let $V=\mathbb{R}^4$ and let $W=\langle\begin{bmatrix}1&1&0&0\end{bmatrix}^t,\begin{bmatrix}1&0&1&0\end{bmatrix}^t\rangle$. we need to find the subspaces $U$ & $T$ such that $ V=W\bigoplus U$ & $V=W \bigoplus T$ but $U\ne T$.
linear algebra problem please help
2
$\begingroup$
linear-algebra
-
0For example, can you find one space $U$ such that $V=W\oplus U$? – 2012-10-13