Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a real function, and satisfy that: for all $x\in\mathbb{R}$ $$\lim_{r\to x,r\in\mathbb{Q}}f(r)=f(x).$$ Show that $f$ is continuous on $\mathbb{R}.$
Proof of continuity for a real function!
6
$\begingroup$
real-analysis
-
0you have continuous function $\tilde{f}$ on $\mathbb Q$. Now the question is: what is extension of this functon on $\mathbb R$. Try this http://www.physicsforums.com/showthread.php?t=430083 – 2012-10-09