35
$\begingroup$

Is there any way to show that

$$\sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}} = \frac{1}{a} + \sum\limits_{k = 1}^\infty {{{\left( { - 1} \right)}^k}\left( {\frac{1}{{a - k}} + \frac{1}{{a + k}}} \right)}=\frac{\pi }{{\sin \pi a}}} $$

Where $0 < a = \dfrac{n+1}{m} < 1$

The infinite series is equal to

$$\int\limits_{ - \infty }^\infty {\frac{{{e^{at}}}}{{{e^t} + 1}}dt} $$

To get to the result, I split the integral at $x=0$ and use the convergent series in $(0,\infty)$ and $(-\infty,0)$ respectively:

$$\frac{1}{{1 + {e^t}}} = \sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{e^{ - \left( {k + 1} \right)t}}} $$

$$\frac{1}{{1 + {e^t}}} = \sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{e^{kt}}} $$

Since $0 < a < 1$

$$\eqalign{ & \mathop {\lim }\limits_{t \to 0} \frac{{{e^{\left( {k + a} \right)t}}}}{{k + a}} - \mathop {\lim }\limits_{t \to - \infty } \frac{{{e^{\left( {k + a} \right)t}}}}{{k + a}} = \frac{1}{{k + a}} \cr & \mathop {\lim }\limits_{t \to \infty } \frac{{{e^{\left( {a - k - 1} \right)t}}}}{{k + a}} - \mathop {\lim }\limits_{t \to 0} \frac{{{e^{\left( {a - k - 1} \right)t}}}}{{k + a}} = - \frac{1}{{a - \left( {k + 1} \right)}} \cr} $$

A change in the indices will give the desired series.

Although I don't mind direct solutions from tables and other sources, I prefer an elaborated answer.


Here's the solution in terms of $\psi(x)$. By separating even and odd indices we can get

$$\eqalign{ & \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \sum\limits_{k = 0}^\infty {\frac{1}{{a + 2k}}} - \sum\limits_{k = 0}^\infty {\frac{1}{{a + 2k + 1}}} \cr & \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} = \sum\limits_{k = 0}^\infty {\frac{1}{{a - 2k}}} - \sum\limits_{k = 0}^\infty {\frac{1}{{a - 2k - 1}}} \cr} $$

which gives

$$\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right)$$

$$\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} = \frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) + \frac{1}{a}$$

Then

$$\eqalign{ & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} + \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} - \frac{1}{a} = \cr & = \left\{ {\frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right)} \right\} - \left\{ {\frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right)} \right\} \cr} $$

But using the reflection formula one has

$$\eqalign{ & \frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right) = \frac{\pi }{2}\cot \frac{{\pi a}}{2} \cr & \frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right) = \frac{\pi }{2}\cot \frac{{\pi \left( {a + 1} \right)}}{2} = - \frac{\pi }{2}\tan \frac{{\pi a}}{2} \cr} $$

So the series become

$$\eqalign{ & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \frac{\pi }{2}\left\{ {\cot \frac{{\pi a}}{2} + \tan \frac{{\pi a}}{2}} \right\} \cr & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \pi \csc \pi a \cr} $$

The last being an application of a trigonometric identity.

