2
$\begingroup$

Prove: $$ \Big|\int_1^\sqrt{3} \! \frac{\sin(x)}{e^x(x^2 +1)} \, \mathrm{d} x \Big| \leq \frac{\pi}{12e}$$

Approach: we know:

$$ \Big|\int_1^\sqrt{3} \! \frac{\sin(x)}{e^x(x^2 +1)} \, \mathrm{d} x \Big| \leq \int_1^\sqrt{3} \! \frac{|\sin(x)|}{e^x(x^2 +1)} \, \mathrm{d} x \leq \int_1^\sqrt{3} \! \frac{1}{e^x(x^2 +1)} \, \mathrm{d} x$$ Since $|\sin(x)|$ is bounded by 1 for every $x$. Can we keep estimating this integral, or should we just solve the last integral?

thanks.

1 Answers 1

3

Use the fact $ 1 and $|sin(x)|\leq 1$

$$\Big|\int_1^\sqrt{3} \! \frac{\sin(x)}{e^x(x^2 +1)} \, \mathrm{d} x \Big|\leq \int_1^\sqrt{3} \! \frac{1}{e(x^2 +1)} \, \mathrm{d} x \leq \frac{\pi}{12e}$$

  • 0
    why? can you explain?2012-10-16
  • 0
    @LJym89: Can you see it now?2012-10-16
  • 0
    GOT IT! thanks a lot2012-10-16
  • 0
    @LJym89:You are welcome.2012-10-16