2
$\begingroup$

When solving Laplacian equation, I need to integrate the following integration:

$$ \int_0^{2\pi}\frac{1+3\text{sin}\theta}{a^2+r^2-2ar\text{cos}(\theta-\phi)}\text{d}\theta $$

How to work it out?

1 Answers 1

0

Note that,

$$ \int_0^{2\pi}\frac{1+3\text{sin}\theta}{a^2+r^2-2ar\text{cos}(\theta-\phi)}\text{d}\theta= \int_0^{2\pi}\frac{1+3\text{sin}\theta}{a^2+r^2-2ar\,({\cos}(\theta)\cos(\phi)+\sin(\theta)\sin(\phi))}\text{d}\theta \,.$$

You can use residue theorem to evaluate the above integral using the technique. Also, you can find more detials about the technique here, see example(III).

  • 0
    I think that the observation $$ a^2 + r^2 - 2ar\cos(\theta-\phi) = \left|ae^{i\phi} - z\right|^2 = (ae^{i\phi} - z)(ae^{-i\phi} - \bar{z})$$ for $z = re^{i\theta}$ will also help apply residue theorem.2012-11-25
  • 0
    That's beautiful method, thank you!2012-11-26
  • 0
    @hxhxhx88: You are welcome.2012-11-26