Problem:
Suppose that for every $n\in\mathbb{N}$, $a_n\in\mathbb{R}$ and $a_n\ge 0$. Given that $$\sum_0^\infty a_n$$ converges, show that $$\sum_1^\infty \frac{\sqrt{a_n}}{n} $$ converges.
Source: Rudin, Principles of Mathematical Analysis, Chapter 3, Exercise 7.