All I know is that it uses the fundamental theorem of calculus.
$$\large\frac{d}{dx}\int_{x^2}^{\sin x} e^{xt^2}dt = e^{x\;\sin^2 x}\cos x - e^{x^5}2x+\int_{x^2}^{\sin x} t^2e^{xt^2}dt$$
All I know is that it uses the fundamental theorem of calculus.
$$\large\frac{d}{dx}\int_{x^2}^{\sin x} e^{xt^2}dt = e^{x\;\sin^2 x}\cos x - e^{x^5}2x+\int_{x^2}^{\sin x} t^2e^{xt^2}dt$$