How can I show that \begin{equation} f(a)=\frac{\sum_{i=1}^{k^*-1} \left(\begin{array}{c} K \\ i \\ \end{array} \right) \left(-1-\frac{1}{ar}\right)^i+1}{\sum_{i=1}^{k^*-1} \left(\begin{array}{c} K \\ i \\ \end{array} \right) \left(-1+\frac{1}{a}\right)^i+1} \end{equation} is an increasing funtion of $a$ for \begin{equation} -1
Does division of polynomials give an increasing function?
1
$\begingroup$
calculus
real-analysis
functions
special-functions