.2 They use three methods. First, the authors utilize quantitative

analysis, relating collaborative acts to solution quality. Second, they apply grounded theory to

150 questions from MathOverflow to provide a taxonomy of collaborative acts, coded by whether

a contribution provided information, clarified the question or, critiqued, revised, or extended an

answer. Grounded theory is a research method to derive new theories by collecting and analyzing

real world data in an iterative process. Finally, they conducted semi-structured interviews with 16

active MathOverflow contributors to better understand the collaborative acts, the roles they played

2https://mathoverflow.net/

https://mathoverflow.net/

CHAPTER 2. CHARACTERIZING MATH SEARCHES 14

in the collaborations, and how they contributed to the development of solutions. This work shows

how combining quantitative and qualitative methods can build up a rich picture of a concept in

crowd-sourced mathematics.

2.2 Query Log Analysis

At the early stages of our research, we did a study on users’ search behavior using a Persian general

search engine (Parsijoo) query logs [106]. This was the first study of math search based on actual

queries and search sessions for users of a real-world search engine. The query log used in this study

contains 27 million records of user interactions over two years. The Parsijoo transaction logs record

communication between users and the search engine. Table 2.1 shows the transactions logs, which

include Session IDs, submitted queries, query issue times, search type (e.g., Web or video), URLs

for search results that users click on, click times, and session end times.

In this work, three editors compiled a list of mathematical concepts in Persian from two widely

used college-level math textbooks (Thomas’ Calculus - Thirteenth Edition (Volumes I, II) [155]

and Essential Calculus with Applications (Volumes I, II, III) [147]) along with textbooks from the

elementary through high school levels. The editors created a list of 681 mathematical concepts

such as “Gaussian distribution,” “Taylor series” and “cosine” (in Persian). The length of these

concept phrases was between 1 to 3 words, with an average of 1.8 words per phrase. Queries

containing any complete math concept phrase were included in the initial pool of math queries. At

the moment, Parsijoo, does not support user profiling, so there is no information available about

the users’ knowledge of mathematical concepts, but the keywords covered concepts from elementary

school to undergraduate degree. To have a set of math queries with high precision, phrases such

as “division” that have both mathematical and more general meanings were not considered. Also,

some mathematical concepts were used in the titles of movies or as the name of music albums. So

in the cleaning steps, we removed queries containing words such as “music”, “album” or “cinematic

movies.” In total, 392,586 mathematical query log records were extracted.

Each unique browser within the first connection is assigned a unique Session ID by Parsijoo that

typically persists (using persistent HTTP) until that browser is closed, or the connection is lost.

Some of the sessions are far longer than expected for a user to be working on a specific task, so

these sessions are broken into smaller math search session units for the analysis. This is done by

partitioning Parsijoo sessions into math search sessions whenever there is no transaction for 60

minutes or more and then removing all partitions that do not contain at least one math query.

CHAPTER 2. CHARACTERIZING MATH SEARCHES 15

Table 2.1: Parsijoo transaction logs for two search sessions with math queries. (Translated from

Persian to English.)

Session ID Query Issue Time Search Type Clicked URL Click Time Session End Time

A33C14AC80CD4 double integral concept 2016-08-23 10:19:03 Web

A33C14AC80CD4 double integral solving methods 2016-08-23 10:19:28 Web fa.wikipedia.org 2016-08-23 10:19:44

A33C14AC80CD4 double integral solving 2016-08-23 10:20:09 Web

A33C14AC80CD4 double integral examples 2016-08-23 10:20:35 Web riazisara.ir 2016-08-23 10:22:09 2016-08-23 10:57:14

A33C14ACB5698 cauchy schwarz inequality problems pdf 2017-02-05 16:49:13 Web

A33C14ACB5698 cauchy schwarz inequality explained notes 2017-02-05 16:52:20 Web kanoon.ir 2017-02-05 16:52:39

A33C14ACB5698 cauchy schwarz inequality 2017-02-05 16:59:41 Web

A33C14ACB5698 Tutorial on cauchy schwarz inequality 2017-02-05 17:19:43 Web

A33C14ACB5698 Tutorial on cauchy schwarz inequality 2017-02-05 17:19:52 Video kelasdars.org 2017-02-05 17:20:14 2017-02-05 18:01:30

This results in 69,014 math search sessions. Note that math search sessions need not start or end

with a math query; they simply must contain at least one math search query. In order to compare

math searches with general searches, we partitioned every session in the same way and then selected

partitions at random until we reached the number of queries that we had started with (392K) when

focused on math queries.

After extracting the math queries, the queries, clicked pages, and search sessions are studied and

in the following sections, the findings are explained.

2.2.1 Math Queries

In this section, we focus on math queries in isolation and study their properties.

Content Type. Resources for math can vary from a paper on arXiv3 in PDF format to a video

like the ones on Khan Academy.4 Therefore, different search models are needed, even if the queries

are similar. The primary question one might ask is what sorts of content is it that users are

searching for? As with many search engines, Parsijoo allows users to specify a vertical to search

(e.g., Web, News, Video). One simple source for the desired content type would therefore be the

request type field in the query log. However, that field is not very informative because 95.8% of

math queries were issued as general Web searches with no more specific vertical selected. Users also

will frequently specify the type of content they are looking for in the query, and Web search engines

will typically parse and interpret such terms as soft content type specifications. we therefore also

looked for content type terms in the queries. As Table 2.2 shows, a content type term was present

3https://arxiv.org/
4https://www.khanacademy.org/

https://arxiv.org/
https://www.khanacademy.org/

CHAPTER 2. CHARACTERIZING MATH SEARCHES 16

Table 2.2: Frequency of common content type terms in math queries. Results are cumulative,

starting with the most frequent content type (e.g., “PDF” is counted only in queries that do not

contain “Tutorial”).

Resource Type Math Query Percentage

Tutorial 12.3%

PDF 9.7%

Video 8.4%

Download 6.1%

Notes 5.9%

PowerPoint 5.3%

Total 47.7%

surprisingly often in math queries. For resource types such as Video, a list of video formats such

as .mp4, .avi, and .3gp was considered.

As shown in the table, nearly, half of the math queries have the content type specified in them.

Note that this is a rather eclectic blend of types, some of which specify file types and others of which

describe a document genre. We selected these terms that we believe to be indicative of content

type manually after inspecting enough of the query log to have confidence that we had seen the

most frequent content type terms.

Tutorials (which might suggest text, slides, video, or any combination of that) were the most

frequently requested content type (12.3%), while PDF and Video were the next most popular

requests (9.7% and 8.4%, respectively). From this one can conclude that Math search engines

will ultimately need to be able to do more than just search HTML; video search, and specialized

handling for specific formats such as PDF and PowerPoint that might include math in either text or

image form, would be useful. There may moreover be some scope for personalization [41] here since

although user preferences are not always explicit in their queries, to the degree those preferences

are persistent across sessions the search engine might learn to bias the results towards content types

that have previously been requested.

Query Length. Queries are typically short, and that can make it challenging for a search engine

to understand the user’s search intent [10]. For example, the set of general Parsijoo queries that

we assembled as a basis for comparison has an average length of 3.4 words. The average math

query, by contrast, is nearly twice as long, at 6.7 words. Math queries are much longer on average:

CHAPTER 2. CHARACTERIZING MATH SEARCHES 17

indeed, the third quartile of the query length for general queries is about where the first quartile is

for math queries. 46% of the math queries are between 4 to 6 words long, producing a right-skewed

distribution for math queries.

Cut-and-Paste Queries. One user behavior that can lead to issuing long queries is text reuse,

when searchers copy long passages of text into the query box. To check for this, we selected the

top-2000 most frequent unique math queries with length ≥ 20 and issued them to Parsijoo. By

using quotation marks to obtain exact matches on longer sequences of text, 49.8% of these queries

found documents containing exactly the query text, making it likely that these queries were entered

into the query field using cut-and-paste from some document in the indexed collection.

Verbosity. Another possible reason for having longer queries is the presence of unnecessary words

(a phenomenon referred to as verbosity [38]). For example, the query “How can I expand Taylor

series?” from the query log, is considered verbose. Bendersky and Croft [12] have shown a corre-

lation between users’ click behavior and the query length – generally, the effectiveness of retrieval

decreases as query length increases. To check for verbosity, we considered the top-2000 most fre-

quent unique math queries with length greater than 4 (i.e., longer than the average query length

over general search queries). Three annotators then labeled the queries as verbose or not. The

annotators were given the definition of the verbose query as a “long query with words that are less

informative and can be ignored without changing the purpose of the query”, along with 30 verbose

query examples. To measure the inter-rater agreement between annotators, we used Fleiss’ kappa

statistic [44]. Overall, the level of agreement was 0.79, which represents a high agreement between

annotators. 17.8% of the queries under study were tagged as verbose.

Question Queries. Question queries are long and add verbosity to the queries. To check if that

is the reason for having longer and more verbose queries in math searches, we explore the use of

actual questions as math queries. To extract question queries, we used the approach of Zahedi et

al. [169], where they studied how Persian question queries are posed to a search engine. We use

their keyword-based approach, creating a list of Persian question words to identify math queries

that are question queries. Our study found that 18.4% of math query instances (and 19.8% of

unique math queries) are issued as some form of a question. This number is much higher than the

1.8% reported in [169] for general queries, and close to the 17.8% of queries that the annotators

marked as verbose. Indeed, 90% of question queries were marked as verbose, so a very substantial

number of the queries marked as verbose were marked in that way because they contain a question

structure that is not related to the content of the query. Question type analysis can, however, be

used to refine search engine results, for example, returning different results for “Why” questions

CHAPTER 2. CHARACTERIZING MATH SEARCHES 18

Table 2.3: Frequent question words and accompanying terms in math question queries. ‘Other’

question words include Which, Where, Whether, and Who. ‘?’ indicates no question word is used,

but a question mark is included. Query percentages are of question queries; Accompanying term

percentages are for that question type.

Queries Cue Accompanying Term

69.5% What Formula (60%), Equation (11%), Used for (9%)

13.8% How Prove (51%), Exact (10%), Accurate (5%)

6.2% Why Is (20%), Not (15%), Correct (7%)

3.9% When Use (52%), Apply (21%), Consider (4%)

4.3% Other Formula (32%), Equation (12%), Invent (9%)

2.3% ? True (14%), Answer (12%), Principle (6%)

than for “How” questions [156].

To get better insight into math question queries, the distribution of question cues and associated

terms in math question queries are presented in Table 2.3. The table shows that some question

words are frequently paired with other words. For instance, “What” is the most frequent question

word, used in 69.5% of math question queries. “What” is often followed by the words “Formula” or

“Equation,” suggesting that users are looking for mathematical notation. Such information can be

used in query suggestion, auto-completion, and query expansion. For instance, when a user issues

the query “What is Poisson distribution . . . ” probable words for auto-completion are “formula” or

“equation”. Another example is the question word “How,” which was more than half of the time

paired with the word “Proof”, indicating that users want to know how to prove a mathematical

statement. Question type analysis is a subtask studied in the broader field of Question Answering,

a complex task that requires a retrieval system to correctly answer questions posed in natural

language.

Overall, the analysis shows that math queries are longer than general search queries due to the use

of copy-and-paste queries, formulation of a substantial number of queries as questions, and some

degree of verbosity. These results suggest that multiple complementary strategies may be needed

to produce the best results for longer queries.

Query Uniqueness. One advantage that search engines often seek to leverage is that a small

number of identical queries are often issued by many different users. This phenomenon has im-

portant implications for both search quality (since the clicks of early users can be used to predict

CHAPTER 2. CHARACTERIZING MATH SEARCHES 19

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 >10

P
er

ce
n

t
in

 t
o

ta
l m

at
h

 q
u

er
y

tr
af

fi
c

Query Frequency

Figure 2.1: Distribution of math query frequencies.

what later users are most likely to want to see) and efficiency (since responses to frequently issued

queries can be cached, which can dramatically reduce time-consuming disk and network activity).

To understand how often math queries are repeated, we plotted the distribution of math query

instances by frequency over the two-year period in Figure 2.1.

As can be seen from this figure, more than 80% of the math query instances appear in the query

log only once. One implication of this result is that query suggestion techniques that rely on rich

data about query frequency are not likely to work well in this setting. Recently, researchers have

tried using side content as a basis for query suggestion in a manner similar to pseudo-relevance

feedback [85, 149]. Mitra and Craswell [113] have also proposed a vector representation approach

for query auto-completion of rare queries. Similar methods might be tried to produce better query

suggestions for relatively infrequent math queries.

2.2.2 Clicked Pages

In this section, we review the clicked pages for math queries.

Frequently Visited Websites. First, we consider which Websites users view during math search.

Patterns of this type can be leveraged to bias search results in favor of sites that are known to

be useful. The top-10 Websites (i.e., the top-level domain of the Web page) clicked on in math

CHAPTER 2. CHARACTERIZING MATH SEARCHES 20

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 >10

C
lic

k
En

tr
o

p
y

Query Frequency

Figure 2.2: Average click entropy for math queries by their frequency.

search sessions, account for more than 25% of all page clicks. Considering these Websites, with

the exception of Wikipedia, all of them focus on mathematical or scientific content. Wikipedia, of

course, includes many pages with that type of content as well.

Click Entropy. Going further, we investigate the variability of Web pages clicked in math searches.

There were two reasons to study this. First, the top-10 clicked sites account for more than a quarter

of clicked pages, which suggests that users prefer certain Web sites for math search. The second

reason is to check if the diversity of resources specified by users will lead to diversity in clicked

pages. To measure the diversity of clicked pages, we used the click entropy introduced in [41] as

follows:

S(q) = −
∑

URL u∈ U(Q)

P (u|q) log2 P (u|q) (2.1)

Where U(q) is the set of URLs clicked by users after issuing query q and P (u|q) is the probability

that the URL u is clicked by users when the search results for query q is shown. The results

obtained show the entropy for the average math query is 3.33, which is quite close to the average

click entropy of 3.18 for the general queries. Figure 2.2 shows the click entropy for unique queries

stratified by frequency.

For unique queries issued just once, the entropy is about 3.4. Converting entropy to perplexity by

taking the antilog, this equates to an average of 23.4 = 10.6 clicks per query which, for singleton

queries, are by definition uniformly distributed. For instance, for the query “prove that the diag-

onals of a parallelogram bisect each other using vectors?”, a user viewed 8 different pages to find

the information they were looking for. As queries are reused, position bias and perceived content

quality effects result in greater probability mass accruing on some queries, causing a consistent

reduction in entropy. However, as queries become even more common – here, once unique queries

CHAPTER 2. CHARACTERIZING MATH SEARCHES 21

have been issued more than five times – the entropy begins to climb. Common queries are often

short, and short queries are often ambiguous, so one possible explanation for this observed effect is

that as queries become more commonly issued, a point is reached where the ambiguity effect (which

tends to increase entropy) overwhelms the quality and position bias effects, thus resulting in a net

increase in entropy. For frequent queries, different users preferred different pages. For instance, for

the query “triangle inequality”, the click entropy was 4.7. Examining the most clicked-on URLs,

there appear to be different user intentions; different users were looking for pages related to the

definition, proof, equation, or application of this concept. Diversity ranking techniques that use

result clustering to maximize the coverage of alternative interpretations or alternative facets of a

query [27] can be a helpful response to the ambiguity, and thus are potentially useful for more

commonly issued queries.

No-Click Queries. One way to study failure is to analyze the characteristics of queries that led

to no clicks before the next query was issued (or the end of the session), which we call No-click

queries. Because we expect long queries to be challenging, we chose to look at the distribution

of query length (in words) both for queries in general and for No-click queries in particular. We

consider query lengths between 1 to 30 words and studied the distributions for general queries, all

math queries, and No-click math. While the distribution of both general and all math queries fall

off as the query length increases beyond some point, the distribution of no click math queries has

a longer tail. So we see that math queries are long, and that long queries are often unsuccessful.

To get a clearer view, we randomly selected 100 No-click queries of length 5 or 6 (a range where

there were also many successful queries) and examined them to see if we might guess the reason

why there had been no click. We found three plausible explanations for why users are not clicking

on results for queries of that length. One is that the users may be unsure about the mathematical

concept they are searching for, with the user’s initial query being different from the final query,

mostly moving from more general to more detailed and specific mathematical concepts. Consider

one search session where the initial query was “examples for math series expansion,” reformulated

to “Series expansion methods” and ending the session with the query “Maclaurin Series.” Another

example is a search session starting with the query “area and perimeter of geometric shapes,” where

the top results are for general shapes such as circles, rectangles, and squares. The user then made

the query more specific by issuing the query “area and perimeter of shapes with multiple sides.”

The last two queries issued by this user were, “area and perimeter of Octagon” and “area and

perimeter of Pentagon.” Another type of No-click query that we observed resulted from the user

requesting exact matches (by using quotation marks). For instance, one user first issued the query

“Cholesky decomposition and Newton’s method comparison” and then reformulated the initial

query to the new query “matrix inversion solutions” and finally posed the query “comparison of

CHAPTER 2. CHARACTERIZING MATH SEARCHES 22

matrix inversion solutions” with the entire query in quotation marks. That did not work well.

Finally, a third apparent cause for No-click queries was invalid input, either because of spelling

or because of deficiencies in vocabulary. For example, there was a search session where the initial

query was “the median value theorem for integrals.” However, the correct mathematical concept is

“the average value theorem for integrals.” Another example is a session where the user meant to

issue the query “Kruskal’s algorithm in graph theory,” but instead of the word “Kruskal” used the

word “Truskal.” That user finished his/her search session with no click. All three of these cases

point to the value of query suggestion. Considering the first scenario, suggesting related queries

for more specific mathematical concepts could help guide users to desired pages faster. For exact-

match queries and invalid input, perhaps query auto-completion might help users to avoid entering

No-click queries in the first place.

2.2.3 Math Search Sessions

So far, we have explored queries and clicks individually, but together these two phenomena form

a search session. Users start the search activity with an intent in mind, they can issue multiple

queries and change their search strategy to achieve their goal. The sequence of queries and clicks

for this often-complex search process is called a “search session.” In this section, we focus on math

search sessions from the perspectives of user effort, math query refinement, and failed searches.

We then examine some long math search sessions to obtain additional insight into math search

behavior.

User Effort. One simple way of quantifying user effort is to look at the number of queries in a

session. Other measures can be the search duration, defined as the time between the first query and

the last click of a session, or the total number of clicks. As Table 2.4 shows, all of these measures

are markedly greater for math sessions than for general search sessions. On average, math sessions

are more than three times longer, both in duration and in the number of queries, than general

search sessions; the average number of clicks is about two and a half times greater. Some of this

might be attributed to math searches being predominantly informational, using Broder’s query type

taxonomy [22], whereas the higher prevalence of navigational queries in general Web search would

skew the average for general searches toward shorter sessions. Indeed, it may be that exploratory

search [161], a particularly challenging type of informational search, is more common for math,

since one common use case we have observed for math search is math learners of school age who

are working on assignments.

User Satisfaction. Regardless of the cause, searchers seem to be working pretty hard on their

CHAPTER 2. CHARACTERIZING MATH SEARCHES 23

Table 2.4: User effort metrics for math vs. general search. The mean and standard deviation for

each measure is shown.

Session Type Queries (µ, σ) Duration (mins) (µ, σ) Clicks (µ, σ)

Math (5.82,1.62) (10.42,5.58) (3.28,1.03)

General (1.86,0.90) (3.11,2.89) (1.32,0.94)

Table 2.5: User satisfaction metrics for math vs. general search.

Session Type Zero-click Click-final Sat-click

Math 23.9% 25.2% 60.7%

General 10.5% 42.4% 82.2%

math searches. But the question is are they satisfied with the search outcome? To answer this

question, we looked at what Kim et al. have called “sat clicks” [70]– interaction patterns that

suggest (fairly reliably, when viewed in aggregate) user satisfaction. Specifically, we quantify three

outcomes that are expected to be informative with regard to user satisfaction:

• Zero-click sessions. Sessions in which the user did not click on any search engine result.

This can be interpreted as clear evidence of dissatisfaction.

• Click-final sessions. Sessions where the user ended the search session by visiting a Web

page, suggesting that the user’s information need may have been satisfied.

• Sat-click sessions. Sessions in which the user stays on a page for more than 30 seconds,

suggesting that at least some part of the user’s information need may have been satisfied.

Note that many click-final sessions will also be Sat-click sessions since a Click-final session in

which the browser remains open for 30 seconds is also a Sat-click session.

Table 2.5 compares these satisfaction measures between math and general search sessions, showing

the percentage of sessions in which each outcome occurs. From these results one can reasonably

conclude that math search users are not just working harder, they are also getting worse outcomes.

More than twice as many math search sessions result in no clicks at all, a bad outcome, markedly

fewer math search sessions are Click-final, and even Sat-clicks are less common for math search

sessions.

CHAPTER 2. CHARACTERIZING MATH SEARCHES 24

Query Reformulation Query reformulation has been widely studied, both with the goal of im-

proving retrieval effectiveness [52] and with the goal of supporting effective reformulation [60].

Seven types of query reformulation are considered in our work:

1. Reordering words. Words from the previous query are re-ordered (e.g., Series Taylor →
Taylor Series). This type of reformulation might be motivated by the user seeing the words

in some other order in a document.

2. Removing words. Removing at least one word from the previous query. This is often

associated with a generalization strategy in which a user elects to search for some broader,

and thus less fully specified, concept (e.g., shortest path in graph with Prim → shortest path

in graph).

3. Adding words. At least one word is added to the previous query (e.g. optimization method

→ optimization newton method). In contrast to removing words, here the user makes the

query more specific.

4. Substituting words. Having the same number of words, with at least one word in common

with the previous query (e.g. Standard normal distribution → general normal distribution).

This behavior can occur when refining a previous query, or exploring related concepts.

5. New query. There is no common word with the previous query (e.g. Taylor Series →
Fourier Transform). This situation sometimes occurs where the user’s goal changes, but it

might equally well reflect an iterative strategy in which the user is working through a set of

possibilities without having changed their goal.

6. Multi-reformulation. Here more than one of the reformulation types defined above occurs

(e.g., Taylor Series Expansion Example → Taylor Series Formula: “Expansion” is removed,

and “Example” substituted by “Formula”).

7. Revisiting. The user returns to using a query they previously issued in the same search

session. This might occur when the user abandons a strategy and wants to start over from a

known point with a different strategy, or it may simply reflect the user satisfaction by using

a previous query to return to some document that they had previously seen, perhaps after

learning that no better document can be found.

Every consecutive pair of queries within the same session defines a reformulation, and these refor-

mulation types are easily detected with simple string edit measures. A total of 83.6% of the math

CHAPTER 2. CHARACTERIZING MATH SEARCHES 25

Table 2.6: Math query reformulation frequencies, and percentage of reformulations leading to user

clicks by type.

Reformulation Type Frequency Led to click

Substituting words 32.1% 62.9%

New query 21.5% 44.7%

Multi-reformulation 15.2% 58.3%

Adding words 13.5% 17.4%

Removing words 9.6% 18.3%

Reordering words 4.3% 12.9%

Revisiting 3.8% 15.9%

search sessions contain more than one query, and thus at least one reformulation. Table 2.6 shows

the frequency of each reformulation type among sessions containing at least one reformulation,

along with a simple click measure for the quality of whether the reformulation was useful.

As the table shows, substitution was the most common reformulation type (accounting for nearly

one-third of all reformulations), and the most effective reformulation type (leading to a click nearly

two-thirds of the time). Multi-reformulations, 76% of which included at least one substitution, were

also nearly as effective as substitution alone (at least at finding something to click on). Reordering

words and revisiting queries submitted earlier were the least common reformulations, and also

the least successful. These results suggest that as query interfaces for math search become more

capable, users might benefit not just from the ability to enter equations, but also from the ability

to easily reformulate equations that they have entered in earlier queries. These insights might

also help with the design of query suggestion techniques, which today often focus more on adding

words (e.g., for auto-completion) than on substitution. We also looked at how often users switch

from using search queries to asking questions, given the high frequency of question queries in math

searches compared to general searches. Liu et al. [90] had observed that users unsatisfied with their

search results sometimes changed their queries into a question. However, in 40.3% of cases where

users posed a question, the question query was the initial query issued in the search session. For

instance, in one search session, the user’s initial query was “how to prove a relation is symmetric.”

This session was concluded after visiting two of the returned pages. From this relatively large

prevalence of question-initial search sessions, one can speculate that users may be adopting this

strategy because they expect the additional context to help the search engine to return better

results.

CHAPTER 2. CHARACTERIZING MATH SEARCHES 26

Long Sessions As shown, users submit more queries and spend more time searching for math

compared to general searches. To get a sense of the most extreme cases, we examined the ten

math search sessions with the largest number of queries to try to determine why users are issuing

more queries. Overall, in these sessions two types of behavior were noted: 1) the user is trying

to solve a set of mathematical problems (perhaps homework), or 2) the user is trying to fully

understand a mathematical concept. The largest number of math queries issued by a user in a

math search session was 26. The user is probably a student working on geometry homework as

different math queries, each related to one of five geometry concepts discussed in high school, were

issued. The user first apparently tried all of the questions using copy-and-paste. For two out of

the five geometry concepts, (s)he clicked on Web pages after issuing the copied text (which was in

the form of a question), and neither of those two queries were reformulated. This suggests that

the user may have found the answer to the question. However, for the three other queries, after

not being satisfied with preliminary search results, the user tried to issue different queries to learn

the geometry concept. By starting from the basic concept, the user tried different reformulations

to locate more complex material on that concept. Overall, the user finished searching for the first

four concepts with a click, but seems not to have been satisfied with results for the last concept as

no clicks resulted.

Six more of the ten longest sessions seem to have been users looking for answers to certain math

problems. In the other three very long sessions, users seemed to be trying to understand a math-

ematical concept in detail, continuing the search even after visiting Web pages. For instance, in

the third-longest math search session, 20 queries were issued by a user concerning “trigonometric

identities.” In this search session, a ‘new query’ reformulation occurred 15 times as the user tried

different queries, including “sine formula”, “tangent” and “cotangent.” The analysis of these ten

long math search sessions suggests that math searches can be long for different reasons, and that it

might therefore be useful for math search engines to include functions for inferring user intent [59].

2.3 Summary

While there are ideas about how a math search system might be used, there are a few instances of

research on that topic. Before our query log analysis, there was only one lab study investigating

the users’ requirements in math search [176]. Our research was the first query log analysis for math

search carried out using a general-purpose search engine.

The main finding is that users put in more effort and are less satisfied with math search. These

CHAPTER 2. CHARACTERIZING MATH SEARCHES 27

findings have important implications for future math-aware search system design. Based on our

observation of the specified content type in math searches, nearly half of the math searches demand

other resources than a web page, for which we recommend diversity of content in search results.

We are now aware that math search systems should support question queries and should anticipate

longer queries than general searches. In long queries, around 50% of queries were copy-and-paste

(copied from an online resource and pasted as a query). It is possible that exact matching for long

queries may be effective. Another possible reason for long queries is verbosity, which is common in

math searches, and search systems should tackle this issue. To the best of our knowledge, there is

no existing research on handling verbose math queries. More than 80% of math queries are unique

in the query log that we studied. This shows perhaps query suggestion techniques based on users’

search logs are less effective for math searches.

In math searches, there are commonly clicked search results pages. In our study, 10 websites

accounted for more than 25% of all page clicks. Our study on click entropy showed that both

unique and frequent queries have high click entropy, suggesting that diversity in math search results

is important. This is also supported by our analysis on users’ behavior in math search sessions.

Several of the longest search sessions appeared to be searching for solutions to a set of homework

problems, but others seemed to focus on trying to understand a mathematical concept in detail.

Our finding in this Chapter provided new ideas for developing both test collections and math-aware

search systems. In Chapter 3 we introduce the ARQMath test collection, with answer retrieval task

developed based on the finding that questions are common math queries. Chapter 4 then introduces

our search models such as Tangent-CFT [105] that were developed based on the observation that

more than 80% math queries are unique and issued only once.

Chapter 3

Test Collections for Contextual

Formula Search and Math Question

Answer Retrieval

To study the effectiveness of math search systems, we need standard benchmarks with which systems

can be compared. Evaluation of math search systems is challenging; to develop a test collection,

several aspects need to be considered, including query selection, the technical complexity of the

documents in the collection, relevance definitions, and evaluation protocols. It is important that

the defined tasks simulate real user search behavior. For example, a test collection might use a

set of lab-generated queries that are expected to be similar to real users’ queries, or it can use the

real queries that are issued by users. Another aspect related to the queries can be their quantity

and diversity. Having a higher number of queries can help evaluate systems better. If queries have

different categories, having queries with a representative distribution can help better discriminate

between systems.

Collections can have documents from different resources, each having a different technical level.

The technical level can influence the assessment process. For highly technical documents, experts

in the field are needed to assess the content. Moreover, proper training for assessment is needed.

Related to assessment, it is important that each task has a clear definition of relevance, especially

if there are different relevance degrees such as relevant, partially relevant, and not relevant. The

assessors need clear instructions to distinguish between these categories. Relevance definition can

be different based on the task design, and therefore when moving from one test collection to another,

28

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 29

one can see changes in the definition, which can affect system evaluation.

Different evaluation measures can be used for the systems’ effectiveness. Some of the measures

consider the top-k returned results, such as Precision@10, and some of them look at the whole list

of retrieved results, such as nDCG. Also, it is important to decide how the hits that are not assessed

should be treated. One approach is to consider them as not relevant, while another approach is

ignoring them.

This chapter introduces the available test collections and evaluation measures used in previous

math-aware search evaluation. Prior to our work, shared task evaluation were introduced in NT-

CIR (NACSIS (National Center for Science Information Systems) Testbeds and Community for

Information access Research project)-10, -11, and -12. We explore their tasks, data sources, queries,

and the evaluation protocols used in them. Then, we introduce the ARQMath test collections for

math information retrieval that we have developed.

3.1 Related Work

An earlier effort to develop a test collection started with the Mathematical REtrieval Collection

(MREC) [94], a set of 439,423 scientific documents that contained more than 158 million formulas.

This was initially only a collection, with no shared relevance judgments (although the effectiveness

of individual systems was measured by manually assessing a set of topics). Therefore, this collection

was commonly used to evaluate system performance (speed). The Cambridge University MathIR

Test Collection (CUMTC) [151] subsequently built on MREC, adding 160 test topics derived from

120 MathOverflow discussion threads (although not all queries contained math). These test topics

are selected from sub-parts of question from the 120 threads. The criteria for selecting these threads

were: (1) not being too broad or too vague, (2) the accepted answer addressing all the sub-parts

of the questions and being available in MREC documents.

In CUMTC, 184 relevance judgements are provided for the topics which are the accepted answer(s)

for the selected questions on MathOverflow. Relevance is determined using two criteria: (1) totality:

a resource is total if it contains all information for the sub-questions in a topic, and partial if only

one part is addressed, (2) directness: a resource is direct if the answer can be derived with a little

intellectual effort reading the text, otherwise it is indirect. The majority of topics (81%) have

only one relevant document, and 17.5% have two relevant documents. To evaluate systems, mean

average precision (MAP) is used. Average precision is the average of precision at each relevant

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 30

document retrieved.

There are three shared task evaluations focusing on math-aware searching introduced in NTCIR-

10 [3], -11 [4] and -12 [170]. To the best of our knowledge, in NTCIR-10 [3] the first shared task

on math-aware search was introduced, considering three scenarios for searching:

• Formula Search: find similar formulas for the given formula query.

• Formula+Text Search: search the documents in the collection with a combination of keywords

and formula queries.

• Open Information Retrieval: search the collection using text queries.

In addition to the main math search task, there was a subtask in NTCIR-10, math understanding.

The goal of this task was to extract natural language descriptions of mathematical formulas from

a document to help with their semantic interpretation. For each formula, participants could return

a full or a short description. For example, for the query log(x), a full description is “a function

that computes the natural logarithm of the value x”, and “a function that computes the natural

logarithm” or “a function” could be short descriptions.

