Possible Duplicate:
How can I give a bound on the $L^2$ norm of this function?
For $f\in L^p((1,\infty),m)$, $2
Want to prove that there exists $C$ which only depends on $p$, such that
$$V(f,x)=\frac{1}{x}\int^{10x}_x\frac{f(t)}{t^{\frac{1}{4}}}dm(t)$$
satisfies
$$||V(f,x)||_{L^2((1,\infty),m)}\le C||f||_{L^p((1,\infty),m)}$$