Let $z$, $\lambda$, $\mu$ be complex numbers. Find a case where $(z^\lambda)^\mu$ is not equal to $z^{\lambda\mu}$.
In our book, $a^b = \exp( b \cdot \operatorname{Log}(a) )$.
$\operatorname{Log}(a) = \ln |a| + i \operatorname{Arg}(a)$.
$\operatorname{Arg}(a)$ is a value in $(-\pi,\pi]$.
Thank you for your help.