1
$\begingroup$

Suppose you have a sample from a normal population with mean mu, and known variance $\sigma^2$. What is the power function for $H_0: \mu = 0$ versus $H_a: \mu \ne 0$ at $\alpha = 0.05$?

Attempt: If we standardize, we get $Z= \bar{x} - \mu/(\sigma/\sqrt{n})$. So $\Pr(Z> c+ (\theta_0-\theta)/(\sigma/\sqrt{n}))$ or $\Pr(Z < -c- (\theta_0-\theta)/(\sigma/\sqrt{n}))$ is the power function.

  • 0
    pls use math formatting: http://meta.math.stackexchange.com/questions/1773/do-we-have-an-equation-editing-howto2011-10-24

1 Answers 1