Show that if $p>1$, $\sum\frac{1}{n^{p}}$ converges and if $p<1$ it diverges for $p\in\mathbb{R}^{+}$.
Is there any way to show another series converges or diverges and then use the Comparison Test to prove this?
Show that if $p>1$, $\sum\frac{1}{n^{p}}$ converges and if $p<1$ it diverges for $p\in\mathbb{R}^{+}$.
Is there any way to show another series converges or diverges and then use the Comparison Test to prove this?