For $a_1,a_2$, $b_1,b_2$ $\in\mathbb{R}^+$, if $a_1
If $\epsilon$ is generated from a continuous function as $\epsilon={f_\epsilon(t)}$. What would be a way to characterize $r_1-r_2$ in terms of $f_\epsilon(t)?$
For $a_1,a_2$, $b_1,b_2$ $\in\mathbb{R}^+$, if $a_1
If $\epsilon$ is generated from a continuous function as $\epsilon={f_\epsilon(t)}$. What would be a way to characterize $r_1-r_2$ in terms of $f_\epsilon(t)?$