I need to simplify function $g(x)$ which I describe below.
Let $F(y)$ be the inverse of $f'(\cdot)$ i.e. $F = \left( f'\right)^{-1}$ and $f(x): \mathbb{R} \to \mathbb{R}$, then $$g(x) =\int_a^x F(y)dy$$ Is it possible to simplify $g(x)$?
I need to simplify function $g(x)$ which I describe below.
Let $F(y)$ be the inverse of $f'(\cdot)$ i.e. $F = \left( f'\right)^{-1}$ and $f(x): \mathbb{R} \to \mathbb{R}$, then $$g(x) =\int_a^x F(y)dy$$ Is it possible to simplify $g(x)$?