If $x = (x_1,x_2)$ and $y = (y_1,y_2)$ show that $\langle x,y\rangle = \begin{bmatrix}x_1 & x_2\end{bmatrix}\begin{bmatrix}2 & -1 \\ 1 & 1\end{bmatrix}\begin{bmatrix}y_1 \\ y_2\end{bmatrix}$ defines an inner product on $\mathbb{R}^2$.
Is there any hints on this one? All I'm thinking is to compute a determinant, but what good is that?