2
$\begingroup$

I have this integral to calculate:

$I=\int_{|z|=2}(e^{\sin z}+\bar z)dz.$

I do it this way:

$I=\int_{|z|=2}e^{\sin z}dz+\int_{|z|=2}\bar zdz.$

The first integral is $0$ because the function is holomorphic everywhere and it is a contour integral. As for the second one, I have

$\int_{|z|=2}\bar zdz = \int_0^{2\pi}e^{-i\theta}\cdot 2 d\theta=-\int_0^{-2\pi}e^{i\tau}\cdot 2 d\tau=\int_0^{2\pi}e^{i\tau}\cdot 2 d\tau=\int_{|z|=2}zdz=0$

because the function is now holomorphic.

It seems fishy to me. Is it correct?

  • 0
    The integral of $\bar{z}$ over a closed curve is $2i$ times the area enclosed by the curve. It follows from Green's theorem.2012-12-16

2 Answers 2

3

If $z = 2e^{i \theta}$, then $\bar{z} dz = 2e^{-i \theta}2i e^{i \theta} d \theta = 4i d \theta$ Hence, $\int_{\vert z \vert = 2} \bar{z} dz = \int_0^{2 \pi} 4i d \theta = 8 \pi i$

2

Another method for the second integral:

$ \begin{align*} \int_{|z|=2}\bar z\,dz &= \int_{|z|=2} \frac{z \bar z}{z} \,dz \\ &= \int_{|z| = 2} \frac{|z|^2}{z}\,dz \\ &= \int_{|z| = 2} \frac{4}{z}\,dz \\ &= 4 \cdot 2\pi i \\ &= 8 \pi i. \end{align*} $