3
$\begingroup$

Let $f_\epsilon\in L^1(\mathbb{R}^n)$ be a function which depends on a parameter $\epsilon\in(0,1)$, and is such that

  1. $\operatorname{supp}{f_\epsilon}\subset\{|x|\leq\epsilon\}$,
  2. the total integral of $f_\epsilon$ is $1$, and
  3. $\displaystyle\int_{\mathbb{R}^n}{|f_\epsilon(x)|\,dx}\leq\mu \lt \infty$ for $\epsilon\in(0,1)$.

How do I show that $f_\epsilon\rightarrow\delta$ (in the space of tempered distributions on $\mathbb{R}^n$) as $\epsilon\rightarrow0^+$,

i.e. how do I show $$\int_{\mathbb{R}^n}{f_\epsilon(x)\,\phi(x)\,dx}=\int_{|x|\leq\epsilon}{f_\epsilon(x)\,\phi(x)\,dx}\;\xrightarrow{\varepsilon \to 0^+}\;\phi(0)$$ for all test functions $\phi$?

1 Answers 1