13
$\begingroup$

can anyone help me with this, I got stuck on it.

let $a_n$ and $b_n$ (for $n$ a non-negative integer) be two sequences of real numbers such that $\lim_{n\to \infty}a_n=a$ and $\lim_{n\to \infty}b_n=b$. prove that $\lim_{n\to \infty} \frac{a_0b_n+a_1b_{n-1}+....+a_nb_0}{n}=ab$.

  • 4
    Hint: prove it when $a=b=0$, then use Cesaro.2012-01-26

2 Answers 2