7
$\begingroup$

I would like to show that:

$ \left( \frac{a+2b}{a+2c}\right)^3+\left( \frac{b+2c}{b+2a}\right)^3+\left( \frac{c+2a}{c+2b}\right)^3 \geq3 $

Using AM-GM inequality:

$ \left( \frac{a+2b}{a+2c}\right)^3+\left( \frac{b+2c}{b+2a}\right)^3+\left( \frac{c+2a}{c+2b}\right)^3 \geq3\frac{(a+2b)(b+2c)(c+2a)}{(a+2c)(b+2a)(c+2b)} $

It suffices to show that:

$ \frac{(a+2b)(b+2c)(c+2a)}{(a+2c)(b+2a)(c+2b)} \geq1 $

$ \Longleftrightarrow ab^2+bc^2+ca^2-(a^2b+b^2c+c^2a)\geq0$

$ \Longleftrightarrow x+y+z\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}$

$ xyz=1$

($x=\frac{a}{b}$, $y=\frac{b}{c}$, $z=\frac{c}{a}$)

How can I prove this last inequality? Is there any simpler proof?

  • 3
    The last inequality can't possibly be true. If $xyz=1$, then $\frac{1}{x}\frac{1}{y}\frac{1}{z}=1$, and the only way the inequality can hold for both $x,y,z$ and $\frac{1}{x},\frac{1}{y},\frac{1}{z}$ is if $x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, which is clearly not true in general. You're going to need to start with something sharper than the AM-GM...2012-08-29

2 Answers 2

10

I will prove that this is true for $a,b,c>0$. If they're allowed to be non-positive, there are counterexamples; e.g., $(a,b,c)=(1,0,-1)$.

Since this expression is homogeneous in $a,b,c$, we may assume without loss of generality that $a+b+c=1$. Then setting $x=c-b$, $y=a-c$, $z=b-a$ yields: $ \left(\frac{a+2b}{a+2c}\right)^3+\left(\frac{b+2c}{b+2a}\right)^3+\left(\frac{c+2a}{c+2b}\right)^3=\left(\frac{1-x}{1+x}\right)^3+\left(\frac{1-y}{1+y}\right)^3+\left(\frac{1-z}{1+z}\right)^3 \, . $ But if $a,b,c$ are positive and $a+b+c=1$, then $0, from which it follows that $-1. As the function $f(t)=\left(\frac{1-t}{1+t}\right)^3$ is concave upward on $(-1,1)$, we have: $ \left(\frac{1-x}{1+x}\right)^3+\left(\frac{1-y}{1+y}\right)^3+\left(\frac{1-z}{1+z}\right)^3=f(x)+f(y)+f(z) \geq 3f\left(\frac{x+y+z}{3}\right)=3f(0)=3 \, . $ This completes the proof.

  • 0
    OK, thank you for your help.2012-09-01
3

Or maybe just do it by Holder's Inequality? $\left(\sum_{cyc} \left(\frac{a+2b}{a+2c} \right)^3 \right) \left(\sum_{cyc}(a+2b)(a+2c)\right)\left(\sum_{cyc}(a+2c)\right)^2 \ge \left(\sum_{cyc}(a+2b)\right)^4$ As $\displaystyle \sum_{cyc}(a+2c) = 3(a+b+c) = \sum_{cyc}(a+2b)$, and $\displaystyle \sum_{cyc}(a+2b)(a+2c) = a^2 + b^2 + c^2 + 8(ab + bc + ca) = (a+b+c)^2 + 6(ab+bc+ca) \le 3(a+b+c)^2$ because $3(ab + bc+ca) \le (a+b+c)^2$, hence we have that $\sum_{cyc} \left(\frac{a+2b}{a+2c} \right)^3 \ge 3$ which finishes the proof.

  • 0
    OK, thank you for the link.2012-09-01