0
$\begingroup$

The functional $E$ is defined on some real valued functions $\phi$ defined on $\Omega\subseteq\mathbb R^2$ ($R^{2}\rightarrow R$)and $E(\phi)$ is a real number. $\phi$ is differentiable. My equation is as follows: $E\left(\phi\right)=\int_{\Omega}\left|\left(g\left(\vec{x}\right)-A\right)\right|^{2}\left(1-H(\phi\left(\vec{x}\right))\right)d\vec{x} +\mu\int_{\Omega}H(\phi\left(\vec{x})\right)d\vec{x} +\nu\int_{\Omega}\delta\left(\phi\left(\vec{x}\right)\right)\left|\nabla\phi\left(\vec{x}\right)\right|d\vec{x}$

where $g$ is a known function $R^{2}\rightarrow R$, and A is a know scalar, $H$ is a Heaviside function,i.e. $H\left(\phi\right)=\frac{1}{2}+\frac{1}{\pi}\arctan\left(\phi\right)$ (I choose this kind of approximation to smear out $H$) and $\delta$ is a Delta function(I also smear out $\delta=\frac{\partial{H}}{\partial{\phi}}$), I want to know whether $E$ is continuous. I specify the norm is $\|\|_2$. Since $E(\phi)\in R$, $\|E(\phi)-E(\phi_{0})\|_{2}=|E(\phi)-E(\phi_{0})|$ And I am not sure whether my derivation is right.


Is this right???

For any $\varepsilon>0$, given:

$\underset{x\epsilon\Omega}{max}|\phi\left(x\right)-\phi_{0}\left(x\right)|<\frac{\varepsilon}{\int|\frac{\left(\mu-N\left(x\right)\right)}{\pi}|\, dx}$

Then:

  1. $E\left(\phi\right)-E\left(\phi_{0}\right)=\int_{\Omega}\left|\left(g\left(\vec{x}\right)-A\right)\right|^{2}\left(H(\phi_{0}\left(\vec{x}\right))-H(\phi\left(\vec{x}\right))\right)d\vec{x} +\mu\int_{\Omega}\left(H(\phi\left(\vec{x})\right)-H(\phi_{0}\left(\vec{x}\right))\right)d\vec{x} +\nu\int_{\Omega}\left(\delta\left(\phi\left(\vec{x}\right)\right)\left|\nabla\phi\left(\vec{x}\right)\right|-\delta\left(\phi_{0}\left(\vec{x}\right)\right)\left|\nabla\phi_{0}\left(\vec{x}\right)\right|\right)d\vec{x}$

  2. $E\left(\phi\right)-E\left(\phi_{0}\right)=\int_{\Omega}\left(\left|\left(g\left(\vec{x}\right)-A\right)\right|^{2}-\mu\right)\left(H(\phi_{0}\left(\vec{x}\right))-H(\phi\left(\vec{x}\right))\right)d\vec{x} +\nu\int_{\Omega}\left(\delta\left(\phi\left(\vec{x}\right)\right)\left|\nabla\phi\left(\vec{x}\right)\right|-\delta\left(\phi_{0}\left(\vec{x}\right)\right)\left|\nabla\phi_{0}\left(\vec{x}\right)\right|\right)d\vec{x}$

  3. $E\left(\phi\right)-E\left(\phi_{0}\right)<\int_{\Omega}\left(\left|\left(g\left(\vec{x}\right)-A\right)\right|^{2}-\mu\right)max\left(H(\phi_{0})-H(\phi)\right)d\vec{x} +\nu\int_{\Omega}\left(\delta\left(\phi\left(\vec{x}\right)\right)\left|\nabla\phi\left(\vec{x}\right)\right|-\delta\left(\phi_{0}\left(\vec{x}\right)\right)\left|\nabla\phi_{0}\left(\vec{x}\right)\right|\right)d\vec{x}$

And let $H$ is signed distance function. So$\left|\nabla\phi_{0}\left(\vec{x}\right)\right|\approx1$ for all $\vec{x}\in\Omega$. Then equation 3 becomes:

Four. $E\left(\phi\right)-E\left(\phi_{0}\right)

$max(\delta(\phi)-\delta(\phi_{0})) = (\delta(\phi(\vec{x^{*}}))-\delta(\phi_{0}(\vec{x^{*}})))$ $\vec{x^{*}}\in{\left\{x|max(\delta(\phi(\vec{x}))-\delta(\phi_{0}\vec{x}))for\,\, all\, x\in\Omega\right\}}$

Five. $E\left(\phi\right)-E\left(\phi_{0}\right)

Make $max(\delta(\phi)-\delta(\phi_{0}))=\frac{\varepsilon}{2\nu\int_{\Omega}d\vec{x}}$ and\,\, $max(H(\phi)-H(\phi_{0}))=\frac{\varepsilon}{2\int_{\Omega}\left(\left|\left(g\left(\vec{x}\right)-A\right)\right|^{2}-\mu\right)d\vec{x}}$

$E\left(\phi\right)-E\left(\phi_{0}\right)<\varepsilon$ So $E$ is continuous. I am not sure whether I can derive like this since I am confused little about $\phi$. $\phi$ is a function $R^2\rightarrow R$ and so $H$ is $R\rightarrow R$.

I really appreciate if you could tell my whether this is right or how can I to deriive it.

  • 0
    Thank you, Dirk.$H$is defined as above question. This function is a energy function which I want to minimize. Yes, this is related to "active contours without edges".2012-02-10

1 Answers 1

3

Since the question leaves much to be explained, let us try to do some reconstruction (note that this mainly expands on the first part of @Dirk's comment). The functional $E$ is defined on some real valued functions $\phi$ defined on $\Omega\subseteq\mathbb R^2$ and $E(\phi)$ is a real number. For $E(\phi)$ to exist, it is necessary that $\phi$ is measurable, and even differentiable since the last integral involves the gradient of $\phi$.

To summarize, one considers a functional $E:\mathfrak F\to\mathbb R$, $\phi\mapsto E(\phi)$, defined on some unspecified subspace $\mathfrak F$ of $C^1(\Omega,,\mathbb R)$. The continuity of $E$ at $\phi$ in $\mathfrak F$ would be the statement that $E(\psi)$ is close to $E(\phi)$ for every $\psi$ in $\mathfrak F$ close to $\phi$. Closeness in such settings is often (but not always) quantified by a norm, say $\|\ \|_{\mathfrak F}$, and the continuity of $E$ at $\phi$ in $\mathfrak F$ would then read as follows: $ \forall\varepsilon\gt0,\quad\exists\alpha\gt0,\quad\forall\psi\in\mathfrak F,\quad \|\phi-\psi\|_{\mathfrak F}\leqslant\alpha\implies|E(\psi)-E(\phi)|\leqslant\varepsilon. $ Hence, what is also missing at this stage is a definition of $\|\ \|_{\mathfrak F}$. One can guess that $\phi$ or integrals of $\phi$ could be involved, but also $\nabla\phi$ or some of its integrals. In any case, to specify the space $\mathfrak F$ and the norm $\|\ \|_{\mathfrak F}$ is mandatory for the question to make sense.

  • 0
    Hi, @Didier Piau. I am sorry I have not learnt any example to solve this problem before. I just try to calculate intuitively. All definition I think should follow the most usual rules, like Euclidean distance. But this makes sense in the reality and I have computer programming. I can show you it can work, but I want more theoretical certification so I post this question.2012-03-05