0
$\begingroup$

Suppose one is given a series of the form $\sum\limits_{n=0}^\infty a_n (z - \alpha)^{-n}$ where $a_n,z,\alpha \in \mathbb{C}$ ($z$ is our indeterminate). How would one determine the radius of convergence of this series? Would the root (or ratio) test work? I imagine substituting $u = (z - \alpha)^{-1}$, looking at $\sum\limits_{n=0}^\infty a_n u^n$ and then applying the root or ratio test is the right thing to do, but I'm not sure.

  • 0
    This is not a "normal" power series but one called Laurent Series in complex analysis. Is this what you're up to?2012-12-12
  • 0
    Yes, it is not a power series. I'll edit it to fix this. I wonder, however, if any of the normal tests for the radius of convergence apply.2012-12-12
  • 0
    Read here http://en.wikipedia.org/wiki/Laurent_series2012-12-12

1 Answers 1

1

Laurent series converge on the annulus $\left\{z\in \mathbb C| R_1 < |z − z_0| < R_2 \right\}$ where $0 \le R_1 < R_2 \le \infty$ when in the form

$$f(z)=\sum_{n=-\infty}^\infty a_n(z-z_0)^n$$

http://www.maths.manchester.ac.uk/~cwalkden/complex-analysis/complex_analysis_part6.pdf

  • 1
    Argon, the link no longer works. Can you post an updated link?2015-11-15