1
$\begingroup$

How would I solve the following double angle identity.

$$\cos^4x=\frac{3}{8}+\frac{1}{2}\cos(2x)+\frac{1}{8}\cos(4x)$$

So far my work is

$$\frac{3}{8}+\frac{2\cos^x-1}{2}+\frac{1}{8}(2\cos^2x-1)$$

But how would I proceed.

  • 0
    Is "indentity" the new, cool way to spell that word these days?2012-07-27
  • 0
    I thought spell check correct it....... I think its spelled correctly.2012-07-27
  • 1
    Off course which a spell chequer you can knot have any Miss spellings. :-) (BTW, *my* spell checker tells me "indentity" is wrong).2012-07-27
  • 0
    how is it spelled?2012-07-27
  • 0
    Use latex. Is it $\cos^4 x = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$? Where did you get $\cos^x$ in your work?2012-07-27
  • 0
    It is spelled "identity", without an "n" after the "i".2012-07-27
  • 0
    yes karolis that is except that there is cos(4x) at the end.2012-07-27
  • 0
    I meant 2cos^2x-1 like is the indentity.2012-07-27
  • 0
    and for the second one I meant (1/8)(2cos^2 2x-1)2012-07-27
  • 0
    @FernandoMartinez Please fix those typos in your question. Thanks!2012-07-27

2 Answers 2

2

Notice that \begin{eqnarray} \cos(2x)&=& \cos^2 x - \sin^2 x \\ &=& 2 \cos^2 x - 1.\\ \end{eqnarray} Then \begin{equation} \cos^2 x = \dfrac{1}{2}(1+\cos(2x)). \end{equation} Hence, \begin{eqnarray} \cos^4 x &=& (\cos^2 x)^2\\ &=& \left[\dfrac{1}{2}(1 + \cos(2x))\right]^2\\ &=& \dfrac{1}{4}(1 +2 \cos(2x)+ \cos^2(2x))\\ &=& \dfrac{1}{4} +\dfrac{1}{2} \cos(2x) + \dfrac{1}{4}\dfrac{1}{2}(1+\cos(4x))\\ &=& 3/8 + 1/2 \cos(2x) +1/8 \cos(4x) \end{eqnarray}

  • 0
    I never knew the problem could be done in such a way.2012-07-27
4

\begin{align*} \cos^4(x) &= \left(\frac{e^{ix}+e^{-ix}}{2}\right)^4\\ &= \frac{e^{4xi} + 4e^{2xi} + 6 + 4e^{-2xi} + e^{-4xi}}{16}\\ &= \frac{3}{8} + \frac{1}{2} \frac{e^{2xi} + e^{-2xi}}{2} + \frac{1}{8} \frac{e^{4xi}+e^{-4xi}}{2}\\ &= \frac{3}{8} + \frac{1}{2} \cos(2x) + \frac{1}{8} \cos(4x) \end{align*}

  • 0
    Complex methods may not be what the OP had in mind, but they are a marvelous tool (+1).2012-08-03