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Abstract. We present a new search method for mathematical formulas
based on Operator Trees (OPTs) representing the application of oper-
ators to operands. Our method provides (1) a simple indexing scheme
using OPT leaf-root paths, (2) practical matching of the K largest com-
mon subexpressions, and (3) scoring matched OPT subtrees by counting
nodes corresponding to visible symbols, weighting operators lower than
operands. Using the largest common subexpression (K=1), we outper-
form existing formula search engines for non-wildcard queries on the
NTCIR-12 Wikipedia Formula Browsing Task. Stronger results are ob-
tained when using additional subexpressions for scoring. Without paral-
lelization or pruning, our system has practical execution times with low
variance when compared to other state-of-the-art formula search engines.

Keywords: Mathematical Information Retrieval · formula search · sim-
ilarity search · subexpression matching

1 Introduction

Mathematical Information Retrieval (MIR [5, 21]) requires specialized tasks in-
cluding detecting and recognizing math in documents, math computation and
knowledge search (e.g., in Wolfram Alpha), and similarity search for math ex-
pressions. Formula search engines are useful for looking up unfamiliar notation
and math question answering.

Traditional text search engines are unaware of many basic characteristics of
math formulas. Key problems in math formula similarity search include:

– How do we represent math formulas for search?
– How do we measure math formula similarity?
• Structural similarity: Common subexpression(s), operator commutativ-

ity and operator associativity.
• Symbol set similarity: Being aware of unifiable/interchangeable elements

(e.g., (1 + 1/n)n and (1 + 1/x)x), while still distinguishing e = mc2 from
y = ax2; weighting identical symbols appropriately.

• Semantic similarity of mathematical formulas, including equivalent for-
mulas (e.g., x−1 and 1/x).

– What is a good trade-off between feature-based matching and costly struc-
ture matching, to identify similar formulas efficiently and effectively?
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We present a new formula search engine based on Operator Trees (OPTs).
OPTs represent the semantics of a formula, in terms of the application of op-
erators to operands in an expression. We adapt the leaf-root path indexing of
all subtrees used in MCAT [8], where these paths act as the retrieval units or
“keywords” for formulas. MCAT uses additional encodings (e.g., Presentation
MathML) that we do not consider in this work. Our scoring function gener-
alizes subtree scoring methods which only consider single best matched tree
such as the Maximum Subtree Similarity (MSS) of Tangent [22]. To the best of
our knowledge, our model is the first using multiple common subexpressions to
score formula hits. Our approach has achieved usable execution times using a
single process without any dynamic pruning applied so far, and produces state-
of-the-art results for non-wildcard queries in the NTCIR-12 Wikipedia Formula
Browsing Task [20]. Our system is available for download.1

2 Related Work

There are two major approaches to math representation and indexing, Text-based
and Tree-based [21]. Text-based approaches apply traditional text search engines,
converting formulas to canonically ordered text strings with index augmenta-
tion [11,12,14] to deal with operator commutativity, operator associativity, and
subexpression matching. Tree-based approaches index formulas directly from hi-
erarchical representations of appearance and semantics. In the recent NTCIR-12
MIR tasks [20], tree-based MIR systems achieve the best accuracy.

Tree representations are primarily divided into SLTs (Symbol Layout Trees)
and OPTs (Operator Trees). SLTs capture appearance based on the arrange-
ment of symbols on writing lines (i.e., topology). OPTs represent semantics:
internal nodes represent operators, and leaves represent operands. SLTs capture
appearance with few ambiguities, and require few spatial relationships to rep-
resent structure. However, they cannot capture semantic equivalences, operator
commutativity, or operator associativity. By representing operations explicitly,
visually distinct but mathematically equivalent formulas have identical OPTs
(e.g., 1

x and 1/x) and operator commutativity is captured explicitly (e.g., allow-
ing us to determine that 1 + x2 and x2 + 1 are equivalent). OPT construction
requires an expression grammar, which for real-world data needs to accommo-
date ambiguous and malformed expressions (e.g., unpaired parentheses). In our
work, we parse LATEX formulas into OPTs.

Measuring similarity using both SLTs and OPTs, Gao et al. [9] uses sibling
patterns extracted from semi-OPTs (which do not identify implicit multiplica-
tion). They extract “level content” from OPTs, identifying the depth at which a
sibling pattern appears. Arguments are represented as wildcards. For example,
at level one, (x + y)z is represented by (∗) × ∗, at level two by (∗), and then
recursively ∗+ ∗. Extracted (pattern, level) tuples are used for search.

