1
$\begingroup$

$\mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{1}{x} - \frac{1}{{\sqrt x }}} \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{1/\sqrt x - 1}}{{\sqrt x }} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{ - \frac{1}{2}{x^{ - 3/2}}}}{{\frac{1}{2}{x^{ - 1/2}}}} = \mathop {\lim }\limits_{x \to {0^ + }} \left( { - \frac{1}{x}} \right) = - \infty $. However, the answer is $\infty$. Can you help me spot my error? Thanks!

  • 0
    Thank you all for clearing that up for me!2012-11-12
  • 1
    Informally, you can see that $1/x$ is going to infinity pretty fast, but $1/\sqrt x$ is slow and is slowing down in cancelling the $1/x$. Thus it looks that in the big picture, $1/x$ will win and ultimately the limit would go to $+ \infty$.2014-02-02

3 Answers 3