Consider the normed spaces (over the field of real numbers) $X=(\ell_\infty,\|\cdot\|_\infty)$ and $Y=(\ell_\infty,\|\cdot\|)$ where $$\|x\|=\sup_{n\in\mathbf{N}}\frac{|x_n|}{2^n}.$$
How can I show that the closed unit ball in $X$ is compact in $Y$?