If $F$ is a primitive of $f$, then
$$\int_{a}^{a+T}f(x)\ dx-\int_{0}^{T}f(x)\ dx$$ $$=F(a+T)-F(a)-F(T)+F(0)$$ $$=\Big(F(a+T)-F(T)\Big)-\Big(F(a)-F(0)\Big)$$ $$=\int_T^{a+T}f(x)\ dx-\int_0^af(x)\ dx$$ $$=0.$$
One checks the last equality by making the obvious change of variable, and by using the periodicity.
EDIT 1. What I wrote above is how I remember the computation. Of course, it can be written like that: $$ \int_{a}^{a+T}f(x)\ dx-\int_{0}^{T}f(x)\ dx=\int_T^{a+T}f(x)\ dx-\int_0^af(x)\ dx=0. $$
EDIT 2. Formal justification of the first equality in the above display: $$ \int_0^af(x)\ dx+\int_{a}^{a+T}f(x)\ dx=\int_{0}^{T}f(x)\ dx+\int_T^{a+T}f(x)\ dx. $$
(This formula should appear somewhere...)