Let $a,b,c, >0$ be real numbers such that $$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3$$
How to prove that :
$$\frac{(ab+b)(2b+1)}{(ab+a)(5b+1)}+\frac{(bc+c)(2c+1)}{(bc+b)(5c+1)}+\frac{(ca+a)(2a+1)}{(ca+c)(5a+1)}\ge\frac{3}{2}$$
Let $a,b,c, >0$ be real numbers such that $$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3$$
How to prove that :
$$\frac{(ab+b)(2b+1)}{(ab+a)(5b+1)}+\frac{(bc+c)(2c+1)}{(bc+b)(5c+1)}+\frac{(ca+a)(2a+1)}{(ca+c)(5a+1)}\ge\frac{3}{2}$$