3
$\begingroup$

I'm having troubles showing that $$ \lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2x}}{x} = -1. $$ In particular, why is the following derivation wrong? $$ \lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2x}}{x} = \lim_{x\rightarrow -\infty} \frac{x\sqrt{1+2/x}}{x} = \lim_{x\rightarrow -\infty} \sqrt{1+2/x} = \sqrt{1+\lim_{x\rightarrow -\infty}(2/x)} = 1.$$

  • 4
    $\sqrt{x^2}=|x|=-x$ if $x<0$.2012-10-30
  • 0
    Thanks! I totally missed that. :)2012-10-30
  • 0
    What you could have done to discover your mistake was to plug in some number like $x=-100000$.2012-10-30
  • 2
    I have trouble with negative numbers. Maybe not for this problem, but for more complicated ones, I would probably let $u=-x$, find the limit of $\dfrac{\sqrt{u^2-2u}}{-u}$ as $u\to\infty$.2012-10-30
  • 0
    @AndréNicolas: I like that approach.2012-10-30
  • 0
    @somebody : +1 for showing your work!2012-10-30

1 Answers 1

0

Your mistake is here $$ \lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2x}}{x} = \lim_{x\rightarrow -\infty} \frac{x\sqrt{1+2/x}}{x} = \ldots = 1. $$

The correct is $$ \lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2x}}{x} = \lim_{x\rightarrow -\infty} \frac{-x\sqrt{1+2/x}}{x} = \ldots = -1 $$ since $x<0$ ($\sqrt{x^2}=|x|$, for example $\sqrt{(-1254)^2}=1254$).