Given a map $f:B^n \to S^n$, where $B^n$ is the unit ball and $S^n$ is the unit sphere, is it true that the degree of $f|_{S^n}$ is always 0, where $f_{S^n}$ is the restriction of $f$ to $S^n$? If so, why?
Thanks!
Given a map $f:B^n \to S^n$, where $B^n$ is the unit ball and $S^n$ is the unit sphere, is it true that the degree of $f|_{S^n}$ is always 0, where $f_{S^n}$ is the restriction of $f$ to $S^n$? If so, why?
Thanks!