I'm having massive issues proving this identity:
$\cot^2 (2x) + \cos^2 (2x) + \sin^2 (2x) = \csc^2 (2x)$
How is this proven?
I'm having massive issues proving this identity:
$\cot^2 (2x) + \cos^2 (2x) + \sin^2 (2x) = \csc^2 (2x)$
How is this proven?
Recall the following identities $\cos^2{\alpha} + \sin^2{\alpha} = 1$ $\cot^2{\beta} + 1 = \csc^2 \beta$ Hence, $\cot^2 (2x) + \cos^2 (2x) + \sin^2 (2x) = \underbrace{\cot^2 (2x) + \underbrace{\left(\cos^2 (2x) + \sin^2 (2x) \right)}_{=1}}_{\cot^2(2x)+1 = \csc^2(2x)}$
We know that $\cos^2(\theta) + \sin^2(\theta) = 1$, for any $\theta$ including $\theta = 2x$
Hence the left hand side of the equation is $\cot^2(2x) + 1$
Look at our first identity, let's divide it by $\sin^2(\theta)$ yielding
$\displaystyle (\cos^2(\theta))/(\sin^2(\theta)) + 1 = \frac{1}{\sin^2(\theta)}$
And gives us
$\displaystyle\cot^2(\theta) +1 = \frac{1}{\sin^2(\theta)}$
we let $\theta = 2x$ and we are done.