Let $A$ and $B$ be infinite sets. To show $|A\cup B|=\max\{|A|,|B|\}$ we need AC. Now let us assume $|A|<|B|$. Can we show $|A\cup B|=|B|$ without AC?
Sum of cardinals without AC
7
$\begingroup$
set-theory
cardinals
axiom-of-choice