How would I verify the following double angle identity. $$ \sin(A+B)\sin(A-B)=\sin^2A-\sin^2B $$ So far I have done this. $$ (\sin A\cos B+\cos A\sin B)(\sin A\cos B-\cos A\sin B) $$But I am not sure how to proceed.
Prove $ \sin(A+B)\sin(A-B)=\sin^2A-\sin^2B $
5 Answers
\begin{eqnarray} \sin(A+B)\sin(A-B) &=& (\sin A\cos B+\cos A\sin B)(\sin A\cos B-\cos A\sin B)\\\\ &=& \sin^2 A \cos^2 B -\sin^2 B \cos^2 A\\\\ &=& \sin^2 A \cos^2 B -\sin^2 B (1-\sin^2 A)\\\\ &=& \sin^2 A (\cos^2 B + \sin^2 B) - \sin^2 B\\\\ &=& \sin^2 A - \sin^2 B \end{eqnarray}
-
0It makes sense.Thank you. – 2012-07-25
-
0$$\sin^2 A \cos^2 B -\sin^2 B \cos^2 A=\sin^2 A(1- \sin^2 B) -\sin^2 B (1-\sin^2 A)=?$$ – 2015-08-28
$$ \begin{align*}\sin (A+B)\cdot\sin (A-B)&=\frac{\cos(2B)-\cos (2A)}{2}\\&=\frac{(1-2\sin^2B)-(1-2\sin^2A)}{2}\\&=\sin^2A-\sin^2B\end{align*}$$
Here i have used $$\sin x\cdot\sin y=\frac{\cos(x-y)-\cos(x+y)}{2}$$
Hint: $(a+b)(a-b)=a^2-b^2$.
Then use $\sin^2\theta+\cos^2\theta=1$
-
0Do you mean I would do (sinA-sinB)(SinA+sinB)? – 2012-07-25
-
0No, $a=\sin A \cos B$ and $b=\sin B \cos A$ – 2012-07-25
-
0Oh I see thanks. – 2012-07-25
Use this formula:
$$2 \sin(A+B)\sin(A-B)=\cos2B-\cos2A$$
It will be like this:
$$\dfrac12 \cdot (\cos2B-\cos2A)$$ $$=\dfrac {(1-2\sin^2B)-(1-2\sin^2A)}{2}$$
It will give the answer if you simplify.
Your question involves the basic algebra identity which says, $(a + b)(a - b) = a^2 - b^2 $. For targeting your question, it is easy to assume $ a = \sin A\cos B $ and $b = \cos A \sin B$. The process becomes easy now.
$$\begin{align}(a + b)(a - b)& =& a^2 - b^2\\ & = & (\sin A \cos B)^2 - (\cos A \sin B)^2\\ & = & \sin^2A\cos^2 B - \cos^2A\sin^2B \\ & = & \sin^2A(1 - \sin^2 B) - \cos^2 A\sin^2B \end{align} $$Proceed.