1
$\begingroup$

Possible Duplicate:
Solving the integral $\int_{0}^{\infty} \frac{\sin{x}}{x} \ dx = \frac{\pi}{2}$?

How to prove $\operatorname{si}(0) = -\pi/2$ without contour integration ? Where $\operatorname{si}(x)$ is the sine integral.

  • 4
    Isn't $\operatorname{Si}(0)=\int_0^0\frac{\sin x}{x}\ dx=0$?2012-09-05
  • 1
    Well if you're talking about $$\text{Si}(z):=\int_0^z\frac{\sin t}t\,dt,$$ then $\text{Si}(0)=0$. Did you mean something else, perhaps?2012-09-05
  • 0
    I think you mean $Si(\infty)$ or $-si(0)$. See http://en.wikipedia.org/wiki/Sine_integral#Sine_integral2012-09-05

1 Answers 1

4

HINT:

Note that our integral may be rewritten as $$\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy} \sin x \ dy \ dx = \int_{0}^{\infty} \frac{\sin x}{x} \ dx$$ but integrating with respect to x we get that $$\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy} \sin x \ dx \ dy = \int_{0}^{\infty} \frac{1}{1+y^2} \ dy$$ Hence I hope you can handle it on your own.