How to differentiate $$ \exp \left( -\frac{x^2}{4Dt} \right)$$ ?
(A step by step solution is sought)
How to differentiate $$ \exp \left( -\frac{x^2}{4Dt} \right)$$ ?
(A step by step solution is sought)
Make the simple substitution $u=-\frac{x^2}{4Dt}=-\frac{1}{4}x^2D^{-1}t^{-1}$ and let $z=\mathrm{exp}(u)$. Then...
$$\frac{\partial z}{\partial x} = \frac{dz}{du}\frac{\partial u}{\partial x} = \mathrm{exp}(u) \cdot \left(-\frac{1}{2}xD^{-1}t^{-1} \right) = -\frac{x\cdot \mathrm{exp}\left(-\frac{x^2}{4Dt}\right)}{2Dt}$$
$$\frac{\partial z}{\partial t} = \frac{dz}{du}\frac{\partial u}{\partial t} = \mathrm{exp}(u) \cdot \left(\frac{1}{4}x^2D^{-1}t^{-2} \right) = \frac{x^2\cdot \mathrm{exp}\left(-\frac{x^2}{4Dt}\right)}{4Dt^2}$$
If $D$ is meant to be a variable, we'd also have...
$$\frac{\partial z}{\partial D} = \frac{dz}{du}\frac{\partial u}{\partial D} = \mathrm{exp}(u) \cdot \left(\frac{1}{4}x^2D^{-2}t^{-1} \right) = \frac{x^2\cdot \mathrm{exp}\left(-\frac{x^2}{4Dt}\right)}{4D^2t}$$
Now what if $D$ is constant, $x$ is a function of $t$? Then we have...
$$\frac{dz}{dt} = \frac{dz}{du}\frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{dz}{du}\frac{\partial u}{\partial t}\frac{dt}{dt} = -\frac{x\cdot \mathrm{exp}\left(-\frac{x^2}{4Dt}\right)}{2Dt}\cdot x'(t) + \frac{x^2\cdot \mathrm{exp}\left(-\frac{x^2}{4Dt}\right)}{4Dt^2}\cdot 1$$
Assumptions about dependencies among variables (and what is a variable) can make a big difference.