Some systems use leaf-root paths extracted from formula trees (vertical paths).
Hijikata et al. [6] use leaf-root paths in Content MathML (a form of OPT), but

1 Source code: https://github.com/approach0/search-engine/tree/ecir2019
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to be considered as a match, a candidate path and query path must be identical.
Similarly, OPMES [23,24] requires complete leaf-root query paths to match some
prefix of candidate leaf-root paths. This allows for retrieving partially matched
candidate expressions, but still requires a complete match in the query expres-
sion. Yokoi and Aizawa [19] adopt a more flexible approach, using all possible
subpaths of leaf-root paths, and do not require all leaf-root paths in the query to
be matched. The MCAT system of Kristianto et al. [8] combines path features
(both ordered paths and unordered paths) generated from leaf-root paths, and
also uses sibling patterns for search.

Stalnaker et al. [15] use symbol pairs extracted from SLTs, where node to
ancestor symbol pairs along with their relative position in an SLT are used for
search. Later Davila et al. [4,22] use labeled paths between symbols and generate
symbol pairs falling within a given maximum path length (window size). In their
approach, expressions are a candidate as long as they share one symbol pair with
the query. This method has high recall due to low granularity in the search unit;
however, it produces a large candidate set with few structural constraints, thus
Davila et al. [22] introduce a second stage to rerank by structural similarity.
They find an alignment between query and candidate formulas maximizing a
similarity score with O(|Td||Tq|2 log Tq) time complexity, where Tq and Td are
query and candidate trees. Later they apply similar techniques in both SLTs and
OPTs, and combine results to obtain better results in the Tangent-S system [4].

There are also techniques that capture structural similarity more precisely,
e.g., Kamali et al. [7] use tree edit distance to measure differences between
MathML DOM trees for formula similarity (in SLTs), however, the computation
has non-linear time complexity in terms of expression size. How to determine
the costs of edit operations to reflect similarity remains an open problem. There
have been studies on similarity distance metrics that do not depend on edit op-
erations, and subgraph-based graph similarity metrics have been explored for a
long time in the pattern recognition literature [2].

3 Methodology

In our context, matching subexpressions means finding subtrees that are struc-
turally identical and the matched nodes have the same tokens (we will use upper-
case words to indicate tokens, e.g. variables x, y will both be VAR tokens after
tokenization). To formally define our structure matching approach, we incor-
porate the graph/subtree isomorphism definition [13] and add a few definitions
based on the formula subtree [23]. In addition to general subtree isomorphism, a
formula subtree (indicated by �l) requires leaves in a subtree to be also mapped
to leaves in the other tree.

Definition 1. A common formula subtree of two formula trees Tq and Td con-

sists of two corresponding formula subtrees T̂q of Tq and T̂d of Td where they are
isomorphic and they are subgraphs of Tq and Td respectively. Let CFS(Tq, Td)
denote the set of all such common formula subtrees of Tq, Td, i.e.,
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Fig. 1. Common formula forest in OPT. Left to right: (a+ bc) + xy and a+ bc+ xy.

CFS(Tq, Td) = {T̂q, T̂d : T̂q �l Tq, T̂d �l Td, T̂q ∼= T̂d, T̂q ⊆ Tq, T̂d ⊆ Td} where
“∼=” and “⊆” indicate graph isomorphism and subgraph relation respectively.

Similar to common forest definitions [18], we define a form of disjoint common
subtrees to describe multiple subexpression matches. Figure 1 illustrates two
matching common subexpressions (a+ bc and xy), with the matches highlighted
in blue and green. We call these matches a common formula forest. It consists
of common formula subtree(s) identified by (T̂ iq , T̂

i
d) as defined below.

Definition 2. A set of common formula subtrees π is called a common formula
forest of two formula trees Tq and Td,

π = {(T̂ 1
q , T̂

1
d ), (T̂ 2

q , T̂
2
d ), ...(T̂nq , T̂

n
d )} ∈ Π(Tq, Td) (1)

iff for i = 1, 2, ...n:
(1) T̂ iq , T̂

i
d ∈ CFS(Tq, Td)

(2) T̂ 1
q , T̂

2
q , ...T̂

n
q are disconnected, and T̂ 1

d , T̂
2
d , ...T̂

n
d are disconnected.

where Π(Tq, Td) denote all possible common formula forests of Tq and Td.

