Let $S\subset{\Bbb R}^2$ (or any metric space, but we'll stick with $\Bbb R^2$) and let $x\in S$. Suppose that all sufficiently small circles centered at $x$ intersect $S$ at exactly $n$ points; if this is the case then say that the valence of $x$ is $n$. For example, if $S=[0,1]\times\{0\}$, every point of $S$ has valence 2, except $\langle0,0\rangle$ and $\langle1,0\rangle$, which have valence 1.
This is a typical pattern, where there is an uncountable number of 2-valent points and a finite, possibly empty set of points with other valences. In another typical pattern, for example ${\Bbb Z}^2$, every point is 0-valent; in another, for example a disc, none of the points has a well-defined valence.
Is there a nonempty subset of $\Bbb R^2$ in which every point is 3-valent? I think yes, one could be constructed using a typical transfinite induction argument, although I have not worked out the details. But what I really want is an example of such a set that can be exhibited concretely.
What is it about $\Bbb R^2$ that everywhere 2-valent sets are well-behaved, but everywhere 3-valent sets are crazy? Is there some space we could use instead of $\Bbb R^2$ in which the opposite would be true?