How can I prove that the coefficient of $(z-z_0)^{-1}$ when $f(z)$ has a pole of order $m$ at $z=z_0$ is given by: $$ a_{-1}=\frac{1}{(m-1)!}\frac{d^{m-1}}{dz^{m-1}}\left[(z-z_0)^mf(z)\right]_{z=z_0} $$ ?
Residues and Laurent expansion
1
$\begingroup$
complex-analysis
laurent-series
1 Answers
4
Let $f(z)=\sum\limits_{n=-m}^{\infty}a_n(z-z_0)^n$ be the Laurent expansion of $f$ at $z_0$. Then $g(z)=(z-z_0)^mf(z)$ is holomorphic around $z_0$ and its Taylor expansion at $z_0$ is $g(z)=\sum\limits_{n=0}^{\infty}a_{n-m}(z-z_0)^n$. Therefore, $a_{-1}=\frac{1}{(m-1)!}g^{(m-1)}(z_0)$, and the conclusion follows.
-
0You mean $g(z)=(z-z_0)^m f(z)$ – 2012-11-07
-
0@M.Strochyk: Thank you for correcting this typo. – 2012-11-07
-
0@richard and putting $n-m=x$ we can find any $a_x$ using $$a_x=\frac{1}{(m+x)!}g^{(m+x)(z_0)}$$. Is that correct? – 2012-11-28
-
0@IvanLerner: Yes, you are right! – 2012-11-28