1
$\begingroup$

Let $f\left(x\right):=e^{x}+e^{-x}+2$ and $g_{\beta}\left(x\right):=4e^{\beta x^{2}}$. Do there exist $a>0$ and $\beta>0$, such that $f\left(x\right)\le g\left(x\right)$ for all $x$, $0\le x\le a$?

Thanks for any helpful answers!

1 Answers 1