NTCIR-11 [4] considered the formula+keyword search task as the main task and introduced an

additional task called the Wikipedia open subtask, using the same set of topics as the main task

with a different collection and different evaluation methods. Finally, in NTCIR-12 [170], the main

task was formula+text search on two different collections. The second task was Wikipedia Formula

Browsing (WFB), focusing on formula search. A “Similarity task” (simto) was another task where

the goal was to find formulas ‘similar’ (not identical) to the formula query. Here, we discuss

the differences between these test collections. For each section, we consider formula search and

formula+text search, separately.

3.1.1 Queries and Documents

Documents. Collections used to evaluate math-aware search have come from different sources.

NTCIR-10 relied on 100,000 technical papers from arXiv, including papers from mathematics,

physics, and computer science. NTCIR-11 and -12, considered 105,120 papers from arXiv. Each

arXiv document was divided into paragraphs, forming a total of 8,301,578 paragraphs, which are

the retrieval units.1 Due to the high technical complexity of arXiv papers, NTCIR-11 and 12 added

1retrieval unit is the object such as document, paragraph, or formula retrieved by an information retrieval system

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 31

Wikipedia articles, however, the processing step and the number of articles were different.

Formula Search Queries. Formula queries in the test collections differ in their number, diversity,

and nature. Wildcard queries contain symbols that may be replaced by variables and/or sub-

expressions. For example, in the formula query:

?f(?v+?d)−?f(?v)

?d

there are three query variables: ?f, ?v and ?d. The query matches the argument of the limit in

formula

g′(cx) = lim
h→0

g(cx + h) − g(cx)

h
by replacing g for ?f, cx for ?v, and h for ?d. Concrete queries are complete formulas without

wildcards.

In NTCIR-10, 21 formula queries were chosen by the organizers for arXiv papers. 18 of these 21

queries included wildcards; 3 were concrete queries. A search scenario and query-specific judgment

criteria were specified for each formula query.

In NTCIR-11 (simto task), a total of 100 queries were selected randomly from Wikipedia pages.

59 of these 100 queries included wildcards; 41 were concrete queries. NTCIR-11 was a known-item

retrieval task, so no relevance judgment criteria were specified.

In the NTCIR-12 Wikipedia Formula Browsing (WFB) task, there were 40 queries, divided into

20 concrete queries and 20 wildcard queries. The wildcard queries were created by replacing one

or more subexpressions in each concrete formula query with wildcards. For example, the query

O(mn logm) also appears as O(*1* log *2*), where *1* and *2* represent two independent

subexpressions.

NTCIR-12 had another task related to formula search called simto, with 8 queries. The simto

operator identifies subexpressions to be matched using similarity, with other parts of the expression

matched exactly. Two instances of the same wildcard in the same query required exact matches.

Formula+Text Search Queries. In NTCIR-10, there were 15 formula+text queries and 19 text

queries. Among these queries, all the formula+text queries and none of the text-only queries were

assessed for relevance. In NTCIR-11, more topics were assessed compared to NTCIR-10, and overall

50 queries are available for the formula+text task. All the topics contained at least one keyword

and one formula. In NTCIR-12, topics were developed for search on two different collections: arXiv

and Wikipedia. 29 arXiv and 30 Wikipedia topics were assessed. All the topics contained at least

one formula, but 5 in the arXiv and 3 in the Wikipedia set had no keywords.

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 32

3.1.2 Pooling

Pooling is the process of selecting retrieved documents by different retrieval systems for relevance

judgement. We explain how pooling was done for formula search and formula+text search in

NTCIR test collections.

Formula Search. The set of formula instances to be judged was created by pooling submitted

runs for three of the four NTCIR test collections. No pooling was used for NTCIR-11, a known-item

retrieval task. In NTCIR-10, participating teams could submit up to 100 formula instances2 per

formula query. The highest-ranked formula instances were selected from each submitted run, one

rank at a time, until the pool to be judged contained at least 100 unique formula instances, each of

which had been highly ranked by at least one system. In the NTCIR-12 WFB and NTCIR-12 simto

tasks, participating teams could submit up to 1,000 results per topic. In each case (separately),

the top-20 formula instances from each submitted run were pooled. This instance-based definition

of uniqueness sometimes resulted in limited diversity in the judgment pools. As the most extreme

example, for the NTCIR-12 WFB query β (a short formula consisting of a single symbol), every

formula instance in the pool of formulas to be judged was β.

Formula+Text Search. In NTCIR-10, the pooling process for formula and formula+text queries

was the same. As with NTCIR-10, each participating team in the NTCIR-11 formula+text search

task was allowed to submit up to 4 runs, returning the top-1000 results per query. For each topic,

50 retrieval units were chosen from the union of the retrieval results. In NTCIR-12, the top-20

ranked results per run were included in the pool for assessment.

3.1.3 Judging and Encoding Relevance

Formula Search. Determining the relevance of a retrieved formula to a formula query can be

challenging. First, relevance naturally depends on the user’s reason for issuing that query, only parts

of which may be signaled by the content or form of the query. Second, even with an understanding

of that context, mathematical knowledge may be needed to recognize whether a retrieved formula

would likely be useful.

NTCIR-11 was a known-item retrieval task. For each topic, the single Relevant (R) formula instance

was defined as the formula instance that had been used as the formula query. Note that there may

2Two formula instances were considered different if they occur in different documents, even if they were visually

identical.

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 33

have been other instances of the same or similar formulas in the collection, but like all instances of

other formulas, they would be scored as Non-relevant (N).

For NTCIR-10, the assessors were mathematicians or math students. Assessors viewed each formula

instance from the judgment pool in isolation and assigned each a grade of Relevant (R), Partially

relevant (P), or Non-relevant (N) to that pool’s query, considering the query-specific scenario and

judgment criteria that had been specified when the query was created.

For the NTCIR-12 WFB task, there were two groups of assessors; each group independently judged

each pooled formula. One group consisted of computer science graduate students, the other con-

sisted of computer science undergraduates. Assessors viewed each formula instance from the judg-

ment pool for a query in context and assigned each a relevance grade of Relevant (R), Partially

relevant (P), or Non-relevant (N) to that pool’s query, informed by the scenario and judgment crite-

ria that had been specified when the query was created. The pooled formula instances were shown

to the assessors in context (highlighted in the text where they had appeared in the collection), but

assessors were not asked to interpret the pooled formula in that specific context; the assessment was

to be done based on the pooled formula itself, with reference to the scenario and relevance criteria

that were provided to the assessor with that query. For the NTCIR-12 simto task, two assessors

judged each pooled formula, following the same approach as for the NTCIR-12 WFB task.

Formula+Text Search. The assessment process in NTCIR-10 for text+formula searches was

similar to the formula search task, with the same assessors. The relevance was decided based on

the retrieved formula, not the document. Using the SEPIA system,3 the assessors were shown the

retrieved formula and its context. Using the same assessment system, in NTCIR-11 the assessors

were shown the title of the topic, the relevance description, and an example hit (if any) as supple-

mentary information. In this collection, in contrast to NTCIR-10, the relevance was assessed not

on a formula basis, but a retrieval unit basis. That is to say, the assessors judged the relevance

of each retrieval unit to the query based on the keywords, as well as the formulas included in the

submission files. To make sure that assessors are familiar enough with math, they were chosen from

third-year undergraduate and from graduate students in mathematics. For each retrieval unit, the

assessors were asked to select either relevant (R), partially-relevant (P), or non-relevant (N). The

relevance levels were similarly defined in NTCIR-12, however, the assessor for Wikipedia topics

were computer science students. Each hit was evaluated by one undergraduate and one graduate

student.

3https://code.google.com/archive/p/sepia/

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 34

3.1.4 Evaluation Protocols

NTCIR-10 and -12 combined 3-level judgments from two assessors to form a 5-level “Aggregate”

relevance judgment for each assessed document. This was done by mapping N to 0, P to 1, and R

to 2, and then summing the two scores. The resulting integer scores ranged from a low of 0 (both

assessors judged N) to a high of 4 (both assessors judged R). For computing evaluation measures,

this 0 to 4 levels are binarized by treating relevance grades 0, 1, and 2 as non-relevant and treating

3 and 4 as relevant. In all NTCIR formula search tasks, evaluation measures were computed on

formula instances. NTCIR-10 reported P@5, P@10, P@hit (i.e., for all returned results), and MAP.

P@K shows the ratio of relevant documents retrieved in the top-k results. The NTCIR-11 main

task replaced P@hit, with bpref [23] a preference-based measure designed for incomplete relevance

judgements. Bpref is an effectiveness measure that considers whether relevant documents are ranked

above the non-relevant ones, ignoring the unassessed hits defined as:

bpref =
1

R

∑
r

(
1 − |n ranked higher than r|

min (R,N)

)

where R is a set of relevant documents and N is a set of non-relevant documents. The evalua-

tion measure for the NTCIR-11 formula search task was different because that was a known-item

retrieval task. Mean Reciprocal Rank (MRR) for the one known relevant formula instance per

query was the reported evaluation measure. MRR is the average of the reciprocal ranks of the first

relevant document. NTCIR-12 tasks reported P@5, P@10, P@15, and P@20. In all cases, relevance

judgments for formula instances that were missing from the pools (as can happen for P@hit and

MAP) were treated as not relevant.

3.2 The ARQMath Test Collections

This section presents our work on the ARQMath-1 [173], ARQMath-2 [108], and ARQMath-3 [100]

test collections. All three test collections had two main tasks: (1) answer retrieval for math

questions, (2) contextual formula search. We consider these main differences between ARQMath

and previous test collections:

1. Queries. ARQMath collections have more queries, which are also more diverse.

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 35

2. Relevance. In ARQMath, the definition of relevance is more strongly tied to the contexts

in which the which formulas originally appeared.

3. Pooling. In NTCIR, many instances of the same formula might be retrieved, so assessment

pools could be rich in duplicates. In ARQMath, identical formulas were clustered prior to

pooling, leading to more diverse pools.

4. Evaluation. In NTCIR, systems were given credit for every retrieved formula instance that

was relevant. In ARQMath, systems received credit only for the first instance of each distinct

relevant formula retrieved.

While the NTCIR collections contained the arXiv and Wikipedia articles, ARQMath uses ques-

tions and answers from the Community Question Answering (CQA) website Math Stack Exchange

(MathSE).4 In terms of technical complexity, MathSE varies from simple questions to expert-level

mathematical inquiries. The Internet Archive provides free public access to MathSE snapshots.5

For ARQMath-1 we processed the 01-March-2020 snapshot, which in its original form contained

the following in separate XML files:

• Posts: Each MathSE post has a unique identifier, and can be a question or an answer,

identified by ‘post type id’ of 1 and 2 respectively. Each question has a title and a body

(content of the question) while answers only have a body. Each answer has a ‘parent id’ that

associates it with the question it is an answer for. There is also other information included

for each post, such as the post owner id and creation date.

• Comments: MathSE users can comment on posts. Each comment has a unique identifier

and a ‘post id’ indicating which post the comment is written for.

• Post links: Moderators sometimes identify duplicate or related questions that have been

previously asked. A ‘post link type id’ of value 1 indicates related posts, while value 3

indicates duplicates.

• Tags: Questions can have one or more tags describing the subject matter of the question.

• Votes: While the post score shows the difference between up and down votes, there are other

vote types such as ‘offensive’ or ‘spam.’ Each vote has a ‘vote type id’ for the vote type

and a ‘post id’ for the associated post.

4https://math.stackexchange.com/
5https://archive.org/download/stackexchange

https://archive.org/download/stackexchange

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 36

• Users: Registered MathSE users have a unique id, and they can provide additional informa-

tion such as their website. Each user has a reputation score, which can be increased through

activities such as posting a high quality answer, or posting a question that receives up votes.

• Badges: Registered MathSE users can also receive three badge types: bronze, silver and

gold. The ‘class’ attribute shows the type of the badge, value 3 indicating bronze, 2 silver

and 1 gold.

Questions and answers from 2010-2018 are included in the collection to be searched.6 The AR-

QMath collection contains roughly 1 million questions and 28 million formulas. Formulas in the

collection are annotated using tags with the class attribute math-container, and a unique

integer identifier given in the id attribute. Formulas are also provided separately in three TSV files

for different formula representations (LATEX, Presentation MathML, and Content MathML). Each

line of a TSV file represents a single instance of a formula, containing the formula id, the id of

the post in which the formula instance appeared, the id of the thread in which the post is located,

a post type (title, question, answer or comment), and the formula representation in either LATEX,

Symbol Layout Tree (SLT) (Presentation MathML), or Operator Tree (OPT) (Content MathML).

HTML views of question threads, similar to those on the Math Stack Exchange web site (a question,

along with answers and other related information) are also included in the ARQMath collection.

The threads are constructed automatically from Math Stack Exchange snapshot XML files. The

threads are intended for those performing manual runs, or who wish to examine search results

(on queries other than evaluation queries) for formative evaluation purposes. These threads are

also used by assessors during evaluation. The HTML thread files were intended only for viewing

threads; participants were asked to use the provided XML and formula index files to train their

models.

All three ARQMath test collections, used a same collection. However, in ARQMath-2021,7 we

added a new field for a visually distinct formula identifier, which is used in evaluation for task 2

(Formula Retrieval). The idea is to identify formulas sharing the same appearance. So for example,

two occurrences of x2 in a TSV formula index will have different formula instance identifiers, but the

same visually distinct formula identifier. In our last release of our collection in 2022, we fix existing

issues we were notified about in the previous years. These fixes are explained in the Appendix.

In the next subsections, we review the two tasks. As the formula search task has been evaluated

6which we call the ARQMath collection
7We refer to the test collections as ARQMath-1, -2 and -3. ARQMath-2020, -2021, and -2022 refers to the labs

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 37

before, we first make comparison with the previous test collections.

3.2.1 Contextual Formula Search Task

We first review ARQMath contextual formula search task. This is the second task in ARQMath,

but providing search models for this task is the primary goal of this research.

Task definition. The goal of ARQMath task 2 (contextual formula search) is, given a formula

inside a math question, retrieve the top-1000 relevant formulas from the questions and answers

in the collection. Table 3.1 shows an example query, B.4 in ARQMath-1 (shown in blue), with

relevant (shown in green) and non-relevant (shown in red) retrieved formulas.

Here we provide details on the ARQMath-1, -2 and -3 test collections and also compare them

against the previous formula search tasks in NTCIR.

Queries. In ARQMath-1, 87 mathematical formulas were provided for the participants from the

questions posted on MathSE in 2019. In ARQMath-2, 100 formulas were chosen from the 2020

questions and distributed to the participants. As ARQMath-2, 100 formulas from questions in 2021

were used in ARQMath-3. Topics in task 2 had the question title, body, and question tags from

Math Stack Exchanges. For all the formulas inside the questions in which the query appeared, the

LATEX, SLT, and OPT representations are in the same TSV file format as the collection. All the

queries are chosen from the questions originally developed for ARQMath task 1. To select these, a

set of criteria were considered.

For ARQMath-1, a total of 74 concrete formula queries were assessed. Of these 74, 45 formula

queries were assessed initially and used to evaluate systems (the test queries), with the remaining

29 designated for use in training future systems (the additional queries). In ARQMath-2, 58 queries

were assessed and used for the evaluation, and then 12 additional queries were assessed. Note that

some of the additional queries in both ARQMath-1 and -2 are queries that were removed from

the evaluation set because of the small number of relevant formulas, as score quantization for

MAP′ can be quite substantial when only a single relevant formula contributes to the computation.

In ARQMath-3, 76 queries were assessed and used for evaluation. At the time of writing this

dissertation, the assessment of additional queries are ongoing.

ARQMath provided a manually annotated complexity label for its formula queries. Based on the

number and diversity of symbols in a formula, 3 levels of complexity were defined: Low (L), Medium

(M), and High (H). For this analysis, we have also manually annotated the NTCIR-10 queries and

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 38

Table 3.1: Example of ARQMath Contextual Formula Search task query and results.

Formula Query inside a Math Question(Topic B.4)

I have the sum
n∑

k=0

(
n

k

)
k

know the result is n2 − 1 but I don’t know how you get

there. How does one even begin to simplify a sum like this

that has binomial coefficients.

Relevant

...

which can be obtained by manipulating the second derivative

of
n∑

k=0

(
n

k

)
zk

and let z = p/(1 − p)

...

Non-Relevant

Yes, it is in fact possible to sum this. The answer is

n∑
k=0

(
n

k

)(
m

k

)
=

(
m + n

n

)
assuming that n ≤ m. This comes from the fact that

...

the 20 concrete NTCIR-12 queries in the same way; these new annotations were checked by the same

mathematician who checked the complexity labels for the ARQMath test collection (Dr. Anurag

Agarwal). Table 3.2 shows the distribution of topic complexity for each test collection, along with

an example of each complexity level. In NTCIR-10 and ARQMath, there are more low-complexity

queries than in NTCIR-12.

As we [106] found, low-complexity formulas are common in queries posed to general-purpose search

engines. Therefore, NTCIR-10 and ARQMath queries might be representative models for that use

case. We also note that current systems find high-complexity formula queries challenging, so over-

reliance on high-complexity formulas might decrease our ability to distinguish between systems if

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 39

Table 3.2: Concrete query complexity for NTCIR-10/12 and ARQMath.

Complexity NTCIR- ARQMath-1 ARQMath-2 ARQMath-3

Level Example 10 12-WFB test additional test additional test

Low O(mn logm) 11 4 21 15 22 4 23

Medium
∫∞
0

sin x
xa 6 6 16 11 24 6 31

High
∑n

r=1(−1)(n−r)
(
n
r

)
(r)m 5 10 8 3 12 2 22

all systems do poorly on that subset of the queries. On the other hand, high-complexity queries can

be easily produced by searchers using cut-and-paste, so it is useful for test collections to contain

some high-complexity queries to characterize systems on queries of that type.

Pooling. One of the issues with previous test collections was that, for some queries, there were low

numbers of unique assessed formulas. To have more diverse assessed formulas, ARQMath pooling

is based on visually-distinct formulas. Specifically, when two formulas have identical symbolic

representations, they are defined as visually identical, and otherwise as visually distinct. Symbolic

identity was defined as identical Symbol Layout Trees, as represented by Tangent-S [35], when

both were parseable, or identical LATEX strings otherwise. Table 3.3 illustrates this distinction by

providing examples of visually identical formulas with different LATEX representations.

In ARQMath 2020, the participants were asked to retrieve the top-1000 relevant formula instances.

In ARQMath-1 the pooling process, visually distinct formulas were used by first clustering all

formula instances from all submitted runs to identify visually distinct formulas, and then proceeding

down each list until at least one instance of some number of different formulas had been seen. For

primary runs, and for the baseline run, the pool depth was the rank of the first instance of the 25th

visually distinct formula; for alternate runs, the pool depth was the rank of the first instance of the

Table 3.3: Visually-identical formulas with different LATEX representations.

Formula Different LATEX Strings

a2 = 2b2 {a^{2}=2b^{2}} {a^2}=2{b^2} a^2=2b^{2}

m ̸= 0 {m\ne0} m\not=0 m\ne\\0
n
m {\dfrac{n}{m}} n\overm \fracnm

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 40

Table 3.4: Formula retrieval test collections: sources, number of participating teams, and number

of runs (including baseline systems).

Task Collection #Teams #Runs

ARQMath-3 Math Stack Exchange 5 20

ARQMath-2 Math Stack Exchange 6 18

ARQMath-1 Math Stack Exchange 3 11

NTCIR-12 WFB Wikipedia 2 7

NTCIR-12 simto arXiv 2 8

NTCIR-11 Wikipedia 7 21

NTCIR-10 arXiv 6 12

10th visually distinct formula. Assessment was done on formula instances, so for each formula we

selected at most five instances to assess. The 5 instances that were contributed to the pools by the

largest number of runs were selected, and ties were broken randomly. Out of 5,843 visually distinct

formulas that were assessed, only 93 (1.6%) had instances in more than 5 pooled posts.

In ARQMath 2021, the participants had the visual-id for each formula in advance, with clustering

performed over the full collection. Pooling for ARQMath-2 task 2 queries was performed by then

proceeding down each result list until at least one instance of some number of visually distinct

formulas had been seen. For primary runs, and for the baseline run, the pool depth was the rank

of the first instance of the 20th visually distinct formula; for alternate runs, the pool depth was the

rank of the first instance of the 10th visually distinct formula. For each visually distinct formula,

at most five instances were selected for assessment. In order to prefer highly-ranked instances and

instances returned in multiple runs, the 5 instances were chosen using a voting protocol, where each

instance votes by the sum of its reciprocal ranks within each run, breaking ties randomly. Out of

8,129 visually distinct formulas that were assessed, 117 (1.4%) had instances in more than 5 pooled

posts.

In ARQMath 2021, the participants also had the visual-ids in advanced. Pooling for ARQMath-3

task2 queries was done with depths of 25 and 15 visually distinct formulas for primary and alternate

runs. For each query, on average there were 154.35 visually distinct formulas to be assessed, and

only 6% of visually distinct formulas had more than 5 instances.

Table 3.4 shows the number of runs that were pooled in each of the seven formula retrieval test

collections that used pooling. No pooling was used for NTCIR-11, a known-item retrieval task.

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 41

Table 3.5: Relevance scores, ratings, and definitions for ARQMath task 2.

Score Rating Definition

3 High Just as good as finding an exact match to the formula query would be

2 Medium Useful but not as good as the original formula would be

1 Low There is some chance of finding something useful

0 Not Relevant Not expected to be useful

Judging and Encoding Relevance. ARQMath-1 assessment was done with 3 undergraduate

mathematics students. There were two rounds of assessor training. ARQMath-2 and -3 had 3

assessors (undergraduate and graduate computer science and mathematics students), but with three

rounds of training. In all test collections, after the assessment, each assessor was given two topics

assessed by the other two assessors to allow us to calculate agreement. The average Cohen’s kappa

coefficient for ARQMath-1 was 0.30 on the four-way assessments with High+Medium binarization8

the average kappa was 0.48. In ARQMath-2, these values increased to 0.33 and 0.69, respectively.

In ARQMath-3, a kappa of 0.44 was achieved which was higher than the previous test collections,

however, with High+Medium binarization, kappa was 0.51; lower than ARQMath-2 and higher

than ARQMath-1. The average assessment time in ARQMath-1 was 38.1 seconds per formulas,

39.5 in ARQMath-2, and 26.6 in ARQMath-3.

In ARQMath-1 the relevance judgment task was defined for assessors as follows:

For a formula query, if a search engine retrieved one or more instances of this retrieved formula,

would that have been expected to be useful for the task that the searcher was attempting to accom-

plish?

Assessors were presented with formula instances, and asked to decide their relevance by considering

whether retrieving either that instance or some other instance of that formula would have been

useful, assigning each formula instance in the judgment pool one of four scores as defined in Table

3.5.

For example, if the formula query was
∑ 1

n2+cosn , and the formula instance to be judged is
∑∞

n−1
1
n2 ,

the assessors would decide whether finding the second formula rather than the first would be

expected to yield good results. To do this, they would consider the content of the question post

containing the query (and, optionally, the thread containing that question post) to understand the

8Considering hits with relevance score of 2 and 3 as relevant, and 0 and 1 as not relevant

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 42

searcher’s actual information need. Thus, the question post fills a role akin to Borlund’s simulated

work task [20], although in this case the title, body, and tags from the question post are included

in the topic and thus can optionally be used by the retrieval system. The MathSE question post

was used in place of the scenarios that had been provided with NTCIR-10 and NTCIR-12 queries;

no query-specific relevance judgment criteria were provided. The assessor can also consult the post

containing a retrieved formula instance (which may be another question post or an answer post),

along with the associated thread, to see if in that case the formula instance would indeed have been

a useful basis for a search. Note, however, that the assessment task is not to determine whether

the specific post containing the retrieved formula instance is useful, but rather to use that context

as a basis for estimating the degree to which useful content would likely be found if this or other

instances of the retrieved formula were returned by a search engine.

We then defined the relevance score for a formula to be the maximum relevance score for any

judged instance of that formula. This relevance definition essentially asks “if instances of this

formula were returned, would we reasonably expect some of those instances to be useful?” Figure

3.1 shows the Turkle9 interface used for assessment in ARQMath. As shown in the left panel of

the figure, the formula query
∑n

k=0

(
n
k

)
k was highlighted in yellow. The assessors could use the

question context to understand the user’s information need. In the right panel, two instances of

one visually-distinct formula,
∑n

k=0

(
n+k
k

)
, are shown in two different posts. For each instance, the

assessor could consider the post in which the instance appeared when deciding the relevance degree.

Relevance Assessment in ARQMath-1 vs ARQMath-2 and -3. Although this definition of

relevance was unchanged between ARQMath test collections, we did make one potentially significant

change to the way this relevance definition was interpreted for ARQMath-2 and -3. It should be

noted that one of the ARQMath lab organizers who is a mathematician (Dr. Anurag Agarwal)

reviewed these two examples and agreed with the assessors. In 2020, ARQMath-1 assessors had been

instructed during training that if the query and candidate formulas were the same (in appearance),

then the candidate was certainly highly relevant. During assessor training in 2021, this issue received

considerable attention and discussion, and we ultimately concluded that our guidance in 2020 had

not been fully consistent with our relevance definition. We, therefore, clarified the interpretation

of ‘exact match’ for ARQMath-2 assessment in 2021 and for ARQMath-3 assessment in 2022 to

take the formula semantics and context directly into account, even in the case of identical formulas

(so for example, variables of different types would not be considered the same, even if variable

names are identical). This means that an exact match with the formula query may in some cases

(depending on context) be considered not relevant. This change may affect the utility of some

9https://github.com/hltcoe/turkle

https://github.com/hltcoe/turkle

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 43

Project: 2021_tester_task1 / Batch: B.6 Accept Task Skip Task Stop Preview

Figure 3.1: Turkle assessment interface for ARQMath Formula Search task. In the left panel, the

formula query is highlighted. In the right panel, two posts (both of which are questions) containing

the same retrieved formula are shown. Assessors considered context by looking at the question the

query appears in, and the posts in which retrieved formulas appear.

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 44

ARQMath-1 relevance judgments for training systems that will be evaluated using ARQMath-2 or

-3 relevance judgments.

For example, for the formula query xn + yn + zn (B.289 from ARQMath-2) x, y, and z could be

any real numbers in the original question post in which that formula had originally appeared. The

assessors considered all exact matches in the pooled posts in which x, y, and z referred not to real

numbers but specifically to integers as not relevant. On the other hand, formulas that do not share

the same appearance or syntax as the query might be considered relevant. This is usually the case

where they are both referring to the same concept. For the formula query S
n ≥ n

√
P (ARQMath

query B.277), formula 1+2+3+...+n
n ≥ n

√
n! has medium relevance. Both formulas are referring to

the AM-GM inequality (of Arithmetic and Geometric Means).

As in ARQMath-1, for ARQMath-2 and ARQMath-3 we defined the relevance score for a formula

to be the maximum relevance score for any judged instance of that formula.

Evaluation Measures. One risk when performing a new task for which rich training data is not yet

available is that a larger than a typical number of relevant hits may be missed. Measures that treat

unjudged documents as not relevant can be used when directly comparing systems that contributed

to the judgment pools, but subsequent use of such a new test collection can be disadvantaged by

treating unjudged documents (which, as systems improve, might be relevant) as not relevant. We,

therefore, chose the nDCG′ measure (read as “nDCG-prime”) introduced by Sakai [139] as the

primary measure for ARQMath Tasks 1 and 2. NDCG (Normalized Discounted Cumulative Gain)

is the ratio of DCG@k to the ideal ranking at rank k. DCG is the total gain accumulated at rank

k defined as:

DCGk =
k∑

i=1

2reli − 1

log2(i + 1)
.

The nDCG measure on which nDCG′ is based is widely used when graded relevance judgments are

available, as we have in ARQMath, that produces a single figure of merit over a set of ranked lists.

We compute Mean Average Precision (MAP′), and Precision at 10 posts (P′@10), after removing

the unjudged hits. For MAP′ and P′@10 we used High+Medium binarization.

Participants submitted the lists of formula instances, but we computed these measures over visually

distinct formulas. Task 2 evaluation script replaces each formula instance with its associated visually

distinct formula, and then deduplicates from the top of the list downward, producing a ranked list

of visually distinct formulas, from which our “prime” evaluation measures are then computed using

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 45

Table 3.6: Example of an ARQMath-1 answer retrieval task topic (A.4) with a relevant and a

non-relevant answer.

Question

I have spent the better part of this day trying to show from first principles

that this sequence tends to 1. Could anyone give me an idea of how I can

approach this problem?

lim
n→+∞

n
1
n

Relevant

You can use AM ≥ GM.

1 + 1 + · · ·+ 1 +
√
n+

√
n

n
≥ n1/n ≥ 1

1−
2

n
+

2
√
n

≥ n1/n ≥ 1

Not Relevant

If you just want to show it converges, then the partial sums are increasing

but the whole series is bounded above by

1 +

∫ ∞

1

1

x2
dx = 2

trec eval.10

3.2.2 Answer Retrieval Task

Task definition. The goal of this task is to find relevant answers for mathematical questions. The

participants were asked to retrieve the top-1000 relevant answers in the collection. Note that in

contrast to the ARQMath formula search task, the retrieved documents are only the answers, not

the questions. Table 3.6 shows an example topic (topic A.4 in ARQMath-1) with a relevant and a

non-relevant retrieved answer.

Topics. In ARQMath-1, 101 questions from posts in 2019 were distributed to the participants.

Similarly, ARQMath-2 provided 100 questions from 2020 posts. Finally, in ARQMath-3 100 ques-

tions from 2021 posts were selected.11 The main constraint for selecting topics was that the question

post should contain at least one formula.

10https://github.com/usnistgov/trec_eval
11In both ARQMath-1 to -3, some questions were that assessed had 0/1 relevant answers in the judgement pools.

https://github.com/usnistgov/trec_eval

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 46

As ARQMath-1 was the first test collection, and because ranking quality measures can distinguish

between systems only on topics for which relevant documents exist, we calculated the number of

known duplicate and related posts for each question and chose only from those that had at least

one duplicate or related post.12 We removed this constraint in the ARQMath-2 topic selection

process. In ARQMath-2 we had included 11 topics for which there were no known duplicates on

an experimental basis. Of those 11, 9 had turned out to have no relevant answers found by any

participating system or baseline.

In ARQMath-3, We selected 139 candidate topics from among the 3313 questions that satisfied

both of our strict criteria: (1) having a minimum of one duplicate questions in the ARQMath

collection, (2) having at least one formula in the title or body. We also applied additional soft

criteria based on the number of terms and formulas in the title and body of the question, the

question score that Math Stack Exchange users had assigned to the question, and the number of

answers, comments, and views for the question. From those 139, we manually selected 100 topics

in a way that balanced three desiderata: (1) A similar topic should not already be present in the

ARQMath-1 or ARQMath-2 test collections, (2) we expected that our assessors would have (or

be able to easily acquire) the expertise to judge relevance to the topic, and (3) the set of topics

maximized diversity across four dimensions (question type, difficulty, dependence, and complexity).

The topics were selected from various domains (real analysis, calculus, linear algebra, discrete math-

ematics, set theory, number theory, etc.) that represent a broad spectrum of areas in mathematics

that might be of interest to expert or non-expert users. The difficulty level of the topics spanned

from easy problems that a beginning undergraduate student might be interested in though difficult

problems that would be of interest to more advanced users. The bulk of the topics were aimed at

the level of undergraduate math majors (in their 3rd or 4th year) or engineering majors fulfilling

their math requirements.

Overall, 226 assessed topics are produced for testing in ARQMath with 77 in ARQMath-1, 71 in

ARQMath-2, and 78 in ARQMath-3. When choosing topics, 3 kinds of categories were considered.

The first category was based on their type (topic). As organizers, we labeled each question with

one of three broad categories, computation, concept or proof. Out of the 77 assessed topics in

ARQMath-1, 26 were categorized as computation, 10 as concept, and 41 as proof. In ARQMath-2,

out of the 71 assessed topics, 25 were categorized as computation, 19 as concept, and 27 as proof.

In ARQMath-3, out of 78 assessed topics, 21 were categorized as computation, 16 as concept, and

41 as proof. We also categorized the topics based on their perceived difficulty level. ARQMath-1

12Note that participating systems did not have access to this information.

