We know that a finite lattice $L$ is modular if and only if for all $s,t,u \in L$ such that $s \le u$, we have $$ s \vee (t \wedge u)=(s \vee t) \wedge u. $$
If we remove the condition $s \le u$, that is, if
for all $s,t,u \in L$ a finite lattice $L$ satisfies
$s \vee (t \wedge u)=(s \vee t) \wedge u$ for all $s,t,u \in L,$
what is such an $L$ would be?