Given a measurable space $(X, V, m)$ and $\{F_{n}\}_{1}^{\infty}\subset $ $V $ is a sequence of sets such that $m(F_{n})\leq$ $e^{-n}$ $\forall {n}.$ show that the functions $h(x)=\sum_{1}^{\infty} { \chi_E{_n}(x)}$ and $g(x)=\sum_{1}^{\infty} {n^{t}\chi_E{_n}(x)}$ belongs to $L^p $ for all $ 0