does anyone know an explicit imbedding $h\colon T^2 \to \mathbb{R}^3$ of the torus $T^2=\mathbb{S}^1 \times \mathbb{S}^1$ into $\mathbb{R}^3$ ?
Thanks in advance !!!
Cheers...
does anyone know an explicit imbedding $h\colon T^2 \to \mathbb{R}^3$ of the torus $T^2=\mathbb{S}^1 \times \mathbb{S}^1$ into $\mathbb{R}^3$ ?
Thanks in advance !!!
Cheers...
The standard parameterization is the one given on the top of the Wikipedia webpage for "torus".
$(x,y)$ maps to $((3+\sin(y))\cos(x),(3+\sin(y))\sin(x),\cos(y))$