Is the profinite completion of $SL_2(\mathbb{Z})$ equal to $SL_2(\hat{\mathbb{Z}})$?
Profinite completion of Special linear group
1
$\begingroup$
group-theory
1 Answers
4
No. The congruence kernel of the natural epimorphism $\widehat{\mathrm{SL}_2(\mathbb{Z})} \to \mathrm{SL}_2(\widehat{\mathbb{Z}})$ is a free profinite group of countably infinite rank. This is Theorem 8.8.1. of L. Ribes, P. Zalesskii, Profinite groups, Springer-Verlag, 2010.