I have a function defined as follows: $f(x,y)= \dfrac{x^2-y^2}{\left(x^2+y^2\right)^2}$, if $(x,y)\neq (0, 0)$ and $f(x,y)=0$ if $(x,y)=(0,0)$. Now, $$\int_0^1\int_0^1 f(x,y)\,\text{d}x~\text{d}y=-\frac{\pi}{4}$$ and $$\int_0^1\int_0^1 f(x,y)\,\text{d}y~\text{d}x=\frac{\pi}{4}.$$ The question I have is this: why does this not contradict Fubini's theorem?
thanks.