Let $V$ be any irreducible variety over $\mathbb{R}$, prove that if $dim_{\mathbb{R}}V(\mathbb{R})= dim(V)$, then $V(\mathbb{R})$ is dense in $V$.
Any hints to make a start?
Let $V$ be any irreducible variety over $\mathbb{R}$, prove that if $dim_{\mathbb{R}}V(\mathbb{R})= dim(V)$, then $V(\mathbb{R})$ is dense in $V$.
Any hints to make a start?