Let $M\subset \mathbb C^2$ be a hypersurface defined by $F(z,w)=0$. Then for some point $p\in M$, I've $$\text{ rank of }\left( \begin{array}{ccc} 0 &\frac{\partial F}{\partial z} &\frac{\partial F}{\partial w} \\ \frac{\partial F}{\partial z} &\frac{\partial^2 F}{\partial ^ 2z} &\frac{\partial^2 F}{\partial z\partial w} \\ \frac{\partial F}{\partial w} &\frac{\partial^2 F}{\partial w\partial z} & \frac{\partial^2 F}{\partial w^2} \\ \end{array} \right)_{\text{ at p}}=2.$$
What does it mean geometrically? Can anyone give a geometric picture near $p$?
Any comment, suggestion, please.
Edit: Actually I was reading about Levi flat points and Pseudo-convex domains. I want to understand the relation between these two concepts. A point p for which the rank of the above matrix is 2 is called Levi flat. If the surface is everywhere Levi flat then it is locally equivalent to $(0,1)\times \mathbb{C}^n$, so I have many examples....but what will happen for others for example take the three sphere in $\mathbb{C}^2$ given by $F(z,w)=|z|^2+|w|^2−1=0$. This doesn't satisfy the rank 2 condition. Can I have precisely these two situations?