The relation $\preceq$ isn’t symmetric.
Let $f(x)=1$ and $g(x)=x$ for all $x\in[0,\to)$. Then with $\lambda=1$ we have
$$1=f(x)\le x+2=g(x+1)+1$$ for all $x\in[0,\to)$, so $f\preceq g$. Now suppose that $g\preceq f$; then there is some $\lambda\ge 1$ be such that $$x+1=g(x)\le\lambda f(\lambda x+\lambda)+\lambda=2\lambda$$ for all $x\in[0,\to)$, which is clearly impossible. Thus, $f\preceq g\not\preceq f$, and $\preceq$ is not symmetric.
To show that $\preceq$ is transitive, you must show that if $f,g$, and $h$ are functions such that $f\preceq g$ and $g\preceq h$, then $f\preceq h$. Your hypothesis gives you constants $\lambda,\mu\ge 1$ such that $$f(x)\le\lambda g\big(\lambda x+\lambda\big)+\lambda\tag{1}$$ and $$g(x)\le\mu h\big(\mu x+\mu\big)+\mu\tag{2}$$ for all $x\in[0,\to)$, and you want to show that there is a constant $\nu\ge 1$ such that $$f(x)\le\nu h\big(\nu x+\nu\big)+\nu$$ for all $x\in[0,\to)$. If you combine $(1)$ and $(2)$ in the most obvious way, you get
$$\begin{align*}
f(x)&\le\lambda\Big(\mu h\big(\mu(\lambda x+\lambda)+\mu\big)+\mu\Big)+\lambda\\
&=\lambda\mu h\big(\lambda\mu x+\lambda\mu+\mu\big)+\lambda\mu+\lambda\;.
\end{align*}$$
What happens now if you take $\nu=\lambda\mu+\lambda+\mu\,$?