Possible Duplicate:
An integrable and periodic function $f(x)$ satisfies $\int_{0}^{T}f(x)dx=\int_{a}^{a+T}f(x)dx$.
I have to show if $f\in \mathcal L[-\pi,\pi]$ and if $$f(u+2\pi)=f(u), (-\infty
Possible Duplicate:
An integrable and periodic function $f(x)$ satisfies $\int_{0}^{T}f(x)dx=\int_{a}^{a+T}f(x)dx$.
I have to show if $f\in \mathcal L[-\pi,\pi]$ and if $$f(u+2\pi)=f(u), (-\infty
It looks correct and pretty nice, indeed.