1
$\begingroup$

If a sequence of operator $A_n$ converges in norm to $A$, i.e. $\lim \lVert A_n-A\rVert=0$)where $A_n$ and $A\in B(H)$ ($H$ is the Hilbert space). Is it true that $A_n^*$ converges in norm to $A^*$?

  • 0
    So you mean norm convergence?2012-12-09
  • 0
    Yes I mean norm convergence2012-12-09
  • 0
    Actually, an operator has the same norm as the norm of its adjoint.2012-12-09
  • 0
    @DavideGiraudo Get it.2012-12-09

1 Answers 1