4
$\begingroup$

How can we calculate $\displaystyle\sum\limits_{k=1}^{2^{16}} \binom{2k}{k}(3\times 2^{14} +1)^k (k-1)^{2^{16}-1}$ mod $(2^{16} +1)$? I am aware that $2^{16} +1$ is a prime.

1 Answers 1