If $X=(x,y,z)$ is a random point uniform on the unit sphere in $\mathbb{R}^3$, Are the coordinates $x$, $y$, $z$ uniform in interval $(-1,1)$?
Random point uniform on a sphere
15
$\begingroup$
probability
probability-distributions
-
0for a cube perhaps? – 2012-08-22
-
0should use a rejection method? http://paulbourke.net/geometry/spherepoints/ – 2012-08-22
-
0I stand corrected! – 2012-08-22
-
0Related: http://stats.stackexchange.com/questions/7977/how-to-generate-uniformly-distributed-points-on-the-surface-of-the-3-d-unit-sphe – 2012-08-22