Let $X$ be a scheme, $F$ and $G$ be sheaves in groups on $X$ for the étale topology and $f:F\rightarrow G$ a morphism of group sheaves. Assume that there exists an étale covering $i:U\rightarrow X$ such that the pullback $i^{*}f:i^{*}F\rightarrow i^{*}G$ admits a section, can I lift this section to a section of $f:F\rightarrow G$?
Lifting étale sections
3
$\begingroup$
algebraic-geometry
arithmetic