Let $X=(C([0,1]), \Vert \cdot \Vert_{\infty})$. Determine the spectrum of $$ \begin{split} M \colon & X \to X\\ & u(t) \mapsto \int_0^t h(s)u(s)ds \end{split} $$ where $h \in C([0,1])$ is fixed.
First of all, I have proved the operator is compact (by Ascoli-Arzelà). Hence $0 \in \sigma(M)$.
Now how can I find the other elements of $\sigma(M)$? I know that they are eigenvalues and they are either finite, either a sequence (converging to $0$), since $M$ is compact.
Here's what I've tried: let $\lambda \ne 0$ and eigenvalue $g(\cdot)$ a corresponding eigenvector. So I have $$ \lambda g(x) = \int_0^x h(s)g(s)ds $$ hence $g \in C^1$ and $$ \begin{cases} \lambda g'(x) = h(x)g(x)\\ g(0)=0 \end{cases} $$ Solving this Cauchy problem, I get $$ g(x)=\exp{\left( \frac{1}{\lambda}\int_0^x h(s)ds\right) } -1. $$ Now I don't manage to finish: I should find some conditions on $\lambda$, but can't see how...
Thanks in advance.