I belive that a approach by block matrix decompositon give a satisfactory answer. Seting
$$
A=\left(\sum_{i=1}^{n}\sum_{i=1}^{n} c_{ij}\right)^2,
\quad
v^T= \left(\left(\sum_{j=1}^{n}c_{1j}\right)^2, \dots,\left(\sum_{j=1} c_{nj}\right)^2\right)
$$
$$
v=\begin{pmatrix}
\left(\sum_{j=1}^{n}c_{1j}\right)^2\\
\vdots \\
\left(\sum_{j=1}^{n}c_{nj}\right)^2
\end{pmatrix},
\quad
B =
\begin{pmatrix}
c_{11}^2&\dots&c_{1j}^2&\dots&c_{1n}^2\\
\vdots& &\vdots& &\vdots \\
c_{i1}^2&\dots&c_{ij}^2&\dots&c_{in}^2\\
\vdots& &\vdots& &\vdots \\
c_{n1}^2 &\dots& c_{nj }^2&\dots&c_{nn}^2 \\
\end{pmatrix}
$$
We have $(v^TB)=(Bv)^T$ and $v^TBv\in\mathbb{R}$.
Suppose $A$, $D$, $C$, and $B$ are $n\times n$, $n\times m$, $m\times n$-, and $m\times m$ matrices, respectively. Then
$$\det\begin{pmatrix}A& 0\\ C& B\end{pmatrix} = \det\begin{pmatrix}A& D\\ 0& B\end{pmatrix} = \det(A) \det(B) .
$$
This can be seen from the Leibniz formula for determinants or by induction on ''n''. When ''A'' is invertible matrix, employing the following identity
$$ \begin{pmatrix}A& D\\ C& B\end{pmatrix} = \begin{pmatrix}A& 0\\ C& I\end{pmatrix} \begin{pmatrix}I& A^{-1} D\\ 0& B - C A^{-1} D\end{pmatrix}$$
leads to
$$\det\begin{pmatrix}A& D\\ C& B\end{pmatrix} = \det(A) \det(B - C A^{-1} D) .$$
When ''B'' is invertible, a similar identity with $\det(B)$ factored out can be derived analogously,These identities were taken from http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/proof003.html that is,
$$\det\begin{pmatrix}A& D\\ C& B\end{pmatrix} = \det(B) \det(A - D B^{-1} C) .$$
When the blocks are square matrices of the same order further formulas hold. For example, if $C$ and $B$ commute (i.e., $CB = BC$), then the following formula comparable to the determinant of a 2-by-2 matrix holds:Proofs are given in J.R. Silvester, Math. Gazette, 10 (2000), pp. 460-467, available at http://www.mth.kcl.ac.uk/~jrs/gazette/blocks.pdf
$$ \det\begin{pmatrix}A& D\\ C& B\end{pmatrix} = \det(AB - DC).$$
Them $\det(C)= \det(B)\cdot( A-v^TB^{-1}v)$, whit $v^TB^{-1}v, A\in\mathbb{R}$ or
$$
\det(C)= \det(B)\left[ \left(\sum_{i=1}^{n}\sum_{i=1}^{n} c_{ij}\right)^2
-
\left(\left(\sum_{j=1}^{n}c_{1j}\right)^2, \dots,\left(\sum_{j=1} c_{nj}\right)^2\right)
B^{-1}
\begin{pmatrix}
\left(\sum_{j=1}^{n}c_{1j}\right)^2\\
\vdots \\
\left(\sum_{j=1}^{n}c_{nj}\right)^2
\end{pmatrix}
\right]
$$
whit $ \left(\left(\sum_{j=1}^{n}c_{1j}\right)^2, \dots,\left(\sum_{j=1} c_{nj}\right)^2\right)
B^{-1}
\begin{pmatrix}
\left(\sum_{j=1}^{n}c_{1j}\right)^2\\
\vdots \\
\left(\sum_{j=1}^{n}c_{nj}\right)^2
\end{pmatrix} \in\mathbb{R}$.