1
$\begingroup$

When I'm proving this Lemma, I use the fact (recommended by my advisor) that

$$\begin{array}{cl} \sum_{\alpha\in \Omega}|G_{\alpha}| & =\sum_{\alpha\in \Omega}\frac{|G|}{|G\cdot\alpha|} \\ & =|G|\sum_{\alpha\in \Omega}\frac{1}{|G\cdot\alpha|} \\ & =|G|\sum_{A\in X/G}\sum_{\alpha\in A}\frac{1}{|A|} \\ & =|G|\sum_{A\in X/G}1 \\ &=|G||X/G|.\end{array}$$

But I don't understand why can I do $$|G|\sum_{\alpha\in \Omega}\frac{1}{|G\cdot\alpha|}=|G|\sum_{A\in X/G}\sum_{\alpha\in A}\frac{1}{|A|}~?$$

  • 2
    Orbits **partition** $G$-sets. Thus summing over all of $\Omega$ is the same as summing the particular summations over each orbit. And if $A$ is an orbit then $|A|=|G\alpha|$ for each $\alpha\in A$; it's the same orbit no matter which representative $\alpha$ you pick.2012-10-20
  • 0
    ty ever so much!!2012-10-20

0 Answers 0