1
$\begingroup$

I'm trying to calculate the 3D fourier transform of this function:

$$\frac{1}{(x^2+y^2+z^2)^{1/2}}$$

Any help would be appreciated, thanks.

  • 0
    Possible DUplicate: http://math.stackexchange.com/questions/55419/2-dimensional-fourier-transform-integral2011-10-10
  • 0
    @DJC Not an exact duplicate, as the question you linked to has $3/2$ in the denominator rather than $1/2$, but similar solution methods will probably work2011-10-10
  • 0
    Hi, if a similar method would work, how would you implement it? The method used before was 2D (it relied on using cylindrical bessel functions) and I was unable to adapt it to this question.2011-10-10
  • 3
    The downvoter should perhaps explain the reason for the downvote.2011-10-10
  • 0
    Have you tried spherical coordinates?2011-10-10

1 Answers 1

1

Inserting the Jacobian $r^2\sin\theta$ and $\sqrt{x^2+y^2+z^2}=r$ in polar coordinates gives

\begin{equation} \int_0^\infty r^2 dr \int_0^{2\pi} d\phi \int_0^\pi \sin\theta d\theta \frac{1}{r} e^{i\mathbf{k}\cdot \mathbf{r}} \end{equation}

\begin{equation} = \int_0^\infty r^2 dr \int_0^{2\pi} d\phi \int_0^\pi \sin\theta d\theta \frac{1}{r} e^{ikr\cos\theta} \end{equation}

and with $z=\cos\theta$, $dz=-\sin\theta d\theta$ \begin{equation} = 2\pi \int_0^\infty r dr \int_0^\pi \sin\theta d\theta e^{ikr\cos\theta} = -2\pi \int_0^\infty r dr \int_{1}^{-1} dz e^{ikrz} = 2\pi \int_0^\infty r dr \int_{-1}^{1} dz e^{ikrz} \end{equation} and with $t=ikrz$, $dz=dt/(ikr)$ \begin{equation} = 2\pi \int_0^\infty r dr \frac{1}{ikr} \int_{-ikr}^{ikr} dt e^t \end{equation} \begin{equation} = 2\pi \int_0^\infty r dr \frac{1}{ikr} [e^{ikr}-e^{-ikr}] = 4\pi \int_0^\infty r dr \frac{1}{kr} \sin(kr) = \frac{4\pi}{k^2} \int_0^\infty kr d(kr) \frac{1}{kr} \sin(kr) \end{equation} \begin{equation} = \frac{4\pi}{k^2} \int_0^\infty d(kr) \sin(kr) = \frac{4\pi}{k^2} \int_0^\infty dz \sin z \end{equation} and this exists only in the theory of distributions.

  • 1
    For OP: Heuristically, $\int_{0}^{\infty} \sin z \, dz = 1$ and hence the Fourier transform of $\frac{1}{|x|}$ is $\frac{4\pi}{|\xi|^{2}}$. Of course, this is justified in distribution sense.2014-03-26
  • 0
    For some rigorous treatment, one can refer to Proposition 4.1 of [*Lectures on Harmonic Analysis*](http://www.math.ubc.ca/~ilaba/wolff/notes_march2002.pdf) by Thomas H. Wolff.2014-03-26