Question: Determine all the finite groups that have exactly one nontrivial proper subgroup.
MY attempt is that the order of group G has to be a positive nonprime integer n which has only one divisor since any divisor a of n will form a proper subgroup of order a. Since 4 is the only nonprime number that has only 1 divisor which is 2, All groups of order 4 has only 1 nontrivial proper subgroups (Z4 and D4)