0
$\begingroup$

Let the random point $(X,Y)$ be uniformly distributed on the unit disc $D=\{(x,y):x^{2}+y^{2}<1\}$. Show that the polar coordinates $R\in [0,1]$ and $\theta \in [0,2\pi]$ of the point are independent.

  • 0
    To prove independency you need to show that $$ P\left[R=r\wedge\Theta=\theta\right]=P\left[R=r\right] P\left[\Theta=\theta\right] $$2012-05-04

1 Answers 1