How can we show that $v(L(C)) = |\det DL|v(C)$ for any open cube $C$ an element of $\mathbb{R}^n$ and any linear transformation $L: \mathbb{R}^n \rightarrow \mathbb{R}^n$, without direct applying the change of variables theorem?
Thanks
How can we show that $v(L(C)) = |\det DL|v(C)$ for any open cube $C$ an element of $\mathbb{R}^n$ and any linear transformation $L: \mathbb{R}^n \rightarrow \mathbb{R}^n$, without direct applying the change of variables theorem?
Thanks