Let $f:\mathbb{R}\to\mathbb{R}$ be a function such that for all $x_0\in\mathbb{R}$ we have $\lim\limits_{x\to x_0}f(x)=g(x_0)\in \mathbb{R}$.
Is $g$ a continuous function?
Let $f:\mathbb{R}\to\mathbb{R}$ be a function such that for all $x_0\in\mathbb{R}$ we have $\lim\limits_{x\to x_0}f(x)=g(x_0)\in \mathbb{R}$.
Is $g$ a continuous function?