Let $a,b,c$ be three real positive(strictly) numbers. Prove that:
$$(a^2+bc)(b^2+ca)(c^2+ab) \geq abc(a+b)(b+c)(c+a).$$
I tried :
$$abc\left(a+\frac{bc}{a}\right)\left(b+\frac{ca}{b}\right)\left(c+\frac{ab}{c}\right)\geq abc(a+b)(b+c)(c+a) $$ and now I want to try to prove that for example $$a+\frac{bc}{a} \geq a+b$$
but I don't know if is is a good idea.
Thanks:)