3
$\begingroup$

How do you integrate $$ \int_0^1 y^{k_1} (1 - (1-y)^{\alpha})^{k_2}\,\mathrm{d}y $$ where $k_1$ and $k_2$ are non-negative integers and $\alpha>1$?

  • 8
    Expand with binomial theorem and use beta functions.2012-01-27
  • 0
    @anon $k1$ and $k2$ arent necessarily positive integers, no?2012-01-27
  • 0
    actually k1 and k2 are positive integers(including 0).. Also, does the integral become more tractable if alpha is restricted to rational numbers2012-01-27

1 Answers 1

2

$$I=\int\limits_0^1 {{y^a}{{\left( {1 - {{\left( {1 - y} \right)}^b }} \right)}^c}} dy$$

$$1-y=u$$ $$I=\int\limits_0^1 {{{\left( {1 - u} \right)}^a}{{\left( {1 - {u^b}} \right)}^c}} du$$

$${\left( {1 - {u^b }} \right)^c} = \sum\limits_{k = 0}^c {{{\left( { - 1} \right)}^{bk}}{c \choose k}{u^{bk}}} $$

$$I=\sum\limits_{k = 0}^c {{{\left( { - 1} \right)}^{bk}}{c \choose k}\int\limits_0^1 {{{\left( {1 - u} \right)}^a}{u^{bk}}} du} $$

$$\int\limits_0^1 {{{\left( {1 - u} \right)}^a}{u^{bk}}} du = B\left( {a+1,bk+1} \right) $$

$$\sum\limits_{k = 0}^c {{{\left( { - 1} \right)}^{bk}}{c \choose k}B\left( {a+1,bk+1} \right)} $$

Maybe there is some multiple argument formula you can use to simplify things.