I want to show that for all $n\ge 2$, it holds that $ \int \cos^n x\ dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n}\int \cos^{n-2} x\ dx. $ I'm not even getting the result for the induction base $(n=2)$: Using integration by parts, I only get $ \int \cos^2 x\ dx = \cos x \sin x + \int \sin^2 x\ dx. $ I'm suspecting that I need to use some trigonometric identity here.
Proving a reduction formula for the antiderivative of $\cos^n(x)$
2 Answers
You only need that $\sin^2 x+\cos^2 x=1$
Let $\varphi(n)=\int \cos^n x dx$
Integrate by parts
$\begin{cases}\cos^{n-1} x =u\\ \cos x dx =dv\end{cases}$
Then
$\begin{align}\varphi(n)&=\int \cos^n x dx\\ &=uv-\int v du\\&=\cos^{n-1}x\sin x+\int (n-1)\cos^{n-2}x \sin ^2x d x\end{align}$
But $\sin^2 x=1-\cos^2 x $
$\begin{align}&=\cos^{n-1}x\sin x+\int (n-1)\cos^{n-2}x \sin ^2x d x \\&=\cos^{n-1}x\sin x+\int (n-1)\cos^{n-2}x \left(1-\cos^2 x\right) d x \\ &=\cos^{n-1}x\sin x+\int (n-1)\cos^{n-2}x dx-\int (n-1)\cos^{n-2}x \cos^2 x d x \\&=\cos^{n-1}x\sin xdx+(n-1)\int \cos^{n-2}x dx-(n-1)\int \cos^{n }x dx \\&=\cos^{n-1}x\sin xdx+(n-1)\int \cos^{n-2}xdx -(n-1)\varphi(n)\end{align}$
Now solve for $\varphi(n)$.
For the base case, use that $\sin^2 x = 1-\cos^2 x$, write $1=\cos^{0} x$ and you get:
$\int \cos^2 x \ dx = \cos x \sin x + \int \cos^{0} x\ dx- \int \cos^2 x \ dx$
So: $2\int \cos^2 x dx = \sin x \cos x + \int \cos^0 x \ dx$
Dividing by $2$ gives your result.
Now try for $n>2$. It's basically the same argument, where you replace $\sin^2 x=1-\cos^2 x$ and then solve for the integral.