(It's mostly a calculus question and has little to do with optics.)
I'm reading a book on Computer Graphics, Realistic Image Synthesis Using Photon Mapping by Henrik Wann Jensen, and I can't completely understand how to derive the radiance equation given in Chapter 2.
According to the book, the spectral radiant energy $Q_{\lambda}$, in $n_{\lambda}$ photons with wavelength $\lambda$ is
$$Q_{\lambda}=n_{\lambda}\frac{h \; c}{\lambda}\;,$$
where h is Planck's constant. Hence
$$Q=\int_{0}^{\infty}Q_{\lambda}d\lambda\;.$$
Radiant flux $\Phi$ is the time rate of flow of radiant energy:
$$\Phi=\frac{dQ}{dt}\;.$$
And radiant flux area density is
$$E(x)=\frac{d\Phi}{dA}\;.$$
The radiant intensity $I$ is the radiant flux per unit solid angle $d\omega$:
$$I(\omega)=\frac{d\Phi}{d\omega}\;.$$
So the radiance $L$ is the radiant flux per unit solid angle per unit projected area:
$$L(x,\omega)=\frac{d^{2}\Phi}{\cos\theta\;dA\;d\omega}=\int_{0}^{\infty}\frac{d^{4}n_{\lambda}}{\cos\theta\;d\omega\;dA\;dt\;d\lambda}\;\frac{h\;c}{\lambda}d\lambda$$
My question is: Could anyone explain how to derive the last integral, and why it is not
$$\int_{0}^{\infty}\frac{d^{3}n_{\lambda}}{\cos\theta\;d\omega\;dA\;dt}\;\frac{h\;c}{\lambda}d\lambda\;?$$