Consider $X \sim \text{Unif} (\alpha, \beta)$. Find $P(X<\alpha + p(\beta - \alpha))$ Assume $p$ is a constant with $0
Consider $X \sim \text{Unif} (\alpha, \beta)$. Find $P(X<\alpha + p(\beta - \alpha))$ Assume $p$ is a constant with $0
0
$\begingroup$
probability
probability-distributions
uniform-distribution