For our structural similarity metric, we want to find the “largest” common
formula forest to represent the most similar parts of two math expressions. In
order to define “large” generally, our similarity scoring formula between two
formula trees is parameterized by some scoring function γ of π ∈ Π(Tq, Td).

Definition 3 (General multi-tree structure similarity). The formula tree
similarity of Tq and Td given scoring function γ is

Γγ(Tq, Td) = max
π∈Π(Tq,Td)

γ(π) (2)

Intuitively, we choose the number of matched tree nodes to measure matched
“size”. Since the similarity contribution of different nodes (i.e. operands and
operators) may be non-uniform, we propose using the similarity scoring function
γ defined by

γ(π) =
∑

(T̂ iq ,T̂
i
d)∈π

βi ·
(
α · internals(T̂ id) + (1− α) · leaves(T̂ id)

)
(3)
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where internals(T ) is the number of internal nodes/operators in T , leaves(T )
is the number of leaves/operands in T , and α ∈ [0, 1] defines the contribution
weight of operators. βi ≥ 0 are the contribution weights for different matched
subexpressions. For the convenience of later discussion, we refer to trees in equa-
tion (3) indexed by i, e.g. T̂ id, as the i-th widest match (in terms of number of
matched leaves) in π. We set β1 ≥ β2 ≥ ... ≥ βn in order to weight “wider”
subexpressions higher. And in practice, it is wasteful to compute all terms in
equation (3), if we assume the largest K matched subexpressions cover most of
the total matched size, we obtain an approximate scoring function where only a
subset of terms in equation (3) are computed by fixing βi = 0 for i ≥ min(n,K).

3.1 Subexpression matching

Valiente [17] has shownO(m+n) time complexity for computing similar multiple-
tree similarity, but this requires matching vertex out degree (i.e., complete sub-
trees), which is too strict for retrieval, e.g., a+b will not match a+b+c because
the operand number does not agree. To practically compute formula tree simi-
larity, we propose an greedy algorithm.

Using paths as units, it is easier to count matched operands than operators
(each matched operand is identified by a matched path), so we first greedily find
a common formula forest π∗ that consists of the widest common formula subtree
(in terms of matched operands), and then calculate the corresponding number
of matched operators. In order for π∗ to be the optimizer in equation (2), it
requires the following assumption.

Assumption 1 If π∗ = {(T̂ 1∗
q , T̂ 1∗

d ), (T̂ 2∗
q , T̂ 2∗

d )...(T̂n∗q , T̂n∗d )} ∈ Π(Tq, Td) is the
maximizer in equation (2) for α = 0 and β1 � β2 � ... � βn, then we assume
π∗ is also maximizer in equation (2) for all α 6= 0 and all β1 ≥ β2 ≥ ... ≥ βn.

Under this assumption, finding the widest matched subtrees in order will yield
our defined formula tree similarity, while in reality, greedily finding widest matched
subtrees may not maximize equation (3).

We also want to use paths to test identical structures efficiently. Let P(T ) be
all leaf-root paths from rooted tree T , and a matching between path sets S1, S2 is
defined as bipartite graph M(S1, S2, E) where E is edges representing assigned
matches. In our context, two paths match if they are identical after tokenization
(e.g. The OPTs represent a+b and x+y have the same set of tokenized leaf-root
path “VAR/ADD”). To compare structure efficiently, we also assume that two
subtrees are structurally identical if only their leaf-root paths match:

Assumption 2 For any tree Tq, Td, let Sq = P(Tq), Sd = P(Td), if there exists
perfect matching M(Sq, Sd, E), then we assume Tq ∼= Td.

This assumption does not always hold true (see Figure 2), nevertheless, we ex-
pect this to be relatively rare in practice, and it allows us to design a practical
algorithm for computing formula tree similarity.

