3
$\begingroup$

Is there a proof for the following identity?

$\left(A^{-1}+B^{-1}\right)^{-1}=A(A+B)^{-1}B$

  • 0
    what happens if $a=i = -b?$2011-05-01
  • 0
    Well, I generously assumed that everything is defined.2011-05-01

3 Answers 3

8

$$ \left( B^{-1}A + I\right) = \left(I + B^{-1}A\right) $$

$$ B^{-1} \left( A +B \right) = \left(A^{-1} + B^{-1}\right) A $$

$$ \left(A^{-1} + B^{-1}\right)^{-1} B^{-1} = A \left( A +B \right)^{-1}$$

$$ \left(A^{-1} + B^{-1}\right)^{-1} = A \left( A +B \right)^{-1} B$$

5

\begin{equation} (A^{-1} + B^{-1})^{-1} = \left(B^{-1}(A + B) A^{-1}\right)^{-1} \end{equation}

Since $(CD)^{-1} = D^{-1} C^{-1}$, we have

\begin{equation} \left(B^{-1}(A + B) A^{-1}\right)^{-1} = A(A+B)^{-1}B \end{equation}

1

Write the matrices as $(A^{-1})^{-1}$ and repeatedly use $(M N)^{-1}=N^{-1}M^{-1}$.