It must be proven that the solution of the integral equation $$f(x)=\int_{-\infty}^{+\infty} e^{-(x-t)^2} g(t)dt$$ is $$g(x)=\frac{1}{\sqrt{}\pi}\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{2^nn!} H_n(x)$$
where the $H_n(x)$ are the Hermite polynomials.
It must be proven that the solution of the integral equation $$f(x)=\int_{-\infty}^{+\infty} e^{-(x-t)^2} g(t)dt$$ is $$g(x)=\frac{1}{\sqrt{}\pi}\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{2^nn!} H_n(x)$$
where the $H_n(x)$ are the Hermite polynomials.