If $f(x)=\text{arccot}(x)$ for non-negative $x$ and $0$ otherwise, how can I calculate
$$\int_{-\infty}^\infty f(x)f(y-x)\, \mathrm dx$$
for $y\in\mathbb{R}$?
If $f(x)=\text{arccot}(x)$ for non-negative $x$ and $0$ otherwise, how can I calculate
$$\int_{-\infty}^\infty f(x)f(y-x)\, \mathrm dx$$
for $y\in\mathbb{R}$?