$f(x)=\max(2x+1,3-4x)$, where $x \in \mathbb{R}$. what is the minimum possible value of $f(x)$.
when, $2x+1=3-4x$, we have $x=\frac{1}{3}$
$f(x)=\max(2x+1,3-4x)$, where $x \in \mathbb{R}$. what is the minimum possible value of $f(x)$.
when, $2x+1=3-4x$, we have $x=\frac{1}{3}$