If $\lambda$ is the largest eigenvalue of a real symmetric $n \times n$ matrix $H$, how can I show that: $$\forall v \in \mathbb{R^n}, ||v||=1 \implies v^tHv\leq \lambda$$
Thank you.
If $\lambda$ is the largest eigenvalue of a real symmetric $n \times n$ matrix $H$, how can I show that: $$\forall v \in \mathbb{R^n}, ||v||=1 \implies v^tHv\leq \lambda$$
Thank you.