0
$\begingroup$

Is there a simple example which verify the following assertion : $ G / H_1 \cong G / H_2 $ and $ | G / H_1 | = | G / H_2 | = 2 $ and $ H_1 \neq H_2 $ ? $ G $ is a groupe. $ H_1 $ and $ H_2 $ are two subgroups normals of $ G $. Thanks to all people here in this web site.

3 Answers 3