For every $t$ in $(0,1)$, $t\leqslant \mathrm e^t-1\leqslant t+t^2$ hence $J(a)\leqslant I(a)\leqslant J(a)+K(a)$ with
$$
J(a)=\int_1^{+\infty}\mathrm e^{-ay}\frac{\mathrm dy}y,\quad
K(a)=\int_1^{+\infty}\mathrm e^{-2ay}\frac{\mathrm dy}{y^2}.
$$
The change of variables $y=1+(x/a)$ yields $a\mathrm e^{a}J(a)=L(a)$ and $a\mathrm e^{2a}K(a)=M(a)$ with
$$
L(a)=\int_0^{+\infty}\frac{\mathrm e^{-x}\mathrm dx}{1+x/a},\quad
M(a)=\int_0^{+\infty}\frac{\mathrm e^{-2x}\mathrm dx}{(1+x/a)^2}
$$
Using the bounds $1-t\leqslant1/(1+t)\leqslant1$ and $1/(1+t)^2\leqslant1$ for every nonnegative $t$, one sees that
$$
1-a^{-1}\leqslant L(a)\leqslant1,\quad M(a)\leqslant\tfrac12.
$$
Thus,
$$
a^{-1}\mathrm e^{-a}(1-a^{-1})\leqslant I(a)\leqslant a^{-1}\mathrm e^{-a}(1+\tfrac12\mathrm e^{-a}).
$$
In particular, $I(a)=a^{-1}\mathrm e^{-a}+O(a^{-2}\mathrm e^{-a})$ when $a\to+\infty$, that is,
$$
\color{red}{\lim\limits_{a\to+\infty}a\mathrm e^aI(a)=1}.
$$
As regards the limit $a\to0$, an integration by parts yields
$$
L(a)=a\int_0^{+\infty}\mathrm e^{-x}\log(1+x/a)\mathrm dx=aN(a)-a\log(a),
$$
with
$$
N(a)=\int_0^{+\infty}\mathrm e^{-x}\log(a+x)\mathrm dx.
$$
Another integration by parts yields
$M(a)=a-aL(2a)$. Since $N(a)=N(0)+o(1)$ and $N(0)$ is finite, one gets
$$
a^{-1}L(a)=-\log(a)+O(1),\quad a^{-1}M(a)=1+O(1).
$$
Since $\mathrm e^{-a}=1+O(a)$ and $\mathrm e^{-2a}=O(1)$,
one sees that $J(a)$ and
$J(a)+K(a)$ are both $-\log(a)+O(1)$. Finally, when $a\to0$,
$I(a)=-\log(a)+O(1)$, and in particular,
$$
\color{red}{\lim\limits_{a\to0}\frac{I(a)}{\log a}=-1}.
$$