Prove that:
The set $\{1, 2, 3, ..., n - 1\}$ is a group under multiplication modulo $n$ if and only if $n$ is a prime number without using Euler's phi function.
Prove that:
The set $\{1, 2, 3, ..., n - 1\}$ is a group under multiplication modulo $n$ if and only if $n$ is a prime number without using Euler's phi function.