let $m$ be an integer with $m\equiv 1 \pmod4$ and $m<-3$.
$U\left(\mathbb{Z}+\mathbb{Z}(\frac{1+\sqrt{m}}{2})\right)=\{\pm1\}$ How can I prove that?
let $m$ be an integer with $m\equiv 1 \pmod4$ and $m<-3$.
$U\left(\mathbb{Z}+\mathbb{Z}(\frac{1+\sqrt{m}}{2})\right)=\{\pm1\}$ How can I prove that?