Please help me prove this:
Let $A_1,A_2,\ldots$ be subsets of $\Omega$. Prove that $A_n\to A$ if and only if $I_{A_n}(\omega)\to I_A(\omega)$ for every $\omega\in\Omega$ (so that convergence of sets is the same as pointwise convergence of their indicator functions).
Note: $I_A(\omega)=1$ if $\omega\in A$, and $0$ if $\omega\notin A$. Use in the proof that $$\operatorname{lim\;inf}\limits_n\; x_n=\bigvee_{k=1}^\infty\bigwedge_{n=k}^\infty x_n\quad\text{ and }\quad\operatorname{lim\;sup}\limits_n\; x_n=\bigwedge_{k=1}^\infty\bigvee_{n=k}^\infty x_n.$$
Thank you very much!