Could you please check the below and show me any errors? $$ \int_ x^ \infty {\rm erfc} ~(t) ~dt ~=\int_ x^ \infty \left[\frac{2}{\sqrt\pi} \int_ t^ \infty e^{-u^2} du \right]\ dt $$ If I let dv=dt and u equal the term inside the bracket, and do integration by parts, $$ \int u ~dv ~=uv - \int v~ du $$ v=t and du becomes $$ -\frac{2}{\sqrt\pi} e^{-t^2} $$ This was obtained from using the Leibniz rule below, $$ \frac {d} {dt} \left[ \int_ a^ b f(u)du \right]\ = \int_ a^ b \frac {d} {dt} f(u) du + f \frac {db} {dt} - f \frac {da} {dt} $$
Then, $$ \frac {d} {dt} \left[\frac{2}{\sqrt\pi} \int_ t^ \infty e^{-u^2} du \right]\ = \frac{2}{\sqrt\pi} \left[ \int_ t^ \infty \frac {d} {dt} \left( e^{-u^2} \right) du + e^{-\infty ^2} * 0 - e^{-t^2}*1 \right]= \frac{2}{\sqrt\pi} \left[0~+~0~- e^{-t^2} \right]$$ Is the first and second term going to zero correct? The upper limit b=infinity, and is db/dt=0 in the second term correct?
The integral becomes $$ \left[~ t~ \frac{2}{\sqrt\pi} \int_ t^ \infty e^{-u^2} du ~\right] _{x}^\infty + \int_ x^ \infty t \left[\frac{2}{\sqrt\pi} e^{-t^2} \right]\ dt =$$ $$ \left[~ t~ \frac{2}{\sqrt\pi} \int_ t^ \infty e^{-u^2} du ~\right] _{x}^\infty - \left[\frac{1}{\sqrt\pi} e^{-t^2} \right] _{x}^\infty =$$ $$ \left[ 0 - ~ x~ \frac{2}{\sqrt\pi} \int_ x^ \infty e^{-u^2} du ~\right] - \left[ 0 - \frac{1}{\sqrt\pi} e^{-x^2} \right] = $$ (Is the first limit going to zero OK? infinity times 0 = 0). The above becomes $$ -x~ {\rm erfc}~(x) + \frac{1}{\sqrt\pi} e^{-x^2} $$ Is everything correct here? Could you please give explanation to the questions I listed?