Prove that the sequence converges.
For each positive integer $n$, let $$y_n = 1 + \frac12 + \frac13 + \cdots + \frac1n - \int_1^n \frac{dx}x.$$
Prove that the sequence converges.
For each positive integer $n$, let $$y_n = 1 + \frac12 + \frac13 + \cdots + \frac1n - \int_1^n \frac{dx}x.$$