2
$\begingroup$

Assume $p$ is prime and $p\ge 3$.

Through experimentation, I can see that it's probably true. Using Wilson's theorem and Fermat's little theorem, it's equivalent to saying $2^2 4^2 6^2 \cdots (p-1)^2 = (-1)^{\frac{p+1}{2}}$ mod $p$, but I can't figure out any more than that.

  • 6
    In Wilson's theorem $(p-1)(p-2)\dots 3\cdot 2\cdot 1 \equiv -1 \bmod p$, combine terms $k$ and $p-k$ together for $k=1,2,\dots,(p-1)/2$. Note $p-k \equiv -k \bmod p$.2012-04-13
  • 2
    @KCd: sounds like a very good answer to me, please move it below so that it can be accepted.2012-04-13
  • 0
    @KCd: Thanks! That was exactly what I needed. I'll mark it as accepted if you put that in an answer instead of a comment.2012-04-13

1 Answers 1

9

$$(p-1)!=1\cdot2\cdots\frac{p-1}{2}\cdot\frac{p+1}{2}\cdots(p-2)(p-1)$$ We have the congruences $$\begin{align*} p-1&\equiv -1\pmod p\\ p-2&\equiv -2\pmod p\\ &\vdots\\ \frac{p+1}{2}&\equiv -\frac{p-1}{2}\pmod{p}\end{align*}$$ Rearranging the factors produces

$$(p-1)!\equiv 1\cdot(-1)\cdot2\cdot(-2)\cdots\frac{p-1}{2}\cdot\left(-\frac{p-1}{2}\right)\pmod p.$$ $\therefore (p-1)!\equiv (-1)^{\frac{p-1}{2}}\left(1\cdot2\cdots\frac{p-1}{2}\right)^{2}\pmod p.$ From Wilson's theorem, $(p-1)!\equiv -1\pmod{p}$ Thus $$-1\equiv (-1)^{\frac{p-1}{2}}\left[\left(\frac{p-1}{2}\right)!\right]^{2}\pmod{p}$$ It follows that $\left[\left(\frac{p-1}{2}\right)!\right]^{2}\equiv (-1)^{\frac{p+1}{2}}\pmod{p}$.

  • 3
    $\LaTeX$ tip: `\pmod{p}` produces $\pmod{p}$, with appropriate spaces.2012-04-16
  • 1
    @ArturoMagidin: Thanks arturo for the $\LaTeX$ tip2012-04-16