1
$\begingroup$

How to find the following limit without evaluating the integral? $\lim_{k\rightarrow \infty }\left(k\int_0^1 (x-1) x^k (\log x)^{-1} \, dx\right)$ , $k>-1$

  • 2
    What does $\log^{-1}$ mean?2012-12-09
  • 0
    Might it be that $\left(\log x\right)^{-1}$ was intended?2012-12-09
  • 0
    it means $1/log(x)$2012-12-09

2 Answers 2