How can I evaluate this definite integral
$$ \int_0^\infty \frac{\operatorname{Ai}^2(z+a_n)}{z^2}dz $$ where $a_n$ are the zeroes of the Airy function.
How can I evaluate this definite integral
$$ \int_0^\infty \frac{\operatorname{Ai}^2(z+a_n)}{z^2}dz $$ where $a_n$ are the zeroes of the Airy function.