Show that $\delta$, function of Dirac, defined than $\left<{\delta_0,\phi}\right> = \phi(0)$ belongs to $W^{-1,p}(]-1,1[)$ and $\delta_0 \notin L^p(-1,1)$ $\forall p\geq 1$.
How I will be able to start?
Show that $\delta$, function of Dirac, defined than $\left<{\delta_0,\phi}\right> = \phi(0)$ belongs to $W^{-1,p}(]-1,1[)$ and $\delta_0 \notin L^p(-1,1)$ $\forall p\geq 1$.
How I will be able to start?