3
$\begingroup$

calculate generally the determinant of $A = a_{ij} = \begin{cases}a & i \neq j \\ 1 & i=j \end{cases} = \begin{pmatrix} 1 & a & a & · & a \\ · & · & · & · \\ a & a & a & · & 1 \\ \end{pmatrix}$

Any hints?

  • 0
    What did you try? Where are you stucked in the obvious recursion?2012-06-17
  • 1
    Use row operations to get a triangular matrix formm, and then the determinant is simply the product of the diagonal elements.2012-06-17

5 Answers 5