By considering:
$$\lim_{n\to\infty}\frac{\sum_{k=1}^n k^1}{n^{2}} = \frac 1 2$$ $$\lim_{n\to\infty}\frac{\sum_{k=1}^n k^2}{n^{3}} = \frac 1 3$$ $$\lim_{n\to\infty}\frac{\sum_{k=1}^n k^3}{n^{4}} = \frac 1 4$$
Determine if this is true: $$\lim_{n\to\infty}\frac{\sum_{k=1}^n k^m}{n^{m+1}} = \frac 1 {{m+1}}$$
If it is, prove it.
If it is not, evaluate $\lim\limits_{n\to\infty}\frac{\sum_{k=1}^n k^m}{{m+1}}$.