I've just started calculating complex numbers (last time I calculated with complex numbers was in high school) and I've already got stuck at this exercise:
$3z-i\bar z = 7-5i$
where $\bar z$ is the conjugate of z.
What I've tested so far is to set $z=x+yi$
and with further calculations I've reached this equation
$3(x+yi)-i(x-yi)=7-5i \implies 3x+3yi-xi+yi^2=7-5i$
The result should be $z=2-i$.