Given that $0\leq \epsilon\leq 1$, $a,b>0$, how to prove $$\frac{1}{(1+\epsilon)^2}\leq \frac{a}{b}\leq (1+\epsilon)^2\implies |a-b|\leq 16\epsilon b?$$
Proof of an inequality in the Change of Variables formula proof
2
$\begingroup$
inequality