Am I correct in stating that if $$\frac{x^n}{x^{n-1}}=\frac{x^n}{x^n\cdot x^{-1}}=\frac{1}{x^{-1}}=x$$ then $$\begin{align*} \left|\frac{(x^2-5x+2)^n}{2^{n+1}}\cdot\frac{2n}{(x^2-5x+2)^{n-1}}\right|&=\left|\frac{(x^2-5x+2)^n}{(x^2-5x+2)^{n-1}}\cdot\frac{2n}{2^{n+1}}\right|\\\\ &\neq\left|(x^2-5x+2)\right|\frac{1}{2} \end{align*}$$
This would have been true if the second term was: $$\frac{2^n}{2^{n+1}}$$ and not $$\frac{2n}{2^{n+1}}$$
I'm trying to confirm that my textbook has a typo to make sure I am not screwing something up in the math.