For $A\in C_{n\times n} \text{ define the norm of A to be } ||A||=max{|[a]_{ij}|}.$
Prove: $ ||A+B|| \leq ||A||+||B|| $
I really don't know how to approach this proof.
For $A\in C_{n\times n} \text{ define the norm of A to be } ||A||=max{|[a]_{ij}|}.$
Prove: $ ||A+B|| \leq ||A||+||B|| $
I really don't know how to approach this proof.
Let $C=A+B$. Then $c_{ij}=a_{ij}+b_{ij}$, so $|c_{ij}|\le|a_{ij}|+|b_{ij}|$ for each pair $i,j$ with $1\le i,j\le n$. Moreover, each $|a_{ij}|\le\max_{1\le k,\ell\le n}|a_{k\ell}|=\|A\|\;.$
Can you finish it from here? Use the fact that if $S$ is a set of numbers, and $x$ is a number such that $s\le x$ for every $s\in S$, then $\max S\le x$ as well.