Let $P$ be a square matrix and $ \rho(P)$ the spectral radius of $P$. How to show \begin{align} \rho\left( \dfrac{P}{ \rho(P) + \epsilon } \right) < 1 \text{ for all } \epsilon >0. \end{align}
Let $ \rho(P)$ be the spectral radius of $P$. Show $ \rho( \dfrac{P}{ \rho(P) + \epsilon } ) < 1 \text{ for all } \epsilon >0. $
3
$\begingroup$
linear-algebra
matrices
functional-analysis
-
2Start by thinking about the relationship between the spectrum of $P$ and the spectrum of $\lambda P$, for $\lambda$ a scalar. – 2012-02-09