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 47

has 32 topics categorized as easy, 21 as medium, and 24 as hard. With a lower number of hard

questions, ARQMath-2 has 32 categorized as easy, 20 as medium, and 19 as hard. With a higher

number of medium questions, ARQMath-3 has 17 easy, 43 medium, and 18 hard topics. Our last

categorization was based on whether a topic is dependent on text, formulas, or both. In ARQMath-

1, 10 topics were dependent on text, 21 on formulas, and 40 on both. In ARQMath-2, 13 topics

were dependent on text, 32 on formula, and 32 on both. Finally, in ARQMath-3, 10 topics were

dependent on text, 22 on formula, and 46 on both. Figure 3.2 shows counts of topics per category

in ARQMath-1, -2 and -3.

Runs and Pooling. In all ARQMath test collections, we considered 4 systems as baselines. In

ARQMath-1, there was a fifth baseline, Approach0 [141], a formula search engine. In ARQMath-3,

we included a fifth baseline system using PyTerrier [95] for the TF-IDF model, which uses PyTerrier

with symbols in LATEX strings first mapped to English words to avoid tokenization problems. Here

is a description of our baseline runs.

1. TF-IDF. A term frequency inverse document frequency) model using the Terrier system [124],

with formulas represented using their LATEX strings. Default parameters from Terrier were

used. One problem with this baseline is that Terrier removes some LATEX symbols during

tokenization. The second uses PyTerrier [95], with symbols in LATEX strings first mapped to

English words to avoid tokenization problems.

2. Tangent-S. A formula search engine using SLT and OPT formula representations [35]. One

formula was selected from each task 1 question title if possible; if there was no formula in the

title, then one formula was instead chosen from the question’s body. If there were multiple

formulas in the selected field, the formula with the largest number of symbols (nodes) in its

SLT representation was chosen; if more than one formula had the largest number of symbols,

we chose randomly between them. Note that this system only considers formulas and not

text.

3. TF-IDF + Tangent-S. A combination of scores from the TF-IDF and Tangent-S baselines.

The relevance scores from both systems were normalized in [0,1] using min-max normalization,

and then combined using an unweighted average.

4. Linked Math Stack Exchange Posts. This is a simple oracle “system” that is able to see

duplicate post links from the original question post in the Math Stack Exchange collection

(which were not available to participants). It returns all answer posts from 2018 or earlier

that were in threads that Math Stack Exchange moderators had marked as duplicating the

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 48

0

5

10

15

20

Text Formula Both Text Formula Both Text Formula Both

High Medium Low

To

p
ic

s

ARQMath-1

Proof Concept Computation

0

5

10

15

20

Text Formula Both Text Formula Both Text Formula Both

High Medium Low

To

p
ic

s

ARQMath-2

Proof Concept Computation

0

5

10

15

20

Text Formula Both Text Formula Both Text Formula Both

High Medium Low

To

p
ic

s

ARQMath-3

Proof Concept Computation

Figure 3.2: Histogram of Topic Counts over 3 Categories in ARQMath-1, -2 and -3 Task 1.

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 49

topic question post. Answer posts are sorted in descending order by their vote scores. The

vote scores is the difference between up and down votes given by Math Stack Exchange users

to an answer.

5. Approach0. A path-based formula search engine [177] using OPT formula representations

(See Chapter 4, Section 4.2.2.). This system uses both text and formula for search. The

inputs queries are manually generated from the questions.

The participating teams in ARQMath were allowed to submit up to 5 runs, with one being the

primary run and the others being alternate runs. In ARQMath 202013 there were 5 participating

teams, with 18 runs. One of the runs was reported as manual. Manual runs are those that had

manual processing at any stage of the search. In ARQMath 2021, 9 teams participated in task 1,

and there were 36 runs, double that of ARQMath 2020. 8 runs were reported as manual by the

participating teams. In ARQMath 2022, a total of 33 runs were received from 7 teams. Of these,

28 runs were declared to be automatic, with no human intervention at any stage of generating the

ranked list for each query. The remaining 5 runs were declared to be manual.

Participants were asked to rank 1,000 (or fewer) answer posts for each task 1 topic. Top-k pooling

was then performed to create pools of answer posts to be judged for relevance to each topic. As in

each year, the number of runs was different in ARQMath labs, the pooling depth was different for

each test collection. In ARQMath-1, the top 50 results were combined from all 7 primary runs, 4

baselines, and 1 manual run. To this, we added the top 20 results from each of the 10 automatic

alternate runs. In ARQMath-2, the top 45 results were combined from all primary runs. To this,

we added the top 15 results from each alternate run. Two baseline systems, TF-IDF + Tangent-S

and Linked Math Stack Exchange Posts, were pooled as primary runs and the other two (TF-IDF

and Tangent-S) were pooled as alternate. In ARQMath-3, the top 45 answer posts were included in

pooling for primary runs; for alternate runs, the top 20 were included. Two baseline runs, PyTerrier

TF-IDF+Tangent-S and Linked Math Stack Exchange Posts, were pooled as primary runs (i.e, to

depth 45); other baselines were pooled as alternate runs (i.e., to depth 20). These pooling depths

were chosen based on assessment capacity, with the goal of identifying as many relevant answer

posts as possible.

Judging and Relevance. The ARQMath-1 task 1 assessment was done by eight undergraduate

mathematics students. Three of the assessors later moved to the formula search task. There

were four rounds of assessor training. ARQMath-2 had five undergraduate mathematics student

13ARQMath 2020 refers to ARQMath lab in year 2020

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 50

assessors. Three assessors (also undergraduate mathematics students) who initially worked on the

formula search task later joined the five task 1 assessors and then finally moved back to assess the

additional task 2 queries. There were four rounds of task-1 training for the main assessors and two

rounds of training for formula search task assessors. The ARQMath-3 assessment was done by five

assessors (undergraduate and graduate computer science and mathematics students), with three

rounds of training. Same as ARQMath-2, three assessors (undergraduate and graduate computer

science and mathematics students) who initially worked on the formula search task later joined

task 1 assessor.

In ARQMath-1, after the assessment, each assessor was given two topics assessed by the other two

assessors to calculate agreement. Due to time constraints, in ARQMath-2 and -3, each assessor

assessed only one topic assessed by some other assessor. The average Cohen’s kappa coefficient for

ARQMath-1 was 0.29 on the four-way assessments, with High+Medium binarization the average

kappa was 0.39. In ARQMath-2, these values were 0.21 and 0.32, respectively. In ARQMath-3,

these values were 0.24 and 0.25, respectively. The average assessment time in ARQMath-1 was 63.1

seconds per answer post, compared to 83.3 in ARQMath-2, and 44.1 in ARQMath-3.

Some questions might offer clues as to the level of mathematical knowledge on the part of the

person posing the question; others might not. To avoid the need for the assessor to guess about the

level of mathematical knowledge available to the person interpreting the answer, we asked assessors

to base their judgments on the degree of usefulness for an expert (modeled in this case as a math

professor) who might then try to use that answer to help the person who had asked the original

question. We defined four levels of relevance, as shown in Table 3.7.

Assessors were allowed to consult external sources to familiarize themselves with the topic of a

question, but the relevance judgments for each answer post were performed using only information

available within the collection. For example, if an answer contained an MathSE link such as https:

//math.stackexchange.com/questions/163309/pythagorean-theorem, they could follow that

link to better understand the intent of the person writing the answer, but an external link to the

Wikipedia page https://en.wikipedia.org/wiki/Pythagorean_theorem would not be followed.

Evaluation Measures. For the answer retrieval task, the same evaluation measures as the formula

search task were used: nDCG′, MAP′ and P′@10. The only difference is that there is no dedupli-

cation used for this task. We removed unjudged posts as a preprocessing step where required, and

then computed the evaluation measures using trec eval.14

14https://github.com/usnistgov/trec_eval

https://math.stackexchange.com/questions/163309/pythagorean-theorem
https://math.stackexchange.com/questions/163309/pythagorean-theorem
https://en.wikipedia.org/wiki/Pythagorean_theorem
https://github.com/usnistgov/trec_eval

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 51

Table 3.7: Relevance assessment criteria for the ARQMath Answer Retrieval task.

Score Rating Definition

3 High Sufficient to answer the complete question on its own

2 Medium Provides some path towards the solution. This path

might come from clarifying the question, or identifying

steps towards a solution

1 Low Provides information that could be useful for finding

or interpreting an answer, or interpreting the question

0 Not Relevant Provides no information pertinent to the question or its

answers. A post that restates the question without pro-

viding any new information is considered non-relevant

3.2.3 ARQMath Reusablity

ARQMath-1 and -2 had two main tasks: answer retrieval for math questions and formula search.

In ARQMath-3, we kept these two as the main tasks. However, a new pilot task developed for

ARQMath-3 (Task 3) Open Domain Question Answering was introduced using the ARQMath

collection and the same topics introduced for the answer retrieval task (Task 1). Unlike the answer

retrieval task, system answers are not limited to content from any specific source. Rather, answers

can be extracted from anywhere, automatically generated, or even written by a person.

For example, suppose that we ask a Task 3 system the question “What does it mean for a matrix to

be Hermitian?” An extractive system might first retrieve an article about Hermitian matrices from

Wikipedia and then extract the following excerpt as the answer: “In mathematics, a Hermitian

matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate

transpose.” By contrast, a generative system such as GPT-3 can directly construct an answer such

as: “A matrix is Hermitian if it is equal to its transpose conjugate.” For a survey of open-domain

question answering, see Zhu et al. [180].

3.3 Summary

This chapter reviewed the existing collections for math-aware search. MREC was initially only

a collection, with no shared relevance judgments. CUMTC then used this collection and devel-

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 52

oped 160 assessed topics using Math Overflow questions. NTCIR-10, -11, and -12 were the three

evaluation venues that had built test collections prior to our research. NTCIR-10 was the pilot

math-aware search shared task, providing topics with text, a formula, or both. The goal was to

search a subset of the arXiv collection. NTCIR-11 and -12 added Wikipedia to the collection, as

arXiv documents were more technical. The NTCIR-11 main task was similar to NTCIR-10, but

a new task for formula-only search was added. This was a known item-retrieval task, and the

participants were asked to find the single intended relevant formula in the collection. There were

three tasks in NTCIR-12. The main task was similar to previous evaluations, but topics for both

Wikipedia and arXiv collections were separated. The formula browsing task only used Wikipedia as

the collection. The third task was called “Similar-To”, with eight topics from the arXiv collection.

The goal was to find similar but not identical matches for the given formula query.

In our research, we have introduced three new test collections: ARQMath-1, -2, and -3. There were

two main tasks defined: answer retrieval and contextual formula search. ARQMath-3 introduced a

new pilot task, open domain questions answering for math questions. In the first task, the goal is

to find relevant answers to math questions, whereas in the second task, the goal is to find relevant

formulas for a given formula query. In all three test collections, the Math Stack Exchange posts

from 2010 to 2018 are used as the collection. To select the topics, in ARQMath-1, questions posted

on Math Stack Exchange from 2019, in ARQMath-2 from 2020, and in ARQMath-3 from 2021 were

used. Overall, we provided 241 topics for answer retrieval, 220 for formula retrieval, and 78 topics

for open-domain question answering. We can summarize the main differences between ARQMath

collections and those from NTCIR as follows:

• Tasks. In the ARQMath test collections, the answer retrieval for math questions task was

introduced with using exact questions as the input, which is different from CUMTC topics.

The benefit of this task is that the information needs are expressed by real users and the

topic is not lab-generated.

• Collection. Compared to the previous test collections that used arXiv and Wikipedia, we

considered Math Stack Exchange, which contains more posts and brings more diversity in

terms of complexity and domain.

• Topics. The number of topics in ARQMath is much larger than in the previous test collec-

tions.

• Relevance encoding. In previous test collections, for the formula search task, relevance

was mostly decided based on the visual similarity of formulas. In ARQMath-1 we began to

CHAPTER 3. TEST COLLECTIONS FOR MATH-AWARE SEARCH 53

consider the context in which formulas appear. We believe in ARQMath-2 and -3, we have

an even better formulation of the relevant assessment process.

Considering tasks in ARQMath, in all three test collections, assessors had more agreement on

formula search task compared to answer retrieval. Also, assessment for formula search was

nearly twice faster than answer retrieval task.

• Evaluation. We consider nDCG′ as the primary measure of effectiveness. We also used

mAP′ and P′@10 as our secondary measures, using binarized relevance scores. We believe

our measures can provide a fair comparison among the runs participating in the pooling and

later post-runs. We also introduce visually-distinct formula clustering for the formula search

task, where formulas are clustered based on their visual similarity. Our goal was to assess

more unique formulas compared to the previous test collections, and to ensure that systems

that retrieve multiple instances of the same formula would not get extra credit.

Compared to what was existing before our research, we now have a bigger test collections available

for math-aware search evaluation. There are more number of topics that systems can use for both

training and evaluation. With ARQMath test collection available, we move to introducing our

math-aware search systems in the next two chapters.

Chapter 4

Formula Search

This chapter introduces the isolated and contextual formula search task. In this task, the goal is

to find relevant formulas for the given formula query. Based on the task that users have in mind,

relevance can be defined differently. For example, a user can search for a formula to understand

its application other than the domain of interest. To find relevant formulas, only isolated formulas

should be considered in this case, and the context is not important. However, in another scenario,

a user might be interested only in similar formulas that are related to the information need. The

relevant formula in this case is associated with the context that can help answer the information

need. For example, a user can search for a formula that has constraints on its variables (e.g., x > 0)

and wants to find formulas with exact constraints. We regard to the first scenario as an isolated

formula search task and the second as a contextual formula search where the context of formulas

is also considered for retrieval.

To discuss approaches for formula search, we need to first discuss the representations used for

mathematical notations (formulas) in documents. We would review the early encodings used for

formulas and then review Presentation and Content MathML, which are commonly used in formula

search systems. Then, we review the previous approaches to formula search. These approaches can

be categorized into three groups: text-based, tree-based, and embedding-based. We also explore

existing models that use context for formula search. Finally, we explain our approaches for isolated

and contextual formula search.

54

CHAPTER 4. FORMULA SEARCH 55

4.1 Formula Representations

Math notations are complex. They range from a single symbol that can be a character or a

number to a more complex structure that can include several mathematical operators. As stated

by J.R. Pierce [129], mathematics and its notations are not the same thing. Notations are used

to represent math. Therefore, it is essential to have notations that are readable and easy to

understand. Another challenge in mathematical notations is that they keep evolving. Books on the

history of mathematical notations such as the one by Florian Carjori [26] that were comprehensive

at their time now seem to be outdated [15].

The problem of encoding mathematics for computer usage is older than the web. To use math in

scientific documents, several document type definitions (DTD) were in use by 1992. The existing

DTDs were reflecting the presentation (visual) structure, and none were considering the syntax of

a formula [130]. While the commonly used notation was a version of TeX coding [79] in LATEX,

there were other DTDs such as EuroMath [158] and AAP [123].

With the growth of the web and its role as an effective means of communication, there was a lack

of support for math. With no appropriate HTML tags for mathematical notations, images saved in

Graphics Interchange Format (GIF) were commonly used in technical documents. In April 1998,

the World Wide Web Consortium (W3C) released Mathematical Markup Language (MathML) [58],

a mathematical markup language for mathematical notations. The second and third versions were

released in 2003 [8] and 2010 [58]. The design goals of MathML were [58]:

• encoding math for all levels of teaching and scientific communication.

• encoding both mathematical notation and meaning (syntax).

• facilitating the conversion from/to other formats.

• allowing passing of information intended for specific renderers and applications.

• supporting efficient browsing for lengthy expressions.

• providing for extensibility.

• being well suited to template and other math editing techniques.

• being human legible, and simple for software to generate and process.

CHAPTER 4. FORMULA SEARCH 56

As seen in the goals, MathML should encode both the appearance and syntax of a formula.

Therefore, MathML was split into Presentation MathML and Content MathML. The Presenta-

tion markup encodes the appearance of a formula, consisting of 28 elements that accept over 50

attributes.1 Most of the elements correspond to layout schemata. There are several classes of

schemata, such as the one concerned with scripts containing elements such as msub, munder, and

mmultiscripts. The Content markup consists of 75 elements accepting roughly a dozen attributes.

This markup captures the syntax of the formula.2 The majority of these elements are corresponding

to a wide variety of operators, relations, and named functions. Considering formula x2+4x+4 = 0,

Figure 4.1 shows its Presentation and Content MathML. The ‘invisibletimes’ MathML character

entity informs rendered that there is a special spacing rule between 4 and x. Table 4.1 shows

the definition of each of Presentation and Content MathML tag used to represent the formula

x2 + 4x + 4 = 0.

OpenMath [24] is another format that is similar to Content MathML, maintaining content dic-

tionaries (CDs) in a standard format. In this notation, mathematical entities are represented as

objects. Content dictionaries are used to assign informal and formal semantics to all symbols used

in the OpenMath objects. They define the symbols used to represent concepts arising in a partic-

ular area of mathematics. This format is less used compared to MathML used by the researchers

in the field, perhaps due to re-usability issues [42].

Regarding the tools that are used to convert LATEX string to MathML representations, the most

commonly used for this conversion is LATEXML3, in the Perl language. While this tool was known

to be slow, there were attempts to increase efficiency and scalability in [50]. Another conversion

tool is SnuggleTex4 developed in Java using rule-based methods for disambiguation and translation,

but this tool fails for complex formulas [57].

MathML representations can be shown in tree structures. Presentation MathML can be shown in

a symbol layout tree (SLT) and Content MathML can be shown as an operator tree (OPT) [171].

Nodes in SLTs and OPTs represent symbols and explicit aggregates in the form: (Type!value).

Nodes can be identifiers such as variable names (V!v), numbers (N!n), text fragments, such as

‘lim’ (T!t), fractions (F!), radicals (R!), explicitly specified white-space (W!) and finally, matrices,

tabular structures, and parenthesized expressions (M!frxc); with f showing fence characters such

as parentheses, r the number of rows, and c the number of columns. In the SLTs, operators do

1https://www.w3.org/TR/WD-math/chapter2.html#sec2.1.3
2Many of the previous works referred to this as semantics or content of a formula
3https://dlmf.nist.gov/LaTeXML/
4https://www2.ph.ed.ac.uk/snuggletex/documentation/overview-and-features.html

https://www.w3.org/TR/WD-math/chapter2.html##sec2.1.3
https://dlmf.nist.gov/LaTeXML/
https://www2.ph.ed.ac.uk/snuggletex/documentation/overview-and-features.html

CHAPTER 4. FORMULA SEARCH 57

Presentation MathML

<mrow>

<mrow>

<msup>

<mi>x</mi>

<mn>2</mn>

</msup>

<mo>+</mo>

<mrow>

<mn>4</mn>

<mo>&in v i s i b l e t im e s ;</mo>

<mi>x</mi>

</mrow>

<mo>+</mo>

<mn>4</mn>

</mrow>

<mo>=</mo>

<mn>0</mn>

</mrow>

Content MathML

<apply>

<eq/>

<apply>

<plus/>

<apply>

<power/>

<c i>x</c i>

<cn>2</cn>

</apply>

<apply>

<t imes/>

<cn>4</cn>

<c i>x</c i>

</apply>

<cn>4</cn>

</apply>

<cn>0</cn>

</apply>

Figure 4.1: Presentation and Content MathML for formula x2 + 4x + 4 = 0.

not have a type attribute, but for OPTs commutative and non-commutative operators have type

(U!) and (O!), respectively. For commutative operators, such as equal that the order of operands

are not important the edge label are ignored (same edge labels) but for non-commutative operators

the edge labels shows the order of operands.

CHAPTER 4. FORMULA SEARCH 58

Table 4.1: Presentation and Content MathML tags used to represent x2 + 4x + 4 = 0.

Presentation MathML Tag Definition Content MathML Tag Definition

mrow Grouped sub-expressions apply Apply an operation to an expression

msup Superscript eq Equals

mi Identifier plus Plus

mn Number power Power

mo Operator ci Identifier

cn Number

times Multiplication

In SLTs, edge labels give the spatial arrangement of symbols on writing lines. There are nine types

of edge labels, representing the spatial relationships between symbols (nodes):

1. next (‘n’) indicates that a symbol appears to the right on the same writing line.

2. within (‘w’) references the argument in a radical or the first element appearing in row-major

order in a matrix/grid of type M!.

3. element (‘e’) references the next element appearing in row-major order inside a structure

represented by M!.

4. above (‘a’) indicates a new writing line in the superscript position.

5. below (‘b’) references a new writing line in the subscript position.

6. pre-above (‘SUP’) indicates a prescripted superscript.

7. pre-below (‘SUB’) indicates a prescripted subscript.

8. Under (‘U’) indicates a writing line appearing below a node (e.g., a fraction’s denominator).

9. Over indicates a writing line above a node (e.g., a fraction’s numerator).

For instance, edge label a in Figure 4.4 shows ‘2’ is superscripted above ‘x,’ and edge label n shows

that ‘+’ is located next to ‘x’. Edge labels in OPTs indicate argument position. For commutative

operators, edges have the same label. For non-commutative operators, edge labels are indexed from

0.

CHAPTER 4. FORMULA SEARCH 59

x

2

+ 4 × x + 4 = 0

a

n n n n n n n n

=

+ 0

+ 4

^ ×

4x x2

0 0

00

0 0

0 00 1

(a) (b)

Figure 4.2: x2+4x+4 = 0 represented as a (a) Symbol Layout Tree (SLT) and an (b) Operator Tree

(OPT). SLT represents appearance by the placement of symbols on writing lines, with edge labels

indicating spatial relationships (e.g., superscript (a), next on writing line (n)). OPT represents

operations, with edge labels ordering arguments: arguments for commutative operators all have

edges labeled ‘0’.

4.2 Related Work

In this section, the previous approaches for formula search are reviewed. The previous work can

be categorized into these categories: Text-based, Tree-based, and Embedding models. Considering

two simple formulas, a + b and b − a, Figure 4.3 shows how these two formulas are compared

in each category. In text-based models, mostly the LATEX or linearized MathML or OpenMath

representations are compared. The example shows tuples created on Presentation MathML, arrows

showing the second symbol being located next to the first symbol. In tree-based models, one or both

of SLT and OPT representations are used, and tree comparison models determine the similarity of

the formulas. Finally, in embedding-based models, each formula is represented as a d-dimensional

vector, and to calculate similarity measures such as cosine similarity are commonly used.

4.2.1 Text-Based Formula Search

In text-based approaches, formula tree representations are linearized to sequences appended to

text and then traditional information retrieval models such as TF-IDF (term frequency-inverse

document frequency) are applied for retrieval. Another approach is to use the LATEX representation

of a mathematical formula. Some existing text-based formula search models are summarized here:

CHAPTER 4. FORMULA SEARCH 60

Text-Based Tree-Based Embedding-Based

LaTex
Linearized

Presentation MathML

a+b b-a
a,+,→ b,-,→
+,b,→ -,a,→

+

a b

-

b a+a b -b a
n n n n

SLT OPT

0 0 0 1 a+b b-a

Figure 4.3: Text, tree, and embedding-based formula search approaches using formulas a+b (on left

side) and b−a (on right side) as example. In text-based models, LATEX representation or linearized

presentation MathML can be used. In tree-based approaches, SLT and OPT representations can

be used. In embedding-based models, each formula is mapped to a point in d-dimensional space.

• MathFind [114] uses Presentation MathML and breaks the math expression into a sequence

of text-encoded fragments. Then each fragment is considered as a term in a traditional

information retrieval model. This system applies normalization on the MathML input to

address the alternative representations of a math formula.

• EgoMath [112] considers Presentation MathML and uses normalization of variables and

constants. A formula is not represented as one word, but multiple in this system. The

first representation is the ordered input formula and the next representations are created by

applying transformation and generalization on the output of the previous step. As the later

representations are more generalized, more formulas will match the query. The algorithm

considers N representations that are appended to the simple textual query using the Boolean

operator AND. The results are N sequentially executed search queries.

• DLMF (Digital Library of Mathematical Functions) [111] considers the LATEX representa-

tion of the formulas and then uses TF-IDF for exact formula matching. They augmented

an existing textual search engine for expression retrieval by implementing a keyword-based

expression representation and developing a custom mathematical query language resembling

TEX.

• ActiveMath [87] indexes math formulas in the OpenMath library by encoding them as

sequences of semantic tokens using a custom syntax and storing them in a Lucene index.

The system retrieves content, converting the formula query to a sequence of semantic tokens

(similar to the indexing step) and comparing those tokens to entries found in the index.

• MathWebSearch [73] supports both MathML and OpenMath formula representations. For-

mulas are stored in a substitution tree, where each node corresponds to a function. A mathe-

matical expression is represented as paths starting from the root of the tree. Retrieval is done

CHAPTER 4. FORMULA SEARCH 61

using a standard term retrieval algorithm for substitution trees. This system supports search

for formulas that match the query terms up to α-equivalence (formulas that are equivalent

for all purposes if their only difference is the renaming of the variables).

• MIaS (Math Indexer and Searcher) [148] uses term frequency-inverse document frequency

(TF-IDF) for indexing XHTML documents containing MathML expressions. Math expres-

sions go through several modifications and are broken into sub-expressions. Each math ex-

pression has a weight based on the level of modification. This system uses Presentation

MathML.

• WikiMirs [56] considers Presentation MathML, after applying a preprocessing step on the

LATEX representation. It uses the term normalization process to generate original terms and

generalized terms. Then, it uses an inverted index and a modified similarity score based on the

TF-IDF scheme to evaluate the distance of the matched terms on different levels. In another

work, Lin et al. [88] adapt TF-IDF retrieval for SLTs by using vectors of subexpressions,

considering canonicalization to simplify expressions and to identify commutative operators

and equivalences.

• Kumar et al. [78] uses the LATEX representation of formulas and considers the Longest Com-

mon Subsequence between the query and the indexed formulas. This model needs a quadratic

algorithm to evaluate all expressions.

• MathDowsers [116] is a recent text-based model that makes use of the Tangent-L [45]

system that converts a formula into a bag of math tokens (tuples) that each capture local

characteristics of the SLT. Three changes are made to the original Tangent-L system: 1)

introducing repeat tokens, 2) changing the ranking function, and 3) normalizing formulas.

Text-based approaches lose the hierarchical nature of formulas and may fail to characterize formula

structure well as a result. Previous studies have shown that these approaches are less effective

[4, 170], and in this research, we do not make comparison with these models.

4.2.2 Tree-Based: Full and Sub-tree Matching Formula Search

In tree-based models, formulas are represented directly as trees, often with sub-trees to support

partial matching. Systems have made use of SLT, OPT, or both tree representations of the formulas.

Tree-based approaches can also be categorized into two groups: (1) using sub-tree matching, and

(2) using full-tree matching. The following systems use sub-tree matching:

CHAPTER 4. FORMULA SEARCH 62

• Tangent-S [35] combines retrieval over both SLTs and OPTs. Candidates are first retrieved

and scored using tuples representing relative paths between pairs of symbols [172]. The

top-k candidates are then aligned with the query to produce formula similarity scores (the

Maximum Sub-tree Similarity, MSS). SLT results and OPT results are next combined via

linear regression over alignment measures from each representation to produce final similarity

scores.

• MCAT [75] encodes path and sibling information from SLT and OPT representations, where

paths act as the retrieval units. They also make use of a hashing-based formula structure

encoding scheme, and text information at three levels of granularity. The first level considers

words within a context window of size 10, descriptions, and noun phrases in the same sen-

tence as the formula. The second level considers all the words in the paragraph where the

formula appeared. At the third level, the title and abstract of the document, keywords in the

document, descriptions of all the formulas, noun phrases, and all the words in the document

are considered.

• Approach0 [177] retrieves formulas using only paths from operator trees generated by parsing

LATEX with a relatively small expression grammar. Candidates are scored based on up to three

best-matching sub-trees. In the second version of this system [179], two other similarity scores

were combined with Approach0 scores: Textual similarity score using Lucene BM25 [66], and

another structure-based scoring using IDF of paths and symbol similarity.

The other approaches use full-tree matching as their similarity score. The SimSearch [65] system,

uses tree-edit distance (TED) on the symbol layout tree as the similarity measure by considering

three edit operations: insertion, deletion, and substitution, to find the minimum cost of converting

one tree to another. Their system includes TED accelerations, e.g., cost-based pruning of candidates

and caching sub-trees. Operation costs are defined in a table (manually), using a set of conditions

based on the similarities of node labels, their parent’s label, and whether they are leaf nodes.

For each condition, there is a cost defined for each edit operation. They provide some intuition

as to why these assumptions are made (e.g., that replacing an operator has a larger impact on

the interpretation of an expression than replacing a variable), but specific operation cost are not

provided, aside from an inequality over three costs variables.

CHAPTER 4. FORMULA SEARCH 63

4.2.3 Embedding-Based Formula Search

With great advances in natural language processing and information retrieval tasks using embedding

models, several formula search models are proposed using formulas embedding. In these works,

different formula representations are embedded. Some of the works embed the linearzied tree

representation of formulas, some use the image of the formulas, and some combine text and formula

embeddings. Some of the systems are described here:

• The work proposed by Thanda et al. [154] from the Samsung group is the first known embed-

ding model for math formulas, where a variant of the doc2vec algorithm [83] is introduced.

They use binary expression trees and assigned each formula a real-valued vector such that

formulas with similar structures are close to each other in vector space.

• Gao et al. [47] introduce embeddings for both symbols (symbol2vec) and formulas

(formula2vec). Symbol2vec is based on a Continuous Bags-of-Words (CBOW) architecture

using negative sampling, while formula2vec uses a distributed memory model of paragraph

vectors [83].

• Equation embeddings [77] generates embeddings for both words and equations, with a

larger context window size for equations than words. They also propose equation unit embed-

ding, treating equations as sentences where the words are symbols, variables, and operators,

each referred to as a “unit.”

• TopicEq [166] generates the context from a mixture of latent topics, and the equation have

generated by a recurrent neural network that depends on the latent topic activation and

enables intelligible processing of equations by considering the relationship between the math-

ematical equations and topics.

• Pfahler and Morik [128] propose embedding formula images using graph convolutional neu-

ral networks and improved their representations using two self-supervised tasks (contextual

similarity, and a masking task) to preserve information about the raw input symbols

• MathBERT [127] is pre-trained model for mathematical formulas, jointly trained with for-

mulas (as strings), contexts, and their corresponding OPTs. Three pre-training tasks are

defined, each capturing specific information. In the Masked Language Modeling task, the

goal is to capture textual information. The Context Correspondence Prediction task aims to

predict the relatedness of a context to a formula, being trained the same as the next sen-

CHAPTER 4. FORMULA SEARCH 64

tence prediction task. The last task is Masked Substructure Prediction, aiming to capture

syntax-level structure of formulas, using OPT representations.

• EARN [2] considers image embedding (with LATEX rendered as image) and a graph embed-

ding of a math expression and combines the result using a simple linear regression model.

The distances from graph-based and image-based embeddings are considered as the features.

• Forte (FOrmula Representation learning via Tree Embeddings) [160] considers an encoder-

decoder model for mathematical formulas with a new tree beam search algorithm for the

decoder. Using the OPT representation of formulas, the encoder does tree traversal to extract

content information and also tree positional encoding to extract structural information.

• XY-PHOC [9] considers different levels of granularity to encode relative spatial locations

of symbols in a formula. Using the cosine similarity measure, the embedding of the formula

query is compared with the embeddings for the location of individual symbols stored in an

inverted index for formulas in the collection.

• NTFEM (N-ary Tree-based Formula Embedding Model) [34] uses N-ARY tree representation

for the formulas to keep the hierarchical structures of the operators and variables in the

formula. They use a pair-based method to construct the words (tuple) and then apply the

FastText n-gram embedding model to get the vector representation for each word (tuple). Two

weighting algorithms are applied: 1) level weight, which considers a weighting for the influence

at different levels of the tree, and 2) frequency weight, using smooth inverse frequency (SIF) [6]

weighting process.

