How do I show that $$\int \limits_{-\infty}^{+\infty} \Psi^* \left(-i\hbar\frac{\partial \Psi}{\partial x} \right)dx=\int \limits_{-\infty}^{+\infty} p \left|a(p)\right|^2dp\tag1$$
given that $$\Psi(x)=\frac{1}{\sqrt{2 \pi \hbar}}\int \limits_{-\infty}^{+\infty} a(p) \exp\left(\frac{i}{\hbar} px\right)dp\tag2$$
My attempt: $$\frac {\partial \Psi(x)}{\partial x} = \frac{1}{\sqrt{2\pi \hbar}} \int\limits_{-\infty}^{+\infty} \frac{\partial}{\partial x} \left(a(p)\exp\left(\frac{i}{\hbar} px\right)\right)dp\tag3$$
$$=\frac{1}{\sqrt{2\pi \hbar}} \int\limits_{-\infty}^{+\infty} a(p) \cdot \exp\left(\frac{i}{\hbar} px\right)\frac{i}{\hbar}p \cdot dp\tag4$$
Multiplying by $-i\hbar$: $$-i\hbar \frac {\partial \Psi}{\partial x}=\frac{1}{\sqrt{2\pi \hbar}} \int\limits_{-\infty}^{+\infty} a(p) \cdot \exp\left(\frac{i}{\hbar} px\right)p \cdot dp\tag5$$
At this point I'm stuck because I don't know how to evaluate the integral without knowing $a(p)$. And yet, the right hand side of equation (1) doesn't have $a(p)$ substituted in.