7
$\begingroup$

When I try to do this type of indeterminations I reach to this point:

$\lim\limits_{ x\to \infty } \dfrac { 2x }{ \sqrt { x^ 2 +3x } +\sqrt { x^2 +x } } $

but I don't know how to continue. Thanks.

  • 4
    Divide numerator and denominator by $x$ and let $x\to \infty$ then.2012-03-27
  • 0
    yes, that is the simplest way to do it. the answer should be 1.2012-03-27
  • 1
    @martini A brief explanation? Can you answer solving it? Thanks.2012-03-27
  • 1
    Mathlover did :)2012-03-27
  • 0
    possible duplicate of [Limits: How to evaluate $\lim\limits_{x\rightarrow \infty}\sqrt\[n\]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x$](http://math.stackexchange.com/questions/30040/limits-how-to-evaluate-lim-limits-x-rightarrow-infty-sqrtnxna-n-1)2012-03-27
  • 0
    Add and Subtract $x$ from the terms and apply the result in the dupe: $(\sqrt{x^2 + 3x} - x) - (\sqrt{x^2 + x} - x)$.2012-03-27
  • 0
    Just curious could you substitute $x=1/y$ and solve for $\lim_{y\rightarrow0}$ ?2012-03-27

1 Answers 1

5

$\lim\limits_{ x\to \infty }{ \dfrac { 2x }{ \sqrt { { x }^{ 2 }+3x } +\sqrt { { x }^{ 2 }+x } } } $

$\lim\limits_{x\to \infty }\frac {2}{\large{\sqrt \frac{x^2+3x}{x^2}+\sqrt \frac{x^2+x}{x^2}}}=\lim\limits_{x\to \infty }\frac {2}{\large{\sqrt{ 1+\frac{3x}{x^2}}+\sqrt{ 1+\frac{x}{x^2}}}}=\lim\limits_{x\to \infty }\frac {2}{\large{\sqrt{ 1+\frac{3}{x}}+\sqrt{ 1+\frac{1}{x}}}}=\frac {2}{\large{\sqrt{ 1+0}+\sqrt{ 1+0}}}=1$