How you integrate $\frac{1}{\sqrt{1+x^2}}$ using following substitution? $1+x^2=t$ $\Rightarrow$ $x=\sqrt{t-1} \Rightarrow dx = \frac{dt}{2\sqrt{t-1}}dt$... Now I'm stuck. I don't know how to proceed using substitution rule.
How to integrate $\frac{1}{\sqrt{1+x^2}}$ using substitution?
-
0@alvoutila The substitution $t=3x-2$ (and $dt=3dx$) seems natural for this one. – 2012-08-05
4 Answers
By the substitution you suggested you get $ \int \frac1{2\sqrt{t(t-1)}} \,dt= \int \frac1{\sqrt{4t^2-4t}} \,dt= \int \frac1{\sqrt{(2t-1)^2-1}} \,dt $ Now the substitution $u=2t-1$ seems reasonable.
However your original integral can also be solved by $x=\sinh t$ and $dx=\cosh t\, dt$ which gives $\int \frac{\cosh t}{\cosh t} \, dt = \int 1\, dt=t=\operatorname{argsinh} x = \ln (x+\sqrt{x^2+1})+C,$ since $\sqrt{1+x^2}=\sqrt{1+\sinh^2 t}=\cosh t$.
See hyperbolic functions and their inverses.
If you are familiar (=used to manipulate) with the hyperbolic functions then $x=a\sinh t$ is worth trying whenever you see the expression $\sqrt{a^2+x^2}$ in your integral ($a$ being an arbitrary constant).
-
0@user60462 As shown in other answers, you can use trigonometric substitution with $x=\tan t$. – 2015-02-26
A variant of the hyperbolic function substitution is to let $x=\frac{1}{2}\left(t-\frac{1}{t}\right)$. Note that $1+x^2=\frac{1}{4}\left(t^2+2+\frac{1}{t^2}\right)$.
So $\sqrt{1+x^2}=\frac{1}{2}\left(t+\frac{1}{t}\right)$. That was the whole point of the substitution, it is a rationalizing substitution that makes the square root simple. Also, $dx=\frac{1}{2}\left(1+\frac{1}{t^2}\right)\,dt$.
Carry out the substitution. "Miraculously," our integral simplifies to $\int \frac{dt}{t}$.
Put $x=\tan y$, so that $dx=\sec^2y \ dy$ and $\sqrt{1+x^2}=\sec y$
$\int \frac{1}{\sqrt{1+x^2}} dx$
$= \int \frac{\sec^2y \ dy}{\sec y}$
$=\int \sec y\, dy$
which evaluates to $\displaystyle\ln|\sec y+\tan y|+ C$ , applying the standard formula whose proof is here and $C$ is an indeterminate constant for any indefinite integral.
$=\ln|\sqrt{1+x^2}+x| + C$
We can substitute $x$ with $a \sec y$ for $\sqrt{x^2-a^2}$, and with $a \sin y$ for $\sqrt{a^2-x^2}$
$A=\int\frac{1}{\sqrt[]{1+x^2}}$
Let, $x = \tan\theta$
$dx = \sec^{2}\theta{d\theta}$
substitute, $x$, $dx$
$A=\int\left(\frac{1}{\sec\theta}\right){\sec^{2}\theta{d\theta}}$
$A=\int{\sec\theta{d\theta}}$
$A=\int{\sec\theta\left(\frac{\sec\theta + \tan\theta}{\sec\theta + \tan\theta}\right){d\theta}}$
$A=\int{\left(\frac{\sec^2\theta + \sec\theta\tan\theta}{\sec\theta + \tan\theta}\right){d\theta}}$
Let, $(\sec\theta + \tan\theta) = u$
$(\sec^2\theta + \sec\theta\tan\theta)d\theta = du$
$A=\int\frac{du}{u}$
$A=\ln{u}+c$
$A=\ln{\vert\sec\theta + \tan\theta\vert}+c$
$A=\ln{\vert\sqrt[]{1+\tan^2\theta} + \tan\theta\vert}+c$
$A=\ln{\vert\sqrt[]{1+x^2} + x\vert}+c$, where $c$ is a constant