Is there a way to calculate $$\int_0^1{ \ln (1 - x)\over x}\;dx$$ without using power series?
$\int_0^1 {\frac{{\ln (1 - x)}}{x}}$ without power series
4
$\begingroup$
calculus
integration
1 Answers
3
A related problem. Using the change of variables $x=1-e^{-t}$ and taking advatage of the fact that
$$\Gamma(s)\zeta(s) = \int_{0}^{\infty} \frac{t^{s-1}}{e^{t}-1}\,, $$
the value of the integral follows
$$ -\int_{0}^{\infty} \frac{t}{e^{t}-1} \,dt = -\zeta(2) = -\frac{\pi^2}{6} \,.$$
-
0You can get the indefinite integral in terms of the dilogarithm function. – 2012-10-17