3
$\begingroup$

I have to get this integral $$\int_{-1}^{1} \frac{ \sqrt{1-x^2}}{1+x^{2}} dx$$ into $$\int_{-\pi }^{\pi } \frac{1}{1+\cos^2\theta } \,d\theta - \pi$$

any tips would be recommended.

  • 0
    I can't post images, but I've left it in latex. You can view it on http://www.codecogs.com/latex/eqneditor.php2012-11-22
  • 1
    Went there, saw nothing.2012-11-22
  • 2
    Try $x=\tan\theta$.2012-11-22
  • 2
    @JoeFrancis I typeset your equation to appear properly. Are the equations rights? If so then both these integrals are different and give different values.2012-11-22
  • 0
    There's meant to be a - pi after the dtheta on the second integral2012-11-22
  • 2
    @JoeFrancis : Notice that $\dfrac{\sqrt{A}}{A}$ $=\dfrac{\sqrt{A}}{\sqrt{A}\sqrt{A}}$ $=\dfrac{1}{\sqrt{A}}$. So $\dfrac{\sqrt{1+x^2}}{1+x^2}$ $=\dfrac{1}{\sqrt{1+x^2}}$.2012-11-23
  • 0
    Even after the correction (supposedly?), I'm not seeing that these two integrals are equivalent. Here's what I got for the first: $$ \begin{align} \int_{-\pi}^{\pi}\frac{1}{1+\cos^2\theta}d\theta-\pi&=\int_{-\pi}^{\pi}\frac{1}{1+\cos^2\theta}d\theta-\frac{1}{2}\int_{-\pi}^{\pi}1d\theta\\ &=\int_{-\pi}^{\pi}\frac{1}{1+\cos^2\theta}-\frac{1}{2}d\theta\\ &=\int_{-\pi}^{\pi}\frac{2-(1+\cos^2\theta)}{2(1+\cos^2\theta)}d\theta\\ &=\int_{-\pi}^{\pi}\frac{1+\cos^2\theta}{2(1+\cos^2\theta)}d\theta\\ &=\int_{-\pi}^{\pi}\frac{1}{2}d\theta\\ &=\pi \end{align} $$ This isn't the same as the above integral.2012-11-23
  • 0
    @Limitless, I think you missed a sign in the 3rd to last step as $2- (1+\cos^2 \theta) = 1 - \cos^2 \theta$ not $1 + \cos^2 \theta.$2012-11-23
  • 0
    @limac246, great catch! Thanks.2012-11-23

1 Answers 1

2

I will use the substitution $x = \cos θ$. And my result is very close to the required.

$dx = - \sinθ d \theta $

When $x = 1, \ θ=\dots = 0$ and when $x = –1, \ θ= \dots = – π.$

We have :

$$ \begin{align} & \int_{- \pi}^{0} \cfrac{ \sqrt{1- \cos^2 \theta} }{1+ \cos^{2} \theta} (- \sin \theta d \theta) \\ & = – \int_{-\pi}^{0} \cfrac{\sin^2 \theta}{1+ \cos^2 \theta} d \theta \\ & = – \int_{- \pi}^{0} \cfrac{1 – \cos^2 \theta}{1+ \cos^2 \theta} d \theta \\ & = – \int_{- \pi}^{ 0} \left( –1 + \cfrac {2}{1 + \cos^2 \theta} \right) d \theta \\ & = \int_{- \pi}^{0} d \theta – 2\int_{- \pi}^{\theta} \left( \cfrac {1}{1 + cos^{2} \theta} \right) d \theta \\ & = \pi –2\int_{- \pi}^{0} \left( \color{blue}{\cfrac {1}{1 + cos^{2} \theta}} \right) d \theta \\ & = \pi –\int_{-\pi}^{\pi}\left( \cfrac {1}{1 + cos^{2} \theta} \right) d \theta \end{align} $$

Area under [-π, π] = 2 * that under [-π. 0] (in blue)

Which differs from the requested form by a sign only.