$f,g$ are holomorphic in $D(0,1)$. $P_1,P_2,...,P_k$ are roots of $f$ in $D(0,1)$. their orders are $n_1,...,n_k$. Compute $$\frac{1}{2\pi i}\oint_\gamma\frac{f'(z)}{f(z)}\cdot g(z)dz.$$
Using residue theorem I have $$ \frac{1}{2\pi i}\oint_\gamma\frac{f'(z)}{f(z)}\cdot g(z)dz=\sum_{j=1}^k\frac{1}{(n_j-1)!}\left(\frac{\partial}{\partial z}\right)^{n_j-1}\left[(z-P_j)^{n_j}\frac{f'(z)}{f(z)}g(z)\right]_{z=P_j}. $$
But someone says $$ \frac{1}{2\pi i}\oint_\gamma\frac{f'(z)}{f(z)}\cdot g(z)dz=\sum_{j=1}^kn_jg(P_j). $$ I don't know how to get it. Any hint is appreciated.