Note that rhs of this equation is constant. Indeed, $$ \int\limits_{-\infty}^{x} f(x-t)dt= \{\tau=x-t\}= \int\limits_{0}^{+\infty}f(\tau)d\tau= \int\limits_{0}^{+\infty}f(t)dt $$ Therefore the lhs of this equation must be constant. But this is possible only if $a=0$. For the case when $a=0$, we have $1=\int\limits_{0}^{+\infty}f(t)dt$, otherwise there is no solution.
Finally if $a=0$ the solution of this equation is any integrable function $f$ such that $\int\limits_{0}^{+\infty}f(t)dt=1$. If $a\neq 0$, solution doesn't exist.