Under Assumptions 1 and 2, it can be shown that if CFS(Tq, Td) 6= ∅, and
Smq , S

m
d = arg max |E| for any matching M(Smq ⊆ Sq, S

m
d ⊆ Sd, E), where
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Fig. 2. Formulas with identical leaf-root paths, but different structure

Sq = P(T̂q), Sd = P(T̂d), T̂q, T̂d ∈ CFS(Tq, Td) then leaves(T̂ 1∗
q ) = leaves(T̂ 1∗

d ) =
|Smq | = |Smd |. In other words, we can use leaf-root paths from query and docu-
ment OPT subtrees to get the number of leaves of the widest matched tree in
a common formula forest π∗ that maximizes scoring function γ in equation (2).
After leaves(T̂ 1∗

d ) is obtained, we can exclude already matched paths and simi-

larly compute other leaves(T̂ i∗d ), i = 2, 3...k. The process of matching, i.e., finding
Smq , S

m
d in any M(Sq, Sd, E), can be implemented using bit masks and the output

value |Smq | does not depend on input order (matching order).
In scoring function (3), we also want the number of operators associated

with matched leaves. Adding the number of matched operators in equation (3)
helps better assess similarity when assumption 2 fails. Consider the example in
Figure 2: only one of the two “ADD” operators on the left tree can match the
“ADD” operator on the right. If we count the matched operators correctly, we
can differentiate the two expressions in Figure 2. To calculate the number of
operators, assume we have found a common formula forest π∗ that maximizes
function γ, then we go through all subtree pairs (T xq , T

y
d ) rooted at x ∈ Tq, y ∈ Td,

and examine if it joins with any pair of matched trees in π∗ by looking at whether
their leaves intersect. If true, we will count x, y as matched operators if both of
them are not marked as matched yet.

Algorithm 1 describes our matching procedure in detail. In experiments, we
found that counting only visible operators improves results in most cases. This is
because some internal OPT nodes do not appear in the rendered expression, so
counting them will bias the similarity measurement in our model. In particular,
we do not count SUBSCRIPT and SUPERSCRIPT operator nodes. Algorithm 1
avoids counting those nodes by consulting a pre-built “visibility” mapping for
operators (i.e., the visible function).

3.2 Indexing and retrieval

At the indexing stage, every math expression in the corpus is parsed into an
OPT Td. For all internal (operator) nodes n in Td, we extract all leaf-root paths
of Tnd rooted at n. This path set S =

⋃
n∈Td P(Tnd ) is tokenized (e.g. operand
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Algorithm 1 Formula tree matching algorithm
Let (Smq , S

m
d ) be the maximum matching path set of given path set (Sq, Sd).

Define `(S) to be all the leaf nodes (equivalently, path IDs) for path set S.
function operandMatch(Qm, Dm, L, k, leavesCounter)

QX := { }, DX := { } . Excluded path set
for i < k do

Qmax, Dmax, max := 0 . Best matched tree records
for (Sq, Sd) from L do

if QX ∩ `(Sq) = ∅ and DX ∩ `(Sd) = ∅ then . Disjoint tree pairs
if |Smq | > max then . Greedily find widest matches

max := |Smq |
Qmax, Dmax := `(Smq ), `(Smd )

if max > 0 then
QX := QX ∪ Qmax

DX := DX ∪ Dmax

Qmi , D
m
i := Qmax, Dmax

leavesCounter[i] = max
else . No more possible operand matchings

break
return Qm, Dm, leavesCounter

function operatorMatch(Qm, Dm, L, k, operatorsCounter)
Let Qmap, Dmap be maps of matched internal nodes, initially empty.
for (Sq, Sd) from L do

for i < k do
if Qmi ∩ `(Sq) 6= ∅ and Dmi ∩ `(Sd) 6= ∅ then . Joint tree pairs

Let nq, nd be the root-end nodes of Sq, Sd respectively.
if Qmap[nq ], D

map[nd] are both empty then
Qmap[nq ], D

map[nd] := nd, nq
if visible(nq) then

operatorsCounter[i] := operatorsCounter[i] + 1

break
return operatorsCounter

function formulaTreeMatch(Tq, Td, k)
for i < k do

Qmi := { }, Dmi := { } . Matched path set for i-th largest matched tree
leavesCounter[i] := 0
operatorsCounter[i] := 0

L := List of (Sq, Sd) where Sq, Sd ∈ P(Txq ),P(Tyd ) for each node x ∈ Tq, y ∈ Td.

Qm, Dm, leavesCounter := operandMatch(Qm, Dm, L, k, leavesCounter)
operatorsCounter := operatorMatch(Qm, Dm, L, k, operatorsCounter)
return leavesCounter[i], operatorsCounter[i] for i = 1, 2, ...k

symbols a, b, c are tokenized into VAR, operators fraction and division (÷) are
tokenized into FRAC) by pre-defined OPT parser rules2 to allow results from
unification/substitution and boost recall. Each unique tokenized path is associ-
ated with a posting list, where the IDs of expressions containing the path are
stored. The IDs of endpoint nodes (leaf and operator) of each path are also
stored in the posting lists. This allows the structure of matched subexpressions
to be recovered from hit paths at the posting list merge stage.

