Let $\mathbb{T}$ denote the torus of revolution with the usual parametrization: $x(u,v) = ( (R + r\cos(u))\cos(v), (R + r\cos(u))\sin(v), r\sin(u) )$
Show that $\mathbb{T}$ has no umbilic points.
Let $\mathbb{T}$ denote the torus of revolution with the usual parametrization: $x(u,v) = ( (R + r\cos(u))\cos(v), (R + r\cos(u))\sin(v), r\sin(u) )$
Show that $\mathbb{T}$ has no umbilic points.