Here is "almost an integer" result:
$$\sum^{\infty}_{k=0}\left(\frac{1}{\exp(\pi\sqrt{163})}\right)^{k}\left(\frac{120}{8k+1}-\frac{60}{8k+4}-\frac{30}{8k+5}-\frac{30}{8k+6}\right) = 94.000000000000000014789449792044364408558923807659819...$$
?
Here is "almost an integer" result:
$$\sum^{\infty}_{k=0}\left(\frac{1}{\exp(\pi\sqrt{163})}\right)^{k}\left(\frac{120}{8k+1}-\frac{60}{8k+4}-\frac{30}{8k+5}-\frac{30}{8k+6}\right) = 94.000000000000000014789449792044364408558923807659819...$$
?