  • 0
    It seems that using contour integration with the residue theorem should work here. Have you tried that?2012-02-17
  • 0
    @savick01 I know nothing about Complex Analisys. I'd prefer the use of the Digamma Function, which I'm familiar with.2012-02-17
  • 0
    I suppose you are interpreting that infinite sum as $\frac{1}{a} + \sum_{k=1}^{\infty} (-1)^k(\frac{1}{a+k} + \frac{1}{a-k})$.2012-02-17
  • 0
    @Aryabhata What do you mean?2012-02-17
  • 0
    @Peter: The order in which you combine them would matter I would think.2012-02-17
  • 0
    @Aryabhata I honestly can't understand you.2012-02-17
  • 0
    @Peter: Ok, different question: What is the $1000^{th}$ terms of the series you just gave?2012-02-17
  • 0
    @Aryabhata I know what you mean, but I think the notation is understandable and succint.2012-02-17
  • 0
    @Peter: No. Different mathematicians might have different interpretations. Why be ambiguous deliberately?2012-02-17
  • 0
    @Aryabhata I don't think its ambiguous. If you think it is, just edit it and let's move on.2012-02-17
  • 0
    @Peter: I don't care. I was only trying to help. If you don't want it, your problem.2012-02-17
  • 0
    @Aryabhata It's OK. Let's don't make this an argument. I accept your suggestion.2012-02-17
  • 0
    @Peter : Let's continue our discussion here : in what course did you encounter this question?2012-02-17
  • 0
    @PatrickDaSilva I was trying to solve $$\int\limits_0^\infty {\frac{{{x^m}}}{{1 + {x^n}}}dx} $$ which led me to ($x^n = e^t$) $$\frac{1}{n}\int\limits_{-\infty}^\infty {\frac{{{e^{at}}}}{{1 + {e^t}}}dx} $$ which led me to $$\frac{1}{n}\sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} $$ ($a = \dfrac{m+1}{n}$)2012-02-17
  • 0
    I've had fun computing on wolfram alpha the pairs $(m,n) = (1,1), (1,2), (2,1), (2,2)$ and it always diverges. $(1,3)$ converges to $\frac{2\pi}{ 3 \sqrt 3}$. Since $\frac{3 \sqrt 3}2 > 1$, I expect that something went wrong in your calculations that gave you $\pi/\sin(a\pi)$ since $\sin(ax)$ is never greater than $1$. But again, this is just calculations... maybe I am wrong somewhere.2012-02-17
  • 0
    But you turned it upside-down. $\frac{2}{3\sqrt{3}}<1$2012-02-17
  • 0
    @PatrickDaSilva Also note that I impose an important condition $n+1 which is not satisfied by you values. (I edited to make it consistent with the other post, so in you last case you have $m=3$ and $n=1$ so the criterion is met.)2012-02-18

2 Answers 2

23

EDIT: The classical demonstration of this is obtained by expanding in Fourier series the function $\cos(zx)$ with $x\in(-\pi,\pi)$.

Let's detail Smirnov's proof (in "Course of Higher Mathematics 2 VI.1 Fourier series") :

$\cos(zx)$ is an even function of $x$ so that the $\sin(kx)$ terms disappear and the Fourier expansion is given by : $$\cos(zx)=\frac{a_0}2+\sum_{k=1}^{\infty} a_k\cdot \cos(kx),\ \text{with}\ \ a_k=\frac2{\pi} \int_0^{\pi} \cos(zx)\cos(kx) dx$$

Integration is easy and $a_0=\frac2{\pi}\int_0^{\pi} \cos(zx) dx= \frac{2\sin(\pi z)}{\pi z}$ while
$a_k= \frac2{\pi}\int_0^{\pi} \cos(zx) \cos(kx) dx=\frac1{\pi}\left[\frac{\sin((z+k)x)}{z+k}+\frac{\sin((z-k)x)}{z-k}\right]_0^{\pi}=(-1)^k\frac{2z\sin(\pi z)}{\pi(z^2-k^2)}$
so that for $-\pi \le x \le \pi$ :

$$ \cos(zx)=\frac{2z\sin(\pi z)}{\pi}\left[\frac1{2z^2}+\frac{\cos(1x)}{1^2-z^2}-\frac{\cos(2x)}{2^2-z^2}+\frac{\cos(3x)}{3^2-z^2}-\cdots\right] $$

Setting $x=0$ returns your equality : $$ \frac1{\sin(\pi z)}=\frac{2z}{\pi}\left[\frac1{2z^2}-\sum_{k=1}^{\infty}\frac{(-1)^k}{k^2-z^2}\right] $$

while $x=\pi$ returns the $\mathrm{cotg}$ formula :

$$ \cot(\pi z)=\frac1{\pi}\left[\frac1{z}-\sum_{k=1}^{\infty}\frac{2z}{k^2-z^2}\right] $$ (Euler used this one to find closed forms of $\zeta(2n)$)

