3
$\begingroup$

Let $S^2=\{(x,y,z)\in \mathbb{R}^3|x^2+y^2+z^2=1\}$ and $S^1=\{(s,t)\in \mathbb{R}^2|s^2+t^2=1\}$. Suppose that $\mathbb{Z}/2\mathbb{Z}$ acts on $S^2\times S^1$ in such a way that the generator of $\mathbb{Z}/2\mathbb{Z}$ maps $$ (x,y,z)\mapsto(-x,-y,-z) \ \ \ and \ \ \ (s,t)\mapsto (-s,t) $$ (Note that $t$ is invariant). I would like to know what the free quotient space $(S^2\times S^1)/\mathbb{Z}/2\mathbb{Z}$ looks like. Since the action preserves orientation of $S^2\times S^1$, it should be oriented 3-manifold.

1 Answers 1