Given $$f(x) = \frac{1 - \mathrm{cn}(x,k)}{{\sqrt3}(1+\mathrm{cn}(x,k)) - 1 + \mathrm{cn}(x,k)}$$ what would be $$\lim_{x\to 0} f(x)$$ and $$\lim_{x\to\infty} f(x)$$ when $$k=\frac{\sqrt{2-\sqrt{3}}}{2}?$$
Limits of a function involving $\mathrm{cn}(x,k)$
4
$\begingroup$
limits
special-functions
elliptic-functions
-
0What's $cn(x,k)$? Also, you seem to have unbalanced parentheses in the denominator of $f(x)$. – 2011-07-24
-
1What's $\mathrm{cn}(x,k)$? The elliptic function usuallty denoted $\mathrm{cn}(x,k)$. – 2011-07-24
-
2@Ilmari: [Jacobi elliptic functions](http://en.wikipedia.org/wiki/Jacobi_elliptic_functions). – 2011-07-24
-
0Thanks, I guess the `elliptic-functions` tag should've clued me in. – 2011-07-24