For each integer $n \geq 2$ , find a polynomial of degree $n$ with non-rational roots, whose Galois group over $\mathbb{Q}$ is $\mathbb{Z}/2\mathbb{Z}$.
Anybody can help me?
For each integer $n \geq 2$ , find a polynomial of degree $n$ with non-rational roots, whose Galois group over $\mathbb{Q}$ is $\mathbb{Z}/2\mathbb{Z}$.
Anybody can help me?