0
$\begingroup$

It is known that nonconstant Hoelder functions $f:R \rightarrow R$ with power $>1$ non exist.

Are there functions $f: R\rightarrow R$ satisfying $$ |f(x)-f(y)| \leq C|x-y|^p +D$$ for all $x,y \in R$, where $C,D>0$, $p>1$?

  • 1
    Obviously any bounded function will suffice. Are you looking for an unbounded example?2012-08-01
  • 0
    Thanks. Yes, If there are.2012-08-01

1 Answers 1

3

Any Lipschitz continuous (Hölder continuous with power $1$) function will do. Suppose $f:\mathbb R\to\mathbb R$ is such that $|f(x)-f(y)|\leq C|x-y|$ for all $x,y\in\mathbb R$. Then for any $p>1$ we have $$|f(x)-f(y)|\leq C(|x-y|^p+1)=C|x-y|^p+C$$ for any $x,y\in\mathbb R$, since if $|x-y|\leq 1$ then clearly $|x-y|< |x-y|^p+1$ while otherwise $|x-y|<|x-y|^p$.