0
$\begingroup$

Is there a name for this series?

$$\sum_{k=1}^{\infty}\frac{a^{2k}}{2k}.$$

I know that:

$$\tanh^{-1}(a)=\sum_{k=1}^{\infty}\frac{a^{2k-1}}{2k-1}.$$

  • 2
    $$-\log(1-z)-\tanh^{-1}(z)=\sum_{k=1}^\infty \frac{z^{2k}}{2k}$$2012-07-29
  • 0
    Yup I noticed. Was curious, if there is a name.2012-07-29

1 Answers 1

3

I don't believe there's a name for the series you have there, but,

$$\begin{align*} -\log(1-z)&=\sum_{k=1}^\infty\frac{z^k}{k}\\ -\log(1-z^2)&=\sum_{k=1}^\infty\frac{z^{2k}}{k}\\ -\frac12\log(1-z^2)&=\sum_{k=1}^\infty\frac{z^{2k}}{2k}\\ \log\frac1{\sqrt{1-z^2}}&=\sum_{k=1}^\infty\frac{z^{2k}}{2k}\\ \end{align*}$$