0
$\begingroup$

Possible Duplicate:
Evaluating this integral for different values of a constant

Is there a solution to the definite integral, $$\int\limits_{0}^{\infty} \frac{1}{x^{\frac{1}{n}}}\frac{1}{1+x^2}\mathrm{d}x$$ where, $n \in \mathbb{N}$

HINT : substitute, $x = \tan\theta$

  • 1
    Are you giving us a hint ?2012-08-11
  • 0
    I wonder if there's something special about $n\in\Bbb N$ and $x=\tan\theta$ that makes this question seek a different type of answer than the one given in the duplicate question.2012-08-11

1 Answers 1