0
$\begingroup$

Consider having vector

$$v = \begin{pmatrix} v_1\\ v_2\\ \vdots\\ v_n \end{pmatrix}$$

Consider the final result:

$$ V = \begin{pmatrix} v_1 & 0 & \dots & 0\\ 0 & v_2 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & v_n\\ \end{pmatrix} $$

How to get matrix $V$ operating on $v$ with matricial operations?

Thanks

  • 1
    $\sum_i v^Te_i\cdot e_ie_i^T$ with the $i$-th standard basis vector denoted by $e_i$.2012-05-15
  • 0
    What are 'matricial operations'?2012-05-15
  • 0
    I mean just products and sums...2012-05-15

1 Answers 1