Are the following matrices invertible?
(1) $A= (a_{ij})_{2003 \times 2003}$, where $a_{ii}=2003, a_{ij}=1$ for $i \not=j$.
(2) $B= (b_{ij})_{n \times n }$ with $b_{ii}= \pi$ and $b_{ij} \in \mathbb{Q}$ for $i \not= j$.
Thank you so much.
Are the following matrices invertible?
(1) $A= (a_{ij})_{2003 \times 2003}$, where $a_{ii}=2003, a_{ij}=1$ for $i \not=j$.
(2) $B= (b_{ij})_{n \times n }$ with $b_{ii}= \pi$ and $b_{ij} \in \mathbb{Q}$ for $i \not= j$.
Thank you so much.