Possible Duplicate:
Two problems on number theory
For how many of value(s) of n, $ n \in \mathbb{N}$, $2^8 + 2^{11} + 2^{2n}$ is a perfect square?
How to do it?
Possible Duplicate:
Two problems on number theory
For how many of value(s) of n, $ n \in \mathbb{N}$, $2^8 + 2^{11} + 2^{2n}$ is a perfect square?
How to do it?