0
$\begingroup$

Hello i am confused with this complex integral! It isnt for math homework.
$\large\int^{T/2}_{-T/2}p(t)e^{-j2πnt/T}dt $

$p(t)$ is $A$ for $-T/4 < t < T/4$
$-A$ otherwise
Its a kind of pulse!

  • 0
    @Graphth i noticed it but i think that font should be larger.To see it clearly i had to zoom with my browser. Maybe there is an option to increase size.(there is! \large or \huge)2012-02-06

1 Answers 1

1

You should break the integration interval in the following way

$\int_{-\frac{T}{2}}^\frac{T}{2}p(t)e^\frac{-j2πnt}{T}dt=$ $-A\int_{-\frac{T}{2}}^{-\frac{T}{4}}e^\frac{-j2πnt}{T}dt+A\int_{-\frac{T}{4}}^{\frac{T}{4}}e^\frac{-j2πnt}{T}dt-A\int_{\frac{T}{4}}^{\frac{T}{2}}e^\frac{-j2πnt}{T}dt=$ $-A\frac{e^{jn\frac{π}{2}}-e^{jπn}}{-j2πn}+A\frac{e^{-jn\frac{π}{2}}-e^{jn\frac{π}{2}}}{-j2πn}-A\frac{e^{jπn}-e^{jn\frac{π}{2}}}{-j2πn}=$ $A\frac{\sin\left(n\frac{π}{2}\right)}{n\pi}=A\frac{(-1)^n}{n\pi}$