Let $y_n >0$ for all $n \in \mathbb{N}$ where $\sum {y_n} = + \infty$ and a sequence $(x_n)$ of real numbers. If $\lim\limits_{n \rightarrow \infty} \dfrac{x_n}{y_n} = a$ then $\lim\limits_{n \rightarrow \infty} \dfrac{x_1 + \dotsb +x_n}{y_1 + \dotsb + y_n} = a$.
Division of two series
1
$\begingroup$
sequences-and-series
limits