$(i) X\cap(\bigcup\limits_{n=1}^\infty A_n) = \bigcup\limits_{n=1}^\infty (X\cap A_n)$
$(ii) X\cup(\bigcap\limits_{n=1}^\infty A_n) = \bigcap\limits_{n=1}^\infty (X\cup A_n)$
Any suggestions on how to approach this?
$(i) X\cap(\bigcup\limits_{n=1}^\infty A_n) = \bigcup\limits_{n=1}^\infty (X\cap A_n)$
$(ii) X\cup(\bigcap\limits_{n=1}^\infty A_n) = \bigcap\limits_{n=1}^\infty (X\cup A_n)$
Any suggestions on how to approach this?