8
$\begingroup$

In a normed space $(E,\lVert \cdot\rVert)$ space we have the following inequality: $$\forall\, x,y\in E,\quad\|x\|^{2}-\|y\|^{2}\leq \lVert x-y\rVert\cdot \|x+y\|.$$ How can we prove it?

1 Answers 1