Find the number of non-zero elements in the field $Z_p$, where $p$ is an odd prime number, which are squares, i.e. of the form $m^2$; $m \in Z_p$; $m \neq 0$.
please help how can i solve this problem? the number of nonzero element is $p-1$ here
Find the number of non-zero elements in the field $Z_p$, where $p$ is an odd prime number, which are squares, i.e. of the form $m^2$; $m \in Z_p$; $m \neq 0$.
please help how can i solve this problem? the number of nonzero element is $p-1$ here