I have a question: Prove or disprove that: for every $f\in L^{1}\left(\mathbb{R}\right)$, $$\sup\left\{ { \int_{\mathbb{R}}\frac{\sqrt{n}}{\sqrt{\left|x-y\right|}\left(1+n^{2}\left(x-y\right)^{2}\right)}f\left(y\right)dy:n\in\mathbb{N}}\right\} <\infty,$$ for Lebesgue almost every $x\in\mathbb{R}$.
I failed in my attempt to disprove this statement (I think so!!!). Can everybody help me?