I'am trying to solve $$\frac{\mathrm{dy} }{\mathrm{d} x}= e^{2x+3y}$$
I use the law of exponent to obtain $$\frac{\mathrm{dy} }{\mathrm{d} x}= e^{2x}e^{3y}$$
I send the $dx$ to the other side and integrate both sides after seperating the variables.$$\int \frac{dy}{e^{3y}} = \int(e^{2x})dx$$
I know the right hand side is equal to $\frac{e^{2x}}{2} + c$.How about the left hand side?