2
$\begingroup$

Imagine I have this limit:

$$\lim_{x\to 0}\frac{\ln(1+2x)}x$$

Using the L'Hospital's rule the result is $2$.

Using this result is it possible to calculate

$$\lim_{n\to \infty}\ n\ln\bigg(1+\frac{4}{\sqrt{n}}\bigg) \quad ?$$

Sorry if this is an easy question, but many years have passed since I've learned calculus.

2 Answers 2

5

Note that $$n\ln\bigg(1+\frac{4}{\sqrt{n}}\bigg)=2\cdot\sqrt{n}\cdot\dfrac{\ln\bigg(1+2\cdot\frac{2}{\sqrt{n}}\bigg)}{\frac{2}{\sqrt{n}}}.$$ Now use that $$\lim_{x\to 0}\frac{\ln(1+2x)}x=2$$ and the fact that $$a_n\xrightarrow[n\to\infty]{}+\infty, \ b_n\xrightarrow[n\to\infty]{}b>0 \ \Longrightarrow \ a_nb_n\xrightarrow[n\to\infty]{}+\infty.$$

  • 0
    Thanks. So this limit is $$2\cdot\sqrt{n}\cdot 2=\infty$$?2012-12-28
  • 0
    @Favolas: Yes the limit is $\infty$. To be formal you should say: since $\lim2\sqrt{n}=\infty$ and $\lim \cdots =2 \Rightarrow \lim 2\sqrt{n} \cdots =\infty$.2012-12-29
  • 0
    Thanks for your explanation2012-12-29
1

Hint: If you substitute $u=\frac1x$ then $$\lim_{u\to +\infty}u\ln(1+\frac2u)=2$$ This looks kind of like your limit. Substitute some more and you'll get it. For example substitute $v=u^2$. Then $$\lim_{v\to +\infty}\sqrt{v}\ln(1+\frac2{\sqrt{v}})=2$$

  • 0
    Thanks but I believe you forgot the square root2012-12-28
  • 0
    @Favolas I didn't forget any square root. That's why I said : "Substitute some more and you'll get it"2012-12-28
  • 0
    Ok. Sorry. I had problems with the square root2012-12-28