Can someone help me understand why $ L( P ) = a^n b^n c^n $ in the following pi - calculus process
$$ P = ( \nu k_1, k_2, k_3, u_{b} , u_c)( \overline{k_1} \mid \overline{k_2} \mid Q_a \mid Q_b \mid Q_c) $$
$$Q_a = {!}k_1.a.( \overline{k_1} \mid \overline{k_3} \mid \overline{u_b} \mid \overline{u_c})$$
$$Q_{b} = k_1.!k_3.k_2.u_b.b.\overline{k_2}$$
$$Q_{c} = k_2.(! u_c.c \mid u_b.\mathrm{DIV} )$$
where $DIV = !τ$