Given a natural $n>2$, I want to show that there exists a lie algebra $g$ which is solvable of derived length 2, but nilpotent of degree $n$.
I have seen a parallel idea in groups, but i can't see how i can implement it for Lie-algebras.
Thanks!
Given a natural $n>2$, I want to show that there exists a lie algebra $g$ which is solvable of derived length 2, but nilpotent of degree $n$.
I have seen a parallel idea in groups, but i can't see how i can implement it for Lie-algebras.
Thanks!