what will be if we find the $\lim_{x\to \infty}(e^{-x} -1 )$ from right side such as
$$\lim_{x\to \infty}(e^{-x}-1) = \lim_{x\rightarrow \infty}\left( - x + \frac{x^2}2 - \frac{x^3}6 + \frac{x^4}{24}-\cdots\right)$$
what will be if we find the $\lim_{x\to \infty}(e^{-x} -1 )$ from right side such as
$$\lim_{x\to \infty}(e^{-x}-1) = \lim_{x\rightarrow \infty}\left( - x + \frac{x^2}2 - \frac{x^3}6 + \frac{x^4}{24}-\cdots\right)$$