47
$\begingroup$

Prove that $$\sum _{l=1}^{n}\sum _{k=1}^{n-1}\tan \frac {lk\pi } {2n+1}\tan \frac {l( k+1) \pi } {2n+1}=0$$


It is very easy to prove this identity for each fixed $n$ . For example let $n = 6$; writing out all terms in a $5 \times 6$ matrix, we obtain:

$\begin{matrix} \tan \dfrac {\pi } {13}\tan \dfrac {2\pi } {13} & \tan \dfrac {2\pi } {13}\tan \dfrac {3\pi } {13} & \tan \dfrac {3\pi } {13}\tan \dfrac {4\pi } {13} & \tan \dfrac {4\pi } {13}\tan \dfrac {5\pi } {13} & \tan \dfrac {5\pi } {13}\tan \dfrac {6\pi } {13} \\ \tan \dfrac {2\pi } {13}\tan \dfrac {4\pi } {13} & \tan \dfrac {4\pi } {13}\tan \dfrac {6\pi } {13} & \tan \dfrac {6\pi } {13}\tan \dfrac {8\pi } {13} & \tan \dfrac {8\pi } {13}\tan \dfrac {10\pi } {13} & \tan \dfrac {10\pi } {13}\tan \dfrac {12\pi } {13} \\ \tan \dfrac {3\pi } {13}\tan \dfrac {6\pi } {13} & \tan \dfrac {6\pi } {13}\tan \dfrac {9\pi } {13} & \tan \dfrac {9\pi } {13}\tan \dfrac {12\pi } {13} & \tan \dfrac {12\pi } {13}\tan \dfrac {15\pi } {13} & \tan \dfrac {15\pi } {13}\tan \dfrac {18\pi } {13} \\ \tan \dfrac {4\pi } {13}\tan \dfrac {8\pi } {13} & \tan \dfrac {8\pi } {13}\tan \dfrac {12\pi } {13} & \tan \dfrac {12\pi } {13}\tan \dfrac {16\pi } {13} & \tan \dfrac {16\pi } {13}\tan \dfrac {20\pi } {13} & \tan \dfrac {20\pi } {13}\tan \dfrac {24\pi } {13} \\ \tan \dfrac {5\pi } {13}\tan \dfrac {10\pi } {13} & \tan \dfrac {10\pi } {13}\tan \dfrac {15\pi } {13} & \tan \dfrac {15\pi } {13}\tan \dfrac {20\pi } {13} & \tan \dfrac {20\pi } {13}\tan \dfrac {25\pi } {13} & \tan \dfrac {25\pi } {13}\tan \dfrac {30\pi } {13} \\ \tan \dfrac {6\pi } {13}\tan \dfrac {12\pi } {13} & \tan \dfrac {12\pi } {13}\tan \dfrac {18\pi } {13} & \tan \dfrac {18\pi } {13}\tan \dfrac {24\pi } {13} & \tan \dfrac {24\pi } {13}\tan \dfrac {30\pi } {13} & \tan \dfrac {30\pi } {13}\tan \dfrac {36\pi } {13} \end{matrix}$

one can notice then, that the first column vanish the fourth one :

$\tan \dfrac {\pi } {13}\tan \dfrac {2\pi } {13}=-\tan \dfrac {12\pi } {13}\tan \dfrac {15\pi } {13}$

$\tan \dfrac {2\pi } {13}\tan \dfrac {4\pi } {13}=-\tan \dfrac {24\pi } {13}\tan \dfrac {30\pi } {13}$

$\tan \dfrac {3\pi } {13}\tan \dfrac {6\pi } {13}=-\tan \dfrac {16\pi } {13}\tan \dfrac {20\pi } {13}$

$\tan \dfrac {4\pi } {13}\tan \dfrac {8\pi } {13}=-\tan \dfrac {4\pi } {13}\tan \dfrac {5\pi } {13}$

$\tan \dfrac {5\pi } {13}\tan \dfrac {10\pi } {13}=-\tan \dfrac {8\pi } {13}\tan \dfrac {10\pi } {13}$

$\tan \dfrac {6\pi } {13}\tan \dfrac {12\pi } {13}=-\tan \dfrac {20\pi } {13}\tan \dfrac {25\pi } {13}$

and the third column vanish the fifth one :

$\tan \dfrac {3\pi } {13}\tan \dfrac {4\pi } {13}=-\tan \dfrac {30\pi } {13}\tan \dfrac {36\pi } {13}$

$\tan \dfrac {6\pi } {13}\tan \dfrac {8\pi } {13}=-\tan \dfrac {5\pi } {13}\tan \dfrac {6\pi } {13}$

$\tan \dfrac {9\pi } {13}\tan \dfrac {12\pi } {13}=-\tan \dfrac {25\pi } {13}\tan \dfrac {30\pi } {13}$

$\tan \dfrac {12\pi } {13}\tan \dfrac {16\pi } {13}=-\tan \dfrac {10\pi } {13}\tan \dfrac {12\pi } {13}$

$\tan \dfrac {15\pi } {13}\tan \dfrac {20\pi } {13}=-\tan \dfrac {20\pi } {13}\tan \dfrac {24\pi } {13}$

$\tan \dfrac {18\pi } {13}\tan \dfrac {24\pi } {13}=-\tan \dfrac {15\pi } {13}\tan \dfrac {18\pi } {13}$

while the second column is self-vanishing:

$\tan \dfrac {2\pi } {13}\tan \dfrac {3\pi } {13}=-\tan \dfrac {10\pi } {13}\tan \dfrac {15\pi } {13}$

$\tan \dfrac {4\pi } {13}\tan \dfrac {6\pi } {13}=-\tan \dfrac {6\pi } {13}\tan \dfrac {9\pi } {13}$

$\tan \dfrac {8\pi } {13}\tan \dfrac {12\pi } {13}=-\tan \dfrac {12\pi } {13}\tan \dfrac {18\pi } {13}$ .

So the equality occurs. But how to generalize the proof?

  • 8
    +1 Kudos for writing down all that! I liked in particular your optimism, where you write "One can notice then that..."...I must confess I noticed nothing.2012-07-21
  • 4
    By using the identity $\tan a \tan b = \frac{\tan a - \tan b}{\tan(a-b)} - 1$, you can telescope the inner sum, showing that your quantity is equal to $-n^2+\sum_{l=1}^n \frac{\tan [nl\pi/(2n+1)]}{\tan [l\pi/(2n+1)]}$. I'm not sure where to go from there, but this sure looks like a simplification...2012-07-21
  • 0
    Fixed typo noted by @anon.2012-07-21
  • 2
    From your example, one might think that this is a number-theoretic effect that can be explained just in terms of residues, but that seems to be the case only if $2n+1$ is prime; if $2n+1$ is composite, there are terms that don't cancel any other term directly. The simplest such case is $n=4$ with $2n+1=9$, where the four terms for $k=1$ have no cancelling partners, but the sum of their contributions nevertheless vanishes, and this seems to always be the case. Thus the answer will have to involve more specific properties of the tangent than just its symmetries.2012-07-21
  • 0
    How do you know the result holds?2012-07-21
  • 1
    @Micah: Your comment pointed in the right direction; see my answer.2012-07-21

4 Answers 4