Possible Duplicate:
$\lim_{n\rightarrow \infty}\int_0^1f_nhdm=\int_0^1fhdm$, prove $f\in L^p(m)$ , where $1\le p<\infty$.
Can anyone help with this question?
When ${f_n}$ is defined on [0,1], $ ||f_n||_p\le1$, $1
Prove $f\in L_p$
Possible Duplicate:
$\lim_{n\rightarrow \infty}\int_0^1f_nhdm=\int_0^1fhdm$, prove $f\in L^p(m)$ , where $1\le p<\infty$.
Can anyone help with this question?
When ${f_n}$ is defined on [0,1], $ ||f_n||_p\le1$, $1
Prove $f\in L_p$