Let be a polynomial with real coefficients. Calculate the value of this limit:
$$\lim_{n \rightarrow \infty} |P(1)...P(n+1)|^ \frac1{n+1}-|P(1)...P(n)|^ \frac1{n} $$
Let be a polynomial with real coefficients. Calculate the value of this limit:
$$\lim_{n \rightarrow \infty} |P(1)...P(n+1)|^ \frac1{n+1}-|P(1)...P(n)|^ \frac1{n} $$