Suppose $X_1, \dots, X_{20}$ are i.i.d random variables with pdf $f(x) = 2x, 0 < x < 1$. Find $P(S < 10)$ where $S = X_1+ \cdots + X_{20}$.
So find $E(X)$ and $\text{Var}(X)$. Then $S$ has $N(20 \cdot E(X), 20 \cdot \text{Var}(X))$ distribution?
Suppose $X_1, \dots, X_{20}$ are i.i.d random variables with pdf $f(x) = 2x, 0 < x < 1$. Find $P(S < 10)$ where $S = X_1+ \cdots + X_{20}$.
So find $E(X)$ and $\text{Var}(X)$. Then $S$ has $N(20 \cdot E(X), 20 \cdot \text{Var}(X))$ distribution?