While writing a (non-math) paper I came across the following apparent identity:
$N \cdot \mathop \sum \limits_{i = 1}^N \frac{1}{i}\left( {\begin{array}{*{20}{c}} {N - 1}\\ {i - 1} \end{array}} \right){p^{i - 1}}{\left( {1 - p} \right)^{N - i}} = \frac{{1 - {{\left( {1 - p} \right)}^N}}}{p}$
where $N$ is a positive integer and $p$ is a nonzero probability. Based on intuition and some manual checks, this looks like it should be true for all such $N$ and $p$. I can't prove this, and being mostly ignorant about math, I don't know how to learn what I need to prove this. I'd really appreciate anything helpful, whether a quick pointer in the right direction or the whole proof (or a proof or example that the two aren't identical).
Note also that ${1 - {\left( {1 - p} \right)}^N} = {{\sum\limits_{i = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ i \end{array}} \right){p^i}{{\left( {1 - p} \right)}^{N - i}}} }}$
and that ${p = {1 - {\left( {1 - p} \right)}^1}}$
For background, see the current draft with relevant highlightings here.