Prove that $Q(x,\ln 2) := \frac{\int_{\ln 2}^{\infty} t^{x-1} e^{-t} dt}{\int_{0}^{\infty} t^{x-1} e^{-t} dt} \geqslant 1 - 2^{-x}$ for all $x\geqslant 1$.
($Q$ is the regularized gamma function.)
Q(x, \ln 2) and $(1-2^{-x})$ against $x$">
Prove that $Q(x,\ln 2) := \frac{\int_{\ln 2}^{\infty} t^{x-1} e^{-t} dt}{\int_{0}^{\infty} t^{x-1} e^{-t} dt} \geqslant 1 - 2^{-x}$ for all $x\geqslant 1$.
($Q$ is the regularized gamma function.)
Q(x, \ln 2) and $(1-2^{-x})$ against $x$">
We have
$ \frac{\int_{\ln 2}^{\infty} t^{x-1} e^{-t} \,dt}{\int_{0}^{\infty} t^{x-1} e^{-t} \,dt} = \frac{\int_{0}^{\infty} t^{x-1} e^{-t} \,dt - \int_{0}^{\log 2} t^{x-1} e^{-t} \,dt}{\int_{0}^{\infty} t^{x-1} e^{-t} \,dt} = 1 - \frac{\int_{0}^{\log 2} t^{x-1} e^{-t} dt}{\int_{0}^{\infty} t^{x-1} e^{-t} \,dt}, $
so we need to show that
$ \frac{\int_{0}^{\log 2} t^{x-1} e^{-t} \,dt}{\int_{0}^{\infty} t^{x-1} e^{-t} \,dt} \leq 2^{-x}, $
or, equivalently,
$ 2^x \int_{0}^{\log 2} t^{x-1} e^{-t} \,dt \leq \int_{0}^{\infty} t^{x-1} e^{-t} \,dt. $
To do this we will show that
$ 2^x \int_{0}^{\log 2} t^{x-1} e^{-t} \,dt \leq \left(\frac{e^a}{e^a-1}\right)^x \int_{0}^{a} t^{x-1} e^{-t} \,dt \tag{1} $
for all $a \geq \log 2$, then let $a \to \infty$. In fact, we will show that the quantity on the right-hand side of the above inequality is nondecreasing in $a$ when $a > 0$ for fixed $x \geq 1$ (and strictly increasing in $a$ when $a > 0$ for fixed x > 1).
To start, define
$ f_x(a) = \left(\frac{e^a}{e^a-1}\right)^x \int_{0}^{a} t^{x-1} e^{-t} \,dt. $
Then
\begin{align} f_x'(a) &= a^{x-1} e^{-a} \left(\frac{e^a}{e^a-1}\right)^x - x \left(\frac{e^a}{e^a-1}\right)^{x-1} \frac{e^a}{(e^a-1)^2} \int_{0}^{a} t^{x-1} e^{-t} \,dt \\ &= e^{ax} \left(e^a-1\right)^{-x-1} \left[a^{x-1} \left(1-e^{-a}\right) - x \int_{0}^{a} t^{x-1} e^{-t} \,dt\right]. \end{align}
Since we're only concerned with the sign of the above expression, define
\begin{align} g_x(a) &= e^{-ax}(e^a - 1)^{x+1} f_x'(a) \\ &= a^{x-1} \left(1-e^{-a}\right) - x \int_{0}^{a} t^{x-1} e^{-t} \,dt. \end{align}
If $g_x(a) \geq 0$ for all $a > 0$ then f_x'(a) \geq 0 for all $a > 0$, and hence $f_x(a) \geq f_x(\log 2)$ for all $a \geq \log 2$, which is $(1)$.
Well, it will certainly be true that $g_x(a) \geq 0$ for all $a > 0$ if
g_x(0) \geq 0 \hspace{1cm} \text{and} \hspace{1cm} g_x'(a) \geq 0 \,\,\text{ for all }\,\, a \geq 0. \tag{2}
Indeed, $g_x(0) = 0$, and for $x \geq 1$ we have
g_x'(a) = a^{x-2} e^{-a} (x-1) (e^a - a - 1) \geq 0
since the function $h(a) = e^a - a - 1$ is nondecreasing when $a \geq 0$ and $h(0) = 0$.
By the remarks immediately before $(2)$ this is sufficient to prove $(1)$, from which the result follows.
Here is a proof for $x\ge2$: $ \begin{align} \int_0^{\log(2)}t^{x-1}e^{-t}\mathrm{d}t &\le\int_0^{\log(2)}t^{x-1}\mathrm{d}t\\ &=\frac1x\log(2)^x\tag{1} \end{align} $ Thus, we get that $ \frac{\int_0^{\log(2)}t^{x-1}e^{-t}\mathrm{d}t}{\int_0^\infty t^{x-1}e^{-t}\mathrm{d}t} \le\frac{\log(2)^x}{\Gamma(x+1)}\tag{2} $ For $x\ge2$, $ \frac{(2\log(2))^x}{\Gamma(x+1)}\le1\tag{3} $ Once we show $(3)$, the result follows because $ \begin{align} \frac{\int_{\log(2)}^\infty t^{x-1}e^{-t}\mathrm{d}t}{\int_0^\infty t^{x-1}e^{-t}\mathrm{d}t} &=1-\frac{\int_0^{\log(2)}t^{x-1}e^{-t}\mathrm{d}t}{\int_0^\infty t^{x-1}e^{-t}\mathrm{d}t}\\ &\ge1-\frac{\log(2)^x}{\Gamma(x+1)}\\ &\ge1-2^{-x}\tag{4} \end{align} $
Since $\Gamma$ is log-convex and for $x\ge2$, $\frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(x+1))\ge\frac32-\gamma>\log(2\log(2))$.
Thus, $(5)$, and therefore $(3)$, hold for $x\ge2$.