7
$\begingroup$

Given the Dirichlet beta function,

$$\beta(k) = \sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^k}$$

(The cases k = 2 is Catalan's constant.) It seems,

$$\sum_{k=2}^\infty\Big[1-\beta(k) \Big] = \frac{1}{4}\big(\pi+\log(4)-4\big)=0.131971\dots$$

or, in general, for some constant p > 0,

$$\sum_{k=2}^\infty\left[1-\sum_{n=0}^\infty\frac{(-1)^n}{(pn+1)^k} \right] = \sum_{m=1}^\infty\frac{1}{2p^2m^2+3pm+1}$$

Anyone knows how to prove the general proposed equality? (This is similar to the question on the zeta sum here.)

1 Answers 1

5

Here is a way to derive a slightly different looking result:

Notice that $$\sum_{k=2}^{\infty}\left[1-\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(pn+1)^{k}}\right]=\sum_{k=2}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{(pn+1)^{k}}$$

$$=\sum_{n=1}^{\infty}(-1)^{n-1}\sum_{k=2}^{\infty}\frac{1}{(pn+1)^{k}}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{(pn+1)^{2}}\sum_{k=0}^{\infty}\frac{1}{(pn+1)^{k}}.$$ Now, since $$\sum_{k=0}^{\infty}\frac{1}{(pn+1)^{k}}=\frac{1}{1-\frac{1}{pn+1}}=\frac{pn+1}{pn},$$ our series is

$$\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{pn(pn+1)}.$$

Plugging in the case $p=2$ seems to agree with your first identity.

Remark: Using partial fractions, we can go a bit further. Notice that $$\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{pn(pn+1)}=\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{1}{pn}-\frac{1}{pn+1}\right)=\frac{\log 2}{p}-\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{pn+1} $$

Suppose $p$ is an integer, and let $\zeta_{p}$ be a $p^{th}$ root of unity. Then consider $$\frac{\log\left(1+z\right)}{z}+\frac{\log\left(1+\zeta_{p}z\right)}{\zeta_{p}z}+\cdots+\frac{\log\left(1+\zeta_{p}^{p-1}z\right)}{\zeta_{p}^{p-1}z}=\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n-1}}{n}z^{n-1}\sum_{k=0}^{p-1}\zeta_{p}^{k(n-1)} $$

$$=\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n-1}}{pn+1}z^{pn}.$$ Letting $z=1,$ we have the identity $$\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n-1}}{pn+1}=\sum_{k=0}^{p-1}\frac{\log\left(1+\zeta_{p}^{k}\right)}{\zeta_{p}^{k}z},$$ so our original series is $$\frac{1}{p}\log2+\sum_{k=0}^{p-1}\frac{\log\left(1+\zeta_{p}^{k}\right)}{\zeta_{p}^{k}z}.$$

  • 1
    That was fast. :-) WolframAlpha says my non-alternating series and your alternating one are in fact [equal](http://www.wolframalpha.com/input/?i=Sum%5B1%2F%282p%5E2m%5E2%2B3p*m%2B1%29%2C%7Bm%2C1%2Cinfty%7D%5D-Sum%5B%28-1%29%5E%28n-1%29%2F%28p*n%28p*n%2B1%29%29%2C%7Bn%2C1%2Cinfty%7D%5D).2012-06-24
  • 0
    @Tito: Ahhh, good point.2012-06-24
  • 1
    At the end, you said, "Letting $z=1$," but there's still a $z$ there. Is that a typo?2014-08-29