I actually have two questions on the following problem:
It is known that the leading term of the sum $\sum_{i=0}^n i$ is $n^2/2$, and for the $\sum_{i=0}^n i^2$ the leading term is $n^3/3$. Can you make a guess what's the leading term in $\sum_{i=0}^n i^3$? in $\sum_{i=0}^n i^k$? Can you prove something inductively for this?
Clearly the guess is the leading term would be: $n^{k+1}/{(k+1)}$ However, I have two questions here. 1. I don't really understand what this problem means by "leading term". If there are no variables in the sum, how can there be terms? 2. I couldn't find anywhere in my text if an inductive proof applies for just proving a leading term. Does it?
Thank you in advance for your help.