We know that the addition and multiplication operators are both commutative, and the exponentiation operator is not. My question is why.
As background there are plenty of mathematical schemes that can be used to define these operators. One of these is hyperoperation where
$H_0(a,b) = b+1$ (successor op)
$H_1(a,b) = a+b$ (addition op)
$H_2(a,b) = ab $ (multiplication op)
$H_3(a,b) = a^b$ (exponentiation op)
$H_4(a,b) = a\uparrow \uparrow b$ (tetration op: $a^{(a^{(...a)})}$ nested $b$ times )
etc.
Here it is not obvious to me why $H_1(a,b)=H_1(b,a)$ and $H_2(a,b)=H_2(b,a)$ but not $H_3(a,b)=H_3(b,a)$
Can anyone explain why this symmetry breaks, in a reasonably intuitive fashion?
Thanks.