Can anybody tell me what is known about the classification of abelian transitive groups of the symmetric groups?
Let $G$ be a an abelian transitive subgroup of the symmetric group $S_n$. Show that $G$ has order $n$.
Thanks for your help!
Can anybody tell me what is known about the classification of abelian transitive groups of the symmetric groups?
Let $G$ be a an abelian transitive subgroup of the symmetric group $S_n$. Show that $G$ has order $n$.
Thanks for your help!