If the Ricci curvature of a compact Riemannian manifold of demsnion $n$ is greater than 1-n, does it follow that the volume entropy satisfies $$\liminf_{r\rightarrow \infty} \frac{\log vol B_r(p)}{r}\leq n-1$$
Upper bound on volume growth
1
$\begingroup$
riemannian-geometry