If $a$ is a positive constant,then show that $\displaystyle \lim_{n \rightarrow \infty} \prod_{k=1}^{n} (1-e^{-ka})$ exists and is strictly positive.
Show that $\lim_{n \rightarrow \infty} \prod_{k=1}^{n} (1-e^{-ka})$ exists an is positive
2
$\begingroup$
calculus
limits
infinite-product