Problem: Given an integer $x\in\left[\text{min},\text{max}\right]$
A user comes and choose a number $\left\{ n \in \mathbb{R} : \text{min}\leq\ n \leq \text{max}\right\}$. Calculate the probability that $n > x$. I tried using following
$$\frac{\text{max}-x}{\text{max}-\text{min}}$$
But I am not getting correct answer. My book tells me that when $\text{min}=8156$, $\text{max}=15225$ and $x=12910$, then $P(n\gt x)=0.22474$, but this is not the answer I am getting.