4.2.4 Contextual Formula Search

In related work, we have so far reviewed three categories of formula search methods. Our focus was

on how similarity is decided in existing search models. Some of the models we discussed used both

formula and their related context. For using context of formula, we consider three categories of

researches: first, the research for extracting descriptions related to identifiers and symbols, second,

the models for extracting descriptions and related text for formulas, and third, models using both

formula and context for search.

In the first category, the goal is to find definitions and related descriptions for math symbols

or identifiers. These approaches commonly rely on a set of rules based on clustering the related

descriptions. Grigore et al. [51], did some of the earliest research in this area, aiming to disambiguate

CHAPTER 4. FORMULA SEARCH 65

symbols using the natural language text within which the symbols are, to resolve their semantics,

thus enabling the disambiguation process. For this, they used a list of operators in OpenMath

content dictionaries as concepts and used term clusters created on operator descriptions, to model

their semantics. From each operator description, a bag of nouns is extracted and then manually

enriched using terms from online lexical resources. The cluster that maximizes the similarity (based

on Pointwise Mutual Information (PMI) and DICE) between nouns in the cluster and the local

context of a target symbol is taken to represent its meaning. In a different work, Stathopoulos et al.

[150], defined a new task, variable typing, where the goal is to assign a mathematical type (phrases

from the technical terminology of the mathematical discourse) to variables using surrounding text

in the same sentence. Using the example from their paper, for the sentence “Let P be a parabolic

subgroup of ...”, the variable P is assigned to “parabolic subgroup”. In a similar work, Alexeeva

et al. [5], introduced MathAlign, a rule-based approach built on the Odin information extraction

framework [145]. Math identifiers and their descriptions are extracted based on a set of rules. Then,

images of math formulas are converted to LATEX strings, which are then segmented. The component

identifiers in each segment are their extracted textual descriptions. Schubotz et al. [142], refereed

to the context related to identifiers as namespace. A namespace is a topic cluster built on using

K-means clustering of documents. Clusters beyond a certain purity threshold are selected and

converted into namespaces by extracting phrases that assign meaning to identifiers in the selected

clusters.

While the previous category focuses on math symbols, the second category aims to find relevant

context for a formula. Kristianto et al. [74] aimed to find natural language descriptions for formulas

by training an SVM model to classify whether a description candidate is associated with a formula

or not. The SVM model performed better compared two simple baseline systems, one using the

nearest noun and the other using sentence–patterns for context extraction. To extract context for

formulas, Pathak et al. [125] considered the noun phrases of the sentence containing the formula

as its context. Therefore, their proposed model is based on extracting candidate noun phrases

and designing an algorithm to select the most proper one. To extract noun phrases, the Stanford

Shift-Reduce Constituency Parser [181] is used to parse the sentences, and then using certain

heuristics each noun phrase is assigned an initial weight which is later tuned using a development

set containing gold contexts for target sentences. In a recent work, Yuan et al. [168] introduced

MathDec, a hybird model for constructing descriptions for formulas. The model has two main

modules: Selector and Summarizer. In the Selector, a Topic Relation Graph (TRG) obtains the

relevant documents which contain the information related to the formulas. The TRG is a graph built

according to the citations between formulas. In the Summarizer, the Integer Linear Programming

(ILP) framework is used to summarize the descriptions. This module constructs the final description

CHAPTER 4. FORMULA SEARCH 66

using a timeline that is extracted from the TRG.

For contextual formula search, models can use both context and formulas. For example, the work by

Krstovski and Blei [77] generates embeddings considering both words and equations using different

context windows for each. While this work uses unified representation of text and formulas, models

such as the one proposed by Ng et al. [116] separates formula and text search problems, doing

search for each individually and then combining the search results linearly.

4.3 Isolated Formula Search

This section reviews the models we have introduced for isolated formula search. Our first model

is based on an n-gram embedding model. As this model provides vector representation for the

formulas, the similarity matching is less strict. Therefore, we also introduce a full-tree matching

model that re-ranks the embedding models’ results based on tree-edit distance. Finally, we describe

our learning-to-rank model that leverages sub-tree and full-tree similarity features, along with vector

similarity from our embedding model, for isolated formula search.

4.3.1 Tangent-CFT

Our first proposed model [105] for formula retrieval makes use of both SLT and OPT representa-

tions, as previous approaches such as Tangent-S [35] have shown considering both representations

can help provide better search results. Tangent-CFT is the first embedding model that uses both

representations. In addition to the full representations (which include both the type and the value

of a node), this model also employs unification by ignoring the node values and just considering

their type. Those representations are called SLT-Type and OPT-Type. For each of the represen-

tations, the model would then convert the tree representation to a vector and then, using vector

representations, the formulas are retrieved in two different ways.

Here are the steps to train the Tangent-CFT model and do the retrieval:

1. Tuple Sequence Generation. Presentation MathML and Content MathML representa-

tions are used as a basis from which to generate internal SLT and OPT formula representa-

tions. Built using depth-first traversals with the Tangent-S [35] system, these internal tree

representations consist of a sequence of tuples. Tangent-s generates tuples for pairs of sym-

bols and their relative positions using tuples in form of (parent, child, path, path-from-root

CHAPTER 4. FORMULA SEARCH 67

Table 4.2: SLT and OPT tuples for formula x− y2 = 0

SLT tuples OPT tuples (FRP omitted)

(V! x, -, n, -) (U! eq,O! minus,0)

(-, V! y, n, n) (O! minus, V! x, 0)

(V! y, N! 2, a, nn) (V! x, eob, 0)

(N! 2, eob, n, nna) (O! minus, O! SUP, 1)

(V! y, =, n, nn) (O! SUP, V! y, 0)

(=, N! 0, n, nnn) (V! y, eob, 0)

(N! 0, eob, n, nnnn) (O! SUP, N! 2, 0)

(N! 2, eob, 0)

(U! eq, N! 0, 1)

(N! 0, eob, 0)

[PFR]) while traversing the tree depth-first. Parent and child are the nodes, path shows the

edge label sequence when moving from the parent to the child node, and the PFR is the

edge labels seen when traversing from the root of the tree to the parent node. The only

difference for Tangent-CFT is that the path-from-root element produced by Tangent-S is ig-

nored. Considering formula x − y2 = 0, Table 4.2 shows the created tuples for this formula

using SLT and OPT representations. In Tangent-S, the parameter window size, controls the

maximum path length between the symbols. For Tangent-CFT we used a window size of 2.

The End-of-Baseline (EOB) are the dummy pairs generated when the last symbol on each

baseline is visited.

2. Tuple Tokenization. After converting the formula tree representation to a tuple sequence,

each tuple can be considered as a word. To use an n-gram embedding model, ‘words’ and

‘characters’ should be defined. In our representation, each character (token) is encoded using a

unique identifier. The identifiers used for edge labels are different from those used for the node

values. Tokenizing the tuple elements can provide good insight into the formula structure. For

instance, separating node type and value provides more details on formula structure, allowing

two formulas sharing the same structure but different variables or constants to obtain a

higher similarity score than they would with untokenized tuples (i.e. if tuples are treated as

characters).

3. Training Embedding Models with fastText. After linearizing formulas, the fastText [17]

n-gram embedding model is applied to embed the formula. Each encoded tuple is considered

CHAPTER 4. FORMULA SEARCH 68

Formulas in
Collection Tangent-S

Tuples
Tokenization

fastText N-gram
Embedding Model

Pre-processing

Figure 4.4: Training Tangent-CFT model. Formulas in the collection are linearized with Tangent-S

system (with depth first traverse) and then tokenized. Each tuple is considered as a word and the

tuple elements are its characters.

as a word, and the context window for a tuple ‘T’ is defined by nearby tuples in the linearized

tuple sequence. The context window size is a hyperparameter in the model, which is set to

the default value of fastText model, 5. After the model is trained, each tuple is assigned a

d -dimensional vector (which is defined before training). The vector representation for formula

F with set of n tuples, TF , is defined by mean pooling as:

formulaV ec (F) =
1

n

∑
t∈TF

tupleV ec(t)

4. Retrieval. To compute the similarity of two formulas, the cosine similarity of their vector

representations is used. First, the vector representation for each formula in the collection is

created and then, for a given formula query, based on the trained model, the vector repre-

sentation is obtained. Then, the similarity between the formula query q with vector Vq and

a formula f in the collection with vector Vf is measured as follows:

sim (q, f) =
Vf · Vq

|Vf | |Vq|
.

A higher cosine similarity results in a better retrieval rank. Figure 4.5 shows how the cosine

similarity is calculated given a formula query and the candidate formula.

We have proposed two different ways to do the formula search with the pipeline above. In our

first model (the original Tangent-CFT model) three representations are considered for each

formula: SLT, OPT, and SLT-TYPE. The vector representation for each formula is obtained

by considering the unwieghted element-wise summation of these three vectors.

In the second version of the system, Tangent-CFT2, the retrieval is done separately with four

representations: SLT, OPT, SLT-Type, and OPT-Type. First, the top-k results are retrieved.

This is done by computing the cosine similarity between each query vector representation

CHAPTER 4. FORMULA SEARCH 69

Formula
Query

Candidate
Formula

Tuples
Tokenization

Tangent-CFT
Model

Cosine
Similarity

Tangent-S

Tuples
Tokenization

Tangent-CFT
Model

Pre-processing

Tangent-S

Query
Vector

Candidate
Vector

Figure 4.5: Retrieval with Tangent-CFT model. Query and candidate formulas are passed to a

same pre-processing pipeline to extract their vector representations. Cosine similarity between

these two vectors is the similarity score.

and corresponding the vector representation of formulas in the collection. The top-k (in our

experiments, k=1000) results from each representation are computed as the cosine similarity

between the vectors. Then the four results are combined using modified Reciprocal Rank

Fusion (RRF) [31] with the following formula:

RRFscore(f ∈ F) =
∑
m∈M

sm(f)

60 + rm(f)
(4.1)

where f is a set of formulas to be ranked, M is a set of models, and sm and rm are the scores

and the rank, respectively, of the retrieved formula by model m. Note that in the original

RRF, only the rank is considered and the numerator of equation (4.2) is 1. Our study showed

using the modified RRF provides better rankings than original RRF. Experiment results

showed Tangent-CFT2 has better effectiveness than the first version of the system [103].

RRF (f ∈ F) =
SOriginal(f)

60 + ROriginal(f)
+

SMathAMR(f)

60 + RMathAMR(f)
(4.2)

While Tangent-CFT model uses exhaustive search over all the collection to find similar formulas,

we have also introduced, MathFIRE (Math Formula Indexing and Retrieval for ElasticSearch), a

framework for indexing and retrieving formulas extracted using the MathSeer Extraction pipeline.

MathFIRE uses OpenSearch [29] to index and retrieve formulas in these different representations.

In this system, formula vector representations are extracted with Tangent-CFT, then loaded in

OpenSearch 5 where dense vector retrieval was performed by approximate k-NN search using nmslib

and Faiss [63]. We used the default parameters.

5https://opensearch.org/

https://opensearch.org/

CHAPTER 4. FORMULA SEARCH 70

4.3.2 Tangent-CFTED

The experiments on the first proposed model, Tangent-CFT, showed that this system does better

on partial matching compared to full matching. It focuses on common n-grams and therefore for

queries such as O(mnlogm), gives higher rank to formula O(mn), compared to O(KN logN). To

address that issue, we extended Tangent-CFT by re-ranking the retrieval results based on tree-edit

distance, introducing Tangent-CFTED [102]. Tree Edit Distance (TED) is defined as the minimum-

cost sequence of node, or node and edge, edit operations to transform one tree into another. In

this study, three kinds of editing operations are considered:

• Insertion: inserting a node/edge. If a node is inserted between a parent and its children,

the new node will become the parent of the child node.

• Deletion: deleting a node/edge. If a deleted node has children, they will be connected to

the deleted node’s parent.

• Substitution (i.e., relabeling): a single operation where a deletion and an insertion happen

simultaneously on the same element (i.e., on the same node or the same edge).

Note that if edges are considered, then insertion/deletion of a node also requires insertion/deletion

of an edge. The unweighted TED between trees T1 and T2 is defined by:

TED(T1, T2) = argmin
s∈S(T1,T2)

|s| (4.3)

where S(T1, T2) is the set of all edit operation sequences that transform T1 into T2, and | · | gives

the sequence length.

An alternative approach, the weighted TED, allows non-uniform costs for editing operations. Ka-

mali and Tompa [65] designed such weights by hand; by contrast, in our work, those weights are

learned using cross-validation. The weights were learned using grid search for each edit operation,

over the range [0, 1] with step size 0.05, on the NTCIR-12 test collection using leave-one-out cross-

validation. In the NTCIR-12 Formula Browsing Task test collection [170] there are 20 formula

queries without wildcards. Operation weights were learned for each query independently and then

averaged over the 20 queries. We used the values [0,1] with step size of 0.1 for each edit operation.

The goal was to maximize the harmonic mean bpref [23] score, which balances full and partial bpref

scores. Note that each assessed hit in NTCIR-12 had a relevance score between 0 to 4, 1 and 2

indicating degrees of partial relevance, and 3 and 4 full relevance.

CHAPTER 4. FORMULA SEARCH 71

To use the tree edit distance for formula retrieval, the following steps are taken:

1. Retrieve the top-1000 results with the Tangent-CFT model.

2. Re-rank the results with tree-edit distance using full SLT and OPT representations (not type

representations). For SLTs, the edit operation costs were set 0.85, 0.15, and 0.54 for deletion,

substitution and insertion operations respectively, and for OPTs they were set to 0.28, 0.185,

0.225. The ranking score for each retrieved formula is calculated as:

sim(T1, T2) =
1

TED(T1, T2) + 1
. (4.4)

3. Combine the re-ranked results from OPT and SLT representations. For this we propose two

methods: first using a linear combination, learning the weight in a similar way to the way the

weight for edit operations were learned. Therefore, the retrieval results would be combined

as:

Scoreq(f) = α · SLT -Scoreq(f) + (1 − α) ·OPT -Scoreq(f) (4.5)

with α = 0.95. In an alternative approach (Tangent-CFT2TED) [103], we combine the results

with modified Reciprocal Rank Fusion as in equation (4.2). Tangent-CFT2TED, re-ranks the

results from Tangent-CFT2 system.

The tree-edit distance values are calculated using a publicly available Python package for the

APTED algorithm [126].

4.3.3 Learning-to-rank

In the Tangent-CFTED model, we re-ranked the results from our embedding model with a full-tree

similarity score, tree-edit distance. ARQMath-1 results [173] showed Tangent-S, that uses sub-tree

similarity features, has better effectiveness than our two previous models. Therefore, we proposed

a learning-to-rank [107] model that learns weights for each of the possible similarity features we can

have for the formulas. Our model uses SVM-rank [62] with a linear kernel because of its effectiveness

with small samples of training queries, and its speed for combining the results (e.g., using a map-

reduce framework). Because we use a linear kernel SVM, the weights of the features can also be

interpreted. SVM-rank is trained on the 29 queries with relevance judgments for 3,909 formula

instances that are provided in the ARQMath-1 (explained in the next section) [173] test collection.

The penalty for misclassification during training (C) was 0.01, and the tolerance (epsilon) was 0.001

for termination criterion.

CHAPTER 4. FORMULA SEARCH 72

The following feature sets were used in training (names in parentheses are used to refer to that

feature set):

• 4 Tuple matching scores (Tuple): harmonic mean of path match percentage on query and

candidate formula on full and type SLT and OPT representations.

• 4 Node Matching scores (Node Matching): harmonic mean of symbol match percentage on

query and candidate formula on full and type SLT and OPT representations.

• 2 Maximum Sub-tree Similarity (MSS) scores: after greedy alignment of query on the candi-

date, harmonic mean of matched unified symbols and edges.

• 4 Unweighted tree edit distance scores (UTED): minimum cost for converting one tree to the

other with three unweighted edit operations of deletion, insertion and substitution.

• 4 Weighted tree edit distance scores (WTED): minimum cost for converting one tree to the

other with three weighted edit operations of deletion, insertion and substitution.

• 4 Cosine similarity scores from the Tangent-CFT model (CFT): cosine similarity between

query and candidate formula vectors from the Tangent-CFT model.

• 7 Other tree and symbol features (OTS)

Here we review the features:

Sub-tree matching features. To do sub-tree matching, we used the initial candidate selection

method from the Tangent-S system. Using the tree representation of a formula, a list of tuples

is created from a tree using a depth-first traversal. After the tuples are generated, the harmonic

mean of the ratio of query tuples matched (recall) and the ratio of candidate tuples matching the

query (precision) is used for ranking.

Another feature that we use to compare sub-trees is the Maximum Sub-tree Similarity (MSS) score

introduced in the Tangent-3 system [172]. MSS is computed from the largest connected match

between a query and candidate formula obtained using a greedy algorithm, evaluating pairwise

alignments between trees using unified node values. Finally, we consider the harmonic mean of

symbol match percentage on query and candidate formula on SLT and OPT representations.

Full-tree matching features. Another approach computes similarity using full formula trees,

making the matching criterion more strict. We use tree-edit distance as a full-tree matching fea-

CHAPTER 4. FORMULA SEARCH 73

ture. The same approach as described in the Tangent-CFTED system is used by considering both

unweighted and weighted tree-edit distance.

Embedding features. While the features described above use exact tree representations, em-

bedding features provide dense vector representations for each formula that can provide better

matching scores for partially relevant formulas [105]. For the embedding features, we trained the

n-gram embedding model used in the Tangent-CFT system. We considered the cosine similarity

score as a feature.

Other tree and symbol features (OTS). This is an additional set of simple features to compare

formulas directly. These include:

1. Ratios of matching variables, numbers, and operators between the query and candidate for-

mula.

2. Difference between the number of nodes in query and candidate in SLT and OPT.

3. Difference between OPT depth.

4. Difference between SLT variation from the geometric baseline, defined as the maximum num-

ber of edge labels visited when moving from a node to the root of the tree which do not have

‘next’ as their edge label. For instance, for the example in Figure 4.4, this value is one.

For feature sets other than the ‘OTS’ and ‘MSS’, one feature is calculated for each of the four

tree representations (SLT, OPT, SLT TYPE, OPT TYPE). As ‘MSS’ features use unification, the

full and type representations would have the same scores, so we have only two features in that

set. All feature values are MinMax normalized to be in the range [0,1]. For the sub-tree features,

the default Tangent-S parameters were used. The learned weights for deletion, substitution and

insertion operations in the weighted TED are respectively: SLT (0.43, 0.20, 0.41), OPT (0.31, 0.21,

0.29), SLT TYPE (0.37, 0.29, 0.33), and OPT TYPE (0.34, 0.25, 0.32). We learnt these weights

using additional 29 topics from ARQMath-1 formula search task.

4.3.4 Evaluation of Models

For evaluation, we rely on the ARQMath-1, -2 and -3 test collections.6 Table 4.3 shows the

effectiveness of our models. For our learning-to-rank model, we used the 29 additional topics in

6Tangent-CFT results are reported on NTCIR-12 in the related paper [105]

CHAPTER 4. FORMULA SEARCH 74

Table 4.3: Results for Contextual Formula Search Task on ARQMath-1 (45), ARQMath-2 (58),

and ARQMath-3 (76) topics. Tangent-S is the baseline system. Note that for LtR model for each

test collection we used different training set.

Evaluation Measures

ARQMath-1 ARQMath-2 ARQMath-3

nDCG′ MAP′ P′@10 nDCG′ MAP′ P′@10 nDCG′ MAP′ P′@10

Tangent-S 0.691 0.446 0.453 0.492 0.272 0.419 0.540 0.336 0.511

Tangent-CFT2TED 0.648 0.480 0.502 0.580 0.381 0.545 0.694 0.480 0.611

Tangent-CFT2 0.607 0.437 0.480 0.565 0.364 0.516 0.641 0.412 0.534

LtR 0.736 0.522 0.520 0.548 0.342 0.539 0.575 0.377 0.566

ARQMath-1 to get results for ARQMath-1 test topics, we used all ARQMath-1 topics to get results

for ARQMath-2, and finally used all topics for ARQMath-1 and -2 to get results for ARQMath-3. As

shown in this table, the models work better for ARQMath-1 compared to ARQMath-2 where there

was more attention to the context, however for ARQMath-3 our systems had better effectiveness.

All these models, only consider formulas in isolation to find similar ones.

Looking at ARQMath-1 results, our learning-to-rank framework has better effectiveness compared

to the Tangent-S system (baseline), in particular for P′@10 which is higher for all of our systems.

The differences between none of our systems were significant in terms of P′@10 and MAP′. However,

with nDCG′, the differences between Tangent-CFT2 and the learning-to-rank model are significant

for ARQMath-1 (p < 0.05, two-tailed paired t-test with Bonferroni correction). Tangent-CFT2,

Tangent-CFT2TED, and Tangent-S take different approaches for formula retrieval using embedding,

full-tree, and sub-tree matching. Our learning-to-rank model uses SVM-rank to linearly combine

similarity measures from each of these models, to overcome their limitations.

Comparing three systems from the Tangent family, Tangent-CFT2, an n-gram embedding model,

focuses on retrieving formulas that share common n-grams with the input query. This can be

beneficial for formulas such as
∑N

n=0 nx
n, which are less complex, so perhaps finding formulas that

share the same n-grams such as the same variables or numbers with the query can be effective. Both

Tangent-S and Tangent-CFT2TED return not-relevant formulas such as
∑N

n=0(−1)nxn in their top-

10 results, which have SLTs and OPTs that are similar to the query, but are judged as not relevant.

For this query, the P′@10 for Tangent-CFT2 was 0.9, it was 0.4 for Tangent-CFT2TED, and 0.6

for Tangent-S. Tangent-CFT2TED uses tree-edit distance as a full-tree matching score.

Looking at full trees provides better results for formulas such as:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, . . .

CHAPTER 4. FORMULA SEARCH 75

where partial matches are unlikely to provide useful information. The P′@10 values for this query

for Tangent [-CFT2TED,-CFT2,-S] are 0.6, 0.4 and 0.3, respectively. Finally, Tangent-S is a system

using sub-tree matching, and for complex formulas such as:∫∫
V
f(x, y)dx dy =

∫∫
Q
f(Φ(u, v)

∣∣∣∣∣∂Φ

∂u
× ∂Φ

∂v

∣∣∣∣∣
finding sub-tree matches can be useful, returning highly relevant formulas such as:∫∫

Dx,y

f(x, y)dxdy =

∫∫
Du,v

f (T (u, v)) |J(u, v)|dudv,

that the other two models did not return in their top-1000 results. Tangent-S has P′@5 of 0.5 for

this formula, whereas P′@5 is 0.3 for both Tangent-CFT2 and Tangent-CFT2TED.

From these examples, we can see that each of these models have their strengths and limitations.

With our learning-to-rank model, we re-rank Tangent-S results using similarity scores from multiple

retrieval models. For example, for the query lcm(n1, n2) = n1n2
gcd(n1,n2)

Tangent-S ranks not-relevant

formulas such as L = lcm(n1, n2, . . . , nk), that share sub-trees with the query in its top-10 results.

Using our proposed learning-to-rank model, relevant formulas such as lcm(a, b) = a·b
gcd(a,b) are pushed

to the top-10 results. As can be seen, the first formula can be converted to the second with a pair

of substitutions (a for n1, b for n2) and removing the multiplication dot in the second formula.

The learning-to-rank models use only formula tree similarity features. However, some formulas

need more features and processing. For instance, for the query:

Empty(x) ⇐⇒ ̸ ∃y(y ∈ x)

there are relevant formulas such as ⊢ ∃x∀y(y /∈ x) that may not necessarily share SLT or OPT struc-

ture with the query. Perhaps using canonicalization methods [120] can improve the effectiveness for

these queries to convert them to a unified form. While we focused on structural similarity features,

there are still formulas for which the effectiveness is low. Textual features are another missing part

of our current model. There are queries such as df
dx = f(x + 1), appearing in a question related

to differential equations, for which returning a structurally similar formula such as dy
dx = f(x) is

considered not-relevant due to its appearance in a different context (a post on another topic). This

motivates using context for formula search, which we will explain in the next section.

Looking at ARQMath-2 and -3 results, all our proposed models significantly outperform the base-

line system in all three effectiveness measures (p < 0.05, two-tailed paired t-test with Bonferroni

correction). Tangent-CFT2ED outperformed our other proposed models. In ARQMath-2 for 5

CHAPTER 4. FORMULA SEARCH 76

topics out of 58 and for 2 topics out of 76 in ARQMath-3, P′@10 for Tangent-CFT2ED was 0.

On average, these topics had 5.1 formulas assessed as high or medium relevant among the assessed

formulas. 4 of these topics were low-complexity formulas, and Tangent-CFT2ED gave higher a rank

to formulas that had small differences in the symbols compared to formula query. For example,

for query xRy ∨ yRx (B.362 in ARQMath-3) there are formulas such as xRy ∧ yRx, xRy ⇔ yRx,

xRy ̸⇒ yRx, and xRy ⇐⇒ yRx retrieved as top results, but none are considered as relevant.

Another observation is that Tangent-CFT2ED is an isolated formula search model that ignores

context. There are queries such as xn + yn + zn (B.289 in ARQMath-2), for which our model finds

exact matches, but as the contexts are different (such as constraints on the variables), they are

assessed as not-relevant. This indicates that models should also make use of context, and in our

next section we address this problem.

Another observation from ARQMath-2 and -3 is that the effectiveness of our learning-to-rank

model drops compared to ARQMath-1. Compared to Tangent-CFT2ED, which only uses tree-edit

distance similarity scores, there are topics for which learning-to-rank can provide better retrieval

results. For query [T 0,1
X , T 0,1

X] ⊂ T 0,1
X (B.304 in ARQMath-3), the P′@10 increases from 0.1 to 0.8

when learning-to-rank model is used instead of Tangent-CFT2ED. There are relevant formulas such

as T 0,1
U and T 0,1X that learning-to-rank can retrieve in the top-10 results, where Tangent-CFT2ED

did not retrieve in the top-1000. Instead, Tangent-CFT2ED retrieved not-relevant formulas, such

as E0,1
2 = E0,1

∞ = F 0H1 in the top-10 results. In contrast, in cases that the learning-to-rank model

did not perform better than Tangent-CFT2ED, using features such as sub-tree matching score leads

to less effective results. For query

lim
x→c

f ′(x) = L = lim
x→c+

f ′(x) = lim
x→c−

f ′(x)

(Topic B.398 in ARQMath-3), the P′@10 drops from 0.9 using Tangent-CFT2ED to 0.4 when the

learning-to-rank model is used. Not-relevant formulas such as “limx→a f1(x) = limx→a f2(x) = ... =

limx→a fn(x) = N” that share common sub-trees with the query are retrieved in the top-10 results

of the learning-to-rank model.

4.4 Contextual Formula Search

We consider the problem of contextual formula search, where a formula selected from a document is

used as a query, and formulas in documents are returned. For example, a formula might be selected

CHAPTER 4. FORMULA SEARCH 77

from a question post on a Community Question Answering (CQA) site, and then issued as a query

to find posts providing information about the formula and/or the formula’s associated question. In

contextual formula search, the relevance of retrieved formulas is defined by both formula similarity

and the interpretation of formulas where they appear.

For retrieval, using context can be helpful in two ways. First, context features can improve recall

through characterizing a formula’s meaning, or a setting where it might be employed. Second,

context can improve precision through including constraints, such as on the range, domain, or

types of variables [108]. Given this, we expect that formula search systems exploiting both a

formula and its context would yield better results than systems that ignore formula context.

Mathematical notation is hierarchical, and so is represented well by trees. Text by contrast is linear,

but the latent meaning of text is complex, and so graph structures have been devised to encode

aspects of that meaning. We consider one semantic encoding for text, the Abstract Meaning

Representation (AMR) graph. For formula representation, we use Operator Trees (OPTs). We

unify AMR and OPT representations to capture the meaning of a formula in its context, which we

call MathAMR.

4.4.1 Abstract Meaning Representation

Semantic parsing aims to construct semantic representations from language. Abstract Meaning

Representation (AMR) was introduced in 1998 by Langlade and Knight in their Nitrogen system [81]

to map meanings onto word lattices. Banarescu et al. [11] used PropBank [18] notation and defined

AMR annotations as rooted Directed Acyclic Graphs (DAGs). DAG nodes represent core concepts

in a sentence, either as words (typically, adjectives, stemmed nouns, or adverbs) or frames extracted

from PropBank. Directed labeled edges represent semantic relationships between nodes using

more than 100 relations, including frameset argument index (:ARG0, :ARG1), semantic relations

(:location, :name), and relations for date-entities, relations for ordered listing (:op1, :op2, :op3).

To generate AMRs from text, different parsers have been proposed. We consider three categories

of AMR parser:

1. Graph-based AMR parser. These parsers build the AMR graph by treating AMR parsing

as a procedure for searching for Maximum Spanning Connected Subgraphs (MSCGs) from an

edge-labeled directed graph of all possible relations. The first AMR parser was of this type

(JAMR [43], in 2014).

CHAPTER 4. FORMULA SEARCH 78

see-01

i dog

person

name

“Joe”

run-02

garden

chase-01

dog cat

chase-01

catgardendogperson

name

“Joe”

ARG0 ARG1

ARG0-of

location

location
ARG1ARG1ARG0

poss

name

op1

ARG0

poss

name

op1

(a) (b) (c)

Figure 4.6: AMR summarization example adapted from Liu et al. [89]. (a) AMR for sentence ‘I

saw Joe’s dog, which was running in the garden.’ (b) AMR for a following sentence, ‘The dog was

chasing a cat.’ (c) Summary AMR generated from the sentence AMRs shown in (a) and (b).

2. Dependency-based AMR parser. Parsers such as CAMR [159] first generate a depen-

dency parse of a sentence, and then transform it to an AMR graph using transition rules.

3. Neural AMR parser. Viewing the problem as a machine translation task, neural models

directly convert raw text to linearized AMR representations. For example, the SPRING

parser [13] uses Depth-first linearization of AMR, and treats the problem of AMR generation

as a text-to-AMR translation problem. SPRING leverages a BART transformer model [84]

by modifying its tokenizer to handle AMR tokens.

AMRs are commonly used in tasks such as summarization [86,89], question answering [19,68,164],

and information extraction [49,175]. For example, Liu et al. [89] summarized text by first generating

AMRs for individual sentences in a document, and then merging them by collapsing named and

date entities. Next, a summary sub-graph was generated using integer linear programming, and

finally summary text was generated from that sub-graph using JAMR [43]. Figure 4.6 shows an

example summary of two sentences in their AMR representations [89]:

(a) I saw Joe’s dog, which was running in the garden.

(b) The dog was chasing a cat.

Figure 4.6(c) shows a summary AMR generated for sentences (a) and (b).

CHAPTER 4. FORMULA SEARCH 79

imperative

s/solve-1 e/equation p/product-of

0

y/you

2

4

:ARG0

:ARG1

:mode

:ARG2

:mod

:op1

:op2

Figure 4.7: AMR with incorrect formula representation for “Solve the equation x2 − 4 = 0”.

For question answering, recent work by Bonial et al. [19], introduced InfoForager that uses AMR

representation for answering medical research questions, focusing on COVID-19 topics. This system

simply converts the question and possible answers to AMR and uses Smatch [25] as the similarity

measure for ranking the answers. The Smatch score of two AMR graphs is defined in terms of

their matching triples (edges) by finding a variable (node) mapping that maximizes the count of

matching triples. The Smatch score is the harmonic mean of precision and recall for matching

triples (F 1 score).

Existing AMR parsers fail to correctly parse math formulas. For example, for the expression:

“Solve the equation x2 − 4 = 0”, using a BART-based AMR parser,7 the generated AMR is shown

in Figure 4.7. To address this, we introduce MathAMR, in which math formulas are represented

using their operator tree representation.

