0
$\begingroup$

for e.g. for $\frac{1}{(1-ax)} = a^n$ or for $\frac{1}{(1-x)^2} = n+1$

generating function = $\frac{1}{(1-ax)^2}$

  • 3
    You are looking at the derivative of $1/(1-ax)$ with respect to $x$, divided by $a$. Hence the $x^n$ term in this series is...2011-11-10
  • 0
    (-2)/(1-ax)^2 ?2011-11-10
  • 0
    Hmmm... The $x^n$ term in a series ought to be $a_nx^n$ for a given coefficient $a_n$, depending (possibly) on $n$ but **not on** $x$. Anyway, in the meantime you received full answers, hence, unless you wish to ask precise questions on specific steps of these, let us stop here.2011-11-10

3 Answers 3