2
$\begingroup$

Definitions: Let $(K,\leq)$ be a totally ordered field and $(G,\leq)$ a totally ordered abelian group (written additively). If we denote $\mathbb{Z}a\!=\!\{na;\, n\!\in\!\mathbb{Z}\}$, then $G$ is Archimedean when $$\mathbb{Z}a\!\leq\!b\text{ implies }a\!=\!0,$$ for all $a,b\!\in\!G$. Furthermore, $K$ is Archimedean when its additive group is Archimedean.

Question: Let $(K,\leq)$ be a totally ordered field. How can I prove that $K$ is an Archimedean field iff $K_{>0}\!:=\!\{a\!\in\!K; a\!>\!0\}$ is an Archimedean group (w.r.t. multiplication)?

In other words, t.f.a.e.: (i) $\mathbb{Z}a\!\leq\!b$ implies $a\!=\!0$, for $a,b\!\in\!K$; (ii) $a^\mathbb{Z}\!\leq\!b$ implies $a\!=\!1$, for $a,b\!\in\!K_{>0}$.

$(\Rightarrow)$: If $K$ is Archimedean, then by a theorem, $K$ is isomorphic as an ordered field, to some field $\mathbb{Q}\!\subseteq\!K'\!\subseteq\!\mathbb{R}$. Since in $\mathbb{R}$, the inequality $\mathbb{Z}a\!\leq\!b$ implies $a\!=\!0$, we are done.

$(\Leftarrow)$: ???

  • 0
    What is positive cone?2012-07-29

1 Answers 1

1

$\Rightarrow$: for every $x>1$ and $n\in\mathbb{N}\setminus 0$ we have $x^n>1$ and therefore $x^n-x^{n-1}=(x-1)x^{n-1}>x-1$. Inductively this yields $x^n>n(x-1)$.

Now suppose $x,y>1$ are given and we want to show that $y

$\Leftarrow$: Suppose $x,y>1$ are given and we want to show that $y1>0$ and either $y

  • 0
    Aha, for $(\Leftarrow)$, you've used the weak Archimedean property (equivalent to Archimedean property, for lattice ordered groups): Let $a,b\!\in\!K_{\geq0}$, $\mathbb{N} a\!\leq\!b$, and suppose that $a\!\neq\!0$. Then $1\!\leq\!2,\frac{b}{a}$ and $2^\mathbb{N}\!\leq\!\frac{b}{a}$, so by assumption, $2\!=\!1$, $\rightarrow\leftarrow$. Thank you very much!2012-07-30