I want to break this equation into several matrices multiplied it would be useful to use DFT matrices $$\tilde{H}_{\nu,k}=\frac{1}{N}\sum_{n=0}^{N-1}\sum_{l=0}^{L-1}h_{n,l}e^{-j\frac{2\pi kl}{N}}e^{j\frac{2\pi n}{N}(k-\nu+\epsilon_k)}$$ $\epsilon_k=k\eta+\epsilon_\eta$
Break it down into matrices
0
$\begingroup$
linear-algebra
1 Answers
1
$$ \sum_{i,j=1}^n a_{ij} x_i y_j = x^\mathrm T Ay$$
http://en.wikipedia.org/wiki/Bilinear_form
Peter