0
$\begingroup$

Let

$ T= \frac{ \partial^{2}}{\partial _{x} \partial _{y}}+iay\frac{ \partial}{\partial _{y}}+i(1-a)x \frac{ \partial}{\partial _{x}}+ \frac{i}{2}$

be the second order differential operator, where $ i =\sqrt{-1} $ and $ a $ is a real parameter.

Can we prove that this Hamiltonian is Hermitian (so $ T = T^{+} $)?

  • 1
    What's the Hilbert space here? $L^2$ on $\mathbb R^2$ or on some domain? Any boundary conditions?2012-09-23
  • 0
    $\large {\rm i}/2$ at the end ?.2013-11-23

1 Answers 1