How to calculate this difficult integral: $\int\frac{x^2}{\sqrt{1+x^2}}dx$?
The answer is $\frac{x}{2}\sqrt{x^2\pm{a^2}}\mp\frac{a^2}{2}\log(x+\sqrt{x^2\pm{a^2}})$.
And how about $\int\frac{x^3}{\sqrt{1+x^2}}dx$?
How to calculate this difficult integral: $\int\frac{x^2}{\sqrt{1+x^2}}dx$?
The answer is $\frac{x}{2}\sqrt{x^2\pm{a^2}}\mp\frac{a^2}{2}\log(x+\sqrt{x^2\pm{a^2}})$.
And how about $\int\frac{x^3}{\sqrt{1+x^2}}dx$?