0
$\begingroup$

If $y=(x+\sqrt{x^2+1})^2$, show that $\frac{dy}{dx} =$ $\dfrac{2y}{\sqrt{x^2+1}}$

Then we have let $ u=(x+\sqrt{x^2+1})$ $$ \frac{dy}{du} = 2(x\sqrt{x^2+1})$$ and $\qquad \frac{du}{dx} =\sqrt{x^2} \quad then\quad x. $
however I can't show that $\frac{dy}{dx} =$ $\dfrac{2y}{\sqrt{x^2+1}}$

please help me out. Thanks in advance.

  • 0
    what's your u ?2012-04-04
  • 0
    Yes, I am assuming that you missed out $u$. (Is it that $u=x\sqrt{x^2+1} ~?$) Either ways, why don't you use chain rule, to differentiate $y$ straight-away?2012-04-04
  • 0
    can u plz give me the chain rule formula? thx2012-04-04
  • 0
    http://lmgtfy.com/?q=chain+rule2012-04-04

1 Answers 1

3

$$y'=2(x+\sqrt{x^2+1})(x+\sqrt{x^2+1})'$$

$$y'=2(x+\sqrt{x^2+1})\left(1+\frac{1}{2\cdot \sqrt{x^2+1}}\cdot (x^2+1)'\right)$$

$$y'=2(x+\sqrt{x^2+1})\left(\frac{x+\sqrt{x^2+1}}{ \sqrt{x^2+1}}\right)$$

$$y'=2\cdot \frac{\left(x+\sqrt{x^2+1}\right)^2}{ \sqrt{x^2+1}}$$

$$y'=\frac{2\cdot y}{\sqrt{x^2+1}}$$

  • 0
    very close but should be $\dfrac{2y}{\sqrt{x^2+1}}$2012-04-04
  • 1
    @SbSangpi isn't it ?2012-04-04
  • 0
    Can u plz write the chain rule formula, so that I can use next time. thx2012-04-04
  • 0
    @SbSangpi [Chain rule](http://en.wikipedia.org/wiki/Chain_rule)2012-04-04