Let $X_{t}$ denote the solution to the SDE: $$dX_{t}=(\mu -r)X_t dt+\sigma X_t d W_{t}, \ X_{0}=1$$
i.e. $X_{t}$ is the process: $$X_{t}:=\exp\left\{\left(\mu-r-\frac{\sigma^{2}}{2}\right)t+\sigma W_{t}\right\}$$
(here we assume $\mu
Thank you!
Let $X_{t}$ denote the solution to the SDE: $$dX_{t}=(\mu -r)X_t dt+\sigma X_t d W_{t}, \ X_{0}=1$$
i.e. $X_{t}$ is the process: $$X_{t}:=\exp\left\{\left(\mu-r-\frac{\sigma^{2}}{2}\right)t+\sigma W_{t}\right\}$$
(here we assume $\mu
Thank you!