$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{i\ +\ j\ +\ k\ =\ n \atop{\vphantom{\LARGE A}i,\ j,\ k\ \geq\ 0}}
{a \choose i}{b \choose j}{c \choose k} = {a + b + c \choose n}:\ {\large ?}}$
\begin{align}&\color{#66f}{\large%
\sum_{i\ +\ j\ +\ k\ =\ n \atop{\vphantom{\LARGE A}i,\ j,\ k\ \geq\ 0}}
{a \choose i}{b \choose j}{c \choose k}}
=\sum_{\ell_{a},\ \ell_{b},\ \ell_{c}\ \geq\ 0}{a \choose \ell_{a}}
{b \choose \ell_{b}}{c \choose \ell_{c}}
\delta_{\ell_{a}\ +\ \ell_{b}\ +\ \ell_{c},\ n}
\\[3mm]&=\sum_{\ell_{a},\ \ell_{b},\ \ell_{c}\ \geq\ 0}{a \choose \ell_{a}}
{b \choose \ell_{b}}{c \choose \ell_{c}}\oint_{\verts{z}\ =\ 1}
{1 \over z^{-\ell_{a}\ -\ \ell_{b}\ -\ \ell_{c}\ +\ n\ +\ 1}}
\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}{1 \over z^{n\ +\ 1}}
\bracks{\sum_{\ell_{a}\ \geq\ 0}{a \choose \ell_{a}}z^{\ell_{a}}}
\bracks{\sum_{\ell_{b}\ \geq\ 0}{b \choose \ell_{b}}z^{\ell_{b}}}
\bracks{\sum_{\ell_{a}\ \geq\ 0}{c \choose \ell_{c}}z^{\ell_{c}}}
\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}{1 \over z^{n\ +\ 1}}
\pars{1 + z}^{a}\pars{1 + z}^{b}\pars{1 + z}^{c}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{a + b + c} \over z^{n\ +\ 1}}
\,{\dd z \over 2\pi\ic}
\\[3mm]&=\color{#66f}{\large{a + b + c \choose n}}
\end{align}