I have a question concerning matrix analysis.
let $A$ be the following $n \times n$-matrix with non-negative integer entries.
$$\begin{pmatrix}0&k_2&k_3&\dots&k_n\\ k_1&0&k_3&\dots&k_n\\ k_1&k_2&0&\dots&k_n\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ k_1&k_2&k_3&\dots&0\end{pmatrix}$$
i.e. the $j$-th row of $A$ is $(k_1,k_2,\dots k_n)-(0,0,...,k_j,0,0)$
How to express the norm of $A^n$ in terms of $k_1, k_2,\dots, k_n$ and the entries of $A^{(n-1)}$???