Prove that the following series converges:
$\sum_ {n=1}^{\infty}{\frac{(-1)^n}{\sqrt{n}}} $
$\frac{1}{\sqrt{n+1}} > \frac{1}{\sqrt{n}}$ $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$ So, the alternating series converges.
Is it right to my procedure?