Given two vectors, a and b, how do I find the Orthogonal Projection? I've already found the Scalar and Vector Projections. \begin{align*} \text{Scalar}&:\quad \frac{-90 + -25 + 24}{\sqrt{9^2+5^2+8^2}};\\ \text{Vector}&:\quad \left(\left(\frac{-91}{\sqrt{170}}\right)\left(\frac{-9}{\sqrt{170}}\right), \left(\frac{-91}{\sqrt{170}}\right)\left(\frac{-5}{\sqrt{170}}\right), \left(\frac{-91}{\sqrt{170}}\right)\left(\frac{8}{\sqrt{170}}\right)\right). \end{align*}
Here's the original question: Let a = (-4, -8, -4) and b = (-3, -2, 0) be vectors. Find the scalar, vector, and orthogonal projections of b onto a.
Thank you for your time and help.