Abel's partial summation technique:
\begin{align*}
\sum_{n=1}^{N} a(n) f(n) & = \sum_{n=1}^{N} f(n) (A(n)- A(n-1)) = \sum_{n=1}^{N} A(n) f(n) - \sum_{n=1}^{N} A(n-1) f(n)\\
& = \sum_{n=1}^{N} A(n)f(n) - \sum_{n=0}^{N-1} A(n) f(n+1)\\
& = A(N)f(N) - A(0) f(1) - \sum_{n=1}^{N-1} A(n) (f(n+1)-f(n))
\end{align*}
(The above is nothing but the discrete version of integration by parts).
$$\sum_{n=1}^{N} a(n) f(n) = \int_{1^-}^{N^+} f(t) d(A(t)) = f(t) A(t) \rvert_{1^-}^{N^+} - \int_{1^-}^{N^+} A(t) f'(t) dt$$ (The second integral can be interpreted as a Riemann-Stieltjes integral.)
Consider the sum $\displaystyle \sum_{n \leq N} \frac1n$. Choose $a(n) = 1$ and $f(n) = \frac1n$. Note that we have $A(t) = \lfloor t \rfloor = t - \{t\}$. Hence, we get that
\begin{align*}
\sum_{n \leq N} \frac1n & = \left. \frac{t-\{t\}}t \right \rvert_{1^-}^{N^+} + \int_{1^-}^{N^+} \frac{(t-\{t\})}{t^2} dt\\
& = 1 + \int_{1^-}^{N^+} \frac{dt}t - \int_{1^-}^{N^+} \frac{\{t\}}{t^2} dt\\
& = 1 + \log (N) - \int_{1^-}^{\infty} \frac{\{t\}}{t^2} dt + \int_{N^+}^{\infty} \frac{\{t\}}{t^2} dt\\
& = \left(1 - \int_{1^-}^{\infty} \frac{\{t\}}{t^2} dt \right) + \log(N) + \int_{N^+}^{\infty} \frac{\{t\}}{t^2} dt
\end{align*}
Note that $\displaystyle \int_{N^+}^{\infty} \frac{\{t\}}{t^2} dt \leq \int_{N^+}^{\infty} \frac{1}{t^2} dt = \frac1N$.
Also note that by the same argument, we also have that $\displaystyle 0 < \int_{N^+}^{\infty} \frac{\{t\}}{t^2} dt < 1$ and hence $\displaystyle 0 < \left(1 - \int_{1^-}^{\infty} \frac{\{t\}}{t^2} dt \right) < 1$. Denoting $\displaystyle \left(1 - \int_{1^-}^{\infty} \frac{\{t\}}{t^2} dt \right) = \gamma$, we get the following
$$
\sum_{n \leq N} \frac1n = \gamma + \log(N) + \mathcal{O} \left(\frac1N \right)
$$
$\gamma \approx 0.5772\ldots$ and is called the Euler-Mascheroni constant.