How would I find the limit for:
$$\lim_{n\to\infty}\left(\frac{n-1}{n}\right)^n$$
I know it approaches $\frac{1}{e}$, but I have no idea how it works. Plus, why does: $$\lim_{n\to\infty}\left(\frac{n-x}{n}\right)^n=\frac{1}{e^x}$$
How would I find the limit for:
$$\lim_{n\to\infty}\left(\frac{n-1}{n}\right)^n$$
I know it approaches $\frac{1}{e}$, but I have no idea how it works. Plus, why does: $$\lim_{n\to\infty}\left(\frac{n-x}{n}\right)^n=\frac{1}{e^x}$$