15
$\begingroup$

Let $f(\sin x)$ be a given function of $\sin x$.

How would I show that $\int_0^\pi xf(\sin x)dx=\frac{1}{2}\pi\int_0^\pi f(\sin x)dx$?

2 Answers 2

25

If you make the substitution $w = \pi-x$, so that $dw = -dx$, you get $$\int_0^\pi xf(\sin x)dx=-\int_\pi^0 (\pi-w)f(\sin(\pi-w))dw$$ $$ = \int_0^\pi (\pi-x)f(\sin(x))dx$$ $$ = \pi\int_0^\pi f(\sin(x))dx - \int_0^\pi xf(\sin(x))dx$$ which gives the result you want.

  • 0
    Thanks, most appreciated. :)2012-06-17
7

$\int_0^\pi xf(\sin x)d$

=$\int_0^\pi (\pi-x)f(\sin (\pi - x))dx$

= $\int_0^\pi (\pi-x)f(\sin x)dx$

= $\pi\int_0^\pi f(\sin x)dx$ - $\int_0^\pi xf(\sin x)dx$

$2\int_0^\pi xf(\sin x)d$ = $\pi\int_0^\pi f(\sin x)dx$

$\int_0^\pi xf(\sin x)d$ = $\frac{\pi}{2}\int_0^\pi f(\sin x)dx$

I am using this formula, $\int_a^b f(x)dx$ =$\int_a^b f(a+b-x)dx$

  • 0
    Its ok, thanks for your help!2012-06-17
  • 0
    there should be $\frac{\pi}{2}\int_0^\pi f(\sin x)dx$ instead of $\frac{\pi}{2}\int_0^\pi \sin xdx$.2012-07-12
  • 0
    @avatar: Thanks2012-07-12