0
$\begingroup$

let $f$ be a step function, $ f:\left[0,2\right]\longrightarrow\mathbb{R} , f\left(x\right)=\begin{cases} 1 & 0\leq x<1\\ 3 & x=1\\ 2 & 1<x\leq2 \end{cases} $

intgerate ${\displaystyle \intop_0^2 f\left(x\right)\,dx}$ using the $U\left(f,P\right),L\left(f,P\right)$ definition.

  • 0
    Choose good partitions so that upper and lower sums are close.2012-04-20
  • 0
    @GEdgar that's part of the problem, how do you choose good partitions?2012-04-20
  • 0
    Look at your $f$. Where can you get upper and lower sums with terms that are *equal*? How can you minimize difference for the rest?2012-04-20

1 Answers 1