I would like to show that $$ \sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{n^2-m^2}}\rightarrow_{m\rightarrow \infty}\frac{\pi}{2}$$
Using integrals:
$$ m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}} \leq \sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{n^2-m^2}} \leq m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}}+\frac{m}{(m+1)\sqrt{2m+1}}$$
$$ m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}} = \frac{\pi}{2}-\arctan \left(1+\frac{1}{m} \right)=\frac{\pi}{4}+o(1)$$
The result I get is:
$$ \sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{n^2-m^2}}\rightarrow_{m\rightarrow \infty}\frac{\pi}{4}$$
Where did I go wrong?