3
$\begingroup$

How can I evaluate: $$\lim_{h \to 0} \int_{-1}^{1}\frac{h}{h^2+x^2}~dx$$

How I proceed: $$\lim_{h \to 0} \int_{-1}^{1}\frac{h}{h^2+x^2}~dx=2\lim_{h \to 0} \frac{1}{h}\int_{0}^{1}\frac{1}{1+(\frac{x}{h})^2}~dx=2\lim_{h \to 0}\frac{1}{h}\arctan\frac{1}{h}$$ Then how can I prooceed. Please help. Thank in advance.

  • 2
    Why can't you go on by yourself :-)? You have almost finished: there is no indeterminate form.2012-12-21
  • 2
    you put extra ${1 \over h}$ in the last2012-12-21
  • 0
    @experimentX: I forgot that in previous expresion2012-12-21
  • 0
    Last expression will be $2\lim_{h \to 0}\arctan\frac{1}{h}$.I was wrong.2012-12-21

2 Answers 2

2

Hint: $$\lim_{x\to +\infty}\arctan x=\frac{\pi}2$$ while $$\lim_{x\to -\infty}\arctan x=-\frac{\pi}2$$ Therefore, $$\lim_{h \to 0^+}\frac1h\arctan\frac{1}{h}=\lim_{y \to +\infty}y\arctan y=(+\infty)\frac\pi 2=+\infty$$ while $$\lim_{h \to 0^-}\frac1h\arctan\frac{1}{h}=\lim_{y \to -\infty}y\arctan y=(-\infty)\frac{-\pi} 2=+\infty$$ The required limit is $$\lim_{h \to 0}\frac1h\arctan\frac{1}{h}=+\infty$$

  • 0
    If I take $y=\frac{1}{h}$ then I get $\lim_{y \to \infty}y \arctan y$.What I can do with this **y**.2012-12-21
  • 0
    @Argha As you said, you are looking for the limit of $\arctan\frac1h$ and not $\frac1h\arctan\frac1h$2012-12-21
  • 0
    No,I want $\frac{1}{h}\arctan \frac{1}{h}$ not $\arctan \frac{1}{h}$2012-12-21
  • 0
    So, I conclude limit exists and equal to $+\infty$2012-12-21
  • 0
    now I understand the problem. Thank you2012-12-21
  • 0
    @Argha Should I add more detail in my answer?2012-12-21
  • 0
    No.It's enough.2012-12-22
1

$$\lim_{h \to 0} \int_{-1}^{1}\frac{h}{h^2+x^2}~dx=2\lim_{h \to 0} \frac{1}{h}\int_{0}^{1}\frac{1}{1+(\frac{x}{h})^2}~dx=2\lim_{h \to 0} \int_{0}^{1/h}\frac{1}{1+(\frac{x}{h})^2}~d\left({x\over h}\right) $$ $$ 2\lim_{x\rightarrow 0} \arctan(1/x) = \pi \text{ as stated above.}$$

  • 0
    why don't you change limit of integration $(0,1)$ to $(0,1/h)$2012-12-21
  • 0
    yeah!! sorry forgot about that!!2012-12-21
  • 0
    $\lim_{h \to 0} \int_{0}^{1/h}\frac{1}{1+(\frac{x}{h})^2}~d\left({x\over h}\right) = \lim_{h \to 0} \arctan (1/h) - \arctan 0$ which is same2012-12-21
  • 0
    this seems to work http://tinyurl.com/cnvd4wg2012-12-21
  • 0
    I delete my comment.You are right.2012-12-21
  • 0
    Why change the upper limit in the integral? There's no substitution there!2012-12-21