Let $(G,*)$ be a group and $H,K$ be two subgroups of $G$ of finite index (the number of left cosets of $H$ and $K$ in $G$). Is the set $H\cap K$ also a subgroup of finite index? I feel like need that $[G\colon(H\cap K)]$ is a divisor of $[G\colon H]\cdot[G\colon K]$, but I dont't know when this holds.
Can somebody help me out?