The $\cot\ $ formula is linked to $\Psi$ via the Reflection formula : $$\Psi(1-x)-\Psi(x)=\pi\cot(\pi x)$$

The $\sin$ formula is linked to $\Gamma$ via Euler's reflection formula : $$\Gamma(1-x)\cdot\Gamma(x)=\frac{\pi}{\sin(\pi x)}$$

  • 0
    Very nice. Guess I'll have to study Fourier series... What is the convergence domain of the given series? Do you have a link to Smirnov's book?2012-02-17
  • 0
    check my solution with $\psi(x)$, that's what I wanted!2012-02-18
  • 0
    @Peter: Nice! So we just had to observe (:-)) that $\tan(\frac a2)+\cot(\frac a2)= \frac 2{\sin(a)}\ $ and use the Reflection formula twice!2012-02-18
  • 0
    Can you tell me what is the domain of convergence of the series you found by Fourier analysis?2012-02-20
  • 0
    @Peter: I think that the formula is valid for any $z\ $ not in $\mathbb{Z}\ $ but please don't ask me for a rigorous proof! To get a reasonable approximation of the left term taking the sum for $k\ $ from $1$ to a little more than $|z|\ $ should be enough. For $z\in \mathbb{Z}\ $ only one term will remain!2012-02-20
16

This is a very elegant and quick way to evaluate this sum with complex analysis. Consider

$$g(z) = \pi \csc (\pi z)f(z)$$

$\csc$ has poles at $2 \pi n$ and $2 \pi n + \pi$ for $n \in \mathbb Z$. Assuming $f(z)$ has no poles at any integer, the residue of $g(z)$ at $2\pi n$ is

$$\operatorname*{Res}_{z = 2 n} g(z) = \lim_{z\to 2 n}(z-2 n)\pi \csc (\pi z)f(z) = \lim_{z\to 2 n}\pi \left(\frac{z-2 n}{\sin (\pi z)}\right)f(z) = f(n)$$

and at $2 \pi n + \pi$:

$$\operatorname*{Res}_{z = 2 n + 1} g(z) = \lim_{z\to 2 n + 1}(z-(2 n + 1))\pi \csc (\pi z)f(z) = \lim_{z\to 2 n + 1}\pi \left(\frac{z-2 n - 1}{\sin (\pi z)}\right)f(z) = -f(n)$$

Let $C_N$ be the square contour with the verticies $\left(N+\frac{1}{2}\right)(1+i)$, $\left(N+\frac{1}{2}\right)(-1+i)$, $\left(N+\frac{1}{2}\right)(-1-i)$ and $\left(N+\frac{1}{2}\right)(1-i)$.

By residue theorem, we have

$$\int_{C_N}g(z)\,dz = \sum_{n=-N}^N (-1)^n f(n) + S$$

where $S$ is the sum of the residues of the poles of $f$. Now, seeing that the left side vanishes as $N \to \infty$ (see here), we have


$$\sum_{k=-\infty}^\infty (-1)^k f(k)=-\sum \text{Residues of }\pi \csc (\pi z)f(z)$$

Clearly the only singularity of $f(z)=\frac{1}{a+z}$ is at $z_0=-a$. Thus

$$\operatorname*{Res}_{z=z_0} \,(\pi \csc (\pi z)f(z))=\lim_{z \to z_0} (z-z_0)\pi \csc (\pi z)f(z)=\lim_{z \to -a} \pi \csc (\pi z)\frac{z+a}{z+a}=-\pi \csc (\pi a)$$

Thus

$$\sum_{k=-\infty}^\infty (-1)^k f(k)=-\operatorname*{Res}_{z=z_0}\,(\pi \csc (\pi z)f(z))=-(-\pi \csc (\pi a))=\frac{\pi}{\sin (\pi a)}$$

QED

  • 1
    Pity I know nothing about complex analysis!2012-07-20
  • 1
    @Argon: a useful way! (+1)2012-08-11