That would be every third Fibonacci number, e.g. $0, 2, 8, 34, 144, 610, 2584, 10946,...$
Empirically one can check that:
$a(n) = 4a(n-1) + a(n-2)$ where $a(-1) = 2, a(0) = 0$.
If $f(n)$ is $\operatorname{Fibonacci}(n)$ (to make it short), then it must be true that $f(3n) = 4f(3n - 3) + f(3n - 6)$.
I have tried the obvious expansion:
$f(3n) = f(3n - 1) + f(3n - 2) = f(3n - 3) + 2f(3n - 2) = 3f(3n - 3) + 2f(3n - 4)$ $ = 3f(3n - 3) + 2f(3n - 5) + 2f(3n - 6) = 3f(3n - 3) + 4f(3n - 6) + 2f(3n - 7)$ ... and now I am stuck with the term I did not want. If I do add and subtract another $f(n - 3)$, and expand the $-f(n-3)$ part, then everything would magically work out ... but how should I know to do that? I can prove the formula by induction, but how would one systematically derive it in the first place?
I suppose one could write a program that tries to find the coefficients x and y such that $a(n) = xa(n-1) + ya(n-2)$ is true for a bunch of consecutive values of the sequence (then prove the formula by induction), and this is not hard to do, but is there a way that does not involve some sort of "Reverse Engineering" or "Magic Trick"?