1
$\begingroup$

Possible Duplicate:
Proving that $ \frac{1}{\sin(45°)\sin(46°)}+\frac{1}{\sin(47°)\sin(48°)}+...+\frac{1}{\sin(133°)\sin(134°)}=\frac{1}{\sin(1°)}$

Find the smallest postive integer n such that :

$\dfrac{1}{\sin 45^\circ \sin 46^\circ} + \dfrac1{\sin 47^\circ \sin 48^\circ} + \dots + \dfrac1{\sin 133^\circ \sin 134^\circ} = \dfrac1{\sin n^\circ}$

  • 0
    wolfram alpha gives n $\approx$ -0.408264°, which makes me wonder if there is a integer value of n. I used `arcsin( 1/( sum( 1/ ( sin(2*i+1) * sin(2*i+2))) for i = 22 to 66 ))*180/pi` to evaluate n.2012-11-12
  • 1
    @mythealias: note that the 2*i+1 are in degrees, not radians...2012-11-12
  • 0
    based on Robert's comment if i convert to degree, i get $n = 1$. earlier i had tried $sin(23)$ and wolfram alpha used degrees so i though it takes arguments in degree. `n = arcsin( 1/( sum( 1/ ( sin(pi/180*(2*i+1)) * sin(pi/180*(2*i+2)))) for i = 22 to 66 ))*180/pi`2012-11-12
  • 2
    Is this from an old contest, a homework, etc.?2012-11-12
  • 0
    The same question (with the $n=1^\circ$ answer) appeared in december 2011 [here](http://math.stackexchange.com/questions/95291/proving-that-frac1-sin45-sin46-frac1-sin47-sin48-fr).2012-11-13

0 Answers 0