Stirling's formula gives us that $$n! \sim \sqrt{2 \pi n} \left( \dfrac{n}e\right)^n$$ i.e. $$\lim_{n \to \infty} \dfrac{n!}{\sqrt{2 \pi n} \left( \dfrac{n}e\right)^n} = 1$$
It is not hard to show that your sum, $$\sum_{k=1}^{n} k! \sim n!$$ and hence $$\sum_{k=1}^{n} k! \sim \sqrt{2 \pi n} \left( \dfrac{n}e\right)^n$$
EDIT To see that $\displaystyle \sum_{k=1}^{n} k! \sim n!$, note that
\begin{align}
\sum_{k=1}^{n} k! & = n! \left( 1 + \dfrac1n + \dfrac1{n(n-1)} + \dfrac1{n(n-1)(n-2)} + \cdots + \dfrac1{n!}\right)\\
& \leq n! \left( 1 + \dfrac1n + \dfrac{n-1}{n(n-1)}\right)\\
& = n! \left( 1 + \dfrac2n\right)
\end{align}
Hence, $\displaystyle \sum_{k=1}^{n} k! \sim n!$.