Let $x,y,z$ be different real numbers . Prove that: $$\frac{x^2y^2+1}{(x-y)^2}+\frac{y^2z^2+1}{(y-z)^2}+\frac{z^2x^2+1}{(x-z)^2} \geq \frac{3}{2}$$
Specific inequality
3
$\begingroup$
inequality
-
0Maybe you think a=x,b=y,c=z – 2012-12-16
-
0sorry i 've check – 2012-12-16
-
0I find the min happen when $z=0$ and $x=-y$ – 2012-12-16