During query processing, a query expression tree Tq is decomposed in the
same way. Posting lists associated to its tokenized path set are retrieved and
merged. During merging, we examine the matched paths from a document ex-
pression one at a time, input as list L in Algorithm 1 and compute the structural
matching. Then we compute the overall similarity score (considering both struc-

2 Our expression grammar has roughly 100 grammar rules and 50 token types.
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Fig. 3. Illustration of path retrieval and subexpression matching. After matching the
largest common subexpression, i.e., a + bc (in blue), the remaining largest disjoint
common subexpression is xy (in green).

tural and symbolic similarity) as follows:

SstSsy

Sst + Ssy

[
(1− θ) + θ

1

log(1 + leaves(Td))

]
, θ ∈ [0, 1] (4)

where structure similarity Sst is normalized formula tree similarity

Sst =


Γγ(Tq,Td)
leaves(Tq)

if α = 0

Γγ(Tq,Td)
leaves(Tq)+internals(Tq)

if α 6= 0

(5)

and Ssy is the normalized operand symbol set similarity score y ∈ [0, 1] produced
from the Mark-and-Cross algorithm [23] which scores exact symbol matches
higher than unified symbol matches:

Ssy =
1

1 + (1− y)2
(6)

The final scoring function (4) is a F-measure form of structure similarity and
symbol set similarity combination, partially (θ) penalized by document math
formula size measured by total number of its operands, i.e. leaves(Td).



Structural Similarity Search for Formulas using Leaf-Root Paths in OPTs 9

We can calculate the maximum matchings using bit operations if we assume
the number of operands and the number of subexpressions that one math expres-
sion can have are less than a constant. And because the number of elements in
L is |Tq| × |Td|, after maximum matchings are obtained, Algorithm 1 has overall
time complexity O(k|Tq||Td|).

Figure 3 illustrates the path retrieval and subexpression matching process.
Notice that the operands/leaves are not shown as tokenized in some places, so
that we can identify which paths are matched. Algorithm 1 can be visualized
using a table (as shown at bottom right), where pairs of matched {query, doc-
ument} paths are inserted into corresponding cells when we merge posting lists
(e.g. b/TIMES and x/TIMES are matched, indicated by {b, x}/TIMES). Each
table cell represents an element of input list L in Algorithm 1. At the end of the
algorithm, we obtain the highlighted cells with the largest number of matched
leaves. Then the matched operators are counted for highlighted cells. Finally,
we calculate the structural similarity score Sst from the number of operators
and operands associated with each matched subexpression, and the symbol set
similarity score Ssy from matched operands symbolic differences, then plug these
into equation (4) to obtain the final similarity score for ranking.

4 Evaluation

We evaluate our system using the NTCIR-12 MathIR Wikipedia Formula Brows-
ing Task (in the following, use NTCIR-12 for short), which is the most current
benchmark for isolated formula retrieval. The dataset contains over 590,000 math
expressions taken from English Wikipedia. We consider all the 20 non-wildcards
queries in NTCIR-12. During the task, pooled hits from participating systems
were each evaluated by two human assessors. Assessors score a hit from highly
relevant to irrelevant using 2, 1, or 0. The final hit relevance rating is the sum
of the two assessor scores (between 0 and 4), with scores of 3 or higher consid-
ered fully relevant and other scores of 1 and higher considered partially relevant.
We use bpref [1] on top-1000 results as our primary effectiveness metric be-
cause our system does not contribute to pooling, and bpref is computed over
only judged hits. In addition to standard Precision@K values, we compute Pre-
cision@K metrics using only judged hits (condensed), and provide upper bound
values by treating unjudged hits as relevant [10].

