Are these series convergent or divergent?
$$ \sum_{}^\infty [\sin(\frac{n\pi}{6})]^n $$
and
$$\sum_{}^\infty [\sin(\frac{n\pi}{7})]^n $$
Are these series convergent or divergent?
$$ \sum_{}^\infty [\sin(\frac{n\pi}{6})]^n $$
and
$$\sum_{}^\infty [\sin(\frac{n\pi}{7})]^n $$
The values of the sine cycle through a finite number of values. You can easily see that $$\limsup_{n\rightarrow\infty} \left|\sin\left(\frac{n\pi}{6}\right)\right| = 1$$ while $$\limsup_{n\rightarrow\infty} \left|\sin\left(\frac{n\pi}{7}\right)\right| < 1$$ This means the first sum cannot converge while the second sum will be absolutely convergent.
Taking $\,n=3k\,\,,\,k\in\Bbb N\,\,,\,\,k\,\,\text{odd}$ , we get
$$\sin\frac{n\pi}{6}=\sin\frac{k\pi}{2}=\pm 1\Longrightarrow \sin^n\frac{n\pi}{2}\rlap{\;\;\;\;\;/}\xrightarrow [n\to\infty]{}0$$
so the series cannot converge.