How would I prove the following trig identity?
$$\frac{ \cos (A+B)}{ \cos A-\cos B}=-\cot \frac{A-B}{2} \cot \frac{A+B}{2} $$
My work thus far has been: $$\dfrac{2\cos\dfrac{A+B}{2} \cos\dfrac{A-B}{2}}{-2\sin\dfrac{A+B}{2} \sin\dfrac{A-B}{2}} =-\cot\dfrac{A+B}{2} \cot\dfrac{A-B}{2} \ .$$