Let $f\colon [a,b] \to \mathbb R$ be of bounded variation. Must it be the case that $|\int_a ^b f' (x) |\leq |TV(f)|$, where $TV(f)$ is the total variation of $f$ over $[a,b]$? If so, how can one prove this?
In the standard proof of the monotone differentiation theorem, it is shown tat this holds for increasing functions: if $f$ is increasing, then $\int_a ^b f'(x) \leq f(b) - f(a) = TV(f)$. I am trying to generalize this to functions of bounded variation.