Clearly, for $d$ a square number, there is at most one prime of the form $n^2 - d$, since $n^2-d=(n+\sqrt d)(n-\sqrt d)$.
What about when $d$ is not a square number?
Clearly, for $d$ a square number, there is at most one prime of the form $n^2 - d$, since $n^2-d=(n+\sqrt d)(n-\sqrt d)$.
What about when $d$ is not a square number?