How do I get from $$\sum_{n=0}^{\infty}\frac{(1/e)^n}{n!} = e^{1/e}$$
I am given
$$e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}$$
I am thinking
$$\sum \frac{n!}{n^n}\cdot \frac{1}{n!}$$
But it seems wrong
How do I get from $$\sum_{n=0}^{\infty}\frac{(1/e)^n}{n!} = e^{1/e}$$
I am given
$$e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}$$
I am thinking
$$\sum \frac{n!}{n^n}\cdot \frac{1}{n!}$$
But it seems wrong
Let $x=1/e$.${}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}$