1
$\begingroup$

I need to calculate the following limes:

$$ \lim_{n\rightarrow\infty} \sqrt{\frac{1}{n^2}+x^2} $$

My first intuition was that the answer is $x$, but after a bit of fiddling with the root I got thoroughly confused. I know that below conversion goes wrong somwhere, but where?

$$ \lim_{n\rightarrow\infty} \sqrt{\frac{1}{n^2}+x^2} = \lim_{n\rightarrow\infty} \sqrt{\frac{1+x^2*n^2}{n^2}} = \lim_{n\rightarrow\infty} \frac{\sqrt{1+x^2*n^2}}{n} = \lim_{n\rightarrow\infty} \frac{\sqrt{\frac{1}{n^2}+x^2}}{n} = 0 $$

  • 1
    On the left hand side of the last equality, you need an "$n$" upstairs outside the radical ($\sqrt{1+x^2n^2}=\sqrt{n^2({1\over n^2}+x^2)}=n\sqrt{{1\over n^2}+x^2}$. Note though, you then have obtained exactly what you started with,2012-07-31
  • 0
    I wanna figure out the fact that the answer is $|x|$, not $x$.2012-07-31
  • 0
    @FrankScience: In general, for real $a$, $\sqrt{a^2}=|a|$. This is because (for $w \ge 0$), $\sqrt{w}$ is defined to be the **non-negative** $s$ such that $s^2=t$.2012-07-31
  • 0
    Of course, given that nowhere it was stated from which set $x$ is taken (positive numbers, real numbers, complex numbers, or maybe something completely different), all one can say is that the result is $\sqrt{x^2}$2012-07-31

2 Answers 2

3

$$ \lim_{n\rightarrow\infty} \sqrt{\frac{1}{n^2}+x^2} = \lim_{n\rightarrow\infty} \sqrt{\frac{1+x^2 \cdot n^2}{n^2}} = \lim_{n\rightarrow\infty} \frac{\sqrt{1+x^2 \cdot n^2}}{n} \neq \lim_{n\rightarrow\infty} \frac{\sqrt{\frac{1}{n^2}+x^2}}{n} $$ $$ \lim_{n\rightarrow\infty} \sqrt{\frac{1}{n^2}+x^2} = \lim_{n\rightarrow\infty} \sqrt{\frac{1+x^2 \cdot n^2}{n^2}} = \lim_{n\rightarrow\infty} \frac{\sqrt{1+x^2 \cdot n^2}}{n} = \lim_{n\rightarrow\infty} \frac{n\sqrt{\frac{1}{n^2}+x^2}}{n} $$

  • 0
    You need to cancel out the $n$ in the numerator and denominator to avoid $\infty/\infty$. Also, use \lim instead of just lim for the limit.2012-07-31
  • 0
    Sorry I have used CtrlC, CtrlV.2012-07-31
  • 0
    @RijulSaini: If you take the limit, there is no such thing as $\infty/\infty$.2012-07-31
0

Clearly, $$\lim_{n\rightarrow\infty} \frac{\sqrt{1+x^2*n^2}}{n} \not = \lim_{n\rightarrow\infty} \frac{\sqrt{\frac{1}{n^2}+x^2}}{n} $$ due to a factor of $n$.