2
$\begingroup$

I have a 1x3 matrix representing a point in space:

[x] [y] [1] 

And a 3x3 matrix representing an affine 2d transformation matrix

[a][b][c] [d][e][f] [g][h][i] 

How to I multiply the matrices so that I am given the matrix?

[newX] [newY] [w] 
  • 0
    I don't understand what you mean. I happen to have some experience in computer vision. The vector $u=[x,y,1]^T$ seems homogeneous coordinates of a 2D point. Let $v=Au$ where $A$ is an affine transformation matrix. I think you can get the coordinates of the new point by multiplying a scalar factor such that the third entry of $v$ is $1$. That is $x_{new}=v(1)/v(3), y_{new}=v(2)/v(3)$.2011-03-27
  • 0
    it is a $3*1$ matrix.2011-03-27

1 Answers 1