Is it possible to find a counter example to argue this:
$\limsup\limits_{n\rightarrow \infty} (A_n \cap B_n)$ = $\limsup\limits_{n\rightarrow \infty} A_n \cap \limsup\limits_{n\rightarrow \infty} B_n $
where $A_n$ and $B_n$ are two sequences.
Is it possible to find a counter example to argue this:
$\limsup\limits_{n\rightarrow \infty} (A_n \cap B_n)$ = $\limsup\limits_{n\rightarrow \infty} A_n \cap \limsup\limits_{n\rightarrow \infty} B_n $
where $A_n$ and $B_n$ are two sequences.