2
$\begingroup$

Let $0<\alpha, $1 and $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n}$. Then:

$$\left\|\int_{\mathbb{R}^n} \frac{f(y)dy}{|x-y|^{n-\alpha}} \right\|_{L^q(\mathbb{R}^n)} \leq C\left\| f \right\|_{L^p(\mathbb{R}^n)}$$.

  • 0
    Here are some helpful references http://math.stackexchange.com/questions/204322/step-in-proof-of-sobolev-imbedding , http://math.stackexchange.com/questions/181339/compactness-and-boundedness-of-integral-operator , http://math.stackexchange.com/questions/178938/a-marcinkiewicz-approach2012-10-19
  • 1
    Would you mind and formulate a question?2012-10-19

0 Answers 0