A cissoid with formula $y^2(2a - x) = x^3$ where $a>0$
How do I show the the volume of the cissoid rotated about the asymptote is:
$$V = 2\pi \int_0^{2a} (3a - x)(2ax - x^2)^{1/2} dx$$
A cissoid with formula $y^2(2a - x) = x^3$ where $a>0$
How do I show the the volume of the cissoid rotated about the asymptote is:
$$V = 2\pi \int_0^{2a} (3a - x)(2ax - x^2)^{1/2} dx$$