0
$\begingroup$

This is a calculus problem.

Показать, что существуют последовательности, расходящиеся в $+\infty$ (сходящиеся к нулю) и несравнимые с точки зрения скорости стремления к $+\infty$ (сходимости к нулю).

  • 0
    That's what Google translate gives me. You'd get a better answer if we knew the context.2012-12-04

1 Answers 1

1

Show that there exist sequences which diverge (namely limit of sequence equals $+\infty$) (or converge to 0) and these sequences aren't compareble with respect to rate of convergence (or rate it goes to infinity with(i.e. diverge)). Is my wording clear?I'm sorry for my English.

  • 0
    For example 1/n and 1/(n^2). limit equals 0 for each sequence. but their ratio equals n. therefore the limit of their ratio equals infinity, i.e. these sequences have different rates of convergence. If the ratio equals 1 then sequences're called equivalent2012-12-04