1
$\begingroup$

$$ \begin{cases} \frac{\partial S}{\partial t} + \frac{1}{2}\left((\nabla S)^2 + (x, \Omega^2 x) \right)= 0 \\ S|_{t=0} = (k,x) \end{cases}$$ Where $x \in \mathbf{R}^n,\ \Omega^2 $ - Positive-definite matrix, $k$ is constant vector

  • 0
    Maybe you could add more context, for example tell us what $k$ is (constant or a function).2011-12-27
  • 0
    @Davide k is constant vector2011-12-27
  • 1
    How is $\partial S/\partial x$ a scalar? Is it supposed to be understood as $\nabla S\cdot x$?2011-12-27
  • 0
    @anon corrected2011-12-27

0 Answers 0