3
$\begingroup$

In the derivation of Riemann-Liouville derivatives, i got lost on the part when the pattern led to $$D^{-2}f(x)=\int_0^xf(t)(x-t)dt$$ $$D^{-3}f(x)=\frac{1}{2}\int_0^xf(t)(x-t)^2dt$$ $$D^{-4}f(x)=\frac{1}{2\cdot 3}\int_0^xf(t)(x-t)^3dt$$ $$\vdots$$ I was able to figure out everything except for the constants $\frac{1}{2}$, $\frac{1}{2\cdot 3}$. Where did they come from? Please please help me...

1 Answers 1

1

Related techniques: (I). Here is how you proceed,

$$ f^{(-1)}(x) = \int_{0}^{x} f(t) dt$$

$$\implies f^{(-2)}(x) = \int_{0}^{x} \int_{0}^{t} f(\tau) d\tau dt = \int_{0}^{x} \int_{\tau}^{x} f(\tau) dt d\tau $$

$$ = \int_{0}^{x}f(\tau) \left( \int_{\tau}^{x} dt \right) d\tau = \int_{0}^{x}f(\tau) (x-\tau) d\tau = \int_{0}^{x}f(t) (x-t) dt \,.$$

The whole idea is to change the order of integration. Let's derive $f^{(-3)}(x) $

$$ f^{(-3)}(x) = \int_{0}^{x}f^{(-2)}(t)dt = \int_{0}^{x} \int_{0}^{t} (t-\tau)f(\tau) d\tau dt = \int_{0}^{x} f(\tau) \left(\int_{\tau}^{x}(t-\tau) dt\right) d\tau $$

$$ =\int_{0}^{x} f(\tau) \left[\frac{(t-\tau)^2}{2}\right]_{t=\tau}^{t=x} d\tau = \frac{1}{2}\int_{0}^{x}(x-\tau)^2f(\tau) d\tau = \frac{1}{2}\int_{0}^{x}(x-t)^2f(t) dt $$

Now, you can see where the constants came from.

  • 0
    thanks. However, there is a constant multiplied to these iterated integrals. For $D^{-3}f(x)$ there is a $\frac{1}{2}$, and for $D^{-4}f(x)$ there is a $\frac{1}{2\cdot 3}$.2012-10-11
  • 0
    @MynameisTiara: I derived $f^{(-3)}(x)$, so you can see where the constants came from.2012-10-11
  • 0
    @MynameisTiara: You are welcome.2012-12-07
  • 1
    I think there's a typo in your derivation, e.g. $\int_0^t f^{(-3)}(t)$?2014-08-31
  • 0
    @DanZimm: Thanks for pointing this out.2014-08-31
  • 0
    @MhenniBenghorbal there's still something fishy going on, it looks (since you didn't explicitly include what you're integrating over) that you're integrating over $t$, from $0$ to $t$, likewise somehow the $x$ just appears in the second equality and skips the first2014-08-31
  • 0
    @DanZimm: There is nothing fishy. It is a typo as you see. Thanks for your comments. I really appreciate them.2014-08-31
  • 0
    @MhenniBenghorbal right, that's what I meant :P at first it looked like you fixed only one of the typos, that's why I made the second comment. Apologies for any frustration2014-08-31