4.4.2 MathAMR

By looking at an operator tree, one can see which type of mathematical operation is being applied

to which subexpressions (operands). This is very similar to the representation of text with AMRs,

which can roughly be understood as representing “who is doing what to whom”.8 AMR graphs

7We used amrlib python library and its xmf-bart model
8https://github.com/amrisi/amr-guidelines/blob/master/amr.md#part-i-introduction

https://github.com/amrisi/amr-guidelines/blob/master/amr.md##part-i-introduction

CHAPTER 4. FORMULA SEARCH 80

O!SUP O!SUP

U!Plus

O!SUP

V!x V!n V!y V!n V!z V!n

0

0 0
0

00 1 11
find-01 thing

you solve-01

general-02

equal-01
imperative

Math

EQ:ID

:arg0

:arg1

:mode

:arg2-of

:arg1-of

:mod

:arg2

:math

Integrating OPT into AMR

find-01 thing

you solve-01

general-02

equal-01
imperative

Math

Plus

:arg0

:arg1

:mode

:arg2-of

:arg1-of

:mod

:arg2

:math

SUP

SUP

SUP

.

.

.

:op0

:op0

:op0

(a) Abstract Meaning Representation (b) Operator Tree (c) Math Abstract Meaning Representation

Figure 4.8: Generating MathAMR for “Find xn + yn + zn general solution” (ARQMath-2 topic

B.289). (a) AMR tree with formula replaced by formula id. (b) OPT formula representation. (c)

OPT root replaces formula id. Part of the OPT in (c) not shown.

and operator trees also share similar edge labelings: in AMR the edge labels ‘opx’ indicate node

ordering, where ‘x’ is an integer enumerator.

As current AMR parsers are not able to parse formulas correctly, we introduce MathAMR. We

demonstrate the process of generating MathAMR using topic B.289 from ARQMath-2. This formula

appeared in a question post title, as: “Find xn + yn + zn general solution”. Figure 4.8 illustrates

the steps used to generate MathAMR, which we describe below.

1. Selecting a context window. The first step is to decide a formula’s context. As AMR

was designed for sentences, we use Spacy9 to split paragraphs into sentences and choose the

sentence the formula appears in. Formulas are often delimited in LATEX by ‘$’. It is common to

see sentence punctuation inside formula delimiters, so before Spacy we move any punctuation

(. , ! ?) from the end of formula regions to after the final delimiter. For example, “$a+b=c.$”

becomes “$a+b=c$.”.

2. Replacing formulas with an identifier token. To avoid AMR parsing problems, we

replace formulas with a single identifier. Currently, we simply enumerate formulas. For the

example, the formula xn +yn +zn is replaced with EQ766, with 766 being the integer formula

id.

3. Generating the AMR. A neural AMR parser (BART-based [84]) is then used to generate

the sentence AMR graph (e.g., as shown in Figure 4.8 (a)). We introduce a new edge label

‘math’ to connect a formula’s placeholder node to its parent.

9https://spacy.io/

https://spacy.io/

CHAPTER 4. FORMULA SEARCH 81

4. Integrating the OPT representation. The formula OPT shown in Figure 4.8 (b) is

inserted into the AMR by replacing the formula id node with the OPT root, creating the

MathAMR graph. This is shown in Figure 4.8 (c). To follow AMR conventions, we rename

OPT edge labels from numbers to ‘opX’, where ‘X’ is the integer from the original OPT.

This is our first attempt at a unified representation of text and formulas in AMR graphs, so we have

kept our model simple. We use only OPT formula representations, whereas our isolated formula

search models have shown that also using SLT representations can sometimes be helpful [105,107].

For some domains (e.g., biomedical), there are specialized pre-trained AMR parsers [109], but we

used an AMR parser trained on general text, not specifically on mathematical text.

4.4.3 Using MathAMR for Formula Search

After generating MathAMR for the query formula and candidate formulas, we use depth-first

traversal to linearize the MathAMR. For simplicity, we ignored MathAMR edge labels. For Figure

4.8 (c) (with the full OPT in Figure 4.8 (b)), the linearized MathAMR string is:

find-01 you thing general-02 solve-01 equal-01 math plus SUP z n SUP y n SUP x n

imperative

MathAMR strings are embedded as vectors using Sentence-BERT [133], and we perform retrieval

in that embedding space using Sentence-BERT’s cosine similarity. Sentence-BERT is a modi-

fied version of the pre-trained BERT network that generates contextual sentence embeddings that

may be compared using the cosine-similarity measure. To train Sentence-BERT models, we used

all-distilroberta-v1 as a pre-trained model. This model is trained on one billion sentence pairs

from different resources such as Yahoo Answers [174] and MS MARCO [117]. It uses Byte-Pair

Encoding (BPE) [144] for tokenization. BPE first uses a pre-tokenization step and then generates a

primary vocabulary consisting of all the symbols in the unique words. Using a recursive approach,

vocabularies are merged based on a set of learned rules until a certain vocabulary size is obtained.

For a sentence such as “find value of Math sqrt a SUP 4”, the generated tokens are: {find, Ġvalue,

Ġof, ĠMath, Ġsq, rt, Ġa, ĠSUP, Ġ4}, where ‘Ġ’ indicates the end of a token.

Relevance judgement in ARQMath are graded as high, medium, low, or not-relevant. For fine-

tuning, we assigned a relevance score of 1 for high and medium, 0.5 for low, and 0 for not-relevant.

CHAPTER 4. FORMULA SEARCH 82

Training data comprised triplets of the form: (query formula, candidate formula, relevance

score).

For training, we adopted a multi-task learning framework provided by Sentence-BERT 10 that

was used previously for detecting duplicate Quora questions with the distilbert-base-nli-stsb-quora-

ranking model. The framework combines two loss functions. First, a contrastive loss [28] function

minimizes the distance between positive pairs and maximizes the distance between negative pairs,

making it suitable for classification tasks. The second loss function is multiple negatives ranking

loss [54], which considers only positive pairs, minimizing the distance between positive pairs out of

a large set of possible candidates, making it well-suited to ranking tasks.

We expected using these two loss functions would result in a system that distinguishes well between

relevant and not-relevant candidates, and learns to rank relevant candidates. In each epoch, we

compute the Spearman correlation between the embedding cosine similarity and the relevance score

on the validation set. After training the model with a fixed number of epochs, the model with the

lowest validation loss is considered as the final model used for retrieval.

In addition to using Sentence-BERT, we also use the Smatch score for retrieval. We show how a

triple matching similarity score on MathAMR works for formula retrieval without using a trained

model on ARQMath test collections.

4.4.4 Evaluation of Models

This section provides the experiment result on the MathAMR. First, we explain our training process

and the parameters used for Sentence-BERT. Then, in our first study, we investigate using Sentence-

BERT and compare it with Smatch score using assessed hit in the ARQMath. We then explore the

effect of data used for fine-tuning Sentence-BERT, comparing ARQMath-1 and -2 results. After

that, we study one of the important design choices for MathAMR, context window. Finally, we

study how MathAMR can be used for re-ranking results from other formula search systems.

For fine-tuning we use relevance judgments for all 74 assessed ARQMath-1 topics, plus the 12

training topics from ARQMath-2, for a total of 21,411 training triples. To report our results on

ARQMath-3, we used all the 155 topics from ARQMath-1 and -2 for training. Our results are

reported on the 58 ARQMath-2 test topics and the 76 test topics from ARQMath-3. We report

nDCG′ [139] and P′ at cutoffs of 5 and 10. These measures are nDCG@k and P@k for k={5,10}
10https://www.sbert.net

https://www.sbert.net

CHAPTER 4. FORMULA SEARCH 83

0 10 20 30 40 50
epoch

0.45

0.50

0.55

0.60

0.65

0.70

0.75
va

lid
at

io
n

lo
ss

AMRText w. OPTText
AMRText w. LaTeX
OPTText
RawText w. LaTeX
RawText w. OPTText

Figure 4.9: Learning curves for AMRText w. OPTText, AMRText w. LATEX , OPTText, RawText

w. LATEX, and RawText w. OPTText.

after removing unjudged results from the ranked lists. To calculate P′@k, we treat only high and

medium relevance as relevant, per the ARQMath evaluation protocol. Following the ARQMath

protocol, all measures are calculated on visually distinct formulas.

Sentence-BERT Parameters. To fine-tune Sentence-BERT we used at most 50 epochs, we

chose the best model by training loss on a validation set. We divided the training set into 10

folds, consistently using the same fold for validation. Figure 4.9 shows the loss validation for

five representations with 50 epochs for ARQMath-2. Even though the learning curve has a low

fluctuation for all the representations, the validation loss is higher for MathAMR compared to

other representations.

For candidate formulas, the average length in linearized MathAMR strings in tokens was 53.2

(σ = 52.8) and for RawText with OPT it was 96.3 (σ = 141.6). We used batch size 16 and

maximum sequence length 128 tokens for all representations other than RawText with OPT, for

which we used a maximum of 256 tokens.

CHAPTER 4. FORMULA SEARCH 84

Preliminary MathAMR Experiments Using Assessed Hits

As our preliminary experiments, we study the effect of using MathAMR for ranking assessed hits

in the ARQMath test collections, reviewing the effectiveness of the Sentence-BERT model and the

Smatch score.

1. Context Representation Results (Table 4.4). To study the effectiveness of the MathAMR

representation, we consider four other representations similar to MathAMR. For simplicity, we

compared these models using only assessed formula hits; this may produce a bias compared to full

ranking of the collection, as all relevant formulas are in the set being ranked. Our baseline uses only

linearized OPTs (‘OPTText’), ignoring surrounding text. ‘AMRText w. OPTText’ corresponds to

Figure 4.8 (c). For the model ‘AMRText w. LATEX’, we produce AMRs as shown in Figure 4.8

(a), and replace the formula placeholder node with the original formula LATEX. The final two

representations use raw text with the original LATEX or linearized OPTs. Note that the tokenizer

for RawText can correctly handle formula operators (e.g., ‘a+ b = c’ is tokenized as: [a,+, b,=, c]).

The same Sentence-BERT setting (maximum sequence length, batch size, and number of epochs)

is used for all conditions other than ‘RawText w. OPTText’.

Table 4.4 compares effectiveness measures for MathAMR representations with effectiveness for other

context representations. MathAMR (i.e., AMRText w. OPTText) does best by both measures, with

both rank cutoffs, on average over the 58 ARQMath-2 test topics. The closest competitor is the

RawText w. OPTText condition. Except for that RawText w. OPTText condition, MathAMR

results were significantly better than other representations by all four measures (p < 0.05, two-

tailed paired t-test with Bonferroni correction).

Stratifying our analysis using high/medium/low complexity topic labels distributed with the test

collection, we see that both the RawText w. OPTText and AMRText w. OPTText conditions have

identical P′@10 for low complexity topics, and that MathAMR’s superior results come entirely

from a better average P′@10 on medium and high complexity topics. For several topics, MathAMR

achieves better results due to its selective focus on the text in the sentence containing the formula,

rather than the whole input text. For example, for the formula query in the sentence, “How to show

(a1a2 . . . an)
1
n ≤

∑n
i=1 ai
n ”, P′@10 increases from 0.1 for RawText w. OPTText to 0.9 for MathAMR,

perhaps because many candidates occur in sentences with uninformative words that AMR ignores,

but that raw text includes in the Sentence-BERT input.

2. Smatch Score Results (Table 4.5). As explained in Section 4.4.1, Smatch [25] is a similarity

measure to compare MathAMRs by matching triples (edges) with a variable (node) mapping that

CHAPTER 4. FORMULA SEARCH 85

Table 4.4: ARQMath-2 Contextual Formula Search results for single sentence embeddings (via

Sentence-BERT, assessed formula hits). w. OPTText : formulas included as linearized OPTs.

Context Representation nDCG′@5 nDCG′@10 P′@5 P′@10

AMRText w. OPTText 0.58 0.56 0.51 0.47

AMRText w. LATEX 0.38 0.39 0.35 0.34

RawText w. OPTText 0.54 0.51 0.48 0.43

RawText w. LATEX 0.43 0.42 0.40 0.37

OPTText 0.35 0.32 0.30 0.24

Table 4.5: Formula Search results re-ranking assessed hits using Smatch score with MathAMR.

Test-Collection nDCG′@5 nDCG′@10 P′@5 P′@10

ARQMath-1 0.50 0.47 0.47 0.39

ARQMath-2 0.54 0.53 0.49 0.45

ARQMath-3 0.47 0.46 0.45 0.42

maximizes the count of matching triples. Table 4.5 shows formula search results on ARQMath-1,

-2, and -3, ranking just the assessed hits, using the Smatch score.

As shown in this table, using Smatch score has lower effectiveness compared to Sentence-BERT

in Table 4.4. Looking at ARQMath-3 results, there were 15 topics with P′@10 of 0. There are

instances for which the surrounding context is less informative or there is no context, and in such

cases formulas are essentially matched in isolation. For example, for topic B.318, with the target

formula highlighted:

How do you prove ex ≥
(
1 + x

n

)n
for n ≥ 1

using Smatch score gives higher rank to formulas such as “Prove that
∑n

k=0
1
k! ≥

(
1 + 1

n

)n
” because

in the AMRs nodes for ‘Prove’ and ‘you’ are connected with same edge labels, and the formulas

share similar OPT representations.

While we have only reported ranking with the specific variant of the Smatch score (described in

Section 4.1.1), we have also studied other variations of the Smatch score, such as ignoring edge

labels, or ignoring PropBank frameset. Focusing on ARQMath-3 test collections, there could be a

CHAPTER 4. FORMULA SEARCH 86

Table 4.6: ARQMath-1 and -2 Contextual Formula Search results using MathAMR with single

sentence embeddings (via Sentence-BERT), ranking the assessed hits. For each test condition, the

other test condition was used for fine-tuning Sentence-BERT.

Test Train nDCG′@5 nDCG′@10 P′@5 P′@10

ARQMath-1 ARQMath-2 0.50 0.50 0.45 0.42

ARQMath-2 ARQMath-1 0.54 0.53 0.50 0.45

slight improvement, but not a significant one (by a 2-tailed paired t-test). For example, ignoring

the ProbBank frameset can increase P′@10 to 0.03.

Fine-Tuning on Different ARQMath Test Collections

As mentioned in Chapter 3 (Section 3.2.1), despite the same relevance definition, there was a

difference in formula search task assessor training, which could lead to different relevance decisions

between ARQMath-1 and -2. Therefore, we studied using MathAMR with the Sentence-BERT

model, with the same parameters but different training data; fine-tuning on one test collection and

testing on the other. Table 4.6 shows the results on ARQMath-1 and -2 test queries. As seen,

in this table, the results show stable behavior across training and test sets. All the scores on the

ARQMath-1 test set are slightly lower, but such differences are typical in information retrieval

evaluation.

Using Different Context Windows

Another parameter to study is what we consider the context window. In our experiments, we se-

lected the sentence in which the formula appeared. However, it is possible that related information

to the target formula appears in other contexts than that one sentence. Therefore, we also did the

experiment of including a sentence before and after the sentence in which the formula appeared

(summing up to 3 sentences) for both queries and for candidates. We use the same process as gener-

ating MathAMR with one sentence. However, it should be noted that when generating MathAMR

for larger text, the target formula is sometimes dropped as the AMR generator aims to extract a

meaning representation. In such cases, we use the MathAMR as it is for search.

For our experiment, we used the same fine-tuning process. ARQMath-1 and additional topics from

ARQMath-2 were used to fine-tune Sentence-BERT to get results for ARQMath-2 test topics. For

CHAPTER 4. FORMULA SEARCH 87

Table 4.7: Contextual Formula Search results re-ranking assessed hits with MathAMR using

context window sizes of 1 and 3.

Test-Collection Context Window nDCG′@5 nDCG′@10 P′@5 P′@10

ARQMath-2 1 Sentence 0.58 0.56 0.51 0.47

ARQMath-2 3 Sentences 0.38 0.38 0.34 0.32

ARQMath-3 1 Sentence 0.43 0.43 0.42 0.39

ARQMath-3 3 Sentences 0.42 0.43 0.40 0.38

ARQMath-3, we used all the topics from ARQMath-1 and -2. We re-ranked the assessed formulas

(in the Qrel files) for both test collections. Table 4.7 shows the results. While in ARQMath-3 there

is no significant difference between the results, in ARQMath-2 the results were significantly better

when using a one-sentence context window. This significant difference in ARQMath-2 may also be

an effect of training on fewer samples when we do retrieval on ARQMath-2 test queries.

Considering ARQMath-3, Figure 4.10 plots the differences between P′@10 when using one sentence

as context against using three sentences as context. As can be seen, for nearly half the topics

in ARQMath-3 using one sentence provided better results, while for the other half, using three

sentences, were better. For those that one-sentence context had better effectiveness, the obvious

pattern was that one sentence was enough to capture the context of the formula – the related

information for the formula has appeared in one sentence in both the query (specifically, query

formulas in question titles) and the candidate. For example, topic B.386, for which P′@10 is 0.9

higher when using one-sentence context, is in the question title as: “Prove that
∑∞

n=−∞ e−n2πx =

1√
x

∑∞
n=−∞ e−

n2π
x ”.

The opposite reasoning can explain topics that have better effectiveness when using 3-sentences as

context; related information is found in a larger window. The last pattern that we observed is that

when we have a context window of 3 sentences, more formulas can appear in the context (than the

formula query itself), and Sentence-BERT can then find formulas similar to those appearing in the

context window that are less related to the query.

Re-ranking ARQMath Runs

To further evaluate MathAMR’s utility for contextual formula search, we re-rank the best ARQMath-

2 and -3 run submitted by each team to the ARQMath-2021 [108] and -2022 [100] shared-task

CHAPTER 4. FORMULA SEARCH 88

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
.3

8
6

B
.3

4
1

B
.3

8
4

B
.3

2
6

B
.3

0
5

B
.3

9
8

B
.3

3
0

B
.3

3
4

B
.3

5
4

B
.3

9
4

B
.3

3
1

B
.3

4
8

B
.3

1
4

B
.3

2
0

B
.3

4
7

B
.3

8
0

B
.3

8
1

B
.3

7
7

B
.4

0
0

B
.3

2
8

B
.3

4
3

B
.3

5
8

B
.3

7
6

B
.3

9
5

B
.3

1
3

B
.3

4
5

B
.3

6
7

B
.3

6
9

B
.3

0
3

B
.3

0
8

B
.3

3
8

B
.3

4
2

B
.3

6
5

B
.3

8
9

B
.3

1
1

B
.3

2
4

B
.3

2
9

B
.3

3
3

B
.3

5
1

B
.3

5
2

B
.3

5
5

B
.3

5
7

B
.3

8
8

B
.3

9
1

B
.3

9
7

B
.3

9
9

B
.3

2
5

B
.3

6
1

B
.3

1
7

B
.3

1
8

B
.3

4
4

B
.3

6
2

B
.3

6
6

B
.3

6
8

B
.3

9
3

B
.3

4
9

B
.3

1
0

B
.3

6
3

B
.3

6
4

B
.3

9
0

B
.3

2
3

B
.3

0
4

B
.3

1
2

B
.3

1
5

B
.3

2
1

B
.3

2
7

B
.3

1
9

B
.3

6
0

B
.3

0
1

B
.3

5
0

B
.3

2
2

B
.3

9
6

B
.3

5
3

B
.3

5
9

B
.3

0
2

B
.3

7
0

P
'@

1
0

 d
if

fe
re

n
ce

1
 S

en
te

n
ce

-3
Se

n
te

ce
s

Topic Id

Figure 4.10: Difference between P′@10 using one against three sentences as context for ARQMath-3

topics (P′@10 for one - P′@10 for three sentences).

evaluations, respectively. Table 4.8 shows P′@10 and nDCG′@10 for original runs, those same runs

re-ranked using the cosine similarity of MathAMR embeddings (AMR w. OPTText), and com-

bined original ranking scores with MathAMR ranking using our modified Reciprocal Rank Fusion,

equation (5.3).

ARQMath-2 runs are from the Approach0 [179], MathDowsers [116], TU-DBS [135], DPRL [103],11

XY-Phoc [9], and NLP NITS [33] teams. For ARQMath-3, runs from the Approach0 [178], DPRL

[104], MathDowsers [67], XY-Phoc [82], and JU-NIST [140] teams are shown. Only Approach0

was a “manual” run that included human intervention, and only MathDowers used both text and

formulas (the others used only formulas).

In ARQMath-2, using linearized MathAMR embeddings to re-rank candidates using cosine similar-

ity sometimes decreases P′@10, partly because there can be several formulas in one sentence, all of

which share a single MathAMR similarity score. For this reason, the modified RRF of the original

ranking and MathAMR ranking results perform better than re-ranking alone. NDCG′@10 is sig-

nificantly improved over the original rankings for all systems other than DPRL (p<0.05, two-tailed

paired t-test with Bonferroni correction). The one case where RRF did not help (DPRL) likely

results from the use of tree-edit distance for final matching in that system, since the top results are

thus often very similar to the query. However, if we consider all retrieved instances (at k = 1000),

nDCG′@1000 increases from 0.57 to 0.76 when using RRF to combine DPRL and MathAMR; so

even here there is a benefit, it is just seen lower in the ranking.

In ARQMath-3 (similarly to ARQMath-2), using RRF showed better retrieval results compared to

re-ranking with cosine similarity using MathAMR, except for the JU-NIST system. That system

on its own has a much lower effectiveness than the MathAMR-re-ranked results, and combining

11DPRL was our Tangent-CFT2ED run.

CHAPTER 4. FORMULA SEARCH 89

Table 4.8: Results for original ARQMath-2 and -3 runs, runs re-ranked by MathAMR, and RRF

of Original & Re-rank. *Approach0 is a manual run. �Only MathDowers used text with formulas.

In both test collections, DPRL is our Tangent-CFT2ED system.

nDCG′@10 P′@10

Model Original Re-rank RRF Original Re-rank RRF

ARQMath-2

*Approach0 0.59 0.57 0.63 0.49 0.48 0.54

DPRL 0.60 0.59 0.62 0.54 0.51 0.52

�MathDowsers 0.54 0.55 0.58 0.45 0.44 0.48

XY-Phoc 0.51 0.54 0.55 0.43 0.45 0.45

NLP NIST 0.26 0.33 0.46 0.20 0.26 0.40

TU-DBS 0.25 0.28 0.41 0.22 0.23 0.35

ARQMath-3

*Approach0 0.75 0.56 0.72 0.69 0.51 0.67

DPRL 0.69 0.59 0.68 0.61 0.55 0.66

�MathDowsers 0.61 0.50 0.62 0.55 0.45 0.57

XY-Phoc 0.64 0.51 0.64 0.56 0.45 0.59

JU NIST 0.16 0.23 0.22 0.13 0.29 0.17

CHAPTER 4. FORMULA SEARCH 90

using RRF does not help. However, the nDCG′@10 had a significant improvement when the results

were re-ranked with RRF only for this system (p<0.05, two-tailed paired t-test with Bonferroni

correction). While for MathDowsers there was a slight improvement in both nDCG′@10 and P′@10

on ARQMath-3, for XY-PHOC, only P′@10 improved (because MathAMR in some topics provided

higher rankings for medium and highly relevant formulas).

Looking at the Tangent-CFT2ED (DPRL) model (which was the best automatic run in ARQMath-

3), Tangent-CFT2ED has better effectiveness on its own. However, there were cases where combin-

ing this model with MathAMR yielded improvements. One obvious pattern is that using MathAMR

can help with topics for which variables are important. For example, for topic F = P ⊕ T . (Topic

B.326), P is a projective module and F is a free module. There are instances retrieved in the top-10

results by Tangent-CFT2ED such as V = A⊕B where variables are referring to different concepts;

in the query formula k-dimensional subspaces. With MathAMR, formulas such as P ⊕ Q = F

appearing in a post that specifically says: “If P is projective, then P ⊕Q = F for some module P

and some free module F.” (similar text as the topic) are ranked in the top-10 results.

For cases in which Tangent-CFT2ED has better effectiveness, two patterns are observed. First, the

formula is specific and variables do not have specifications. Second, the context is not helpful (i.e.,

no providing any useful information) for retrieval. For instance, in topic B.334, “logarithm proof

for aloga(b) = b” the formula on its own is informative enough. Low relevant formulas appearing in

a context, such as “When I tried out the proof, the final answer I ended up with was alogbn”, are

ranked in the top-10 results because of having the word proof and part of the formula.

Combining the results of Tangent-CFT2ED and MathAMR with our modified RRF provided bet-

ter P′@10 than one of the individual system results for only 10% of the topics. For the topic

(B.338) appearing in the title of a question as “Find all integer solutions of equation y = a+bx
b−x ”,

both Tangent-CFT2ED and MathAMR had P′@10 of 0.6. However, combining the results with

modified RRF increases the P′@10 value to 0.9. Table 4.9 shows the top-10 results for Tangent-

CFT2ED+MathAMR, along with the original ranked lists for the Tangent-CFT2ED and Math-

AMR systems. As can be seen, there are relevant formulas that one of the Tangent-CFT2ED or

MathAMR models gave worse ranks to, for which the other system provided a better ranking and

combining the systems with our modified RRF improved the results.

CHAPTER 4. FORMULA SEARCH 91

Table 4.9: Top-10 Formulas Retrieved by RRF (Tangent-CFT2ED+MathAMR) along with their

ranks (smaller is better) in original Tangent-CFT2ED and MathAMR runs for topic (B.338), ap-

pearing in a question post title as “Find all integer solutions of equation y = a+bx
b−x ”. For space, the

sentences associated with formula hits (which are used by MathAMR) are omitted.

TangentCFT+MathAMR Relevance Tangent-CFT2TED MathAMR

Top-10 Formula Hits Score Rank Rank

1. y = a+bx
c+x 2 1 10

2. y = a+bx
x+c 2 3 88

3. y = a+x
b+cx 2 8 8

4. y = a+bx
c+dx 2 2 30

5. y =
bx

x− a
1 29 5

6. y = ax+b
cx+d 3 53 2

7. y = b+dx
1−b−dx 2 4 42

8. g(x) = a+bx
b+ax , 2 7 31

9. y = | b+cx
a+x | 2 27 9

10. y = b−x
1−bx 2 19 14

4.4.5 Additional Experiments for Sentence-BERT Training and Configuration

After testing our primary MathAMR system design, we investigated our MathAMR model with dif-

ferent designs. Here we explain our additional experiments by using all the topics from ARQMath-1

and -2 for fine-tuning Sentence-BERT and testing our model on ARQMath-3, re-ranking results

from the Tangent-CFT2ED system (searched over the whole collection).

MathBERT as a Pre-trained Model. In the experiments reported above, we fine-tuned all-

distilroberta-v1 model that had been pretrained for general text, not specific to math. There could

be vocabulary items that are common in math but not in general text. Therefore, we studied using

model with math vocabulary. Instead of RoBERTa we used MathBERT (Shen et al., 2021) [146],

which uses WordPiece tokenizer [163] with vocabulary size of 30,522. Looking back at our example

for tokenization for the sentence “find value of Math sqrt a SUP 4”, using the RoBERTa BPE

tokenizer the generated tokens are: find, Ġvalue, Ġof, ĠMath, Ġsq, rt, Ġa, ĠSUP, Ġ4, whereas

with MathBERT the tokens are: find, value, of, math, sq, ##rt, a, su, ##p, 4, where ## shows

that the token is a suffix, following some other subword.

Our experiment results with fine-tuning MathBERT showed a small improvement (0.01) in both

CHAPTER 4. FORMULA SEARCH 92

nDCG′@10 and P′@10 when re-ranking Tangent-CFT2ED with cosine similarity of MathAMR

embeddings from Sentence-BERT. Note that we kept all the other parameters the same. Looking

at the results, only for 29 topics, both models have the same P′@10 values. There are topics such

as “... that has the density function fX(x) = 2x
θ2

for ...” (topic B.396) or “calling the ‘Double Basel

problem’ for the past couple of hours
∑∞

n=1

∑∞
m=1

1
n2+m2 .” (topic B.324) that have phrases such

as “destiny function” and “Double Basel problem” that can appears in different contexts when

general text collections are used for pre-training. Perhaps when using a math collection for pre-

training, these words would appear in similar contexts more often, leading to a better embedding

representation of math terms. For both topics, P′@10 was higher by 0.3 when MathBERT was

used.

Special Token for Math. Another model, also named MathBERT (Peng et al., 2021) [127] fine-

tunes vanilla BERT without extending the vocabulary. Instead, this model includes a special token

(Separator) to distinguish between formula and text. Adopting this idea, we also included two

special tokens ‘$’ and ‘$’ at the beginning and end of each formula, respectively.

Similar to our previous experiment, we kept the Sentence-BERT parameters the same. Re-ranking

Tangent-CFT2ED results with MathAMR Sentence-BERT embeddings (using cosine similarity),

the nDCG′ and P′@10 dropped to 0.53 (from 0.59) and 0.49 (from 0.55), respectively.

Extending Vocabulary. Adapting BERT-based models for a new domain can be challenging.

There could be specific words that have a different meaning in a specific domain. Also, it is possible

that there are some words not existing in the vocabulary set of the tokenizer. As we use both AMR

and OPT in our MathAMR, introducing a new vocabulary and fine-tuning a pre-trained model

can be helpful. For this, we adopted the idea introduced in exBERT [152] for including new tokens

while keeping the existing token embeddings of the original BERT-based model fixed. To find the

new tokens that are specific for this domain, exBERT uses the WordPiece algorithm [163]. This

algorithm is similar to BPE, except in the merging step. In BPE the most frequent tokens are

added to the vocabulary list whereas in WordPiece, the ones that maximize the likelihood of the

training data are included. In exBERT model, if a token already exists in the BERT vocabulary, its

embedding is initialized randomly and previous embedding is ignored. Embedding for new token

are randomly initialized, and optimized during fine-tuning on downstream tasks. ExBERT uses

17.7K new tokens, and their experiments showed that more new tokens gives very little further

improvement on downstream tasks.

We have adopted a similar approach. We considered ARQMath collection as our collection, and use

MathAMRs generated on the first 128 tokens from both questions and answers to select the most

CHAPTER 4. FORMULA SEARCH 93

frequent tokens. As this is a primary attempt, we simply tokenized using white space to find new

tokens from MathAMR and then chose the 15K most frequent tokens. Using a similar approach

to ExBERT we included these tokens in our vocabulary with random initial embeddings and fine-

tuned an all-distilroberta-v1 model on math question-answer similarity task (ARQMath Task

1). To do this, we considered a question and its selected answer as a positive pair and chose a

random answer that was not given to that question to form a negative pair. We have 384K pairs

of positive pairs and the same number of negative pairs for fine-tuning. We used batch size 64 with

maximum sequence length of 128, fine-tuning for 10 epochs. After fine-tuning with the new set

of tokens, we then use this fine-tuned model and did the same fine-tuning we did for the formula

search task using linearized MathAMR of topics from ARQMath-1 and -2. We did not change any

model parameters, except for the pre-trained model that we used.

Our ranking results showed that on average, there was 0.02 decrease in both nDCG′@10 and P′@10

values when re-ranking with our extended vocabulary model compared to the original RoBERTa.

As with MathBERT, we can observe that for certain topics there was improvement in ranking

from model fine-tuned with extended vocabulary, whereas for some other topics the ranking results

were less effective. One topic for which using original vocabulary was better than the new tokens

was topic “...
∫ 1
0

sin−1(x)
x ...” (topic B.320 in ARQMath-3) where P′@10 dropped from 0.6 to 0.1.

Using extended vocabularies, in the top-10 results for this topic, 8 retrieved formulas have a low

relevance. From the results, we see that after fine-tuning on the ARQMath collection, many of the

highly ranked formulas contain symbols such as ‘sin’, ‘
∫

’, and ‘π’. The symbol ’π’ is not in the

topic, although, the formula query is equal to π
2 ln 2.

For topics on which we saw improvements when using the extended vocabulary, one obvious pattern

is that (as with the MathBERT model), there are math-specific phrases for which embeddings pre-

trained on general text might not be a good approach. There are phrases such as “cauchy schwartz”

(topic B.301), “vector bundle” and “Newlander-Nirenberg theorem” (topic B.304), and “Hilbert

space” (Topic B.314) that models with an extended vocabulary probably have provided a better

embeddings for. Also, note that with the extended vocabulary model, fine-tuning is done over

a math specific collection (ARQMath) in a mono-modal space where both formula and text are

represented in the same space and embeddings capture the relation between formula and text.

