2
$\begingroup$

Define the following integral with $n$ an integer greater than $1$:

$$I_{n}=\int_{0}^{1}\frac{e^t}{(1+t)^n}dt.$$

Is it true that for all $n \geq 2$,

$$ \frac{1}{n-1}\left(1-\frac{1}{2^{n-1}}\right)\leq I_{n} \leq \frac{e}{n-1}\left(1-\frac{1}{2^{n-1}}\right)?$$

  • 0
    You can compute this integral explicitly http://www.wolframalpha.com/input/?i=Integrate%5Be%5Et%281%2Bt%29%5E%28-n%29%2C%7Bt%2C0%2C1%7D%5D and then check inequalities.2011-12-31
  • 0
    Hum ; Wolfram gives something with the incomplete Gamma function. Can I check any inequality with that ?2011-12-31

1 Answers 1

5

We have $$\int_0^1\frac{dt}{(1+t)^n}=\left[\frac 1{1-n}(1+t)^{1-n})\right]_0^1=\frac {1-2^{1-n}}{n-1}=\frac 1{n-1}\left(1-\frac 1{2^{n-1}}\right),$$ and you can conclude since for $0\leq t\leq 1$, $1\leq e^t\leq e$.