Let $C_0^\infty(\mathbb{R})$ be the set of smooth functions with compact support on the real line $\mathbb{R}.$ Then, the map
$$\operatorname{p.\!v.}\left(\frac{1}{x}\right)\,: C_0^\infty(\mathbb{R}) \to \mathbb{C}$$
defined via the Cauchy principal value as
$$ \operatorname{p.\!v.}\left(\frac{1}{x}\right)(u)=\lim_{\varepsilon\to 0+} \int_{\mathbb{R}\setminus [-\varepsilon;\varepsilon]} \frac{u(x)}{x} \, \mathrm{d}x \quad\text{ for }u\in C_0^\infty(\mathbb{R})$$
Now why is $$ \lim_{\varepsilon\to 0+} \int_{\mathbb{R}\setminus [-\varepsilon;\varepsilon]} \frac{u(x)}{x} \, \mathrm{d}x = \int_0^{+\infty} \frac{u(x)-u(-x)}{x}\, \mathrm{d}x $$ why is the integral defined on the left.