First, we explored the impact of different parameter values using up to 3-
tree matching (K = 3). The θ parameter for penalizing overly large formulas is
fixed at 0.05. Figure 4 shows representative parameter values that we have tried.
We started with a single tree match (first four rows in table at left), finding
that weighting operator symbol matches slightly lower than operands (α = 0.4)
have produced the best results (we tried α in [0, 1] using an increment of 0.1).
We then fixed α = 0.4,

∑n
i βi = 1 and tried uniform weights (rows 5–7) and

non-uniform weights for two trees (rows 8–10) and three trees (rows 11–13).
We examined uniform β weights for multiple matches from K = 1 to 3. For
non-uniform weights in two-trees, we consider β1 in [0.5, 0.99] using increments
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Run
Parameters Bpref score
α β1 β2 β3 Partial Full

opt-only 1.0 1.00 0.5304 0.6448
opd-opt-a6 0.6 1.00 0.5416 0.6498
opd-opt-a4 0.4 1.00 0.5899 0.6662
opd-only 0.0 1.00 0.5153 0.6586

uni-beta-1 0.4 1.00 0.5899 0.6662
uni-beta-2 0.4 0.50 0.50 0.5642 0.6481
uni-beta-3 0.4 0.34 0.33 0.33 0.5188 0.6423

2-beta-98 0.4 0.98 0.02 0.5951 0.6696
2-beta-80 0.4 0.80 0.20 0.5888 0.6671
2-beta-60 0.4 0.60 0.40 0.5856 0.6583

3-beta-90-4 0.4 0.90 0.06 0.04 0.5950 0.6726
3-beta-75-2 0.4 0.75 0.15 0.10 0.5879 0.6695
3-beta-60-3 0.4 0.60 0.25 0.15 0.5900 0.6655 0.40 0.45 0.50 0.55 0.60 0.65 0.70

bpref score

opt-only
opd-opt-a6
opd-opt-a4

opd-only
uni-beta-1
uni-beta-2
uni-beta-3
2-beta-90
2-beta-75
2-beta-60

3-beta-80-3
3-beta-75-4
3-beta-70-4

partial relevance
full relevance

Fig. 4. Relevance results from representative parameter values (table and bar graph).

of 0.05 or 0.01; for three-tree matching, we considered β1 in [0.5, 0.95] and β2

in [0.05, 0.45] using increments of 0.05. Figure 4 shows uniform weights gener-
ally yield worse results than non-uniform ones. And two runs from non-uniform
weights when K=2 and 3 obtain the best partial and full relevance scores re-
spectively. This observation is intuitive because our setting non-uniform weights
emphasizes larger subexpressions, which arguably have more visual impact.

Second, to illustrate the effect of matching multiple subexpressions, Figure 5
shows changes in fully relevant bpref scores for different queries, when chang-
ing the maximum number of matched trees (K) with uniform weights. Figure 5
omits queries whose score remains unchanged or differs negligibly across val-
ues of K. We can observe that different queries have different behaviours as K
increases, e.g., introducing secondary matching into queries 4 and 6 improves
results, while multi-tree matching hurts performance noticeably in queries 16,
18 and 20. Looking at the queries in Figure 6, due to the differences in their
structural complexity, extracting partial components in queries 4 and 6 produces
better similarity than matching partial components in more complex queries (e.g
16 and 18). This makes Queries 4 and 6 benefit from multiple-tree scoring while
queries 16 and 18 perform better using a single tree.

Table 1 compares our system with two other state-of-the-art formula search
engines. Our model is able to outperform both of them in bpref full relevance and
partial relevance. We compare our best runs for K = 1, 2, 3 (uni-beta-1, 2-beta-
98, 3-beta-90-4) with the Tangent-S system3 and the best performing system at
NTCIR-12, MCAT [20]. Using only one subexpression match (uni-beta-1), we
outperform the other systems in bpref score. Although lower bound Precision@k
values are lower for our system and Tangent-S partly due to some relevant hits
being unjudged (all MCAT results are judged), we can achieve equal or better

3 Tangent-S is an improved version of the Tangent system [3] that participated in
NTCIR-12.
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Fig. 5. NTCIR-12 Full relevance scores
for matching uniformly-weighted sub-
trees (1 to 5 trees).

No. Query Formula

4) ∇×B = µ0J + µ0ε0
∂

∂t
E︸ ︷︷ ︸

Maxwell′s term

6) 238
92 U + 64

28Ni→ 302
120Ubn∗ → ...

16) τrms =

√ ∫∞
0 (τ−τ)2Ac(τ)dτ∫∞

0 Ac(τ)dτ

18) P xi = N !
nx!(N−nx)!p

nx
x (1− px)N−nx

Fig. 6. A few example queries in Fig 5.

