0
$\begingroup$

For what kind of functions/or for which functions $h(a,b)$ is the below equation true :

assumption is $\lim_{ x\to\infty }{f(x)}=l_1$, $\lim_{ x\to\infty }{g(x)}=l_2.$

When is it true that $\lim_{ x\to\infty }{h(f(x),g(x))}=h(\lim_{ x\to\infty }{f(x)},\lim_{ x\to\infty }{g(x)}) = h(l_1, l_2)$ ?

  • 0
    I think you meant to say $f(a,b)$ instead of $h(a,b)$, anyways your counterexample isn't one: $\lim_{x\to\infty} (1+1/x)^{1/x} = 1 = 1^0 = (\lim_{x\to\infty} 1 + 1/x)^{\lim_{x\to\infty} 1/x}$2012-04-11
  • 0
    Thanks Anthales, I've made a few mistakes in my question.2012-04-11
  • 3
    The answer is: when the function $h$ is continuous at $(l_1,l_2)$.2012-04-11

1 Answers 1