2
$\begingroup$

Let $M$ be a complex manifold and $\Delta^{\bar \partial} = \bar\partial^* \bar\partial + \bar\partial\bar\partial^*$ the complex laplacian. Is it true that $\Delta^{\bar\partial} f = \Delta f$ (the ordinary Hodge laplacian of $f$) for $f\in C^\infty(M)$ a $0$-form?

1 Answers 1