1
$\begingroup$

Define $$ U := C^0 ([0,T], W^{1,2} ) \cap C^1 ([0,T] \cap L^2 ) \cap L^\infty ([0,T] , W^{s,2} ).$$ Then how can I prove that $ \lim_{x_j \to \infty}| u |^2 = 0 $ by using the fact: $$ C^1 ([0,T] , \mathcal S ) \text{ is dense in } U?$$ Here $u : [0,T] \times \Bbb R^n \to \Bbb C^n$ , the norm for the space $U$ : $|u|_{s,T} := \sup _{t \in [0,T]} \| u(t) \|_{W^{s,2}}$, $W^{s,p}$ is the usual Sobolev space, $\mathcal S$ denotes the Schwarz class.

  • 0
    @DavideGiraudo $|u|$ means that $\sqrt{|u_1|^2 + \cdots + |u_n|^2}$ for a fixed $t \in [0,T]$.2012-10-29
  • 0
    @DavideGiraudo Sorry, $\Bbb C$ should be fixed to $\Bbb C^n$.2012-10-29
  • 0
    and $u \in U$ means that all the components $u_j \in U$.2012-10-29
  • 0
    @DavideGiraudo $p$ is always 2, but $s$ can be $0,1,2,\cdots$.2012-10-29
  • 0
    Do you see why you just have to show it when $u_j$ is in the Schwartz space?2012-10-29

0 Answers 0