CHAPTER 4. FORMULA SEARCH 94

4.5 Summary

In this chapter, we first introduced the representations used for mathematical formulas. The two

common representations that are used in formula search systems are (1) Presentation MathML,

capturing the appearance of a formula in a Symbol Layout Tree (SLT), and (2) Content MathML,

showing operations in the formula using an Operator Tree (OPT).

Then we reviewed some of the existing formula search models. These models can be categorized

into three main groups: text-based, tree-based (full and partial tree matching), and embedding

models. Experiment results have shown that text-based models are less effective, as they do not

capture the structure of the formula. Tree-based models can find similar formulas by using sub-

tree matching, comparing paths in the trees, or by using full-tree matching scores such as tree-edit

distance. In embedding models, each formula is represented as a vector. To find similar formulas,

vector similarity scores such as cosine similarity used.

After reviewing previously existing systems, we described two categories of formula search systems

that we have developed. The first category of systems is the isolated formula search models that

consider only formulas for comparison. We developed three systems for isolated formula search.

Tangent-CFT is the first embedding model for mathematical formulas that uses both SLT and

OPT representations. Since experiment results showed that Tangent-CFT emphasized finding

partial matches, we introduced Tangent-CFTED, which re-ranks Tangent-CFT results with a more

strict similarity score, tree-edit distance. Finally, we developed a learning-to-rank framework for

mathematical formulas that leverages multiple similarity features, including sub-tree, full-tree, and

embedding similarity scores.

The second category of systems is contextual formula search models that consider the context of the

formula in addition to formula similarity. We have introduced MathAMR, a unified semantic rep-

resentation for formulas and text. MathAMR integrates Abstract Meaning Representation graphs

for text with Operator Tree formula representations. We have made the first study of using Math-

AMR for formula search, studying the effectiveness of using Sentence-BERT to embed linearized

MathAMR trees for single sentences. Compared to representations using raw text, MathAMR

achieved better results when ranking all documents for which relevance judgements are available,

and using MathAMR embeddings for re-ranking results from other formula search techniques also

yielded improvements.

Overall, among the search models we introduced for formula search, our tree-edit distance model,

Tangent-CFTED, which re-ranks retrieval results from our embedding model, Tangent-CFT, pro-

CHAPTER 4. FORMULA SEARCH 95

vided better effectiveness compared to the other models. This model is the state-of-the-art auto-

matic system on the latest formula search test collection, ARQMath-3. However, our study shows

that using context in MathAMR can improve effectiveness for certain topics. Perhaps, analyzing

the properties of topics for which MathAMR helped with effectiveness can provide a better means

of combining isolated and contextual formula search results.

Chapter 5

Formula+Text Search

Users might use both text and formulas to search for math. They can issue ad-hoc queries with

a few keywords and formulas. Another option is using a math question, which was shown to be

common in our previous research [106]. Users can specify what information they are looking for

related to a formula. For example, they can add terms such as “examples”, “solving”, and “name

of” to a formula to get different information about it. Also, with the growth of community question-

answering websites, users might post a math question on these websites, to get an answer to their

question.

The attempts at formula+text search include combining individual search results from text and

formula searches and searching for both text and formula together using traditional information

retrieval or deep neural network models. These types of information retrieval systems are called

multi-modal, meaning that both users’ queries and the collection can have multi-type data including

text, audio, video, pen strokes, and images. While multi-modal information is one related problem

to the formula+text search task, another related problem to formula+text search can be image

captioning. The goal of this task is to generate a related caption for an image. We can simply

map this problem to ours by considering the formula as an image, aiming to generate the text

description for the formula. Having a text description of formulas can be beneficial for text-based

formula retrieval models.

This chapter introduces the formula+text search task. First, we show how formula+text search can

be related to other similar information retrieval and natural language processing tasks. Then, we

review some of the existing work on formula+text search and answer retrieval for math questions.

Finally, we explain our proposed models for the formula+text search task, focusing on the answer

96

CHAPTER 5. FORMULA+TEXT SEARCH 97

retrieval task for math questions.

5.1 Related Problems

Multi-modal information retrieval. With the growth of digital content, multi-modal informa-

tion retrieval systems enable users to search for different modalities such as text, images, audio,

and video. As stated in [21], the main challenge in multi-modal (multimedia) retrieval is the gap

between the input queries and the collection. This is not an issue in a text search engine as the col-

lection and queries have the same data type, text. Multi-modal search systems consider two main

approaches. In the first approach, the retrieval results from individual search systems for each data

representation are combined. In the second approach, retrieval is done in a unified framework, with

all different types of data being represented in a unified space. These are known as mono-modal

search systems, where search is done over a single modality.

An example of the first approach is the multi-modal search method used for semantic patent image

retrieval by Pustu-Iren et al. [131]. This work focused on using patent images, which are valuable

information sources to compare patents. The previous patent retrieval models before this work only

made use of textual information. In this work, two indices are created using textual and image

features. For textual information, first a text data is extracted from the image, then a sentence

transformer model, RoBERTa [92], is used to extract textual features as a vector. To extract image

features, Contrastive Language-Image Pre-training (CLIP) [30] is used, and for each image, a vector

representation is created. For a given query, the retrieval is done based on the similarity of textual

features, image features, or both. The individual retrieval results are based on the cosine similarity

of vector representations. To use both of the features, the individual retrieval results are combined

using average or maximum scores.

To provide an example for the second category, in the unified framework introduced by Rafailidis

et al. [132], each multimedia document is represented as a vector. A multimedia document contains

different modalities such as 3D, images, and audio. First, for each document Di its xmi mono-modal

descriptors are extracted, m designating the modality, and a matrix representation is generated

based on the number of modalities per document in the collection. Then, with a weighting scheme

that captures the importance of each media type. Finally, with Laplacian Eigenmaps using the

heat kernel approach, each document is mapped in a vector space, with similar documents being

closer to each other.

CHAPTER 5. FORMULA+TEXT SEARCH 98

Formula+Text search is a multi-modal information retrieval task in the sense that formulas can be

represented as graphs, images, audio, or penstrokes. The search systems should have the ability to

search in different modalities and return relevant documents. Using the first approach, formula and

text searches are done separately, and then the retrieval results are combined. The major benefit of

this approach is that mature text and formula search can be applied for individual retrieval, and the

retrieval results are combined. The main challenge in this approach is to decide how to efficiently

combine the search results from text and formula. Specifically, in cases where the input query has

multiple formulas in it, a weighting scheme is needed to efficiently combine retrieval results for each

formula in the query.

In the second approach, the challenge is defining a unified semantic space for both formulas and

text. This might need a new data representation model or a model to map formulas and text to a

same space (e.g., using a neural network architecture). In our proposed models, our main focus is

leveraging the second approach, with a mono-modal model for search.

Image captioning. Image captioning aims to provide a brief description of an image in a natural

language. We choose image captioning over machine translation as a related problem, as in image

captioning the modalities of data are different; all the data is not textual. Current methods for

tackling this problem combine computer vision and natural language processing techniques [91].

Image captioning approaches can be divided into two groups [55]:

1. Mono-modal Space. In these approaches, image and language features are represented

differently. Commonly, convolutional neural networks (CNNs) are used to extract image

features in the encoder part of the model, and then recurrent neural networks (RNNs) are used

in the decoder to generate the caption. The Neural Image Caption (NIC) Generator model

[157], for example, uses a CNN for image representations and a Long short-term memory

(LSTM) for generating image captions. The NIC uses a novel method for batch normalization,

and the output of the last hidden layer is used as an input to the LSTM decoder. The LSTM

can track objects that have already been described using text. NIC is trained based on

maximum likelihood estimation of generating sequence of words that describe an image.

2. Multi-modal Space. In those approaches, there are still two encoders for image and lan-

guage used as feature extraction pipelines. However, after the encoding, the outputs are

mapped to a multi-modal space. The output in the multi-modal space is then fed to the

language decoder to produce captions.

For example, Kiros et al. [71] introduced a model that learns a joint image-sentence embed-

ding. The sentence features are extracted with LSTM and images are represented as the top

CHAPTER 5. FORMULA+TEXT SEARCH 99

layer of a CNN trained for the ImageNet [76] classification task. Then these features are joined

in a multi-modal space that maximizes the similarity between image and text embeddings of

related pairs (image and its caption), and minimizes similarity to other captions. The decoder

is a structure-content neural language model derived from a multiplicative neural language

model [72] that models the distribution of a new word for the given context from the previous

words and a multi-modal vector space. Also, the decoder uses structural information (in this

work, part of speech) to improve generated captions, helping the model to avoid generating

grammatical nonsense.

There are several possible ways of using the technique for image captioning for formula+text search.

The simplest scenario is to generate the names of the formulas. For example, given the formula

a2 + b2 = c2, the generated output of the model should be the Pythagorean theorem. However,

this can be challenging as there are many formulas that are not linked to a specific math concept.

For example, it would be difficult to generate a text for a + b + c. Also, there could be different

formula representations of the same concept, which may demand a canonicalization method. In an

alternative approach, for a given formula as the input, the model can generate its related text. The

related text can be a definition, an example, or an application. This can be challenging as there

might not be enough data available to train such models.

5.2 Related Work

Bringing the focus back to formula+text search, we review two types of related work. We first

review some of the existing search models for ad-hoc queries, and then investigate some of the

approaches to answer retrieval for math questions.

5.2.1 Ad-hoc Search Models

The first line of work has the same approach as the ones used for contextual formula search. In

models for ad-hoc search, the input query contains both text and formula(s). As with the approaches

seen in multi-modal information retrieval, many of the proposed systems combine retrieval results

from text and formula search systems. To combine the results, different techniques are used, from

a simple averaging of the results to learning to rank models.

1. WikiMirs [48] retrieves mathematical information based on keywords and the structure and

CHAPTER 5. FORMULA+TEXT SEARCH 100

importance of formulas in a document. Using separate tokenizers for formulas and text, the

formula tokenizer does normalization and extraction. In the formula index files, the impor-

tance of each formula in a document is also recorded. For ranking, this system trained Rank-

Boost [46] using three categories of features: formula-based, relevance-based, and document-

based. There are three features used in the formula-based set that capture semantic and

structural information about the query. The relevance-based features include five similarity

features between the query and a retrieved document. In the document-based features, four

features are used from the candidate document.

2. MCAT [75] uses a path-based technique using SLT and OPT representations, as described

in the previous chapter (section 4.3.2). Several types of textual information are indexed at

three levels of granularity for each formula. At the first level, words in a context window of

size 10, descriptions, and noun phrases in the same sentence as the formula are considered.

At the second level, all the words in the paragraph in which the formula has appeared are

considered. At the third level, the title and abstract of the document, keywords extracted

from the document, descriptions of all the formulas, noun phrases, and all the words in the

document are considered. (Note that the third level information is extracted based on the

nature of the collection. For example, the paragraph-level information is only used for the

arXiv collection.)

A dependency graph of formulas is built, with nodes representing important formulas found

in the document. A directed edge between nodes A and B indicates that the string represen-

tation of formula A contains expression B. This graph is used to extract additional textual

information (from the first level) from similar formulas. For retrieval, all the scores are nor-

malized, and for each field, a cold-start weight is estimated. The final weights for formula

and text are learned based on multiple linear regression.

3. MIas [138] uses structural and operator unification in formula search and considers query

expansion methods (only for multi-keyword queries) for text search. The formulas are con-

verted within five steps using canonicalization, unification variables, constants, operators, and

structure. Weights are assigned to formulas based on the number of unification, with fewer

replacements of unification symbols are weighted higher. The authors reported that while

unification helped with recall, it hurt precision.

4. Tangent-3 formula search system is similar to Tangent-S [35], using only an SLT represen-

tation. Tangent-3 [36] uses the TF-IDF implementation of the Solr text search engine to

find relevant documents. For documents with title and body, the score for the title field is

doubled, and then the maximum of the title and body scores is considered as the final text

CHAPTER 5. FORMULA+TEXT SEARCH 101

search score. The final relevance score is obtained by averaging similarity scores from text

and formula retrieval results.

5. The proposed model by Thanda et al. [154] uses Latent Dirichlet Allocation (LDA) [16] for

text search, doc2vec [83] for formula search (as discussed in Chapter 4, section 4.3.2.), and it

uses ElasticSearch scoring to find similar patterns. These patterns are based on dependencies

and part of speech tags, mapping formulas to their definitions. The retrieval results from the

three systems are combined with Borda count-based [7].

5.2.2 Answer Retrieval Models for Math Questions

Math questions are commonly used in math searches. With the growth in community question-

answering websites, finding relevant answers to a math question has become more vital. Based

on the task introduced in the ARQMath labs, several systems aim to find relevant answers to

math questions. These approaches can be categorized into two groups: 1) traditional information

retrieval models and 2) embedding models. Overall, knowledge about using embedding models for

formula+text is limited. Traditional information retrieval still provides better retrieval results for

answer retrieval tasks (based on results in ARQMath-1, -2, and -3). Here, we summarize approaches

developed for finding relevant answers to math questions. Note that these systems were developed

for ARQMath Task 1, where for a given new math question (a question not in the collection and

having similar or duplicate question(s) in the collection), the goal is to find relevant answers from

those given to the previous questions. Also note that the traditional information retrieval methods

can also be applied for ad-hoc searches, but as these systems were originally designed for answer

retrieval task, we describe them here.

Traditional Information Retrieval Methods.

1. Approach0 system [179] is a path-based formula search system that uses OPT representation.

For the answer retrieval task, this model is combined with the Anserini toolkit [165]. To

improve retrieval results, before combination, two query expansion techniques are used. First,

some of the LATEX representations of formulas are converted to text using a manual table.

For example, instead of “π”, the term “pi” is used. Also, the proposed approach utilizes the

context information from an initial set of retrieved answers using RM3 [1] query expansion.

After retrieval, two learning to rank frameworks were introduced using linear regression, and

LandaMART [162]. There are three features considered for this: 1) the number of up-votes

CHAPTER 5. FORMULA+TEXT SEARCH 102

for the answer, 2) the similarity of the answer to the topic question,1 and 3) the number of

overlapping tags between the parent question and the topic question.

2. The proposed model from the MathDowsers team [115,116] in ARQMath-1 and ARQMath-2

combines text and formula search results. It achieved the highest effectiveness in answer

retrieval task in both years. For formula search, the proposed model relies on the Tangent-

L [45] system that is built on the Lucene [14] platform. Tangent-L produces a set of math

tuples based on SLT and then each tuple is treated as a single token and BM25+ [93] ranking

is used for formula search. The same ranking model is used for the text. However, as the

inputs are math questions, there is a conversion step to generate a set of well-formulated

query that has formulas and keywords. This tokenization is done by defining a set of rules.

For example, if a word contains a hyphen such as “Euler-Totient” it is considered as a single

keyword. The retrieval results from text and formula search systems are linearly combined.

Then a re-ranking step is applied based on the metadata available for the posts. This includes

overlapping tags between the topic question and the question associated with the answer, the

answer score (the difference between the positive and negative votes on Math Stack Exchange),

and the reputation score of the answer’s author.

Embedding-Based Methods.

1. RoBERTa-based model. Rohatgi et al. [136], introduced a two-step approach by first

selecting candidates with BM25 scoring and TF-IDF with cosine similarity, and then re-

ranking the results with RoBERTa [92]. For each answer in the collection, its associated

question is also concatenated to it to form a retrieval unit. In the first stage, the top-1000

retrieval results from BM25 and TF-IDF were combined using Reciprocal Rank Fusion [31].

In the second stage, the RoBERTa model fine-tuned on Math Stack Exchange data for a mask

prediction task. This system was further extended [137], with formulas being tokenized using

byte pair encoding [143]. Also, text was summarized with BERT [37], and noun phrases were

extracted as the keywords.

2. ALBERT-based model. Reusch et al. [134] made use of ALBERT [80] to find relevant

answers for math questions. To use ALBERT, formulas were encoded using byte-pair-

encoding [143]. Two approaches were used for text tokenization. In the first approach,

posts were split into sentences, whereas in the second approach, chunks of text and formulas

were considered, and if the sentence is short and contains a formula, the sentences is con-

catenated to the formula before it. To fine-tune the model, 1.9M examples were used from

1In this research we refer to the questions used in ARQMath answer retrieval task as topic questions.

CHAPTER 5. FORMULA+TEXT SEARCH 103

Math Stack Exchange, with 90% of examples for training and 10% for validation. For each

question, one of the answers was randomly chosen as correct, and incorrect answers were

chosen randomly from answers given to the other questions that shared at least one tag with

the original question.

3. ColBERT-based model. In a similar approach to that used for ALBERT, Reusch et

al. [134] made use of a ColBERT [69] model to find relevant answers for math questions. For

each question, 10 correct and 10 incorrect answers were used to train the model. Each correct

answer was paired with all the incorrect ones, generating 100 pairs for each question. If for a

question, there are fewer correct answers, the same number of incorrect answers were chosen.

4. BERT-based model. CompuBERT model [122] fine-tuned a BERT model using Math Stack

Exchange data. For each question, its asker-selected answer is chosen to form a positive pair

and a random accepted answer to another question is used to form a negative pair. Formulas

are represented as LATEX strings.

5. SCM. The soft cosine measure (SCM) system [121], used a fastText model [17] to provide

a vector representation for each post. In this representation, formulas were upper-cased and

all the other text tokens were lower-cased to distinguish between them. Then punctuation

and numbers were removed. Each answer post was a concatenation of its body, its parent

question (both title and body), and parent question tags.

Some systems combine the retrieval results of embedding and traditional retrieval models. For

example, Novotny et al. [122], experimented using ensemble models from different embedding and

traditional retrieval models (from previous ARQMath runs) using different methods such as un-

weighted sum, weighted sum, and regression, and with regression they achieved higher nDCG′ than

other fusion techniques.2

5.3 Answer Retrieval for Math Questions

This section describes our approach to the answer retrieval task. We aim to answer two research

questions: (1) is finding similar questions for the input question and then ranking the answers

given to those to similar questions effective? and (2) is a mono-modal search model effective for

this task?

2At the time of writing this dissertation, papers related to ARQMath-2022 systems were not publicly available

and are not included in related work

CHAPTER 5. FORMULA+TEXT SEARCH 104

Our first research question explores whether automating the oracle baseline system introduced in

ARQMath, Linked Math Stack Exchange Post, is effective. In this baseline, for each test question,

the duplicate questions in the ARQMath collection were first listed using links data that were not

included in the collection, and the answers given to them were sorted based on the vote scores given

by Math Stack Exchange users (describe in Chapter 3, Section 3.2.2). This model had the highest

P′@10 value compared to the other runs in the answer retrieval task of ARQMath-2020 and 2021,

but not in 2022.

All our proposed models with Sentence-BERT use a two-step retrieval approach [103, 104]. First,

similar questions are retrieved. Then, all answers given to similar questions are ranked using

different ranking models.3 We first investigate the use of raw text with formulas represented as

LaTeX strings for the mono-modal search model. We then study if MathAMR can be more effective

compared to raw text.

5.3.1 Raw Text for Answer Retrieval

Here we introduce our two-step retrieval model using raw text, with formulas represented with

LATEX strings.

STEP 1: Finding Similar Questions

Math Stack Exchange provides links to related and duplicate questions. The related questions

have a similar topic,4 but they are not exactly the same question. The duplicate questions tagged

by Math Stack Exchange moderators are defined as a newly posted question that has been asked

before on Math Stack Exchange.

In our retrieval models, to first identify similar questions to a topic question, we used a Sentence-

BERT with a model pre-trained on the Quora question pairs dataset.5 The model was trained on

over 500,000 sentences, with over 400,000 pairwise annotations indicating whether two questions

are duplicates or not. Using this model, we did two-step fine-tuning. First, we fine-tuned the

model on both duplicate and related questions. Then another fine-tuning was done, using only the

duplicate questions. For our training, we used the posts provided in the ARQMath collection (from

2010 to 2018). In the first fine-tuning, 358,306 pairs were used, and in the second, 57,670 pairs

3We also had earlier attempts at the answer retrieval task using FastText-based models, which were less effective.

Further information is provided in [102]
4Here by topic we mean subject and not topic as defined in information retrieval
5https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

CHAPTER 5. FORMULA+TEXT SEARCH 105

were used. In both cases, half of the pairs were positive samples, and the other half were negative

samples chosen randomly from the collection.

For training, we used multi-task learning, considering two loss functions: constrastive loss [28]

and multiple negatives ranking loss [54]. For query q, with relevant document d+ and a set of N

non-relevant documents, the constrastive loss function is defined as:

L(q, d+) =
exp (score (q, d + /τ)∑N
i=1 exp (score (q,Ni/τ)

where τ is a temperature parameter (in our work the default value τ = 1 is used). The constrastive

loss function minimizes the distance between positive pairs and maximizes the distance between

negative pairs, making it suitable for classification tasks. The multiple negatives ranking loss

function, however, considers only positive pairs, minimizing the distance between positive pairs out

of a large set of possible candidates. For the answer retrieval task, this function is defined as:

L(q, a, θ) = − 1

B

B∑
i=1

[S(qi, ai) − log
B∑
j=1

eS(qi,ai)]

where θ is the word embedding function with parameters S, B is the batch size, qi is the question i

and ai is the corresponding answer to qi. Every other answer (corresponding to another question)

is considered a negative candidate. We set the batch size to 64 and the number of training epochs

to 20. The maximum sequence size was set to 128.

Figure 5.1(a) shows the Cross-Encoder model pre-trained for finding similar questions. In a Cross-

Encoder, two sequences are sent to a BERT model in one pass to output a relevance score. In the

first fine-tuning, the question title and body are concatenated, with a maximum sequence length

of 265 tokens. In the second fine-tuning, however, we considered the same setting for fine-tuning

as the first fine-tuning, with one of three different inputs:

• Using the question title, with a maximum sequence length of 128 tokens.

• Using the first 128 tokens of the question body.

• Using the last 128 tokens of the question body.

To find a similar question, we use each of these three models to separately retrieve the top-1000

most similar questions. The retrieved results are then combined using modified RRF (defined in

equation (4.2)). We call this similarity score Question-Question Similarity (QQSim).

CHAPTER 5. FORMULA+TEXT SEARCH 106

BERT

Classifier

Question 1 Question 2

BERT

Classifier

Question Answer

QASim

(a) (b)

QQSim

Figure 5.1: (a) Sentence-BERT Cross-Encoder for identifying similar questions and (b) similarity

of question and answer. The classifiers give probability of relevance.

STEP 2: Finding Related Answers After the top-1000 similar questions for a topic question

are retrieved, all the answers given to similar questions are compiled and then scored with a ranking

function. We considered four ranking functions. First, we use the scores given to the answers on

Math Stack Exchange for ranking. This means we are using real users’ feedback on the relevance of

answers to a question. Then, we turn to machines and introduce a second ranking function using a

Sentence-BERT model trained to score the relevance of an answer to a question. Our third ranking

function combines real-users’ and machine scores. Finally, in our last ranking function, we train a

rank-SVM model to study the effect of incorporatin additional data from Math Stack Exchange.

Here, we describe our ranking functions:

1. Math Stack Exchange score (MathSE-RawText). Each post on Math Stack Exchange

has a score given by the users. The score is the difference between the positive and negative

votes given to that post. In this ranking function, we simply consider this score as an indicator

of answer relevance. We used MinMax normalization to map answer Math Stack Exchange

scores to values between 0 and 1. Given a set of ranking scores S for a topic question, MinMax

normalizes score s to s′ as:

s′ =
s−min(S)

max(S) −min(S)
(5.1)

Note that min and max are computed over the answers to the candidate question. The final

similarity score between a question and a candidate answer is calculated as:

Relevance(QT , A) = QQSim(QT , QA) ·MathSEscore(A) (5.2)

where the QT is the topic question, A is a candidate answer and QA is the question to which

answer A was given.

CHAPTER 5. FORMULA+TEXT SEARCH 107

Table 5.1: An example of accepted answer for a question similar to ARQMath topic (A.21 in

ARQMath-1), assessed as not relevant.

ARQMath Topic Title Finding the last two digits of 99
9. . .

9

(nine 9s)

Similar Question Title The last two digits of 99
9

Accepted Answer At this point, it would seem to me the easiest thing to do is

just do 99 mod 100 by hand. The computation should only

take a few minutes. In particular, you can compute 93 and

then cube that.

2. Two-step Hierarchical Sentence-BERT (QASim-RawText). Studies on ARQMath-

1 results showed that not all the answers with a high score on Math Stack Exchange are

relevant. An example is shown in Table 5.1. In this example, the accepted answer (with

the highest score) to a similar question as the topic question in ARQMath-1 is assessed as a

non-relevant answer.

Therefore, we fine-tune a Sentence-BERT model on question and answer pairs from ARQMath

answer retrieval task topic questions and their assessed hits. Our pre-trained model is Tiny-

BERT [61] with 6 layers pre-trained on the “MS Marco Passage Reranking” [117] task. The

inputs are triplets of (Question, Answer, Relevance), with relevance ranging from 0 to 1. In

the ARQMath answer retrieval task evaluation [173], high and medium relevance degrees were

considered relevant for precision-based measures. In our training, therefore, we use a relevance

score of 1 for answers assessed as high or medium, 0.5 for low, and 0 for non-relevant. This

choice was based on a full grid search over [0, 1] with a step size of 0.25 for each relevance

degree, and we chose the scores resulting in the highest nDCG′ on the ARQMath-1 topics.

To train Sentence-BERT we used at most 50 epochs, we chose the best model by training loss

on a validation set. We divided the training set into 10 folds, consistently using the same fold

for validation. We use a batch size of 64 with a maximum sequence length of 128. We again

use multi-task learning with constrastive and multiple negatives ranking loss functions. After

training, the cross-encoder outputs the similarity of the question and answer, called QASim,

as shown in Figure 5.1(b).

For fine-tuning, the input question is the concatenation of the question title and body. The

final ranking score considers two similarity scores; between the topic question and answer,

and also between the topic question and the question to which the answer is given (calculated

in STEP 1). The ranking function is:

CHAPTER 5. FORMULA+TEXT SEARCH 108

Relevance(QT , A) = QQSim(QT , QA) ·QASim(QT , A) (5.3)

where QA is the question to which answer A was given.

3. Combined model with modified Reciprocal Rank Fusion (RRF-MathSE-QASim-

RawText). Our next ranking function combines the similarity scores obtained from the two

previous functions using modified Reciprocal Rank Fusion, as given in equation (4.2).

4. SVM-Rank. As previous approaches for the answer retrieval task have shown that infor-

mation such as question tags and votes can be useful in finding relevant answers [116, 179],

we aimed to make use of these features and study their effect for retrieval. In this ranking

function we considered 6 features: Question-Question similarity (QQSim) score, Question-

Answer similarity (QASim) score, number of comments on the answer, answer’s score (post

score on Math Stack Exchange), a binary field showing if the answer is marked as selected by

the asker (to their question), and the percentage of topic question post tags that the question

associated with an answer post also contains (which we refer to as question tag overlap).

Note that we did not apply normalization to feature value ranges. We trained an SVM-rank

model [62] using ARQMath-1 and -2 Task 1 topics.6 After training, we found that QQSim,

QASim, and overlap between the tags were the most important features, with weights 0.52,

2.42 and 0.05, respectively, while the weights for other features were less than 0.01.

5.3.2 MathAMR for Answer Retrieval

In our second set of proposed approaches for the answer retrieval task, we use MathAMR as

the input for our models. Similar to ranking models with raw text, retrieval with MathAMR

is comprised of two stages: identifying candidates from answers to questions similar to a topic

question, and then ranking candidate answers by comparing them with the topic question. Here

we explain our two steps for retrieval:

STEP 1: Finding Similar Questions In our first step, we find similar questions to a given

topic question. For this, we only focus on the question title. Our intuition is that AMR was

designed to capture the meaning of a sentence. As the question titles are usually just a sentence,

we assume that similar questions can be found by comparing AMR representations of their titles.

For each question, we generated MathAMR for its title. Then the MathAMRs are linearized using

6For evaluation on ARQMath-2 we only used ARQMath-1 topics.

CHAPTER 5. FORMULA+TEXT SEARCH 109

a depth-first traversal. As a pre-trained model, we used the Sentence-BERT model that we fine-

tuned on raw text of the questions’ titles. We used the known duplicates from the ARQMath

collection (Math Stack Exchange posts from 2010–2018) to train our model on the linearized AMR

of questions, using a similar process as for raw text.

STEP 2: Finding Related Answers We considered two ranking functions that similar to our

first two proposed approaches with raw text:

1. Math Stack Exchange score (MathSE-MathAMR). Using the questions’ titles repre-

sented as MathAMR, we find the top-1000 similar questions for each topic. Starting from the

most similar question and moving down the list, we compile the answers given to the sim-

ilar questions. The answers to each similar question are ranked based on their Math Stack

Exchange score. We used a similar ranking function as in equation (5.2).

2. Two-step Hierarchical Sentence-BERT with MathAMR (QASim-MathAMR). This

ranking model is similar to QASim with raw text, except instead of using raw text we use

linearized AMR. For similarity of questions, we only use the question titles, while for similar-

ity of a question and an answer, we use the first 128 tokens of the linearized MathAMR from

the post bodies of the question and the answer. We fine-tuned a Sentence-BERT model, and

did retrieval, similar to our QAsim model. We used the ranking function in equation (5.3).

We have also considered another model combining raw text and MathAMR rankings. We combined

the results from our SVM-Rank model (from raw text approaches) and QASim-MathAMR (from

MathAMR approaches) using modified reciprocal rank fusion (equation (4.2)). We call this model

RRF-AMR-SVM.

5.4 Experiment Results

Here we evaluate our proposed models. We first present our results on ARQMath-2 and then

explore the ARQMath-3 results. For both test collections, all our model search over the whole

collection (and not just the assessed hits). A set of candidates are selected in the first step of our

models, and then they are ranked with different functions in the second step. For comparison,

we include the best run (with the highest nDCG′) on the ARQMath-2 and ARQMath-3 answer

retrieval task from each participating team in ARQMath-2021 and ARQMath-2022, respectively.

Note that throughout our analysis we compute P′@10 and mAP′ relevance binarization, considering

CHAPTER 5. FORMULA+TEXT SEARCH 110

high and medium as relevant, and low and non-relevant as answers that are not relevant.

5.4.1 ARQMath-2 Results

Table 5.2 shows the retrieval results on the ARQMath-2 answer retrieval task. The RRF-AMR-SVM

model that combines results from QASim-MathAMR and SVM-Rank (using raw text) achieved the

highest nDCG′, mAP′ and P′@10. Note that our SVM-Rank model was trained only on ARQMath-

1 topics when doing retrieval on ARQMath-2 topics. Except for nDCG′, RRF-AMR-SVM model

significantly outperformed the runs from all participating teams in ARQMath-2021 (p < 0.05, two-

tailed paired t-test with Bonferroni correction). The nDCG′ difference was significant for all systems

except MathDowers. Among our proposed models, RRF-AMR-SVM has a significantly better

effectiveness than all of our other models except for SVM-Rank considering all three measures.

Our MathAMR models are using the Sentence-BERT model that are pre-trained on raw text not

AMR token sequence, and this might explain why using raw text provides better results compared

to MathAMR in isolation.

Comparing Answer Retrieval Models by Topic Attributes. ARQMath provides different

types of topic questions. They are categorized based on their difficulty into hard, easy and medium.

Another grouping is based on whether the question is expected to be dependent on the text,

formulas, or both. The last category divides the questions based on their subject into concept,

computation or proof. We separate topic questions based on these categories and calculate P′@10

for each group. The results are shown in Table 5.3.

