2
$\begingroup$

Let $(e_n)$ be a total orthonormal sequence in a separable Hilbert space $H$ and define the right shift operator to be the linear operator $T:H\rightarrow H$ such that $Te_n=e_{n+1}$, for $n=1, 2, \ldots.$ Find the range, null space, norm and Hilbert-adjoint operator of $T$.

  • 3
    Well, with this hypothesis I can write any $x\in H$ as, \begin{align*} \displaystyle x=\sum_{k=1}^\infty$\langle x, e_k\rangle$e_k, \end{align*} $\langle x, e_k\rangle$ are the Fourier coefficientes of $x\in H$ with respect to the orthonormal sequence $(e_n)$. For finding the $R(T)$ we aply $T$ in the equality above, \begin{align*} \displaystyle Tx=\sum_{k=1}^\infty \langle x, e_k\rangle Te_k=\sum_{k=1}^\infty \langle x, e_k\rangle e_{k+1}. \end{align*} This lead us to conjecture, \begin{align*} \displaystyle R(T)=\overline{\textrm{span}(e_2, e_3, \ldots)}. \end{align*} But how to prove this?2012-11-15

1 Answers 1

5

To see the inclusion $\overline{\textrm{span}(e_2, e_3, \ldots)}\subset R(T)$, you do the following. You just check that $e_{k+1}\in R(T)$ for all $k\in\mathbb N$, and this is trivial because $e_{k+1}=Te_k$. So $\textrm{span}(e_2,e_3,\ldots)\in R(T)$.

Then it only remains to check that $R(T)$ is closed. This follows from the fact that $T$ is an isometry, i.e. $\|Tx\|=\|x\|$ for all $x\in H$. First, noting that $T^*$ is the operator that sends $e_1$ to $0$ and $e_{k+1}$ to $e_k$, $ \|Tx\|^2=\|\sum_{k=1}^\infty\langle Tx,e_k\rangle\,e_k\|^2=\sum_{k=1}^\infty|\langle Tx,e_k\rangle|^2=\sum_{k=1}^\infty|\langle x,T^*e_k\rangle|^2=\sum_{k=2}^\infty|\langle x,e_{k-1}\rangle|^2=\sum_{k=1}^\infty|\langle x,e_k\rangle|^2=\|x\|^2, $ so $T$ is isometric. Now, if $Tx_j\to y$, then $\{Tx_j\}$ is a Cauchy sequence; as $T$ is isometric $\{x_j\}$ is a Cauchy sequence too. Let $x=\lim x_j$. Then $ y=\lim Tx_j=T(\lim x_j)=Tx\in R(T). $ So $R(T)$ is closed.

  • 0
    You are welcome!2012-11-18