$$\int (f(x))' dx = f(x) + c$$
if $u=g(x)$ then
$$\int (f(u))'du = f(u)+c$$
But
$$\int (f(g(x)))'dx = f(g(x))+c$$
Where did I go wrong?
$$\int (f(x))' dx = f(x) + c$$
if $u=g(x)$ then
$$\int (f(u))'du = f(u)+c$$
But
$$\int (f(g(x)))'dx = f(g(x))+c$$
Where did I go wrong?