Consider a Hilbert space $H=L^2(\mathbb{R}_+)$, take its conjugate $\overline{H} := \left\{f^{+}, f \in H \right\}$, where $+$ stands for the conjugation. Space $\overline{H}$ is a Hilbert space with an inner product $\left
Complex conjugate of the Hilbert space
1
$\begingroup$
functional-analysis
hilbert-spaces
-
0What does $f^{+}$ mean? – 2012-11-30