I am looking for a tight upper bound of exponential function (or sum of exponential functions):
$e^x
$\sum_{i=1}^n e^{x_i} < g(x_1,...,x_n)$ when $x_i<0$
Thanks a lot!
I am looking for a tight upper bound of exponential function (or sum of exponential functions):
$e^x
$\sum_{i=1}^n e^{x_i} < g(x_1,...,x_n)$ when $x_i<0$
Thanks a lot!