Suppose that $f$ is a continuous and real function on $[0,\infty]$. How can we show that if $\lim_{n\rightarrow\infty}(f(na))=0$ for all $a>0$ then $\lim_{x\rightarrow+\infty} f(x)=0$?
Limit of a continuous function
3
$\begingroup$
calculus
limits