2
$\begingroup$

One sphere with radius $R$, named big sphere, two points on it: $a (\text{(longitude)}_a, \text{(latitue)}_a), b(\text{(longitude)}_b, \text{(latitude)}_b)$, $\text{distance}\space (a,b)=r$, $a$ is center & $r$ is radius. There is another sphere, named little sphere. Now what is the equation of circle of the intersection of two spheres? Parametric equation of the circle: $\text{longitude}=f(xx), \text{latitude}=g(xx)$

  • 0
    assume the big sphere equation is:x^2+y^2+z^2=R^2, then the little sphere is:(x-xa)^2+(y-ya)^2+(z-za)^2=r^2,but i want the parameter equation: lon=f(x),lat=g(x) 0<=x<2pi2011-01-16

3 Answers 3