Table 1. NTCIR-12 Wikpiedia Formula Browsing Task Results (top-1000 hits). k− β
represents our best run using k matched subtrees in scoring.

Metrics
Fully Relevant Partially Relevant

1− β 2− β 3− β MCAT Tangent-S 1− β 2− β 3− β MCAT Tangent-S

Bpref 0.6662 0.6696 0.6726 0.5678 0.6361 0.5899 0.5951 0.5950 0.5698 0.5872

standard 0.4000 0.4000 0.4000 0.4800 0.4800 0.5300 0.5300 0.5300 0.9500 0.7900
P@5 condensed 0.5400 0.5400 0.5400 0.4800 0.5200 0.8900 0.9000 0.9000 0.9500 0.9300

upper bound 0.8400 0.8400 0.8400 0.4800 0.6500 0.9700 0.9700 0.9700 0.9500 0.9600

standard 0.2850 0.2800 0.2900 0.3550 0.3500 0.4600 0.4650 0.4650 0.8650 0.7000
P@10 condensed 0.4050 0.4050 0.4150 0.3550 0.4150 0.8600 0.8650 0.8600 0.8650 0.9200

upper bound 0.7850 0.7750 0.7850 0.3550 0.5850 0.9600 0.9600 0.9600 0.8650 0.9350

standard 0.2200 0.2233 0.2233 0.2867 0.2900 0.3967 0.4067 0.4100 0.8333 0.6433
P@15 condensed 0.3367 0.3433 0.3467 0.2867 0.3233 0.8233 0.8333 0.8333 0.8333 0.8633

upper bound 0.7833 0.7800 0.7767 0.2867 0.5600 0.9600 0.9633 0.9633 0.8333 0.9133

standard 0.1950 0.1950 0.1900 0.2450 0.2300 0.3775 0.3850 0.3800 0.8100 0.6050
P@20 condensed 0.3125 0.3175 0.3175 0.2450 0.2825 0.8000 0.7950 0.7925 0.8100 0.8350

upper bound 0.7800 0.7800 0.7800 0.2450 0.5350 0.9625 0.9700 0.9700 0.8100 0.9100

condensed scores in all the full relevance evaluations, and potentially can have
higher precision than the other two systems according to upper bound values.

In terms of efficiency, MCAT reportedly has a median query execution time
of 25 seconds, using a server machine and multi-threading [8]. Figure 7 shows
query run times for our system and Tangent-S in the same environment using
a single thread (Intel Core i5 CPU @ 3.8 GHz each core, DDR4 32GB RAM,
256 GB SSD drive). We compare our most effective run for full-relevance bpref
scores (3-beta-90-4), and the most efficient run opd-only which only matches
the single largest subtree, counting only leaves for structure scoring. Both of our
runs have two versions, one with posting lists read from disk, and another where
posting lists are cached in memory. Tangent has two substantial outlier queries
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Fig. 7. Query processing times in milliseconds for the 20 NTCIR-12 queries

(due to the non-linear complexity of its structure alignment algorithm), although
it is faster in general. However, our execution times are more consistent, with a
median time of about 1.5 seconds or less. Our higher typical run time is likely
caused by the large number of query “keywords”, as the query path set contains
all leaf-root paths in all subtrees. Our in-memory posting lists are compressed by
Frame-Of-Reference variances [25]. The in-memory version reduces the variance
in run times, but the relatively small shift in median times suggests our system
is more computation-bound than IO-bound. Our on-disk path index is stored
as a naive file-system directory hierarchy where each posting list is a single
uncompressed file. The on-disk index takes about 0.8 GB in a reiserFS partition.

5 Conclusion and Future Work

We have introduced a math formula search engine that obtains state-of-the-
art results using simple and consistent path-based indexing. Our system uses a
novel structural matching scheme that incorporates multiple subtree matches. It
achieves better results when considering only visible symbols, and giving greater
weight to operands than operators. Our algorithm allows trading-off between ef-
fectiveness and efficiency by changing the maximum number of matched subex-
pressions, or choosing to count matched operators or not. Because the current
system examines all hits and merges posting lists without any skipping, and our
query path set is typically large, there may be great potential in single-process
efficiency if we can skip documents and avoid unnecessary computations (e.g. by
applying dynamic pruning techniques such as MaxScore [16]). In the future we
will extend our retrieval model to support query expansion of math synonyms
to improve recall (e.g. expand 1/x for x−1), and provide support for wildcard
symbols in queries.
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