If I go into the woods and pick up two sticks and measure the ratio of their lengths, it is conceivable that I could only get a rational number, namely if the universe was composed of tiny lego bricks. It's also conceivable that I could get any real number. My question is, can there mathematically exist a universe in which these ratios are not real numbers? How do we know that the real numbers are all the numbers, and that they dont have "gaps" like the rationals?
I want to know if what I (or most people) intuitively think of as length of an idealized physical object can be a non-real number. Is it possible to have more then a continuum distinct ordered points on a line of length 1? Why do mathematicians mostly use only R for calculus etc, if a number doesnt have to be real?
By universe I just mean such a thing as Eucildean geometry, and by exist that it is consistent.