13
$\begingroup$

How would you compute this sum? It's not a problem I need to immediately solve, but a problem that came to my mind today. I think that the generalization to more than three nested sums would be interesting as well.

$$ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{p=1}^{\infty}\frac{(-1)^{m+n+p}}{m+n+p}$$

  • 0
    By generalization, do you want $$\sum_{k_1,\dots,k_N=1}^{+\infty}\frac{(-1)^{\sum_{j=1}^Nk_j}}{\sum_{j=1}^Nk_j}?$$ We can express the summand as an integral.2012-07-25
  • 0
    Can you show us, why you think that it converges at all?2012-07-25
  • 0
    Mathematica 8.0 is saying that the sum diverges.2012-07-25
  • 0
    @Chris'sister can you show/link your WA?2012-07-25
  • 0
    @Chris'sister: in general it is better to use the MarkDown construction to post links. That is `[link text](url to link to)`. I edited your comments above. This is one way to help prevent link breakage.2012-07-25
  • 0
    When linking to WA in comments, it is also useful to know about percent-encoding, see meta [here](http://meta.math.stackexchange.com/questions/520/links-urls-containing-special-characters-are-not-recognized-by-markdown) and [here](http://meta.math.stackexchange.com/questions/4482/carets-stop-hyperlinks-working).2012-07-25

2 Answers 2

25

Here is a simple lemma:

Let $(u_n)_{n\geqslant1}$ denote a decreasing sequence of positive functions defined on $(0,1)$, which converges pointwise to zero and such that $u_1$ is integrable on $(0,1)$. Then, $$ \sum\limits_{n=1}^{+\infty}(-1)^n\int_0^1u_n(s)\,\mathrm ds=\int_0^1u(s)\,\mathrm ds,\qquad u(s)=\sum\limits_{n=1}^{+\infty}(-1)^nu_n(s). $$

Now, let us consider the multiple series the OP is interested in. One sees readily that it does not converge absolutely hence the idea is to apply the lemma three times.

  • First, fix $n$ and $m$ and, for every $p\geqslant1$, consider $u_p(s)=s^{m+n+p-1}$. Then $u(s)=-\dfrac{s^{m+n}}{1+s}$ hence the lemma yields $$ \sum\limits_{p=1}^{+\infty}\frac{(-1)^{m+n+p}}{m+n+p}=(-1)^{m+n}\sum\limits_{p=1}^{+\infty}(-1)^{p}\int_0^1u_p(s)\,\mathrm ds=(-1)^{m+n+1}\int_0^1\frac{s^{m+n}}{1+s}\,\mathrm ds. $$
  • Second, fix $m$ and, for every $n\geqslant1$, consider $u_n(s)=\dfrac{s^{m+n}}{1+s}$. Then $u(s)=-\dfrac{s^{m+1}}{(1+s)^2}$ hence the lemma yields $$ \sum\limits_{n=1}^{+\infty}(-1)^{m+n+1}\int_0^1\frac{s^{m+n}}{1+s}\,\mathrm ds=(-1)^m\int_0^1\frac{s^{m+1}}{(1+s)^2}\,\mathrm ds $$
  • Third and finally, for every $m\geqslant1$, consider $u_m(s)=\dfrac{s^{m+1}}{(1+s)^2}$. Then $u(s)=-\dfrac{s^{2}}{(1+s)^3}$ hence the lemma yields $$ \sum\limits_{m=1}^{+\infty}(-1)^m\int_0^1\frac{s^{m+1}}{(1+s)^2}\,\mathrm ds=-\int_0^1\frac{s^{2}}{(1+s)^3}\,\mathrm ds. $$

Thus, the triple series the OP is interested in converges and the value $S_3$ of the sum is $$ \color{red}{S_3=-\int_0^1\frac{s^{2}}{(1+s)^3}\,\mathrm ds}=-\int_1^2\frac{s^{2}-2s+1}{s^3}\,\mathrm ds=-\left[\log(s)+\frac2s-\frac1{2s^2}\right]_1^2, $$ that is, $\color{red}{S_3=-\log(2)+\frac58}=-0.06814718\ldots$

