All the angles in a triangle $A,B,$ and $C$ are less than $120^{o}$
Prove that $\displaystyle{\frac{\cos A+\cos B - \cos C}{\sin A+\sin B - \sin C}} \geq -\frac{\sqrt{3}}{3}$
All the angles in a triangle $A,B,$ and $C$ are less than $120^{o}$
Prove that $\displaystyle{\frac{\cos A+\cos B - \cos C}{\sin A+\sin B - \sin C}} \geq -\frac{\sqrt{3}}{3}$