1
$\begingroup$

I'm stuck with this limit $(1 - \frac{c}{n}\log n )^{1-n}$ as $n \rightarrow \infty$ where $c < 1$. I tried to plot the limit and it looks like it goes to infinity, although very slowly, but I can't prove it. Any ideas?

  • 0
    Consider taking the limit of $(1-n)\log(1-(c\log n)/n)$...2011-10-10
  • 2
    [Wolfram Alpha](http://www.wolframalpha.com/input/?_=1318257578883&i=(1+-+%5cfrac%7bc%7d%7bn%7d%5clog+n+)%5e%7b1-n%7d+as+n+-%3e+infinity&fp=1&incTime=true) says, $\lim_{n\to\infty}(1-\frac cn\log n)^{1-n} = \infty$...2011-10-10
  • 1
    Hence the sequence is $n^{c+o(1)}$, which is slow but not so slow...2011-10-10
  • 1
    For $0 the my result came $\infty$.2011-10-10
  • 0
    I tried writting the expression as : $L:=\lim_{n \to \infty} \exp{(1-n+\frac{(n-c)}{n} \log n)}$.2011-10-10
  • 0
    Oops.. I messed up the expression by missing $\log$. Read $L:=\lim_{n \to \infty} \exp{(1-n) \log {(\frac{(n-c \log n)}{n}}}$2011-10-10

3 Answers 3