How to solve the following limit? $$\lim_{N\rightarrow+\infty}\frac{1}{N}\sum_{k=1}^{N-1}\left(\frac{k}{N}\right)^N$$
How to solve this limit related to series?
7
$\begingroup$
sequences-and-series
limits
-
0Are you familiar with Riemann sums associated to Riemann integrals? – 2012-08-26
-
0There is a celebre limit that states that if $\lim_{n\to\infty} a_{n} = a \geq 0$ and $\lim_{n\to\infty} b_{n} = b \geq 0$ then we have that $ \lim_{n\to\infty} \frac{a_{1} b_{n} + a_{2} b_{n-1}+ \cdots +a_{n} b_{1}}{n} =ab.$ I think this could be an alternative. – 2012-08-26