$u$ satisfies "mean value property locally " on $\Omega$ if for every $x\in \Omega \exists \delta=\delta (x)>0 $ such that
$u(x) \le \frac {1}{|\mu(B(x,r)|}\int_{\partial B(x,r)} u(y) dS_y$
for all $r\le \delta(x)$
Does this imply that if $u\in C^2(\Omega)$ and satisfies mean value property locally in $\Omega$ then $u$ is subharmonic ?? Any hints will be nice.