Suppose $ f(x)$ that is infinitely differentiable in $[a,b]$.
For every $c\in[a,b] $ the series $\sum\limits_{n=0}^\infty \cfrac{f^{(n)}(c)}{n!}(x-c)^n $ is a polynomial.
Is true that $f(x)$ is a polynomial?
I can show it is true if for every $c\in [a,b]$, there exists a neighborhood $U_c$ of $c$, such that
$$f(x)=\sum\limits_{n=0}^\infty \cfrac{f^{(n)}(c)}{n!}(x-c)^n\quad\text{for every }x\in U_c,$$ but, this equality is not always true.
What can I do when $f(x)\not=\sum\limits_{n=0}^\infty \cfrac{f^{(n)}(c)}{n!}(x-c)^n$?