0
$\begingroup$

Consider the sets: $$Q_0=\{x\in\mathbf{R}^n:0 $$Q_l=\{x\in\mathbf{R}^n:0 Suppose $0\leq u\leq K$ in $Q_l$, and $$|Mu|\leq A(|\nabla u|+u+k), \ \ in \ Q_0,$$ where $$M=\sum_{i,j=1}^na_{ij}(x)\frac{\partial^2}{\partial x_i\partial x_j}.$$ The, by scaling $x=ly$, $$|Mu|\leq A\left(\frac{|\nabla u|}{l}+\frac{u}{l^2}+k\right) \ \ in \ Q_l.$$

1 Answers 1