How many ordered triples of rational numbers $(a,b,c)$ are there such that the cubic polynomial $f(x)=x^3+ax^2+bx+c$ has roots $a,b$ and $c$?
The polynomial is allowed to have repeated roots.
How many ordered triples of rational numbers $(a,b,c)$ are there such that the cubic polynomial $f(x)=x^3+ax^2+bx+c$ has roots $a,b$ and $c$?
The polynomial is allowed to have repeated roots.