1
$\begingroup$

Could someone explain to me how to solve this integration??

integrate $\int\frac{dx}{\sqrt{(x^2-0.01)}}$

The final answer is $\ln({\sqrt{(x^2-0.01)}}+x)+C$

How to get to the final answer?? Could someone show me the steps.

  • 0
    @Garett: Fix you accepted rate. :-)2012-10-30

3 Answers 3

2

Note that: $\sqrt{x^{2}-0.01}=\sqrt{x^{2}-0.1^{2}}$

Therefore, we can use the trigonometric substitution: $x=0.1\sec{\theta} \implies dx=0.1\sec{\theta}\tan{\theta}\:d\theta$

Therefore, our integral becomes, using the equality $\sec^{2}{x}-1=\tan^{2}{x}$:

$\int{\frac{dx}{\sqrt{x^{2}-0.01}}}=\int{\frac{\sec{\theta}\tan{\theta}}{\tan{\theta}}\:d\theta}=\int{\sec{\theta}\:d\theta}=\ln{\left|\sec{\theta}+\tan{\theta}\right|}+c$

Now we back substitute, knowing that $\tan{\theta}=10\sqrt{x^{2}-0.01}$ and $\sec{\theta}=10x$, to get:

$\ln{|10(\sqrt{x^{2}-0.01}+x)|}+c$

But the factor of 10 comes out of the logarithm as a constant, and so we can therefore write:

$\int{\frac{dx}{\sqrt{x^{2}-0.01}}}=\ln|\sqrt{x^{2}-0.01}+x|+c\qquad\text{Q.E.D}$

  • 0
    Hi @shaktal. Thank you very much for your help2012-10-30
1

Hint: $x=0.1\cdot\sec(\theta)$ and $\mathrm dx=0.1 \tan(\theta)\sec(\theta) \mathrm d \theta$

  • 0
    Thanks F'Ola Yinka for your tips2012-10-30
1

Remember when the integrand is as form $R(\sqrt{ax^2+bx+c},x)$ than if $a>0$ then you take a new substitution $\sqrt{ax^2+bx+c}=t+x\sqrt{a}$. Now here $a=1$ and you have $\sqrt{x^2-0.01}=t+x$ and $x=\frac{-t^2-0.01}{2t}$ and $dx=\frac{-2t^2+0.02}{4t^2}$. Can you do the rest?;-)

  • 0
    $\quad \ddot\smile\quad +1$2013-04-01