$$\text{Evaluate } \sum_{k=1}^n k^2 \text{ and } \sum_{k=1}^{n}k(k+1) \text{ combinatorially.}$$
For the first one, I was able to express $k^2$ in terms of the binomial coefficients by considering a set $X$ of cardinality $2k$ and partitioning it into two subsets $A$ and $B$, each with cardinality $k$. Then, the number of ways of choosing 2-element subsets of $X$ is $$\binom{2k}{2} = 2\binom{k}{2}+k^2$$ So sum $$\sum_{k=1}^n k^2 =\sum_{k=1}^n \binom{2k}{2} -2\sum_{k=2}^n \binom{k}{2} $$ $$ \qquad\qquad = \color{red}{\sum_{k=1}^n \binom{2k}{2}} - 2 \binom{n+1}{3} $$ I am stuck at this point to evaluate the first of the sums. How to evaluate it?
I need to find a similar expression for $k(k+1)$ for the second sum highlighted above. I have been unsuccessful this far. (If the previous problem is done then so is this, but it would be nice to know if there are better approaches or identities that can be used.)
Update: I got the second one. Consider $$\displaystyle \binom{n+1}{r+1} = \binom{n}{r}+\binom{n-1}{r}+\cdots + \binom{r}{r}$$ Can be shown using recursive definition. Now multiply by $r!$ and set $r=2$