$\sum_{n=0}^{\infty} \frac{n^n}{3^{1+3n}}$
I have, by Cauchy Criterion
$\lim_{n \rightarrow \infty} \sqrt[n]{|a_n|}= \frac{1}{27} \lim_{n \rightarrow \infty} \frac{n}{3^{1/n}}= ?$
How a finish?
Cheers!
$\sum_{n=0}^{\infty} \frac{n^n}{3^{1+3n}}$
I have, by Cauchy Criterion
$\lim_{n \rightarrow \infty} \sqrt[n]{|a_n|}= \frac{1}{27} \lim_{n \rightarrow \infty} \frac{n}{3^{1/n}}= ?$
How a finish?
Cheers!