0
$\begingroup$

Let $X$ be the vector space of all real sequences with finite support (i.e., there are only finitely many non-zero elements) with the scalar product $ \langle x,y\rangle=\sum_{i=1}^{\infty}x_iy_i $ for all $x=(x_1, x_2, \ldots, x_n, \ldots), y=(y_1, y_2, \ldots, y_n, \ldots)\in X$. Checking $X$ is a Hilbert space or not?

1 Answers 1

2

HINT: Let

$x^{(n)}_k=\begin{cases} \frac1k,&\text{if }1\le k\le n\\\\ 0,&\text{if }k>n\;. \end{cases}$

Is $\left\langle x^{(n)}:n\in\Bbb Z^+\right\rangle$ Cauchy? Has it a limit in $X$?

  • 0
    @blindman: You’$r$e very welcome.2012-10-11