7
$\begingroup$

Define a holomorphic function $f\colon\mathbb{C}\setminus[-1,1] \longrightarrow \mathbb{C}$ such that $\forall z \in \mathbb{C}\setminus[-1,1] \ \left( (f(z))^{2} = z^{2} - 1\right)$ and $f(2)=\sqrt{3}$.

  • 1
    just try square root of what is given to you, i.e. $e^{\frac{1}{2}\log(z^2-1)}$2012-11-14
  • 0
    "The"? There are two square roots. Not only that, where sould the logarithm be defined?2012-11-14

4 Answers 4