How can I find the upper bound of $$\left\vert\frac{(c+1/2+\lambda)_{n}}{\lambda^{n}}\right\vert,\quad\text{where}\quad(c+1/2+\lambda)_{n}=\frac{\Gamma(c+1/2+\lambda+n)}{\Gamma(c+1/2+\lambda)}$$ and $\lambda \to \infty$?
Upper bound of function including Pochhammer symbol
0
$\begingroup$
real-analysis
special-functions
asymptotics
gamma-function
-
0[Leo August Pochhammer](http://en.wikipedia.org/wiki/Leo_August_Pochhammer) :) – 2012-09-11
-
2What kind of upper bound? The limit is 1. – 2012-09-11
-
0And the ratio decreases to its limit 1. – 2012-09-11