8
$\begingroup$

For any positive integer $n$, $i,j,k$ are also positive integers, and $0 $(i,j,k)$ are there for the equation $ijk = (n-i)(n-j)(n-k)$?

  • 2
    Let's get some trivial solutions out of the way. $n=2m$, $i=m-r$, $j=m$, $k=m+r$. Do you have a large supply of other solutions?2012-06-02
  • 2
    Here's another class: $y-1=(x-1)(x-2)/2$ then $n=xy,i=y,j=2y,k=n-x$, e.g. $(n,i,j,k)=(35,7,14,30)$. More generally if $y-1=(x-a)(x-b)/ab$ then $(n,i,j,k)=(xy,ay,by,xy-x)$ is a solution. e.g. $a=2,b=3,x=18,y=41$ and $(n,i,j,k)=(738,82,123,720)$. Also if $(n,i,j,k)$ then $(cn,ci,cj,ck)$ for positive integer $c$.2012-06-02
  • 0
    If $i=j=k$ then $(2i,i,i,i)$ is a solution for all $i$. Set $n=i+j$ we get the another solution set $(i+j, i, j,\frac{i+j}{2})$. Replacing even $i$ & $j$ we get one set $(2i+2j, 2i, 2j, i+j)$. For both odd we get another $(2i+2j+2, 2i+1,2j+1, i+j+1)$2015-07-11

0 Answers 0