7
$\begingroup$

Let $ a_{n} = \sum_{k=1}^{n} \frac{n}{n^{2}+k}$ . I would like to know whether the given sequence converges.

I see that,

$ a_{n} = \sum_{k=1}^{n} \frac{n}{n^{2}+k}= \sum_{k=1}^{n} \frac{1}{n+\frac{k}{n}}.$ When $n$ gets sufficiently large the contribution by the $ \frac{k}{n} $ term is diminishing and $ a_{n} < \sum_{k=1}^{n} \frac{1}{n} = 1 $.

Thank you.

  • 2
    Also note that $a_n>\frac{n}{n+1}$. What does that say about the convergence?2011-11-01
  • 1
    A sloppy approach seems to yield consistent results: $$\sum\limits_{k=1}^n \frac{n}{n^2+k}=n\left(\sum\limits_{k=1}^{n^2+n}\frac1{k}-\sum\limits_{k=1}^{n^2}\frac1{k}\right)\approx n(\log(n^2+n)-\log(n^2))=\log\left(1+\frac1{n}\right)^n$$...2011-11-01
  • 0
    $\sum\limits_{k=1}^n \frac{n}{n^2+k}=n(H_{n^2+n}-H_{n^2})$ ,[definition](http://mathworld.wolfram.com/HarmonicNumber.html) of $H$2011-11-01
  • 1
    Thank you all .I found your discussions to be very useful!2011-11-01

1 Answers 1

6

$$\frac{1}{n+1}\leq \frac{1}{n+\frac{k}n} \leq \frac{1}{n}$$

So $\frac{n}{n+1} \leq a_n \leq 1$

So $a_n\rightarrow 1$.