0
$\begingroup$

Someone can explain this hermit interpolation algorithm with example?

Thank you,

function [H]=hermite(X,x,f,fd); m=length(x); for i=1:m     z(2*i-1)=x(i);     Q(2*i-1,1)=f(i);     z(2*i)=x(i);     Q(2*i,1)=f(i);     Q(2*i,2)=fd(i);      if i~=1         Q(2*i-1,2)=(Q(2*i-1,1)-Q(2*i-2,1))/(z(2*i-1)-z(2*i-2));     end; end; for i=3:2*m     for j=3:i         Q(i,j)=(Q(i,j-1)-Q(i-1,j-1))/(z(i)-z(i-j+1));     end end p=1; H=Q(1,1); for i=2:2*m     p=p.*(X-z(i-1));     H=H+p.*Q(i,i); end; 
  • 0
    You'll want to see [Krogh's paper](http://dx.doi.org/10.1090/S0025-5718-1970-0258240-X).2011-11-04

1 Answers 1