0
$\begingroup$

Given - $K_{3\times3} = \begin{bmatrix} 1&1&1 \\ 3&2&1 \\ 1&2&1 \end{bmatrix}$ $|K| = 2$ Find - $|2K^3-2K^4|$

I tried this:

Since $|A+B|=|A|+|B|$ ( $\Leftarrow$ This is the main mistake ) - $|2K^3-2K^4|=|2K^3+(-2K^4)|=|2K^3|+|(-2K^4)|$

Now using $|\alpha A_{n\times n}|=\alpha ^n|A|$ - $=2^3|K^3|+(-2^4)(K^4)|=8*8+(-16)*16=-192$

  • 0
    MichaelS: Do your own work! Try almost any non diagonal A and B and check.2012-07-30

2 Answers 2

3

Now that you've edited $K$ into the question, we can get somewhere!

Use $2K^3-2K^4=(2)(K^3)(I-K)$, and $\det cA=c^nA$, and $\det A^r=(\det A)^r$, and then you just have to calculate $\det(I-K)$ directly.

  • 0
    Of course.. Totally forgot about $I-K$. Thanks!2012-07-30
2

$\det(a\cdot M^k\cdot(I-M))=a^{\mathrm{size}(M)}\cdot[\det(M)]^k\cdot\det(I-M)$