How to find the following limit without evaluating the integral? $\lim_{k\rightarrow \infty }\left(k\int_0^1 (x-1) x^k (\log x)^{-1} \, dx\right)$ , $k>-1$
Calculate $\lim_{k\rightarrow \infty }\left(\int_0^1 k(x-1)x^k (\log x)^{-1} \, dx\right)$
1
$\begingroup$
limits
-
2What does $\log^{-1}$ mean? – 2012-12-09
-
0Might it be that $\left(\log x\right)^{-1}$ was intended? – 2012-12-09
-
0it means $1/log(x)$ – 2012-12-09