Let $k,n \in \mathbb{N}$ such that $k>\frac{n}{2}$. How can one prove that $u\in W^{k,2}(\mathbb{R}^n)$ may be embedded into $L^\infty(\mathbb{R}^n)$?
$W^{k,2}(\mathbb{R}^n) \hookrightarrow L^\infty(\mathbb{R}^n)$
2
$\begingroup$
functional-analysis
pde
sobolev-spaces