9
$\begingroup$

How do I begin to evaluate this limit: $$\lim_{n\to \infty}\ \frac{1\cdot3\cdot5\cdot\ldots\cdot(2n-1)}{2\cdot4\cdot6\cdot\ldots\cdot2n}\;?$$

Thanks a lot.

  • 0
    What limits do you already know? This product can be written as $\prod_{k=1}^n (1-\frac{1}{2k})$.2012-05-01
  • 0
    See also: [How to prove that $\lim_{n \to\infty} \frac{(2n-1)!!}{(2n)!!}=0$](https://math.stackexchange.com/q/788096)2018-05-13

2 Answers 2

23

A simple, but famous trick works here: Observe that $(n-1)(n+1) = n^2 - 1 \leq n^2$. Thus we have $$ \begin{align*} & \left[ \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \right]^2 \\ &= \frac{1 \cdot 1}{2 \cdot 2}\cdot\frac{3 \cdot 3}{4 \cdot 4}\cdot\frac{5 \cdot 5}{6 \cdot 6}\cdots\frac{(2n-3) \cdot (2n-3)}{(2n-2) \cdot (2n-2)}\cdot\frac{(2n-1) \cdot (2n-1)}{(2n) \cdot (2n)} \\ &= \frac{1 \cdot 3}{2 \cdot 2}\cdot\frac{3 \cdot 5}{4 \cdot 4}\cdot\frac{5 \cdot 7}{6 \cdot 6}\cdots\frac{(2n-3) \cdot (2n-1)}{(2n-2) \cdot (2n-2)}\cdot\left(\frac{2n-1}{(2n)^2}\right) \\ & \leq \frac{2n-1}{(2n)^2} \\ & \leq \frac{1}{2n}. \end{align*} $$ Thus we have $$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \leq \frac{1}{\sqrt{2n}} $$ and the limit is zero. In fact, the sharp estimate $$ \frac{1}{\sqrt{(\pi + o(1)) n}} \leq \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \leq \frac{1}{\sqrt{\pi n}} $$ holds, so the estimation above is not so far from the truth.

  • 0
    You seem to be great when it comes to integrals. Could you help me with [this](http://math.stackexchange.com/questions/139482/frac1ex-1-gammas-zetas-and-xs-1)?2012-05-01
  • 0
    where did you use the fact that $(n-1)(n+1) = n^2 - 1 \leq n^2$ and why does $\begin{align*} & \frac{1 \cdot 3}{2 \cdot 2}\cdot\frac{3 \cdot 5}{4 \cdot 4}\cdot\frac{5 \cdot 7}{6 \cdot 6}\cdots\frac{(2n-3) \cdot (2n-1)}{(2n-2) \cdot (2n-2)}\cdot\left(\frac{2n-1}{(2n)^2}\right) \leq \frac{2n-1}{(2n)^2} \end{align*}$?2012-05-01
  • 0
    @Anonymous: Note that $$ \frac{(n-1)(n+1)}{n^2} \leq 1.$$ This fact is applied fraction-wise (but for the last term) to the LHS of the inequality.2012-05-01
  • 0
    @sos440 sorry for not fully understanding your proof yet; I understand that $\frac{(n-1)(n+1)}{n^2} \leq 1$, however I don't see how it relate to the proof; also did you rely on the fact that $\begin{align*} & \frac{1 \cdot 3}{2 \cdot 2}\cdot\frac{3 \cdot 5}{4 \cdot 4}\cdot\frac{5 \cdot 7}{6 \cdot 6}\cdots\frac{(2n-3) \cdot (2n-1)}{(2n-2) \cdot (2n-2)} < 1 \end{align*}$? if so, why is that correct? Thanks a lot for your time and help.2012-05-01
  • 0
    @Anonymous: Yes, exactly. Actually, I'm a bit confused since you are asking, while understanding all the key facts where the proof relies on. You may try $x = 2, 4, \cdots, 2n-2$ to $$\frac{(x-1) \cdot(x+1)}{x \cdot x} \leq 1$$ to see why that is true.2012-05-01
  • 1
    @Anonymous: I believe you are understanding the inequality $$0 < \frac{(x-1)(x+1)}{x^2} < 1$$ if $x > 1$. This follows directly from the inequality $0 < (x+1)(x-1) = x^2 - 1 < x^2$. Then plugging $x = 2, 4, \cdots 2n-2$, we have $$ 0 < \frac{1 \cdot 3}{2 \cdot 2} < 1, \quad 0 < \frac{3 \cdot 5}{4 \cdot 4} < 1, \quad \cdots, \quad 0 < \frac{(2n-3)\cdot(2n-1)}{(2n-2)\cdot(2n-2)} < 1.$$ Now multiply these inequalities term-by-term. Then we obtain the desired inequality.2012-05-01
  • 0
    @sos440 finally I understand what you meant to write all along the way with $\frac{(n-1)(n+1)}{n^2} \leq 1$! I understand the proof fully now, thank you very very much for your great help! :)2012-05-01
10

This is almost a quite famous limit.

Wallis showed that

$$\lim_{n \to \infty} \left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac 1 n = \pi$$

or that

$$ \frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}$$

Your limit is

$$\lim_{n \to \infty} \frac{(2n-1)!!}{(2n)!!}$$

which by the above asymtotical behaviour is

$$\lim_{n \to \infty} \frac{(2n-1)!!}{(2n)!!} = \lim_{n \to \infty} \frac{1}{\sqrt{\pi n}}=0$$

Note you can write you expression as

$$\frac{{\left( {2n - 1} \right)!!}}{{\left( {2n} \right)!!}} = \frac{{\left( {2n - 1} \right)!!}}{{\left( {2n} \right)!!}}\frac{{\left( {2n} \right)!!}}{{\left( {2n} \right)!!}} = \frac{{\left( {2n} \right)!}}{{{4^n}n{!^2}}}$$

so using Stirling's approximation, one has

$$\eqalign{ & \left( {2n} \right)! \sim {\left( {\frac{{2n}}{e}} \right)^{2n}}2\sqrt {n\pi } \cr & n{!^2} \sim {\left( {\frac{n}{e}} \right)^{2n}}2n\pi \cr} $$

from where

$$\frac{{\left( {2n} \right)!}}{{{4^n}n{!^2}}} \sim \frac{1}{{{4^n}}}\frac{{{{\left( {\frac{{2n}}{e}} \right)}^{2n}}2\sqrt {n\pi } }}{{{{\left( {\frac{n}{e}} \right)}^{2n}}2n\pi }} = \frac{1}{{\sqrt {n\pi } }}$$

as it was previously stated.

In general,

$${\left[ {\frac{{\left( {2n} \right)!!}}{{\left( {2n - 1} \right)!!}}} \right]^2}\left( {1 - \frac{1}{{2n + 1}}} \right)\frac{1}{n} < \pi < {\left[ {\frac{{\left( {2n} \right)!!}}{{\left( {2n - 1} \right)!!}}} \right]^2}\frac{1}{n}$$

$$\left[ {\frac{{\left( {2n} \right)!!}}{{\left( {2n - 1} \right)!!}}} \right]\sqrt {1 - \frac{1}{{2n + 1}}} < \sqrt {n\pi } < \left[ {\frac{{\left( {2n} \right)!!}}{{\left( {2n - 1} \right)!!}}} \right]$$