In the Euler–Maclaurin formula:
$$\sum_{n=a}^b \sim \int_a^b f(x)\;dx+\frac{f(a)+f(b)}{2}+\sum_{k=1}^\infty\frac{B_{2k}}{(2k)!}(f^{(2k-1)}(b)-f^{(2k-1)}(a))$$
can I neglet the series with Bernoulli numbers? Thanks, Anna.
In the Euler–Maclaurin formula:
$$\sum_{n=a}^b \sim \int_a^b f(x)\;dx+\frac{f(a)+f(b)}{2}+\sum_{k=1}^\infty\frac{B_{2k}}{(2k)!}(f^{(2k-1)}(b)-f^{(2k-1)}(a))$$
can I neglet the series with Bernoulli numbers? Thanks, Anna.