4
$\begingroup$

I'm looking for a proof of this identity but where j=m not j=0

http://www.proofwiki.org/wiki/Sum_of_Binomial_Coefficients_over_Upper_Index

$$\sum_{j=m}^n\binom{j}{m}=\binom{n+1}{m+1}$$

  • 2
    To clarify what you mean: you want a proof of $$\sum_{j=m}^n\binom{j}{m}=\binom{n+1}{m+1}$$ correct?2011-10-22
  • 0
    (-1) ${}{}{}{}{}{}$2011-12-21

2 Answers 2