Any ideas how to show $\lim\limits_{x\to 0}\dfrac{x^2-1+\cos^2x}{x^4+x^3\sin x}=\lim\limits_{x\to 0}\dfrac{x-\sin(x)}{x^3}=\dfrac{1}{6}$ without using the De L'Hôpital rule (or proving a special case of it?). How can we reduce this to $\lim\limits_{x\to 0}\dfrac{1-\cos(x)}{x^2}=\dfrac{1}{2}$?
You can suppose that we know the limit in question exists and therefore use inequalities to bound it