As shown in this table, SVM-Rank and RRF-AMR-SVM provided better P′@10 for all the cate-

gories. Looking at the difficulty levels, for hard topics, combining results from MathAMR and raw

text (RRF-AMR-SVM) provides better retrieval results. For topics A.255 and A.258 in ARQMath-

2, that are both categorized as hard, P′@10 increases by 0.4 when SVM-Rank results are combined

with QASim-MathAMR (RRF-AMR-SVM). It should be noted that both topics are dependent

on formulas. Looking at the dependencies, as expected combining raw text with MathAMR that

considers OPT representation of formulas, provided better retrieval results for the topics dependent

on formulas (P′@10 for RRF-AMR-SVM on formula-dependent category is 0.648). Similarly, for

the topics dependent on text, using a raw text representation had a better P′@10, with a value

0.1 higher on average. For topic A.210, the P′@10 increases from 0 to 0.5 when SVM-Rank is

combined with QASim-MathAMR. The title of this question is ‘what’s an elegant way to show that

x(1 − x) ≤ 1
4?’ and when re-ranked with RRF-AMR-SVM, relevant answers such as ‘Why don’t

you phrase the question by asking why x(1 − x) ≤ 1
4 ...’ are in the top-10 results.

CHAPTER 5. FORMULA+TEXT SEARCH 111

Table 5.2: Answer retrieval results on ARQMath-2 (71 test topics). Our models are trained on

ARQMath-1 answer retrieval task topics. Approach0 is a manual run.

Team Name (Run Name) nDCG′ MAP′ P′@10

Baseline (Linked MSE Posts) 0.203 0.120 0.282

MathDowsers (primary) 0.434 0.169 0.211

TU DBS (TU DBS P) 0.377 0.158 0.227

Approach0 (B60) 0.351 0.137 0.189

MIRMU (WIBC) 0.332 0.087 0.106

MSM (MG) 0.278 0.077 0.127

PSU (PSU) 0.242 0.065 0.110

GoogolFuel (2020S41R71) 0.203 0.050 0.092

BetterThanG (Combiner1vs1) 0.157 0.031 0.051

RawText

SVM-Rank 0.433 0.342 0.504

QASim-RawText 0.388 0.147 0.193

RRF-MathSE-QASim-RawText 0.347 0.101 0.132

MathSE-RawText 0.323 0.083 0.078

MathAMR

RRF-AMR-SVM 0.473 0.348 0.507

MathSE-MathAMR 0.200 0.069 0.122

QASim-MathAMR 0.144 0.050 0.110

Table 5.3: P′@10 values for our models on different categories of topic questions in ARQMath-2

answer retrieval task with 71 topics.

Difficulty Dependence Subject

Hard Medium Easy Formula Text Both Computation Concept Proof

Topic Count (ARQMath-2): 19 20 32 21 10 40 25 19 27

RawText

MathSE-RawText 0.053 0.050 0.109 0.076 0.120 0.068 0.056 0.084 0.093

QASim-RawText 0.184 0.115 0.247 0.300 0.130 0.153 0.204 0.116 0.237

RRF-MathSE-QASim-RawText 0.105 0.065 0.191 0.181 0.140 0.105 0.132 0.100 0.156

SVM-Rank 0.347 0.495 0.603 0.586 0.620 0.433 0.548 0.426 0.519

MathAMR

MathSE-MathAMR 0.150 0.053 0.148 0.171 0.050 0.114 0.200 0.053 0.100

QASim-MathAMR 0.119 0.067 0.135 0.153 0.089 0.091 0.124 0.044 0.152

RRF-AMR-SVM 0.390 0.480 0.594 0.648 0.520 0.430 0.548 0.411 0.537

Comparing our MathSE-RawText and MathSE-MathAMR models, for text-dependent topics, MathSE-

CHAPTER 5. FORMULA+TEXT SEARCH 112

Table 5.4: P′@10 for ARQMath-2 Answer Retrieval task topics that are dependent on formulas,

for which using MathSE with MathAMR had better effectiveness than raw text.

Id Title MathAMR RawText

A.209 Evaluate the definite integral:
∫∞
0 e−hx2

dx 0.9 0.0

A.255 Integral of e−
u2

2 0.6 0.1

A.205 How can we find x for xn = nx 0.5 0.0

A.210 What’s an elegant way to show that x(1 − x) ≤ 1
4? 0.3 0.0

A.279 If limx→0

(
f(x) + 1

f(x)

)
= 2, show that limx→0 f(x) = 1 0.2 0.0

RawText had a higher P′@10, whereas for formula-dependent topics using MathSE-MathAMR

provided better results. Table 5.4 shows the P′@10 values for 5 topics (with their titles) that

the MathSE-MathAMR model had better effectiveness compared to MathSE-RawText. As can

be seen, these topics have a direct question in the title, so perhaps our choice of focusing on the

title for MathAMR when finding similar questions was a reasonable approach. Also, using Math-

AMR did better for hard and computation topics, but our analysis also shows that topics that

MathSE-MathAMR provided better results for topics dependent formulas than MathSE-RawText.

Looking at our QASim model, in contrast to MathSE, QASim-RawText model works better com-

pared to QASim-MathAMR, for all categories of topics. Specially, for the formula-dependent

category, the P′@10 is nearly twice as large when raw text representation is used compared to

MathAMR, which contrasts to our observation with the MathSE models. One issue that can be

observed with our current design for QASim-MathAMR is that we just use the question body and

ignore the title. Our idea was to use text with similar field types (post bodies) for comparison.

However, there are topics for which the main question is asked in the title and the body is providing

more explanation. Note that in our QASim-RawText model, we used concatenation of the title and

body of the topic for search. One example that QASim-RawText had a better P′@10 was topic

A.209. The body of this topic is:

“where h > 0. Could someone explain to me how to solve it? I searched the internet and I found

the result is
√
π

2
√
h

but I couldn’t undersand Gauss error function - that is involved in solving.”

which continues providing more information about the main question, which is written in the title

as “Evaluate the definite integral:
∫∞
0 e−hx2

dx”.

CHAPTER 5. FORMULA+TEXT SEARCH 113

Table 5.5: Answer retrieval results on ARQMath-3 (78 topics). Our models are trained on

ARQMath-1 and -2 answer retrieval task topics. Approach0 is a manual run.

Team Name (Run Name) nDCG′ MAP′ P′@10

Baseline (TF-IDF (Terrier)) 0.272 0.064 0.124

Baseline (Linked MSE Posts) 0.106 0.051 0.168

approach0 (fusion alpha05) 0.508 0.216 0.345

MSM (Ensemble RRF) 0.504 0.157 0.241

MIRMU (MiniML+Roberta) 0.498 0.184 0.267

MathDowsers (L8 a018) 0.474 0.164 0.247

TU DBS (math 10) 0.436 0.158 0.263

SCM (interpolated text+positional word) 0.257 0.060 0.119

RawText

SVM-Rank 0.324 0.112 0.222

MathSE-RawText 0.313 0.087 0.147

RRF-MathSE-QASim-RawText 0.277 0.090 0.195

QASim-RawText 0.255 0.083 0.194

MathAMR

RRF-AMR-SVM 0.318 0.097 0.168

MathSE-MathAMR 0.203 0.046 0.118

QASim-MathAMR 0.187 0.041 0.103

5.4.2 ARQMath-3 Results

For ARQMath-3, all our model are the same as ARQMath-2, except for the training data used. We

trained our SVM-Rank and QAsim models for both raw text and MathAMR using all the assessed

topics in ARQMath-1 and -2. Table 5.5 shows the results of our models on ARQMath-3, along with

the best runs from each participating team in ARQMath-2022. As can be seen, our proposed models

are less effective on ARQMath-3 compared to other runs that participated in ARQMath-2022. As

explained, our models are developed based on the idea of automating the baseline system, Linked

MSE posts. Comparing the ARQMath-2 and -3 results for the Linked MSE posts baseline system,

almost in all the three measures, the effectiveness drops. This observation might help explain why

our models’ effectiveness also drop in ARQMath-3 compared to ARQMath-2. However, we also

observe our SVM-Rank model using only raw text, achieves the highest nDCG′ and mAP′ and

P′@10. In ARQMath-2, RRF-AMR-SVM was the best model with all three effectiveness measures.

There are 10 topics in ARQMath-3, with an average of 20.1 answers assessed as high or medium

for which none of our models can retrieve any high or medium relevant answers in the top-10

CHAPTER 5. FORMULA+TEXT SEARCH 114

results (compared to 37.7 on average for the 78 assessed topics), leading to P′@10 of 0 on those

10 topics. Looking at the results for those topics, one obvious reason for low effectiveness is

the candidate answer selection process, where answers to questions that might not be relevant to

the topic are selected as candidates. For example, for topic A.305 with title ‘What will be the

value of floor function of lim
N→∞

⌊
N∑
r=1

1
2r

⌋
’ question with the title ‘Show that lim

n→∞
1
n

∞∑
k=1

⌊
n
3k

⌋
= 1

2 ’

is detected as similar, but answers given to that question not provide useful information for the

original topic. Another example is topic A.314, with title ‘Closed span of a sequence in Hilbert

spaces.’ where the most similar question detected for this topic is the question with title ‘Closure

of the span in a Banach space’. Our model failed to detect the importance of Hilbert vs Banach

space. Answers given to this question are assessed as non-relevant. There are also topics such

as A.308 with title ‘Riemann’s definition of the zeta function’ for which our models detect the

question with title ‘What is the Riemann-Zeta function?’ as a similar one, but answers given to

that question are assessed as non-relevant in ARQMath-3. Finally, there are topics such as A.330,

with the less informative title ‘Shilov’s Linear Algebra7 - Chapter 1, Problem 9’. All our models

make use of topic-question similarity to find similar questions, and questions with titles such a

‘Shilov Linear Algebra, Coordinate transformations’ and ‘Georgi E Shilov Linear Algebra P44’ are

selected in the first-stage of retrieval, where the original questions are different from the topic. This

becomes concerning for our MathAMR models that in the first stage (finding similar questions)

only use question titles. In addition, in ARQMath-3, a new category was introduced for topics that

determine whether a topic has a multiple questions inside it. 7 out of the 78 assessed topics had

multi-parts and for 6 these parts are explained inside the question’s body and not the title.

As in ARQMath-2, our raw text models in isolation provide better retrieval results than using

MathAMR in isolation. All our models rely on finding similar questions in the first stage, but for

raw text we consider three parts of the questions: the title, the beginning and the ending, while

for MathAMR only the title is considered. This more limited input information for MathAMR

decreases effectiveness in topics such as A.382, where the title is ‘Set of functions from SS =

{A1, A2, A3, ...} to {T,F} is countable?’. For this topic, P′@10 is 0.5 for MathSE-RawText and

0 for MathSE-MathAMR. With MathAMR, questions having titles that include terms such as

‘function’, ‘set’ and ‘countable’ (or ‘counting’) were considered as questions with high similarity,

but answers given to them are assessed as low or non-relevant in ARQMath-3. For example, answers

given to the question with title “Counting functions between two sets” are assessed as non-relevant,

as the question body has a different content compared to question title.

Comparing Answer Retrieval Models by Topic Attributes. Looking at different categories

7This is the name of a linear algebra book

CHAPTER 5. FORMULA+TEXT SEARCH 115

Table 5.6: P′@10 values for our models on different categories of topic questions in ARQMath-3

answer retrieval task with 78 topics.

Difficulty Dependence Subject

Hard Medium Easy Formula Text Both Computation Concept Proof

Topic Count (ARQMath-3): 18 43 17 22 10 46 21 16 41

RawText

MathSE-RawText 0.094 0.147 0.206 0.182 0.120 0.137 0.157 0.156 0.139

QASim-RawText 0.139 0.174 0.300 0.246 0.240 0.159 0.229 0.225 0.163

RRF-MathSE-QASim-RawText 0.144 0.165 0.324 0.255 0.200 0.165 0.243 0.219 0.161

SVM-Rank 0.144 0.200 0.359 0.314 0.170 0.189 0.195 0.294 0.207

MathAMR

MathSE-MathAMR 0.106 0.105 0.165 0.109 0.140 0.117 0.119 0.138 0.110

QASim-MathAMR 0.111 0.086 0.135 0.109 0.090 0.102 0.105 0.144 0.085

RRF-AMR-SVM 0.128 0.158 0.235 0.232 0.150 0.141 0.133 0.244 0.156

of topics, Table 5.6 show the P′@10 values of our models for each category of ARQMath-3. Ex-

cept text-dependent and computation-related topics, the SVM-Rank model has the highest P′@10.

MathSE and QASim have better P′@10 when raw text representation is used instead of MathAMR.

Only for hard topics, and topics dependent on text, the MathAMR-MathSE model has an even

slightly higher P′@10 compared to raw text.

There are cases where MathAMR can be more effective due to its incorporating OPT representa-

tions. For example, for topic A.328, with the title:

“Proving
∑n

k=1 cos 2πk
n = 0”

Table 5.7 shows the titles of the top-5 similar questions detected in the first stage of our models

using MathAMR and raw text. As seen in this table, MathAMR representations retrieved two

similar questions (at ranks 3 and 4) that have similar formulas, whereas raw text failed to retrieve

those formulas in its top-5 results. The P′@10 for the QASim-MathAMR was 0.5, whereas with

QASim-RawText it was 0.1.

5.5 Summary

This chapter explored techniques for formula+text search. This problem is similar in some ways

to multi-modal retrieval and image captioning. The techniques used for both problems can be

divided into two groups: mono-modal and multi-modal approaches. In mono-modal approaches,

each content type is represented in its own feature space, whereas in multi-modal approaches,

CHAPTER 5. FORMULA+TEXT SEARCH 116

Table 5.7: Titles of the top-5 most similar questions found with MathAMR and raw text, for the

topic question with title “Proving
∑n

k=1 cos 2πk
n = 0”.

Rank MathAMR RawText

1 Prove that
N∑

n=1
cos(2πn/N) = 0 How to prove

∑n
k=1 cos(2πkn) = 0 for any n > 1?

2 How to prove
∑n

k=1 cos(2πkn) = 0 for any n > 1? How to prove that
∑n−1

k=0 cos
(
2πk
n + ϕ

)
= 0

3 Proving that
∑n−1

x=0 cos
(
k + x2π

n

)
=

∑n−1
x=0 sin

(
k + x2π

n

)
= 0. Prove that

N∑
n=1

cos(2πn/N) = 0

4
∑n−1

k=0 cos
(
2πk
n

)
= 0 =

∑n−1
k=0 sin

(
2πk
n

)
Understanding a step in applying deMoivre’s Theorem to

∑n
k=0 cos(kθ)

5
∑

cos when angles are in arithmetic progression
∑

cos when angles are in arithmetic progression

different types of content are encoded in one unified feature space.

For formula+text search, two tasks are defined in previous test collections. One is ad-hoc search

with queries containing both keywords and formula(s), and the other is answer retrieval for math

questions. The current approaches for ad-hoc search make use of formula search systems and

traditional information retrieval models such as TF-IDF or BM25, and they combine the search

results. The combination is done in different ways, from simple averaging to learning to rank. For

the answer retrieval task, traditional information retrieval models used for ad-hoc search provide

better results compared to the deep neural network approaches.

We introduced two new sets of approaches for the answer retrieval task. Both sets of approaches are

similar in that they both first find similar questions and then use different ranking approaches. In

our first set of proposed approaches, we used raw text with Sentence-BERT embedding. We trained

Sentence-BERT for question-question and question-answer similarity. We also used SVM-Rank,

considering additional features such as answer scores for ranking. Our second set of approaches also

uses Sentence-BERT, but on linearized MathAMRs. MathAMR is a mono-model representation

that uses a single unified representation for formulas and text. Our research showed that our

approaches can achieve the state-of-the-art results in ARQMath-2, but are less effective compared

to state-of-the-art systems in ARQMath-3, analysis of those results is still ongoing. However,

MathAMR and raw text representations can be effective for different types of questions. For

example, for questions depending on formula, such as ‘Evaluate the definite integral:
∫∞
0 e−hx2

dx’,

our models achieved a high effectiveness (P′@10 of 0.9). Therefore, combining results based on topic

categories might be promising. We have also shown how using OPT in our MathAMR models can

be beneficial for answer retrieval task. As our models with raw text had a better effectiveness,

perhaps incorporating OPT representation with raw text can be beneficial.

Chapter 6

Conclusion

This dissertation has addressed three broad aspects of a math-aware search research.

• Query Log Analysis: We started our work with analyzing users’ search behavior that

helped with design decisions of both search models and test collections. We have seen how

users’ behavior can be different when it comes to a specific domain such as math compared

to general searches. Perhaps future work on specific domains would benefit from doing such

analysis before designing systems and test collections.

• Test collections: We have introduced the ARQMath test collections for math-aware search.

In addition to its direct support for evaluation of math-aware search, the CLEF ARQMath

lab has brought attention to math information retrieval tasks, and brought a community of

researchers together.

• Search Models: We have introduced models that consider isolated formulas represented in

tree format. Models such as Tangent-CFT have brought attention to use of embedding models

for formula search. For example, MathBERT [127] uses a similar linearization approach

as Tangent-CFT. For contextual formula search, we have introduced a new unified single

representation for text and formulas that we believe has potential to be used for both math

information retrieval and natural language processing tasks such as summarization and math

entity linking.

This dissertation aims to provide analysis on math searches, test collections for math-aware search,

and leverages formula and text context for math information retrieval. Using formulas and text for

117

CHAPTER 6. CONCLUSION 118

search can be challenging, and we address this challenge in this dissertation. We have addressed

these research questions in this dissertation:

• Question: How do users utilize existing general-purpose search engines for math-aware

search, and what types of information needs can we observe in their query logs?

Answer: Our study on general search engine query logs revealed several properties of these

searches. For example, nearly 20% of math queries are questions, much higher than the 2%

in general searches. This points to the importance of question answering systems for math.

(Chapter 2)

• Question: How should we (1) define relevance for contextual formula search task and (2)

evaluate contextual formula search systems?

Answer: Developing the ARQMath test collections, we defined contextual formula search as

the task of finding formulas that are associated with the information helping searchers achieve

their search goal. In the ARQMath, we consider this goal as understanding the math question

and answering it. We introduced an improved evaluation protocol based on visual clustering

of formulas by considering only one instance of retrieved distinct formulas. (Chapter 3)

• Question: Can an embedding model (any model to map formulas to points in space) be used

beneficially for the formula search task?

Answer: Our first model for formula search, Tangent-CFT, is an n-gram embedding model

based on appearance and syntax representations of formulas. Experiments showed this model

can be good for approximate matching, but some full matches were ranked lower. Therefore,

we introduced Tangent-CFTED, which re-ranks Tangent-CFT results with tree-edit distance

(a stricter matching criterion). Tangent-CFTED is the current state-of-the-art for the contex-

tual formula search task. Finally, we introduced a learning to rank framework that leverages

different similarity scores, including sub-tree, full-tree and embedding similarities. (Chapter

4)

• Question: Can a unified single representation of text and formulas be beneficial for contex-

tual formula retrieval?

Answer: We have introduced MathAMR to represent both text and formulas in one mono-

modal space. We then used the Sentence-BERT model on linearized MathAMR for formula

search. Our experiment results showed combining isolated, and contextual formula search

models can achieve promising results for the contextual formula search task. (Chapter 4)

CHAPTER 6. CONCLUSION 119

• Question: Can first finding similar questions and then ranking answers given to them be

effective for the answer retrieval task?

Answer: We used a Sentence-BERT model for finding similar questions and then ranking

answers given to them. For re-ranking, we fine-tuned Sentence-BERT on tuples of (question,

relevant answer and not-relevant answer). While our current models are effective for some

math questions, results averaged over a broad range of math questions still have room for

improvement. (Chapter 5)

• Question: Can answer retrieval be performed effectively using a unified representation for

text and formulas?

Answer: We used both a raw text and MathAMR representations as two unified single

representation of formulas and text. By unified representation in raw text, we mean both

text and formulas are represented as a sequence of tokens as the input for a search model.

In MathAMR, both text and formulas are unified in tree representation. We used fine-tuned

Sentence-BERT models with two-step retrieval model. Our approach for some categories of

math questions can provide effective results, whereas for other math questions the results are

less effective.

6.1 Limitations

This section identifies some of the key limitations of our research.

1. Limited Training Data. In this dissertation, we have introduced the ARQMath test col-

lections, with a far larger number of topics than any existing math information retrieval test

collections. These test collections are more than adequate for evaluation, but as training

data, there are far smaller than the MS-MARCO [117] test collection that has been used to

train text retrieval systems.

2. AMR Parser for Math. One of the limitations of our current work is not having an AMR

parser trained specifically for math. We used a parser that was trained on general text. With

an AMR parser trained on math text, it is possible, that as has been seen in the biomedical

domain [49], we could have a better representation of the text. That might not be the case

in real-world applications.

3. Test Collection Design. With our current design of ARQMath, we cannot tell how well

systems can help users determine there is an answer in the collection for their question.

CHAPTER 6. CONCLUSION 120

In addition to this, systems are studied based on the relevance of the answers, not their

correctness. Finally, Task 1 answer retrieval systems do not get rewarded for diversity in

retrieved answers. Same information can be repeated in different answers and for each such

information a system gets rewarded. In a real-world scenario, providing diversity in search

results could be important. For example, when a user issues a question, it could be beneficial

to see different information related to definitions, applications, and examples.

4. Answer Retrieval Models. Our answer retrieval models are designed for the answer re-

trieval task in ARQMath, where each topic question had at least one duplicate (nearly exact)

question in the collection. However, this might not be the case in a real-world problem. In

Math Stack Exchange, there are a lot of questions that have no duplicate question. We have

not explored our models’ effectiveness for those questions.

5. Collections Used for Search. To study our models, we used the ARQMath test collections,

where formulas are easy to find. Formulas are located in specific HTML tags with a unique

identifier. Also, formulas are easily parsed, with different representations such as Presentation

and Content MathML available for each formula. In our work, we also did not study error

propagation from parsing and detecting formulas in a collection to be searched.

6. Efficiency. In real searches, system efficiency can be as important as effectiveness. Our

limited focus on both measuring efficiency and on optimizing for it is a limitation of our

work.

6.2 Future work

This research has opened several potential lines of future work, including:

1. Understanding of Math Information Needs. We believe there is still a lot left to

understand about how users express their mathematical information needs, and search models

can benefit from understanding their behavior. As we write this dissertation, there is yet no

research analyzing users’ behavior on a math-aware search engine.

2. Answer Retrieval Models. We explored both isolated and contextual formula search

models in this dissertation. Our proposed model, with MathAMR, considers all the formulas

in the context equally. For future work, we would like to explore more with models that

leverage both isolated and contextual formula search together.

CHAPTER 6. CONCLUSION 121

3. Intrinsic Study of MathAMR. In our work, we studied MathAMR for two search tasks:

contextual formula search and math answer retrieval. As a future work, intrinsic evaluation

of MathAMR embeddings can provide better insight about their effectiveness.

4. BERT-based Models Trained on Math. As we were reaching the end of this disserta-

tion, there were a few attempts to train BERT-based models from scratch on math, such as

MathBERT [127]. Leveraging those models can might show better results. Also, our cur-

rent MathAMR models use a Sentence-BERT pre-trained on natural language. Re-training

BERT-based models on MathAMR strings might improve search results.

5. MathAMR for Math-aware Search. In future work, we would like to explore using

MathAMR with models such Poincaré embeddings [118] that are designed for hierarchical

data, avoiding the need for our current linearization.

Another potential direction is using AMR parsers that support parsing multiple sentences.

The models that we have used are designed for handling one sentence. Parsers that are

designed for summarization [89] could be useful for parsing passages, for example.

Our experiment results on contextual formula search show that different context windows can

affect effectiveness differently for different topics. As a future work, an automatic method

might be used to decide on a context window size for each formula.

Finally, we have only considered one representation of formulas in our MathAMR design,

operator trees. Previous research on math-aware search has shown that combining different

formula representations, such as operator trees and symbol layout trees, can provide better

effectiveness [35, 107]. Integrating symbol layout trees in MathAMR may be worth investi-

gating.

6. MathAMR for Math Entity-Linking Our MathAMR representation could also be useful

for tasks other than search. For example, we believe linking formulas to their concept name

is a task that MathAMR could be useful for, since in many cases a formula and their concept

are connected to the same parent node in our MathAMR representation as words used to

name the concept that the formula represents.

7. AMR Search Models for other Domains. We have shown how using AMR can sometimes

be effective for integrating formulas and text together as a unified representation for search.

For future work, other domains that also deal with graphs and text might adopt a similar

approach. For instance, in chemistry a chemical compound can be represented as a graph and

the text and graph representations might be unified into a useful representation as a basis for

searching documents containing chemical notations.

CHAPTER 6. CONCLUSION 122

8. Open Domain Question Answering. We introduced the ARQMath test collections with

two main tasks, answer retrieval for math questions, and formula search. In ARQMath-

3 we introduced a pilot task, open-domain question answering, in which answers might be

automatically generated rather than found. Work on this task should surely continue.

9. ARQMath MSE Collection. The ARQMath Math Stack Exchange (MSE) collection itself

is a rich collection with a large number of annotated formulas. We believe this collection can

also be used for other tasks, such as summarization of mathematical texts and text/formula

co-reference [110].

10. Test Collections for Other Domains. With some of the code we have created for devel-

oping this test collection, we believe other domains can also adopt our design for generating

task-specific test collections. Stack Exchange includes focused CQA site for a wide variety of

topics such as: Law, Physics, Sports, History and Chemistry.

6.3 Broader Impact

Our research had two main elements: math and search. Almost everyone uses math. We calculate

and measure many things in our daily activities, such as planning a path and spending money.

Several jobs make extreme use of with math; engineers, mechanics, scientists, and artists all rely

on aspects of math. Searching is also a part of our daily routine. We turn to search systems to get

simple information, such as weather conditions, or very technical information. Putting these two

facts together supports the potential of math-aware search.

We started by studying how users search for math, and have ended by studying systems that can

better support those search activities. Several questions have been answered in this research, and

several new questions have been identified. That said, it is clear that the state of the art has now

reached a point where practical systems could now be deployed in operational settings. With all

our work publicly available, we look forward to what more will be learned about our proposed

techniques through actual practice.

We focused on developing math-aware search systems, but search is not the end goal. Engineers

will want to use our techniques to improve access to engineering literature. Teachers and students

could use our methods to develop a better learning environment. In learning activities, students

can use our methods to find the references for assignments, to help them solve problems, and clarify

concepts. Our goal was to enable new capabilities, and we look forward to seeing the broad rage

CHAPTER 6. CONCLUSION 123

of human accomplishment that our advances in the state of the art will help to foster.

Bibliography

[1] Nasreen Abdul-Jaleel, James Allan, W Bruce Croft, Fernando Diaz, Leah Larkey, Xiaoyan

Li, Mark D Smucker, and Courtney Wade. UMass at TREC 2004: Novelty and HARD.

Computer Science Department Faculty Publication Series, 2004.

[2] Saleem Ahmed, Kenny Davila, Srirangaraj Setlur, and Venu Govindaraju. Equation At-

tention Relationship Network (EARN) : A Geometric Deep Metric Framework for Learning

Similar Math Expression Embedding. In 25th International Conference on Pattern Recogni-

tion (ICPR). IEEE, 2021.

[3] Akiko Aizawa, Michael Kohlhase, and Iadh Ounis. NTCIR-10 Math Pilot Task Overview. In

NTCIR, 2013.

[4] Akiko Aizawa, Michael Kohlhase, and Iadh Ounis. NTCIR-11 Math-2 Task Overview. In

NTCIR, 2014.

[5] Maria Alexeeva, Rebecca Sharp, Marco A Valenzuela-Escárcega, Jennifer Kadowaki, Adarsh

Pyarelal, and Clayton Morrison. MathAlign: Linking Formula Identifiers to their Contex-

tual Natural Language Descriptions. In Proceedings of The 12th Language Resources and

Evaluation Conference, 2020.

[6] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A Simple but Tough-to-Beat Baseline for

Sentence Embeddings. In 5th International Conference on Learning Representations, 2017.

[7] Javed A Aslam and Mark Montague. Models for Metasearch. In Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, 2001.

[8] Ron Ausbrooks. Mathematical Markup Language (MathML) Version 2.0. 1998.

124

BIBLIOGRAPHY 125

[9] Robin Avenoso, Behrooz Mansouri, and Richard Zanibbi. XY-PHOC Symbol Location Em-

beddings for Math Formula Retrieval and Autocompletion. In CLEF (Working Notes), 2021.

[10] Peter Bailey, Ryen W White, Han Liu, and Giridhar Kumaran. Mining Historic Query Trails

to Label Long and Rare Search Engine Queries. In ACM Transactions on the Web (TWEB),

2010.

[11] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,

Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract Meaning

Representation for Sembanking. In Proceedings of the 7th Linguistic Annotation Workshop

and Interoperability With Discourse, 2013.

[12] Michael Bendersky and W Bruce Croft. Analysis of Long Queries in a Large Scale Search

Log. In Proceedings of the Workshop on Web Search Click Data, 2009.

[13] Michele Bevilacqua, Rexhina Blloshmi, and Roberto Navigli. One SPRING to Rule Them

Both: Symmetric AMR Semantic Parsing and Generation Without a Complex Pipeline. In

Proceedings of AAAI, 2021.

[14] Andrzej Bia lecki, Robert Muir, Grant Ingersoll, and Lucid Imagination. Apache Lucene 4.

In SIGIR Workshop on Open Source Information Retrieval, 2012.

[15] Barry Biletch, Kathleen Kay, and Hongji Yu. An Analysis of Mathematical Notations: For

Better or For Worse. Worchester Polytechnic Institute, 2015.

[16] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. The Journal

of Machine Learning Research, 2003.

[17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching Word

Vectors with Subword Information. Transactions of the Association for Computational Lin-

guistics, 2017.

[18] Claire Bonial, Julia Bonn, Kathryn Conger, Jena D Hwang, and Martha Palmer. Propbank:

Semantics of New Predicate Types. In Proceedings of the Ninth International Conference on

Language Resources and Evaluation, 2014.

[19] Claire Bonial, Stephanie Lukin, David Doughty, Steven Hill, and Clare Voss. InfoForager:

Leveraging Semantic Search with AMR for COVID-19 Research. In Proceedings of the Second

International Workshop on Designing Meaning Representations, 2020.

BIBLIOGRAPHY 126

[20] Pia Borlund. The IIR Evaluation Model: a Framework for Evaluation of Interactive Infor-

mation Retrieval Systems. Information Research, 2003.

[21] Alessandro Bozzon and Piero Fraternali. Multimedia and Multimodal Information Retrieval.

In Search Computing. Springer, 2010.

[22] Andrei Broder. A Taxonomy of Web Search. In ACM SIGIR Forum, 2002.

[23] Chris Buckley and Ellen M Voorhees. Retrieval Evaluation with Incomplete Information.

In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2004.

[24] Stephen Buswell, Olga Caprotti, David P Carlisle, Michael C Dewar, Marc Gaetano, and

Michael Kohlhase. The OpenMath Standard. Technical report, Version 2.0. Technical report,

The Open Math Society, 2004.

[25] Shu Cai and Kevin Knight. Smatch: An Evaluation Metric for Semantic Feature Structures.

In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics,

2013.

[26] Florian Cajori. A History of Mathematical Notations. Dover Publications, 1993.

[27] Jaime G Carbonell and Jade Goldstein. The Use of MMR and Diversity-Based Reranking

for Reodering Documents and Producing Summaries.(1998). 1998.

[28] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a Similarity Metric Discriminatively,

with Application to Face Verification. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05). IEEE, 2005.

[29] DeWitt Clinton. OpenSearch 1.1 Specification (draft 4). Opensearch.org, 2007.

[30] Marcos V Conde and Kerem Turgutlu. CLIP-Art: Contrastive Pre-Training for Fine-Grained

Art Classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021.

[31] Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. Reciprocal Rank Fusion out-

performs Condorcet and Individual Rank Learning Methods. In Proceedings of the 32nd In-

ternational ACM SIGIR Conference on Research and Development in Information Retrieval,

2009.

BIBLIOGRAPHY 127

[32] Pankaj Dadure, Partha Pakray, and Sivaji Bandyopadhyay. An Empirical Analysis on Re-

trieval of Math Information from the Scientific Documents. In International Conference on

Communication and Intelligent Systems. Springer, 2019.

[33] Pankaj Dadure, Partha Pakray, and Sivaji Bandyopadhyay. BERT-Based Embedding Model

for Formula Retrieval. In Working Notes of CLEF, 2021.

