0
$\begingroup$

Let $I=(0, 1)$. Suppose we are given $1$L^r(I)$, at least for $1\leq r?

Many thanks

Guido

  • 0
    Do you mean that $\|f_n\|_p$ is bounded, or the functions $f_n$ are bounded (uniformly, presumably) and in $L^p$?2012-08-29
  • 0
    $\|f_n\|_p$ is bounded2012-08-29

2 Answers 2

4

$$ \|f_n\|_r^r\leqslant\|f_n\|_p^{p(r-1)/(p-1)}\cdot\|f_n\|_1^{(p-r)/(p-1)}\leqslant C\cdot\|f_n\|_1^{(p-r)/(p-1)}\underset{n\to\infty}{\longrightarrow}0 $$

  • 0
    Very succinct...2012-08-29
1

More generally (than the answer by did), given $1\le p,q<\infty$, any $r$ strictly between $p$ and $q$ can be written $$r=\frac{p}{s}+\frac{q}{s'},\qquad\frac{1}{s}+\frac{1}{s'}=1.$$ Then $$\def\abs#1{\lvert#1\rvert}\def\norm#1{\lVert#1\rVert} \int\abs{f}^r=\int\abs{f}^{p/s}\cdot\abs{f}^{q/s'} \le\norm{f^{p/s}}_s\cdot\norm{f^{q/s'}}_{s'} =\norm{f}_p^{p/s}\cdot\norm{f}_q^{q/s'}, $$ so you can generalize the problem (and did's solution) by replacing $1$, $p$ by $p$, $q$.