$\displaystyle 0\cdot \binom{n}{0} + 1\cdot \binom{n}{1} + 2\binom{n}{2}+\cdots+(n-1)\cdot \binom{n}{n-1}+n\cdot \binom{n}{n}$
$\displaystyle\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3}+\frac{1}{3\cdot 4} +\cdots+\frac{1}{(n-1)\cdot n}$
How do you find the sum of these and prove it by induction? Can someone help me get through this?