[34] Yifan Dai, Liangyu Chen, and Zihan Zhang. An N-ary Tree-based Model for Similarity

Evaluation on Mathematical Formulae. In IEEE International Conference on Systems, Man,

and Cybernetics (SMC), 2020.

[35] Kenny Davila and Richard Zanibbi. Layout and Semantics: Combining Representations

for Mathematical Formula Search. In Proceedings of the 40th International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2017.

[36] Kenny Davila, Richard Zanibbi, Andrew Kane, and Frank Wm Tompa. Tangent-3 at the

NTCIR-12 MathIR Task. In NTCIR, 2016.

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the Con-

ference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, 2019.

[38] Emanuele Di Buccio, Massimo Melucci, and Federica Moro. Detecting Verbose Queries and

Improving Information Retrieval. Information Processing and Management, 2014.

[39] Yancarlos Diaz, Gavin Nishizawa, Behrooz Mansouri, Kenny Davila, and Richard Zanibbi.

The MathDeck Formula Editor: Interactive Formula Entry Combining LaTeX , Structure

Editing, and Search. In Extended Abstracts of the CHI Conference on Human Factors in

Computing Systems, 2021.

[40] Abishai Dmello. Representing Mathematical Concepts Associated With Formulas Using Math

Entity Cards. [Master’s Thesis] Rochester Institute of Technology, 2019.

[41] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A Large-scale Evaluation and Analysis of

Personalized Search Strategies. In Proceedings of the 16th International Conference on World

Wide Web, 2007.

[42] Richard Fateman. A Critique of OpenMath and Thoughts on Encoding Mathematics, Jan-

uary, 2001. University of California, Berkeley, 2001.

BIBLIOGRAPHY 128

[43] Jeffrey Flanigan, Sam Thomson, Jaime G Carbonell, Chris Dyer, and Noah A Smith. A

Discriminative Graph-Based Parser for the Abstract Meaning Representation. In Proceedings

of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014.

[44] Joseph L Fleiss. Measuring Nominal Scale Agreement Among Many Raters. Psychological

Bulletin, 1971.

[45] Dallas Fraser, Andrew Kane, and Frank Wm. Tompa. Choosing Math Features for BM25

Ranking with Tangent-L. In Proceedings of the ACM Symposium on Document Engineering,

2018.

[46] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An Efficient Boosting Algo-

rithm for Combining Preferences. Journal of Machine Learning Research, 2003.

[47] Liangcai Gao, Zhuoren Jiang, Yue Yin, Ke Yuan, Zuoyu Yan, and Zhi Tang. Preliminary Ex-

ploration of Formula Embedding for Mathematical Information Retrieval. arXiv:1707.05154,

2017.

[48] Liangcai Gao and Yuehan Wang. ICST Math Retrieval System for NTCIR-11 Math-2 Task.

In NTCIR. 2014.

[49] Sahil Garg, Aram Galstyan, Ulf Hermjakob, and Daniel Marcu. Extracting Biomolecular

Interactions using Semantic Parsing of Biomedical Text. In Thirtieth AAAI Conference on

Artificial Intelligence, 2016.

[50] Deyan Ginev, Heinrich Stamerjohanns, Bruce R. Miller, and Michael Kohlhase. The La-

TeXML Daemon: Editable Math on the Collaborative Web. In Proceedings of the 18th Cal-

culemus and 10th International Conference on Intelligent Computer Mathematics. Springer-

Verlag, 2011.

[51] Mihai Grigore, Magdalena Wolska, and Michael Kohlhase. Towards Context-based Disam-

biguation of Mathematical Expressions. In the Joint Conference of ASCM, 2009.

[52] Dongyi Guan, Sicong Zhang, and Hui Yang. Utilizing Query Change for Session Search. In

Proceedings of the 36th International ACM SIGIR Conference on Research and Development

in Information Retrieval, 2013.

[53] Ferruccio Guidi and Claudio Sacerdoti Coen. A Survey on Retrieval of Mathematical Knowl-

edge. Mathematics in Computer Science, 2016.

BIBLIOGRAPHY 129

[54] Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi

Guo, Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient Natural Language Response

Suggestion for Smart Reply. arXiv preprint, 2017.

[55] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga. A Compre-

hensive Survey of Deep Learning for Image Captioning. ACM Computing Surveys (CsUR),

2019.

[56] Xuan Hu, Liangcai Gao, Xiaoyan Lin, Zhi Tang, Xiaofan Lin, and Josef B Baker. Wikimirs:

a Mathematical Information Retrieval System for Wikipedia. In Proceedings of the 13th

ACM/IEEE-CS Joint Conference on Digital libraries, 2013.

[57] Sharaf Hussain, Samita Bai, and Shakeel Khoja. Content MathML(CMML) conversion using

LATEX Math Grammar (LMG). In 7th International Conference on Smart Computing and

Communications (ICSCC). IEEE, 2019.

[58] Patrick Ion, Robert Miner, Stephen Buswell, and A Devitt. Mathematical Markup Language

(MathML) 1.0 Specification. World Wide Web Consortium (W3C), 1998.

[59] Bernard J Jansen, Danielle L Booth, and Amanda Spink. Determining the User Intent of

Web Search Engine Queries. In Proceedings of the 16th International Conference on World

Wide Web, 2007.

[60] Jyun-Yu Jiang, Yen-Yu Ke, Pao-Yu Chien, and Pu-Jen Cheng. Learning User Reformulation

Behavior for Query Auto-Completion. In Proceedings of the 37th International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2014.

[61] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and

Qun Liu. TinyBERT: Distilling BERT for Natural Language Understanding. arXiv preprint

arXiv:1909.10351, 2019.

[62] Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’06.

ACM, 2006.

[63] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-Scale Similarity Search with GPUs.

IEEE Transactions on Big Data, 2019.

[64] Shahab Kamali and Frank Wm Tompa. Improving Mathematics Retrieval. Towards a Digital

Mathematics Library, 2009.

BIBLIOGRAPHY 130

[65] Shahab Kamali and Frank Wm. Tompa. Retrieving Documents With Mathematical Content.

In Proceedings of the 36th International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval. ACM, 2013.

[66] Chris Kamphuis, Arjen P de Vries, Leonid Boytsov, and Jimmy Lin. Which BM25 Do You

Mean? A Large-Scale Reproducibility Study of Scoring Variants. Advances in Information

Retrieval, 2020.

[67] Andrew Kane, Yin Ki Ng, and Frank Wm Tompa. Dowsing for Answers to Math Questions:

Doing Better with Less. In CLEF (Working Notes), 2022.

[68] Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray,

Ramón Fernandez Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue-

Nkoutche, et al. Leveraging Abstract Meaning Representation for Knowledge Base Question

Answering. In Findings of the Association for Computational Linguistics: ACL-IJCNLP,

2021.

[69] Omar Khattab and Matei Zaharia. ColBERT: Efficient and Effective Passage Search via

Contextualized Late Interaction over BERT. In Proceedings of the 43rd International ACM

SIGIR Conference on Research and Development in Information Retrieval, 2020.

[70] Youngho Kim, Ahmed Hassan, Ryen W White, and Imed Zitouni. Modeling Dwell Time to

Predict Click-level Satisfaction. In Proceedings of the 7th ACM International Conference on

Web search and data mining, 2014.

[71] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Unifying Visual-Semantic Embed-

dings with Multimodal Neural Language Models. arXiv preprint, 2014.

[72] Ryan Kiros, Richard Zemel, and Russ R Salakhutdinov. A Multiplicative Model for Learning

Distributed Text-Based Attribute Representations. Advances in Neural Information Process-

ing Systems, 2014.

[73] Michael Kohlhase and Ioan Sucan. A Search Engine for Mathematical Formulae. In Interna-

tional Conference on Artificial Intelligence and Symbolic Computation. Springer, 2006.

[74] Giovanni Yoko Kristianto, Akiko Aizawa, et al. Extracting Textual Descriptions of Mathe-

matical Expressions in Scientific Papers. D-Lib Magazine, 2014.

[75] Giovanni Yoko Kristianto, Goran Topic, and Akiko Aizawa. MCAT Math Retrieval System

for NTCIR-12 MathIR Task. In NTCIR, 2016.

BIBLIOGRAPHY 131

[76] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep

Convolutional Neural Networks. Advances in Neural Information Processing Systems, 2012.

[77] Kriste Krstovski and David M. Blei. Equation Embeddings. arXiv:1803.09123, 2018.

[78] P Pavan Kumar, Arun Agarwal, and Chakravarthy Bhagvati. A Structure Based Approach for

Mathematical Expression Retrieval. In International Workshop on Multi-disciplinary Trends

in Artificial Intelligence. Springer, 2012.

[79] Leslie Lamport. LATEX–A Document Preparation System Addison–Wesley. Reading, MA,

1985.

[80] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and

Radu Soricut. ALBERT: A Lite BERT for Self-supervised Learning of Language Represen-

tations. arXiv preprint, 2019.

[81] Irene Langkilde and Kevin Knight. Generation that Exploits Corpus-Based Statistical Knowl-

edge. In the 17th International Conference on Computational Linguistics, 1998.

[82] Matt Langsenkamp, Behrooz Mansouri, and Richard Zanibbi. Expanding Spatial Regions

and Incorporating IDF for PHOC-Based Math Formula Retrieval at ARQMath-3. In CLEF

(Working Notes), 2022.

[83] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents. In

International Conference on Machine Learning, 2014.

[84] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,

Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence

Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceed-

ings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

[85] Lin Li, Lu Qi, Fang Deng, Shengwu Xiong, and Jingling Yuan. Enhancing Keyword Sugges-

tion of Web Search by Leveraging Microblog Data. J. Web Eng., 2016.

[86] Kexin Liao, Logan Lebanoff, and Fei Liu. Abstract Meaning Representation for Multi-

Document Summarization. In Proceedings of the 27th International Conference on Com-

putational Linguistics, 2018.

[87] Paul Libbrecht and Erica Melis. Methods to Access and Retrieve Mathematical Content in

ActiveMath. In International Congress on Mathematical Software. Springer, 2006.

BIBLIOGRAPHY 132

[88] Xiaoyan Lin, Liangcai Gao, Xuan Hu, Zhi Tang, Yingnan Xiao, and Xiaozhong Liu. A

Mathematics Retrieval System for Formulae in Layout Presentations. In Proceedings of the

37th International ACM SIGIR Conference on Research and Development in Information

Retrieval, 2014.

[89] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A Smith. Toward Ab-

stractive Summarization Using Semantic Representations. In Proceedings of the Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, 2015.

[90] Qiaoling Liu, Eugene Agichtein, Gideon Dror, Yoelle Maarek, and Idan Szpektor. When Web

Search Fails, Searchers Become Askers: Understanding the Transition. In Proceedings of the

35th International ACM SIGIR Conference on Research and Development in Information

Retrieval, 2012.

[91] Xiaoxiao Liu, Qingyang Xu, and Ning Wang. A Survey on Deep Neural Network-based Image

Captioning. The Visual Computer, 2019.

[92] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized

BERT Pretraining Approach. arXiv preprint, 2019.

[93] Yuanhua Lv and ChengXiang Zhai. Lower-Bounding Term Frequency Normalization. In

Proceedings of the 20th ACM International Conference on Information and Knowledge Man-

agement, 2011.

[94] Martin Ĺı̌ska, Petr Sojka, Michal Růžička, and Petr Mravec. Web Interface and Collection

for Mathematical Retrieval WebMIaS and MREC. Towards a Digital Mathematics Library,

2011.

[95] Craig Macdonald and Nicola Tonellotto. Declarative Experimentation in Information Re-

trieval using Pyterrier. In Proceedings of the ACM SIGIR on International Conference on

Theory of Information Retrieval, 2020.

[96] Behrooz Mansouri. Embedding Formulae and Text for Improved Math Retrieval. In Pro-

ceedings of the 44th International ACM SIGIR Conference on Research and Development in

Information Retrieval, 2021.

[97] Behrooz Mansouri, Anurag Agarwal, Douglas Oard, and Richard Zanibbi. Finding Old An-

swers to New Math Questions: The ARQMath Lab at CLEF 2020. In European Conference

on Information Retrieval, 2020.

BIBLIOGRAPHY 133

[98] Behrooz Mansouri, Anurag Agarwal, Douglas W Oard, and Richard Zanibbi. Advancing

Math-Aware Search: The ARQMath-2 Lab at CLEF 2021. In European Conference on

Information Retrieval, 2021.

[99] Behrooz Mansouri, Anurag Agarwal, Douglas W Oard, and Richard Zanibbi. Advancing

Math-Aware Search: The ARQMath-3 Lab at CLEF 2022. In European Conference on

Information Retrieval, 2022.

[100] Behrooz Mansouri, Vit Novotný, Anurag Agarwal, Douglas W Oard, and Richard Zanibbi.

Overview of ARQMath-3 (2022): Third CLEF Lab on Answer Retrieval for Questions on

Math. In International Conference of the Cross-Language Evaluation Forum for European

Languages. Springer, 2022.

[101] Behrooz Mansouri, Douglas W Oard, Anurag Agarwal, and Richard Zanibbi. Effects of Con-

text, Complexity, and Clustering on Evaluation for Math Formula Retrieval. arXiv preprint,

2021.

[102] Behrooz Mansouri, Douglas W Oard, and Richard Zanibbi. DPRL Systems in the CLEF

2020 ARQMath Lab. In CLEF (Working Notes), 2020.

[103] Behrooz Mansouri, Douglas W Oard, and Richard Zanibbi. DPRL Systems in the CLEF

2021 ARQMath Lab: Sentence-BERT for Answer Retrieval, Learning-to-Rank for Formula

Retrieval. In CLEF (Working Notes), 2021.

[104] Behrooz Mansouri, Douglas W Oard, and Richard Zanibbi. DPRL Systems in the CLEF

2022 ARQMath Lab: Introducing MathAMR for Math-Aware Search. In CLEF (Working

Notes), 2022.

[105] Behrooz Mansouri, Shaurya Rohatgi, Douglas W. Oard, Jian Wu, C. Lee Giles, and Richard

Zanibbi. Tangent-CFT: An Embedding Model for Mathematical Formulas. In Proceedings of

the ACM SIGIR International Conference on Theory of Information Retrieval, 2019.

[106] Behrooz Mansouri, Richard Zanibbi, and Douglas W. Oard. Characterizing Searches for

Mathematical Concepts. In 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL),

2019.

[107] Behrooz Mansouri, Richard Zanibbi, and Douglas W. Oard. Learning to Rank for Mathe-

matical Formula Retrieval. In Proceedings of the 44th International ACM SIGIR Conference

on Research and Development in Information Retrieval, 2021.

BIBLIOGRAPHY 134

[108] Behrooz Mansouri, Richard Zanibbi, Douglas W Oard, and Anurag Agarwal. Overview of

ARQMath-2 (2021): Second CLEF Lab on Answer Retrieval for Questions on Math. In

International Conference of the Cross-Language Evaluation Forum for European Languages.

Springer, 2021.

[109] Jonathan May and Jay Priyadarshi. Semeval-2017 Task 9: Abstract Meaning Representation

Parsing and Generation. In Proceedings of the 11th International Workshop on Semantic

Evaluation, 2017.

[110] Jordan Meadows and Andre Freitas. A Survey in Mathematical Language Processing. arXiv

preprint, 2022.

[111] Bruce R Miller and Abdou Youssef. Technical Aspects of the Digital Library of Mathematical

Functions. Annals of Mathematics and Artificial Intelligence, 2003.

[112] Jozef Mǐsutka and Leo Galamboš. Extending Full Text Search Engine for Mathematical

Content. Towards Digital Mathematics Library, 2008.

[113] Bhaskar Mitra and Nick Craswell. Query Auto-Completion for Rare Prefixes. In Proceedings

of the 24th ACM International on Conference on Information and Knowledge Management,

2015.

[114] Rajesh Munavalli and Robert Miner. MathFind: A Math-Aware Search Engine. In Proceed-

ings of the 29th annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, 2006.

[115] Yin Ki Ng, Dallas J Fraser, Besat Kassaie, George Labahn, Mirette S Marzouk, Frank Wm

Tompa, and Kevin Wang. Dowsing for Math Answers with Tangent-L. In CLEF (Working

Notes), 2020.

[116] Yin Ki Ng, Dallas J Fraser, Besat Kassaie, and Frank Wm Tompa. Dowsing for Answers to

Math Questions: Ongoing Viability of Traditional MathIR. In CLEF (Working Notes), 2021.

[117] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder,

and Li Deng. MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.

In CoCo@ NIPS, 2016.

[118] Maximillian Nickel and Douwe Kiela. Poincaré Embeddings for Learning Hierarchical Rep-

resentations. Advances in Neural Information Processing Systems, 2017.

BIBLIOGRAPHY 135

[119] Gavin Nishizawa, Jennifer Liu, Yancarlos Diaz, Abishai Dmello, Wei Zhong, and Richard

Zanibbi. MathSeer: A Math-Aware Search Interface with Intuitive Formula Editing, Reuse,

and Lookup. In Advances in Information Retrieval. Springer International Publishing, 2020.

[120] Immanuel Normann and Michael Kohlhase. Extended Formula Normalization for ε-Retrieval

and Sharing of Mathematical Knowledge. In Towards Mechanized Mathematical Assistants.

Springer, 2007.

[121] Vı́t Novotnỳ, Petr Sojka, Michal Štefánik, and Dávid Lupták. Three is Better than One.

Ensembling Math Information Retrieval Systems. In CLEF (Working Notes), 2020.

[122] Vı́t Novotný, Petr Sojka, Michal Štefánik, and Dávid Lupták. Ensembling Math Information

Retrieval Systems. In CLEF (Working Notes), 2021.

[123] Association of American Publishers. Markup of Mathematical Formulas. APP Inc., 1986.

[124] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and Douglas

Johnson. Terrier Information Retrieval Platform. In European Conference on Information

Retrieval. Springer, 2005.

[125] Amarnath Pathak, Ranjita Das, Partha Pakray, and Alexander Gelbukh. Extracting Context

of Math Formulae Contained inside Scientific Documents. Computacion y Sistemas, 2019.

[126] Mateusz Pawlik and Nikolaus Augsten. Efficient Computation of the Tree Edit Distance.

ACM Transactions on Database Systems (TODS), 2015.

[127] Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. MathBERT: A Pre-Trained Model for

Mathematical Formula Understanding. arXiv:2105.00377, 2021.

[128] Lukas Pfahler and Katharina Morik. Semantic Search in Millions of Equations. In Proceed-

ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2020.

[129] John R Pierce. An Introduction to Information Theory: Symbols, Signals and Noise. Courier

Corporation, 2012.

[130] NAFM Poppelier, E van Herwijnen, and CA Rowley. Standard DTD’s and Scientific Pub-

lishing. EPSIG News, 1992.

[131] Kader Pustu-Iren, Gerrit Bruns, and Ralph Ewerth. A Multimodal Approach for Semantic

Patent Image Retrieval. In Proceedings of the 2nd Workshop on Patent Text Mining and

Semantic Technologies (PatentSemTech). Aachen, Germany: RWTH Aachen, 2021.

BIBLIOGRAPHY 136

[132] Dimitrios Rafailidis, Stavroula Manolopoulou, and Petros Daras. A Unified Framework for

Multimodal Retrieval. Pattern Recognition, 2013.

[133] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese

BERT-Networks. In Proceedings of the Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP). Association for Computational Linguistics, 2019.

[134] Anja Reusch, Maik Thiele, and Wolfgang Lehner. An ALBERT-based Similarity Measure

for Mathematical Answer Retrieval. In Proceedings of the 44th International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2021.

[135] Anja Reusch, Maik Thiele, and Wolfgang Lehner. TU DBS in the ARQMath Lab 2021. In

Working Notes of CLEF, 2021.

[136] Shaurya Rohatgi, Jian Wu, and C Lee Giles. PSU at CLEF-2020 ARQMath Track: Unsu-

pervised Re-ranking using Pretraining. 2020.

[137] Shaurya Rohatgi, Jian Wu, and C Lee Giles. Ranked List Fusion and Re-ranking with Pre-

trained Transformers for ARQMath Lab. 2021.

[138] Michal Ržička, Petr Sojka, Martin Ĺı̌ska, et al. Math Indexer and Searcher under the Hood:

Fine-tuning Query Expansion and Unification Strategies. In Proceedings of the 12th NTCIR

Conference on Evaluation of Information Access Technologies, 2016.

[139] Tetsuya Sakai. Alternatives to Bpref. In Proceedings of the 30th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’07, 2007.

[140] Sandip Sarkar, Dipankar Das, Partha Pakray, and David Pinto. Formula Retrieval Using

Structural Similarity. In Working Notes of CLEF, 2022.

[141] Philipp Scharpf, Moritz Schubotz, and Bela Gipp. Representing Mathematical Formulae in

Content MathML using Wikidata. In BIRNDL@ SIGIR, 2018.

[142] Moritz Schubotz, Alexey Grigorev, Marcus Leich, Howard S Cohl, Norman Meuschke, Bela

Gipp, Abdou S Youssef, and Volker Markl. Semantification of Identifiers in Mathematics for

Better Math Information Retrieval. In Proceedings of the 39th International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2016.

[143] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare

Words with Subword Units. arXiv preprint arXiv:1508.07909, 2015.

BIBLIOGRAPHY 137

[144] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare

Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics, 2016.

[145] Rebecca Sharp, Adarsh Pyarelal, Benjamin Gyori, Keith Alcock, Egoitz Laparra, Marco A

Valenzuela-Escárcega, Ajay Nagesh, Vikas Yadav, John Bachman, Zheng Tang, et al. Eidos,

INDRA, & Delphi: From Free Text to Executable Causal Models. In Proceedings of the

Conference of the North American Chapter of the Association for Computational Linguistics,

2019.

[146] Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil Heffernan, Xintao Wu, Ben Graff,

and Dongwon Lee. MathBERT: A Pre-trained Language Model for General NLP Tasks in

Mathematics Education. arXiv preprint, 2021.

[147] Richard A Silverman. Essential Calculus with Applications. Courier Corporation, 1989.

[148] Petr Sojka and Martin Ĺı̌ska. Indexing and Searching Mathematics in Digital Libraries. In

James H. Davenport, William M. Farmer, Josef Urban, and Florian Rabe, editors, Intelligent

Computer Mathematics. Springer, 2011.

[149] Yang Song and Li-wei He. Optimal Rare Query Suggestion With Implicit User Feedback. In

Proceedings of the 19th International Conference on World Wide Web, 2010.

[150] Yiannos Stathopoulos, Simon Baker, Marek Rei, and Simone Teufel. Variable Typing: As-

signing Meaning to Variables in Mathematical Text. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, 2018.

[151] Yiannos Stathopoulos and Simone Teufel. Retrieval of Research-level Mathematical Infor-

mation Needs: A Test Collection and Technical Terminology Experiment. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing, 2015.

[152] Wen Tai, HT Kung, Xin Luna Dong, Marcus Comiter, and Chang-Fu Kuo. ExBERT: Ex-

tending Pre-trained Models with Domain-specific Vocabulary Under Constrained Training

Resources. In Findings of the Association for Computational Linguistics: EMNLP, 2020.

[153] Yla R Tausczik, Aniket Kittur, and Robert E Kraut. Collaborative Problem Solving: A

Study of MathOverflow. In Proceedings of the 17th ACM Conference on Computer Supported

Cooperative Work and Social Computing, 2014.

BIBLIOGRAPHY 138

[154] Abhinav Thanda, Ankit Agarwal, Kushal Singla, Aditya Prakash, and Abhishek Gupta. A

Document Retrieval System for Math Queries. In NTCIR, 2016.

[155] George Brinton Thomas, Maurice D Weir, and Joel Hass. Thomas’ Calculus: Single Variable.

Pearson, 2013.

[156] Noriko Tomuro. Question Terminology and Representation for Question Type Classification.

Terminology. International Journal of Theoretical and Applied Issues in Specialized Commu-

nication, 2004.

[157] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and Tell: A Neural

Image Caption Generator. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015.

[158] Björn von Sydow. The Design of the EUROMath System. Euromath Bulletin, 1992.

[159] Chuan Wang, Nianwen Xue, and Sameer Pradhan. A Transition-Based Algorithm for AMR

Parsing. In Proceedings of the Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, 2015.

[160] Zichao Wang, Andrew Lan, and Richard Baraniuk. Mathematical Formula Representation

via Tree Embeddings. In CEUR Workshop Proceedings, 2021.

[161] Ryen W White and Resa A Roth. Exploratory Search: Beyond the Query–Response

Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services, 2009.

[162] Qiang Wu, Chris JC Burges, Krysta M Svore, and Jianfeng Gao. Ranking, Boosting, and

Model Adaptation. Technical report, 2008.

[163] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s Neural

Machine Translation System: Bridging the Gap Between Human and Machine Translation.

arXiv preprint, 2016.

[164] Weiwen Xu, Huihui Zhang, Deng Cai, and Wai Lam. Dynamic Semantic Graph Construction

and Reasoning for Explainable Multi-hop Science Question Answering. In Findings of the

Association for Computational Linguistics: ACL-IJCNLP, 2021.

[165] Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the Use of Lucene for Information

Retrieval Research. In Proceedings of the 40th International ACM SIGIR Conference on

Research and Development in Information Retrieval, 2017.

BIBLIOGRAPHY 139

[166] Michihiro Yasunaga and John D. Lafferty. TopicEq: A Joint Topic and Mathematical Equa-

tion Model for Scientific Texts. Proceedings of the AAAI Conference on Artificial Intelligence,

2019.

[167] Abdou Youssef. Roles of Math Search in Mathematics. In International Conference on

Mathematical Knowledge Management. Springer, 2006.

[168] Ke Yuan, Zuoyu Yan, Yibo Li, Liangcai Gao, and Zhi Tang. Automatic Description Con-

struction for Math Expression via Topic Relation Graph. arXiv preprint, 2021.

[169] Mohammad Sadegh Zahedi, Behrouz Mansouri, Shiva Moradkhani, Mojgan Farhoodi, and

Farhad Oroumchian. How Questions are Posed to a Search Engine? An Empiricial Analysis

of Question Queries in a Large Scale Persian Search Engine Log. In the 3th International

Conference on Web Research (ICWR). IEEE, 2017.

[170] Richard Zanibbi, Akiko Aizawa, Michael Kohlhase, Iadh Ounis, Goran Topic, and Kenny

Davila. NTCIR-12 MathIR Task Overview. In NTCIR, 2016.

[171] Richard Zanibbi and Dorothea Blostein. Recognition and Retrieval of Mathematical Expres-

sions. International Journal on Document Analysis and Recognition (IJDAR), 2012.

[172] Richard Zanibbi, Kenny Davila, Andrew Kane, and Frank Wm. Tompa. Multi-Stage Math

Formula Search: Using Appearance-Based Similarity Metrics at Scale. In Proceedings of the

39th International ACM SIGIR Conference on Research and Development in Information

Retrieval, 2016.

[173] Richard Zanibbi, Douglas W Oard, Anurag Agarwal, and Behrooz Mansouri. Overview of

ARQMath 2020: CLEF Lab on Answer Retrieval for Questions on Math. In International

Conference of the Cross-Language Evaluation Forum for European Languages. Springer, 2020.

[174] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolutional Networks for

Text Classification. Advances in Neural Information Processing Systems, 2015.

[175] Zixuan Zhang and Heng Ji. Abstract Meaning Representation Guided Graph Encoding and

Decoding for Joint Information Extraction. In Proceedings of the Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, 2021.

[176] Jin Zhao, Min-Yen Kan, and Yin Leng Theng. Math Information Retrieval: User Require-

ments and Prototype Implementation. In Proceedings of the 8th ACM/IEEE-CS Joint Con-

ference on Digital libraries - JCDL ’08. ACM, 2008.

BIBLIOGRAPHY 140

[177] Wei Zhong, Shaurya Rohatgi, Jian Wu, C. Lee Giles, and Richard Zanibbi. Accelerating

Substructure Similarity Search for Formula Retrieval. In Advances in Information Retrieval.

Springer, 2020.

[178] Wei Zhong, Yuqing Xie, and Jimmy Lin. Applying Structural and Dense Semantic Matching

for the ARQMath Lab 2021, CLEF. In CLEF (Working Notes), 2022.

[179] Wei Zhong, Xinyu Zhang, Ji Xin, Richard Zanibbi, and Jimmy Lin. Approach Zero and

Anserini at the CLEF-2021 ARQMath Track: Applying Substructure Search and BM25 on

Operator Tree Path Tokens. In CLEF (Working Notes), 2021.

[180] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-Seng

Chua. Retrieving and Reading: A Comprehensive Survey on Open-Domain Question An-

swering. arXiv preprint, 2021.

[181] Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. Fast and Accurate

Shift-Reduce Constituent Parsing. In Proceedings of the 51st Annual Meeting of the Associ-

ation for Computational Linguistics, 2013.

Appendix

Fixes in ARQMath-3

In our last release of ARQMath collection in 2022, we fixed existing issues we were notified about

in the previous years. We have made the following improvements to the collection:

1. Formula Representations. We found and corrected 65,681 formulas with incorrect Symbol

Layout Tree (SLT) and Operator Tree (OPT) representations. This resulted from incorrect

handling of errors generated by the LATEXML tool that had been used for generating those

representations.

2. Clustering Visually Distinct Formulas. Correcting SLT representations resulted in a

need to adjust the clustering of formula instances. Each cluster of visually identical formulas

was assigned a unique ‘Visual ID’. Clustering had been performed using SLT where possible,

and LaTeX otherwise. To correct the clustering, we split any cluster that now included

formulas with different representations. In such cases, the partition with the largest number

of instances retained its Visual ID; remaining formulas were assigned to another existing

Visual ID (with the same SLT or LATEX) or, if necessary, to a new Visual ID. To break ties,

the partition with the largest cumulative ARQMath-2 relevance score retained its Visual ID

or, failing that, choosing the partition with the lowest Formula ID. 29,750 new Visual IDs

resulted.

3. XML Errors. In the XML files for posts and comments, the LaTeX for each formula is

encoded as a XML element with the class attribute math-container. We found and

corrected 108,242 formulas that had not been encoded in that way.

141

APPENDIX . FIXES IN ARQMATH-3 142

4. Spurious Formula Identifiers. The ARQMath collection includes an index file that in-

cludes Formula ID, Visual ID, Post ID, SLT, OPT, and LaTeX for each formula instance.

However, there were also formulas in the index file that did not actually occur in any post or

comment in the collection. This happened because formula extraction was initially done on

the Post History file, which also contained some content that had later been removed. We

added a new annotation to the formula index file to mark such cases.

	Introduction
	Research Questions
	Contributions
	Test Collections and Source Code
	Publication and Co-Authorship
	Outline

	Characterizing Math Searches
	Related Work
	Query Log Analysis
	Math Queries
	Clicked Pages
	Math Search Sessions

	Summary

	Test Collections for Math-Aware Search
	Related Work
	Queries and Documents
	Pooling
	Judging and Encoding Relevance
	Evaluation Protocols

	The ARQMath Test Collections
	Contextual Formula Search Task
	Answer Retrieval Task
	ARQMath Reusablity

	Summary

	Formula Search
	Formula Representations
	Related Work
	Text-Based Formula Search
	Tree-Based: Full and Sub-tree Matching Formula Search
	Embedding-Based Formula Search
	Contextual Formula Search

	Isolated Formula Search
	Tangent-CFT
	Tangent-CFTED
	Learning-to-rank
	Evaluation of Models

	Contextual Formula Search
	Abstract Meaning Representation
	MathAMR
	Using MathAMR for Formula Search
	Evaluation of Models
	Additional Experiments for Sentence-BERT Training and Configuration

	Summary

	Formula+Text Search
	Related Problems
	Related Work
	Ad-hoc Search Models
	Answer Retrieval Models for Math Questions

	Answer Retrieval for Math Questions
	Raw Text for Answer Retrieval
	MathAMR for Answer Retrieval

	Experiment Results
	ARQMath-2 Results
	ARQMath-3 Results

	Summary

	Conclusion
	Limitations
	Future work
	Broader Impact

	Fixes in ARQMath-3

