1
$\begingroup$

here's my question:

I have position and velocity vectors of a body in the inertial frame. Now i need to switch the reference system to body frame.

So i have

$\bar{x}_b = \hat{R}\bar{x}_I$

where

$\hat{R}=\hat{R}( \phi(t),\theta(t),\psi(t)) = \left[ \begin{matrix}\cos{(\theta)}\cos{(\psi)} & \cos{(\theta)}\sin{(\psi)} & -\sin{(\theta)}\\ \sin{(\phi)}\sin{(\theta)}\cos{(\psi)}-\cos{(\phi)}\sin{(\psi)} & \sin{(\phi)}\sin{(\theta)}\sin{(\psi)}+\cos{(\phi)}\cos{(\psi)} & \sin(\phi)\cos(\theta) \\ \cos{(\phi)}\sin{(\theta)}\cos{(\psi)}+\sin{(\phi)}\cos{(\psi)} & \sin{(\phi)}\sin{(\theta)}\sin{(\psi)}-\sin{(\phi)}\cos{(\psi)} & \cos(\phi)\sin(\theta) \end{matrix} \right]$

so now i shoud do:

$\bar{v}_b = \dot{\bar{x}}_b = \frac{\partial{\hat{R}}}{\partial{t}}\cdot \bar{x}_I +\hat{R} \cdot\frac{\partial{\bar{x}_I}}{\partial{t}} $

is this correct? My doubt is about rotational matrix, should it be derived? Or am i missing something?

Thanks in advance!

  • 0
    Or just can i do: $\bar{v}_b = \hat{R}\bar{v}_I$ ?2012-09-27

1 Answers 1