Given a field $F$ and a subfield $K$ of $F$. Let $A$, $B$ be $n\times n$ matrices such that all the entries of $A$ and $B$ are in $K$. Is it true that if $A$ is similar to $B$ in $F^{n\times n}$ then they are similar in $K^{n\times n}$?
Any help ... thanks!