Let $S=k[X_1,\cdots,X_n]$ and $\{f_1,\cdots f_q\}$ be a $S$-regular sequence with ${\rm deg}(f_i)=a_i$.
What is Hilbert polynomial of $S/ \langle f_1,\cdots,f_q\rangle$?
Let $S=k[X_1,\cdots,X_n]$ and $\{f_1,\cdots f_q\}$ be a $S$-regular sequence with ${\rm deg}(f_i)=a_i$.
What is Hilbert polynomial of $S/ \langle f_1,\cdots,f_q\rangle$?