1
$\begingroup$

How can I prove that:

  • For a given natural number $k$ the dimension space of modular forms of weight $2k$ is $\lfloor{\frac{k}{6}\rfloor}+1$ if $k \not\equiv 1 \: (\text{mod}\ 6)$ and $\lfloor{\frac{k}{6}\rfloor}$ if $k \equiv 1 \: (\text{mod}\ 6)$
  • 2
    This presumably means of level 1. Where are you learning about modular forms? Most introductory books that have this statement also prove it...2012-04-28

1 Answers 1