1
$\begingroup$

How can one plot a three-dimensional plot of a differential equation system of the following to show the trajectories in mathematica:

$x' = yz,~ y' = -2xz,~ z' = xy$

I tried using VectorPlot3D and ParametricPlot3D

  • 0
    `ParametricPlot3D[]` should be fine. What were you expecting that you didn't get?2011-11-11
  • 0
    J.M.: I would like the trajectories to be displayed along the xyz axis. Parametric places it inside of a volume, (rectangle).2011-11-11
  • 0
    Oh, you want three-dimensional axes to be shown (somewhat like using `Axes` instead of `Frame` in the two-dimensional case)?2011-11-11
  • 0
    As an alternative : Maple command [DEplot3d](http://www.maplesoft.com/support/help/Maple/view.aspx?path=DEtools%2fDEplot3d)2011-11-11
  • 0
    If you send me all necessary parameters I will try to plot your system...2011-11-11

1 Answers 1

2

How about like so, parameterizing initial conditions by spherical angles $\theta$ and $\phi$:

enter image description here

The copy-paste-ready code:

Traj[\[Theta]_, \[Phi]_, tmax_] := 
 Module[{sol}, {sol} = 
   NDSolve[And @@ {x'[t] == y[t] z[t], y'[t] == -2 x[t] z[t], 
      z'[t] == x[t] y[t], x[0] == Sin[\[Theta]] Cos[\[Phi]], 
      y[0] == Sin[\[Theta]] Sin[\[Phi]], z[0] == Cos[\[Theta]]}, {x, 
     y, z}, {t, 0, tmax}];
  sol]

Show[ParametricPlot3D[{x[t], y[t], z[t]} /. {Traj[Pi/5, Pi/3, 7], 
     Traj[3 Pi/5, Pi/3, 7], Traj[2 Pi/5, Pi/7, 7]}, {t, 0, 7}, 
   PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}, Evaluated -> True] /. 
  Line -> Tube, Graphics3D[{Sphere[{0, 0, 0}, 1]}]]
  • 0
    @nightown Try this `Show[ParametricPlot3D[{x[t], y[t], z[t]} /. {Traj[Pi/5, Pi/3, 7], Traj[3 Pi/5, Pi/3, 7], Traj[2 Pi/5, Pi/7, 7]}, {t, 0, 7}, PlotRange -> 1.4 {{-1, 1}, {-1, 1}, {-1, 1}}, Evaluated -> True] /. Line -> Tube, ParametricPlot3D[{Sin[\[Theta]] Cos[\[Phi]], Sin[\[Theta]] Sin[\[Phi]], Cos[\[Theta]]}, {\[Theta], 0, Pi}, {\[Phi], 0, 2 Pi}, PlotStyle -> None, MeshStyle -> LightGray], Boxed -> False, AxesOrigin -> {0, 0, 0}, Ticks -> None]`2011-11-11