Let $G$ be a locally compact group on which there exists a Haar measure, etc..
Now I am supposed to take such a metrisable $G$, and given the existence of some metric on $G$, prove that there exists a translation-invariant metric, i.e., a metric $d$ such that $d(x,y) = d(gx,gy)$ for all $x,y,g \in G$. How to go about this?