First of all, your example is not the inverse of a Jordan canonical form. If it was, all the coefficients along the main diagonal should be equal: $a = b = c= d$.
I've been doing some experiments with Matlab and I'm making some conjectures. Let
$$
J =
\begin{pmatrix}
\lambda & 0 & 0 & \dots & 0 & 0 \\
1 & \lambda & 0 & \dots & 0 & 0 \\
0 & 1 & \lambda & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \dots & \lambda & 0 \\
0 & 0 & 0 & \dots & 1 & \lambda
\end{pmatrix}
$$
be a Jordan block.
Conjecture 1.
$$
J^{-1} =
\begin{pmatrix}
1/\lambda & 0 & 0 & \dots & 0 & 0 \\
-1/\lambda^2 & 1/ \lambda & 0 & \dots & 0 & 0 \\
1/\lambda^3 & -1/\lambda^2 & 1/\lambda & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
(-1)^{n-2}1/\lambda^{n-1} & (-1)^{n-3}1/\lambda^{n-2} & (-1)^{n-4}1/\lambda^{n-3} & \dots & 1/\lambda & 0 \\
(-1)^{n-1}1/\lambda^n & (-1)^{n-2}1/\lambda^{n-1} & (-1)^{n-3}1/\lambda^{n-2} & \dots & -1/\lambda^2 & 1/\lambda
\end{pmatrix}
$$
Conjecture 2.
The Jordan canonical form of $J^{-1}$ is
$$
\begin{pmatrix}
1/\lambda & 0 & 0 & \dots & 0 & 0 \\
1 & 1/\lambda & 0 & \dots & 0 & 0 \\
0 & 1 & 1/\lambda & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \dots & 1/\lambda & 0 \\
0 & 0 & 0 & \dots & 1 & 1/\lambda
\end{pmatrix}
$$
Conjecture 3.
The change of basis matrix (that is, the matrix of generalized eigenvectors) is, at least for $n=2, 3$ (I'm too lazy to write the general formula):
$$
S_2 =
\begin{pmatrix}
1 & 0 \\
0 & -1/\lambda \\
\end{pmatrix}
\qquad \qquad
S_3 =
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1/\lambda^2 & 0 \\
0 & 1/\lambda^3 & 1/\lambda^4
\end{pmatrix}
$$
EDIT. Ok, so "conjecture" 1 is true -and well-known, as J.M. pointed out. As for conjecture 2, I think it's also true. Here is my proof.
More generally, let's find the Jordan canonical form of a triangular matrix like
$$
A =
\begin{pmatrix}
a_1 & 0 & 0 & \dots & 0 & 0 \\
a_2 & a_1 & 0 & \dots & 0 & 0 \\
a_3 & a_2 & a_1 & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_1 & 0 \\
a_n & a_{n-1} & a_{n-2} & \dots & a_2 & a_1
\end{pmatrix}
$$
That is, our $J^{-1}$. In fact in what follows the only two things that we need are:
- All the entries along the main diagonal must be equal.
- All the entries along the second main diagonal (those $a_2$'s) must be different from zero (but not necessarily equal).
The rest of the entries could be as you please.
Ok, so the characteristic polynomial clearly is
$$
Q_A(t) = \pm (t - a_1)^n
$$
-so we have just one eigenvalue: $a_1$- and the rang of the matrix $A - a_1 I$ is $n-1$, because of that $a_2 \neq 0$. Hence de dimension of the null space of $A - a_1 I$ is $1$. So there is just one $n\times n$ Jordan block, namely the one with eigenvalue $a_1$.