The multiplicative inverse of a fraction a/b is b/a. (Wikipedia)
Let us start with the properties:
Division by a number or fraction is the same as multiplication by its inverse or reciprocal.
Division by $r$ is equal to the multiplication by $\dfrac{1}{r}$:
$$\dfrac{\ \dfrac{p}{q}\ }{r}=\dfrac{p}{q}\cdot \dfrac{1}{r}=\dfrac{p\cdot 1}{q\cdot r}=\dfrac{p}{q r}, \quad (1)$$
Division by $\dfrac{t}{u}$ is equal to the multiplication by $\dfrac{u}{t}$:
$$\dfrac{\ s}{\ \dfrac{t}{u}\ }=s\cdot\dfrac{u}{t}=\dfrac{s\cdot u}{t}=\dfrac{su}{t}.\quad (2)$$
$$\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{ad+bc}{bd}.\quad (3)$$
Apply $(1)$ to
$$\dfrac{\ \dfrac{1}{x}\ }{2}=\dfrac{1}{x}\cdot\dfrac{1}{2}=\dfrac{1\cdot 1}{x\cdot 2}=\dfrac{1}{2x}$$
and $(2)$ to
$$\frac{\ \dfrac{2}{3x}\ }{x}=\dfrac{2}{3x}\cdot\dfrac{1}{x}=\dfrac{2\cdot 1}{3x\cdot x}=\dfrac{2}{3x^2}.$$
So by $(3)$ we have
$$\dfrac{\ \dfrac{1}{x}\ }{2} + \dfrac{\ \dfrac{2}{3x}\ }{x}=\dfrac{1}{2x}+\dfrac{2}{3x^2}=\dfrac{1\cdot 3x^2+2\times 2x}{2x\cdot 3x^2 }=\dfrac{3x^2+4x}{6x^3}=\dfrac{x(3x+4)}{x(6x^2)}=\dfrac{3x+4}{6x^2}.$$
For
$$\dfrac{x}{\; \dfrac{2}{x}\ } + \dfrac{\; \dfrac{1}{x}\; }{x}$$
we have
$$\dfrac{\; x\; }{\dfrac{2}{x}} + \dfrac{\; \dfrac{1}{x}\; }{x}=\dfrac{x\cdot x}{2} + \dfrac{1}{x\cdot x}=\dfrac{x^2}{2}+\cfrac{1}{x^2}=\dfrac{x^2\cdot x^2+2\cdot 1}{2\cdot x^2}=\dfrac{x^4+2}{2x^2}.$$
We can apply the property Division by a fraction is the same as multiplication by its inverse or reciprocal to the following fraction
$$\dfrac{\;\dfrac{a}{b}\;}{\dfrac{c}{d}}=\dfrac{a}{b}\cdot \dfrac{d}{c}=\dfrac{a\cdot d}{b\cdot c}=\dfrac{ad}{bc}\qquad (4).$$