We have $Z_1,Z_2,Z_3$ are independent standard normal random variables. Find
a) $\mathbb P(Z_1
b) $\mathrm{Var}(Z_1Z_2^2)$
c) $\mathbb P(Z_1/Z_2>1)$
d) $\mathbb P(Z_1^2>Z_2^2+Z_3^2)$
We have $Z_1,Z_2,Z_3$ are independent standard normal random variables. Find
a) $\mathbb P(Z_1
b) $\mathrm{Var}(Z_1Z_2^2)$
c) $\mathbb P(Z_1/Z_2>1)$
d) $\mathbb P(Z_1^2>Z_2^2+Z_3^2)$