I have no idea how to evaluate this limit. Wolfram gives $0$, and I believe this, but I would like to see how it is done. The limit is
$$\lim_{n\rightarrow\infty}\frac{x^n}{(1+x)^{n-1}}$$
assuming $x$ is positive. Thanks in advance.
I have no idea how to evaluate this limit. Wolfram gives $0$, and I believe this, but I would like to see how it is done. The limit is
$$\lim_{n\rightarrow\infty}\frac{x^n}{(1+x)^{n-1}}$$
assuming $x$ is positive. Thanks in advance.