0
$\begingroup$

Let $X$ is a topological space, $Y$ is a subspace of $X$, $A \subseteq Y$. Then I know $$Y\cap Cl_X(A)=Cl_Y(A)$$ holds.

But does $$Y\cap Cl_X(X-A)=Cl_Y(Y-A)$$ also holds?

  • 0
    So your question is $Cl_Y(Y-A)=Cl_Y(X-A)$?2012-09-14
  • 0
    @Siminore I think not, because $X-A$ may not included in $Y$.2012-09-14

1 Answers 1

2

The assertion is false.

Take for example $X = \mathbb R, Y = [0, 2]$ and $A = [0, 1]$. Then $0 \in Y \cap Cl_X(X - A)$ but $0 \not \in Cl_Y(Y - A)$.

  • 0
    So that means $Int_Y(A)=Y \cap Int_X(A)$ is also not true in general.2012-09-15
  • 0
    Yes, the same example applies to it.2012-09-15