I've tried to find as a personnal exercise where the formula $A=\pi R^2$ comes from.
After drawing the problem, I've found that $A = 2\int\limits_{-R}^{R}\sqrt{R^2-t^2}dt$. How can I calculate this ?
I've tried to find as a personnal exercise where the formula $A=\pi R^2$ comes from.
After drawing the problem, I've found that $A = 2\int\limits_{-R}^{R}\sqrt{R^2-t^2}dt$. How can I calculate this ?
This is a classic case of trigonometric substitution. Set $t=R\sin\theta$, $-\frac{\pi}{2}\leq \theta\leq\frac{\pi}{2}$.
Then $R^2 - t^2 = R^2(1-\sin^2\theta) = R^2\cos^2\theta$, hence $\sqrt{R^2-t^2} = \sqrt{R^2\cos^2\theta} = |R\cos\theta| = R\cos\theta$, because $R\geq 0$ and $\cos\theta\geq 0$ for $\theta\in[-\frac{\pi}{2},\frac{\pi}{2}]$.
Since $t=R\sin\theta$, $dt = R\cos\theta\,d\theta$. When $t=-R$, we have $\theta=-\frac{\pi}{2}$; when $t=R$, we have $\theta=\frac{\pi}{2}$. So we get $\int_{-R}^R\sqrt{R^2-t^2}\,dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}R\cos^2\theta\,d\theta.$
Now you can use the formula $\int \cos^2\theta\,d\theta = \frac{1}{2}\theta + \frac{1}{2}\sin\theta\cos\theta+C$ (which can be found by using integration by parts, then replacing $\sin^2\theta$ with $1-\cos^2\theta$, and "solving" for the integral of the cosine squared) to get the desired result.
Pie r ssqure is the given formulae 1. So we divide the circle into sectors and then we hold the height as h and bas as d and then we calculate the area 2. We cna didive the circles into many triangles and then calculate the formulae with the nth term and holding height as h and base as and do the summation by the following summation of x(let the total circle be x)=x1+x2+x3+x4..........nth term