How can I get the inverse function of $\operatorname{li}(x)$ over $x>\mu$?
Where $$\operatorname{li}(x)=\int_{0}^{x}\frac{ds}{\ln(s)}$$ is the so-called logarithmic integral, and $\operatorname{li}(\mu)=0$.
How can I get the inverse function of $\operatorname{li}(x)$ over $x>\mu$?
Where $$\operatorname{li}(x)=\int_{0}^{x}\frac{ds}{\ln(s)}$$ is the so-called logarithmic integral, and $\operatorname{li}(\mu)=0$.