Let $\ π(x)$ denote the prime counting function , i.e. the number of primes not exceeding $x$
Then does $$ \ \lim_{x\to ∞ }\frac{π(x)} { x^δ} $$ exist for all real $δ$ $∈ ( 0 , 1 )$
$ \ \lim_{x\to ∞ }\frac{π(x)} { x^δ} $
2
$\begingroup$
prime-numbers
analytic-number-theory
-
0What does $\pi\left(x\right)$ mean? – 2012-11-02