The technique above shows more generally that, for every $k\geqslant1$, the analogous series over $k$ indices converges and that the value of its sum is $$ S_k=(-1)^k\int_0^1\frac{s^{k-1}}{(1+s)^k}\,\mathrm ds=(-1)^k\left(\log(2)+\sum_{i=1}^{k-1}(-1)^i{k-1\choose i}\frac1i(1-2^{-i})\right). $$

  • 1
    This is really, really nice. The $k=1$ case serves as another proof of the well-known alternating harmonic series sum,$$\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} = \log(2)$$2012-07-25
  • 2
    In fact, the structure of the general answer is quite interesting: a transcendental constant plus purely algebraic terms.2012-07-25
  • 0
    Chris' sister: The answer to this (where does this proof come from?) is in @James' remark: the method is an extension of a classical approach to prove that $S_1=-\log2$.2012-07-25
1

This didn' fit in a comment $$ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\sum_{p=1}^{\infty}\frac{(-1)^{(m+n)+p}}{(m+n)+p}\pm(-1)^{m+n}\sum_{k=1}^{m+n}\frac{(-1)^{k}}{k}\right)\\ =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left((-1)^{(m+n)}\sum_{p=1}^{\infty}\frac{(-1)^{p}}{(m+n)+p}\pm(-1)^{m+n}\sum_{k=1}^{m+n}\frac{(-1)^{k}}{k}\right)\\ =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left( \color{red}{ (-1)^{(m+n)}\sum_{p=1}^{\infty}\frac{(-1)^{p}}{(m+n)+p}+(-1)^{m+n}\sum_{k=1}^{m+n}\frac{(-1)^{k}}{k}}-(-1)^{m+n}\sum_{k=1}^{m+n}\frac{(-1)^{k}}{k}\right)\\ =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left( \color{red}{ (-1)^{(m+n)}\sum_{p=1}^{\infty}\frac{(-1)^{p}}{p}}-(-1)^{m+n}\sum_{k=1}^{m+n}\frac{(-1)^{k}}{k}\right)\\ =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \color{red}{ (-1)^{(m+n)}\log(2)}-\Phi_{\text{Lerch}}(-1, 1, 1+n+m)+(-1)^{m+n}\log(2)\\ =\underbrace{\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (-1)^{(m+n)}2\log(2)}_{=0?}-\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \Phi_{\text{Lerch}}(-1, 1, 1+n+m)\\ =-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \Phi_{\text{Lerch}}(-1, 1, 1+n+m)\;, $$ and this is where I give up for now. W|A can do some examples, that make me believe, that this doesn't converge...

Ref's: $-(-1)^{m+n}\sum_{k=1}^{m+n}\frac{(-1)^{k}}{k}=-\Phi_{\text{Lerch}}(-1, 1, 1+n+m)+(-1)^{m+n}\log(2)$

  • 0
    Each inner sum of the double sum underlined with $=0?$ diverges hence the double sum diverges.2012-07-25
  • 1
    @did And why don't they cancel infinitely often to $0$?2012-07-25
  • 0
    @did like [Grandi's series](http://en.wikipedia.org/wiki/Grandi%27s_series)... so let it be $0$ or $1$ or $1/2$. It would not affect to overall convergence/divergence...2012-07-25
  • 0
    Well, if you have no qualm about summing $\sum\limits_n(-1)^n$, what can I say...2012-07-25
  • 0
    @did maybe someting about: $\sum\limits_m\sum\limits_n (-1)^{m+n}=\sum\limits_m(-1)^{m}\sum\limits_n (-1)^{n}=\sum\limits_m(-1)^{m}G=G\sum\limits_m(-1)^{m}=G^2$, where $G$ is whatever you prefer as value for the Grandi series. So it converges, right?2012-07-25
  • 0
    Surely you are pulling my leg.2012-07-25
  • 0
    not at all. Why do you think so? Sorry for asking stupid questions, if I @did.2012-07-25
  • 0
    Then read the WP page you linked to, they rightly say that this series diverges. Sure, summation methods do exist (Césaro, Abel, still others), which allow to give it nevertheless a value, but not in the conventional sense of the sum of a series. Hence any *proof* which would use such a value as if it was the sum of the series is doomed.2012-07-25
  • 0
    @did It says: *It is a divergent series, meaning that it lacks a sum in the usual sense.* I thought, I can use it to at least show the overall convergence of the triple sum. I never thought of coming up with the actual value. And I never never meant to pull your leg.2012-07-25