In the Fourier transform $\hat{f}=\int_{\mathbb{R}^n}f(x)\exp(-2\pi j w x)$. What is a value of $|\exp(-2\pi j w x)|$?
Module of exponential function
-1
$\begingroup$
functional-analysis
1 Answers
1
If $w\in\mathbb{R}^n$ and $j$ is the imaginary unit (what I ussually call $i$), then $|e^{-2\,\pi\,j\,w\cdot x}|=1$.
-
0but, What are the intermediary steps please – 2012-10-24
-
0by indentity of Euler I know that expresion is equal to $|\cos(-2\pi j w x)+\sin(-2\pi j w x)|$ – 2012-10-24
-
1@Juan Almost, by Euler you know that this is equal to $|\cos(-2\pi wx) + j\sin(-2\pi wx)| = (\cos^2 + \sin^2)^{1/2}\ldots$. – 2012-10-24
-
0ok, understand thanks – 2012-10-24