5
$\begingroup$

Evaluate

$$\lim_{n\to\infty}\left(\frac{n \cdot n!}{e\cdot (-2)^{n+1}}\cdot \left(1-e^2 \sum_{k=0}^{n} \frac{(-2)^k}{k!}\right)\right)$$

1 Answers 1

4

$$\sum_{k=0}^{n} \dfrac{(-2)^k}{k!} = e^{-2} - \left( \sum_{k=n+1}^{\infty} \dfrac{(-2)^k}{k!}\right)$$ Hence, $$1 - e^2 \left(\sum_{k=0}^{n} \dfrac{(-2)^k}{k!} \right) = e^2 \left( \sum_{k=n+1}^{\infty} \dfrac{(-2)^k}{k!}\right)$$ Hence, $$f(n) = \left(\frac{n \cdot n!}{e\cdot (-2)^{n+1}}\cdot \left(1-e^2 \sum_{k=0}^{n} \frac{(-2)^k}{k!}\right)\right) = \left(\frac{n \cdot n!}{e\cdot (-2)^{n+1}}\cdot e^2 \left( \sum_{k=n+1}^{\infty} \dfrac{(-2)^k}{k!}\right)\right)$$ $$f(n) = e n \cdot n! \left( \sum_{k=0}^{\infty} \dfrac{(-2)^k}{(k+n+1)!}\right) = \dfrac{n}{n+1} \underbrace{e \cdot (n+1)! \left( \sum_{k=0}^{\infty} \dfrac{(-2)^k}{(k+n+1)!}\right)}_{g(n)}$$ $$g(n) = e \left(1 + \dfrac{(-2)}{(n+2)} + \dfrac{(-2)^2}{(n+2)(n+3)} + \cdots \right)$$ Hence, $\lim g(n) = e$ and hence $\lim f(n) = e$.

  • 0
    @Chris'ssister What trick exactly are you talking about?2012-11-21
  • 0
    @Chris'ssister I recognized that $$\sum_{k=0}^{n} \frac{(-2)^k}{k!}$$ was the leading order term of $e^{-2}$. I don't think I would categorize it as a trick. More of recalling it from memory.2012-11-21
  • 0
    I emphasized a different thing and not the fact that $\sum_{k=0}^{n} \frac{(-2)^k}{k!}$ is the leading order term of $e^{-2}$. Anyway.2012-11-21