1
$\begingroup$

$\vec{u},\vec{w},\vec{v}\in\mathbb{R^3}$ $$(\vec{u}\times\vec{w})\times \vec{v}=0$$ if an only if $$(\vec{u}\times\vec{v})\times \vec{w}= \vec{u}\times(\vec{v}\times \vec{w})$$ is it always true and how to prove it?

1 Answers 1

3

$\newcommand{\t}{\times}$ Note that the expression

$$(u\t w)\t v + (w\t v)\t u + (v\t u)\t w$$

can be expanded using the vector triple product and shown to be equal to zero.

The result you are asked to prove follows easily.