5
$\begingroup$

I solved this problem in complex integrals.

Is my answer a correct ?

Here $z$ is a complex value:

$$ C:|z-1|=1 \ \ \ \ \ \mbox{integral path} $$

$$ \int_C\ \frac{2z^2-5z+1}{z-1}\ dz $$

My answer

$$ z=1+e^{i\theta} \ \ \ \ \frac{dz}{d\theta}=ie^{i\theta} $$

$$ \int_{0}^{2\pi}\ \frac{-e^{i\theta}+2e^{2i\theta}-2}{e^{i\theta}} \cdot\ ie^{i\theta} d\theta $$

$$ =\left[ -e^{i\theta}+ e^{2i\theta} -2i\theta \right]^{2\pi}_0=-4\pi i $$

  • 2
    The approach seems correct.2012-10-20
  • 1
    The answer is correct.2012-10-20

1 Answers 1