3
$\begingroup$

How do I sum the following series?

$$ S = \frac{1}{2} \cdot \sin\alpha + \frac{1\cdot 3}{2 \cdot 4} \sin{2\alpha} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \sin{3\alpha} + \cdots \ \text{ad inf}$$

  • 0
    What did you try? You might want to check [this](http://math.stackexchange.com/posts/30407/edit).2012-04-23
  • 0
    @Didier that link send me to edit your post2012-04-23
  • 0
    @leo Sorry. [Link](http://math.stackexchange.com/a/30407/6179).2012-04-23
  • 0
    The exponent can be derived from here : http://math.stackexchange.com/questions/746388/calculating-1-frac13-frac1-cdot33-cdot6-frac1-cdot3-cdot53-cdot6-cdot2016-06-05

2 Answers 2

10

Let $$ S = \frac{1}{2}\cdot \sin\alpha + \frac{1\cdot 3}{2 \cdot 4}\cdot \sin{2\alpha} + \frac{1\cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\cdot \sin{3\alpha} + \cdots \ \text{ad inf}$$ and $$ C = 1 + \frac{1}{2}\cdot \cos\alpha + \frac{1\cdot 3}{2 \cdot 4}\cdot \cos{2 \alpha} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \cos{3\alpha} + \cdots \ \text{ad inf}$$ From this you have $C+iS = (1-e^{\alpha \cdot i})^{-1/2}$, if $\alpha \neq 2n\pi$. Again you have \begin{align*} C+iS &= \{1-\cos\alpha-i\: \sin\alpha\}^{-1/2} \\\ &= \biggl\{2 \sin\frac{\alpha}{2} \biggl(\sin\frac{\alpha}{2} - i\: \cos\frac{\alpha}{2}\biggr)\biggr\}^{-1/2} \\\ &= \biggl\{2 \sin\frac{\alpha}{2}\biggr\}^{-1/2} \ \biggl\{\cos\biggl(\frac{\alpha}{2}-\frac{\pi}{2}\biggr) + i \: \sin\biggl(\frac{\alpha}{2}-\frac{\pi}{2}\biggr)\biggr\}^{-1/2} \\\ &= \biggl\{2 \sin\frac{\alpha}{2}\biggr\}^{-1/2} \: \biggl\{\cos\biggl(\frac{\pi-\alpha}{4}\biggr) + i \: \sin\biggl(\frac{\pi-\alpha}{4}\biggr)\biggr\} \end{align*}

Now equate real and imaginary parts to get the answer.

7

The coefficients in your series can be written as, $$\frac{1}{4^n} {2n \choose n}$$

This allows us to write your series a bit more compactly as, $\sum_{n = 0}^{\infty} \frac{1}{4^n} {2n \choose n} \sin(n\alpha)$

Consider the following series instead, $$\sum_{n = 0}^{\infty} \frac{1}{4^n} {2n \choose n} e^{in\alpha} = \sum_{n = 0}^{\infty} \frac{1}{4^n} {2n \choose n} \left( e^{\frac{i\alpha}{2}} \right)^{2n}$$

Now, $$\frac{1}{\sqrt{1 - x^2}} = \sum_{n = 0}^{\infty} \frac{1}{4^n} {2n \choose n} x^{2n}.$$

So, our earlier series evaluates to, $$\sum_{n = 0}^{\infty} \frac{1}{4^n} {2n \choose n} \left( e^{\frac{i\alpha}{2}} \right)^{2n} = \frac{1}{\sqrt{1 - e^{i\alpha}}}$$

Therefore, $$\sum_{n = 0}^{\infty} \frac{1}{4^n} {2n \choose n} \sin(n\alpha) = Im\left( \frac{1}{\sqrt{1 - e^{i\alpha}}} \right)$$

  • 0
    My first post, so it took me some time to figure out the specifics of posting here. I realize that my answer is a duplicate of the earlier post. So, moderator can feel free to delete this post, if needed.2012-04-23
  • 0
    I found your answer much clearer. Thanks for a detailed answer.2012-04-23