1
$\begingroup$

Suppose $\{B_t,t\ge0\}$ be a standard brownian motion and suppose $0\le u\le s$E(e^{B(t)}|e^{B(u)},0\le u\le s )$.

Attempts: $E(e^{B(t)}|e^{B(u)},0\le u\le s )=E(e^{B(t-u)+B(u)}|e^{B(u)})=E(e^{B(t-u)}|e^{B(u)})E(e^{B(u)}|e^{B(u)})$ but then not sure how to proceed.

  • 1
    $B(t)\ne B(t-u)+B(u)$.2012-12-21
  • 0
    @did i see $B(t-u)\sim~N(0,\sqrt{t^2+u^2})$2012-12-21
  • 0
    No, this is not the distribution of $B(t-u)$.2012-12-21
  • 1
    OP: What happens with this question? Did you manage to write down a full proof, using @Stefan's hints?2013-01-02

1 Answers 1