For each $ t \in [0,1] $, define $ v_{t} \in \mathcal{U} $ as follows:
$$
v_{t} \stackrel{\text{def}}{=} t \cdot u_{1} + (1 - t) \cdot u_{2}.
$$
Clearly, each $ v_{t} $ is measurable and bounded, being a linear combination of measurable and bounded functions. Also,
\begin{align}
\forall t \in [0,1]: \quad
\int_{A} v_{t} \,d{m}
&= \int_{A} [t \cdot u_{1} + (1 - t) \cdot u_{2}] \,d{m} \\
&= \int_{A} t \cdot u_{1} \,d{m} + \int_{A} (1 - t) \cdot u_{2} \,d{m} \\
&= t \int_{A} u_{1} \,d{m} + (1 - t) \int_{A} u_{2} \,d{m} \\
&= t \cdot 1 + (1 - t) \cdot 1 \\
&= 1.
\end{align}
Hence, indeed, $ v_{t} \in \mathcal{U} $ for all $ t \in [0,1] $. By the linearity of $ H $, we get
$$
\forall t \in [0,1]: \quad H(v_{t}) = H(t \cdot u_{1} + (1 - t) \cdot u_{2}) = t \cdot H(u_{1}) + (1 - t) \cdot H(u_{2}).
$$
Notice that $ H(v_{0}) = H(u_{2}) \geq 0 $ and $ H(v_{1}) = H(u_{1}) \leq 0 $. By applying the Intermediate Value Theorem to the continuous function
$$
t \longmapsto t \cdot H(u_{1}) + (1 - t) \cdot H(u_{2})
$$
defined on the closed interval $ [0,1] $, we see that there exists a $ t^{*} \in [0,1] $ for which $ H(v_{t^{*}}) = 0 $. We can therefore set $ u_{3} := v_{t^{*}} $.