Let $0 when $\sum_{n=1}^\infty (a_n)^n$ convergent or divergent?
Disscusing convergence of a series .
2
$\begingroup$
calculus
sequences-and-series
2 Answers
7
If $(a_n)^n=n^{-2}$, then $\sum(a_n)^n$ converges, and $a_n=n^{-2/n}\to1$.
If $(a_n)^n=n^{-1}$, then $\sum(a_n)^n$ diverges, and $a_n=n^{-1/n}\to1$.
2
Sounds like homework, so here is a hint: What about $a_n := 1-\frac{1}{n}$? (Use $\frac{1}{e} = \lim_{n \to \infty} (a_n)^n$.)