Consider the cubic polynomial
$$\begin{equation*}
P(z)=z^{3}+Az^{2}+Bz+C
\end{equation*}\tag{1},$$
where the coefficients $A,B$ and $C$ are real numbers. If we denote its
roots by $z_{1},z_{2}$ and $z_{3}$, then it factors as
$$\begin{eqnarray*}
P(z) &=&\left( z-z_{1}\right) \left( z-z_{2}\right) (z-z_{3}) \\
&=&z^{3}-\left( z_{1}+z_{3}+z_{2}\right) z^{2}+\left(
z_{1}z_{2}+z_{2}z_{3}+z_{1}z_{3}\right) z-z_{1}z_{2}z_{3}.
\end{eqnarray*}\tag{2}$$
The constant term is
$$\begin{equation*}
P(0)=C=-z_{1}z_{2}z_{3}
\end{equation*}.$$
In the present case $A=-(b+6)$, $B=8b^{2}$ and $C=-7+b^{2}$. Since $z_{1}=1+i$ is a given solution, then $z_{2}=\overline{z}_{1}=\overline{1+i}=1-i$ is another solution, as you concluded. We thus have $z_{1}z_{2}=\left( 1+i\right) \left( 1-i\right)=2$ and
$$\begin{equation*}
-7+b^{2}=-2z_{3}
\end{equation*}\tag{3},$$
whose solution is
$$\begin{equation*}
z_{3}=\frac{7-b^{2}}{2}.
\end{equation*}\tag{4}$$
Since $P(z_1)=P(z_2)=0$, we have
$$\begin{eqnarray*}
&&\left( 1+i\right) ^{3}-(b+6)\left( 1+i\right) ^{2}+8b^{2}\left( 1+i\right)
-7+b^{2} \\
&=&-9+9b^{2}+i\left( -10-2b+8b^{2}\right)=0,
\end{eqnarray*}\tag{5}$$
$$\begin{eqnarray*}
&&\left( 1-i\right) ^{3}-(b+6)\left( 1-i\right) ^{2}+8b^{2}\left( 1-i\right)
-7+b^{2} \\
&=&-9+9b^{2}+i\left( 10+2b-8b^{2}\right)=0,
\end{eqnarray*}\tag{6}$$
which means that $b$ satisfies the system
$$\begin{equation*}
\left\{
\begin{array}{c}
-9+9b^{2}=0 \\
10+2b-8b^{2}=0.
\end{array}
\right.
\end{equation*}\tag{7}$$
The solution of $(7)$ is $b=-1$. Using $(4)$ we find $$z_{3}=3.\tag{8}$$