For $t\in [ 0, 1 )$ is $$ \frac{xe^{tx}}{e^{x}-1}$$ integrable over $x\in (0 , \infty )$? I.e., $$ \int_{0}^{\infty} \frac{xe^{tx}}{e^{x}-1} dx < \infty?$$ How do I show this?
For $t\in [ 0, 1 )$ is $ \frac{xe^{tx}}{e^{x}-1}$ integrable over $x\in (0 , \infty )$?
2
$\begingroup$
calculus
real-analysis
analysis