The full real-valued 2D Fourier series is:
$$
\begin{align}
f(x, y) & = \sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\alpha_{n,m}cos\left(\frac{2\pi n x}{\lambda_x}\right)cos\left(\frac{2\pi m y}{\lambda_y}\right) \\
& + \sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\beta_{n,m}cos\left(\frac{2\pi n x}{\lambda_x}\right)sin\left(\frac{2\pi m y}{\lambda_y}\right) \\
& + \sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\gamma_{n,m}sin\left(\frac{2\pi n x}{\lambda_x}\right)cos\left(\frac{2\pi m y}{\lambda_y}\right) \\
& + \sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\delta_{n,m}sin\left(\frac{2\pi n x}{\lambda_x}\right)sin\left(\frac{2\pi m y}{\lambda_y}\right) \\
\end{align}
$$
The coefficients are found with:
$$
\alpha_{n,m} = \frac{\kappa}{\lambda_x \lambda_y}\int_{y_0}^{y_0+\lambda_y}\int_{x_0}^{x_0+\lambda_x}f(x,y)cos\left(\frac{2\pi n x}{\lambda_x}\right)cos\left(\frac{2\pi m y}{\lambda_y}\right)dx dy \\
\beta_{n,m} = \frac{\kappa}{\lambda_x \lambda_y}\int_{y_0}^{y_0+\lambda_y}\int_{x_0}^{x_0+\lambda_x}f(x,y)cos\left(\frac{2\pi n x}{\lambda_x}\right)sin\left(\frac{2\pi m y}{\lambda_y}\right)dx dy \\
\gamma_{n,m} = \frac{\kappa}{\lambda_x \lambda_y}\int_{y_0}^{y_0+\lambda_y}\int_{x_0}^{x_0+\lambda_x}f(x,y)sin\left(\frac{2\pi n x}{\lambda_x}\right)cos\left(\frac{2\pi m y}{\lambda_y}\right)dx dy \\
\delta_{n,m} = \frac{\kappa}{\lambda_x \lambda_y}\int_{y_0}^{y_0+\lambda_y}\int_{x_0}^{x_0+\lambda_x}f(x,y)sin\left(\frac{2\pi n x}{\lambda_x}\right)sin\left(\frac{2\pi m y}{\lambda_y}\right)dx dy
$$
$$
\begin{align}
\text{Where } \kappa & = 1 \text{ if } n = 0 \text{ and } m = 0 \\
& = 2 \text{ if } n = 0 \text{ or } m = 0\\
& = 4 \text{ if } n> 0 \text{ and } m > 0
\end{align}
$$
Example plot