4
$\begingroup$

In Hopf algebra texts, it is usually stated that $1=\eta\epsilon\in$Hom($H^C,H^A$) is the identity under convolution.

$\eta$ is the unit, $\epsilon$ is the counit.

My question is, is that a definition, or can it be proved?

Sincere thanks for any help.

(Do let me know if you need any clarification on the above notations.)

1 Answers 1

8

It can be proved using the definition of (co-)associativity and the (co-)unit.

Let $\mathbb K$ be a field. Let $(A,m)$ be a associative $\mathbb K$-algebra with unit $\eta: \mathbb K \to A$ and let $(C,\Delta)$ be a coassociative $\mathbb K$-coalgebra with counit $\varepsilon: C \to \mathbb K$. The convolution $\star: \operatorname{Hom}(C,A) \times \operatorname{Hom}(C,A) \to \operatorname{Hom}(C,A)$ is defined by $f \star g := m \circ (f \otimes g) \circ \Delta.$ Let $\mathbf 1 := \eta(1_{\mathbb K})$, then from the definition of the unit follows $m(\mathbf 1 \otimes a) = a \quad \text{for all } a\in A.$ Furthermore, $(\varepsilon \otimes \operatorname{id}) \circ \Delta = 1_{\mathbb K} \otimes \operatorname{id},$ by definition of counit. Using this we show $\eta \varepsilon \star f = f \star \eta\varepsilon = f \quad \text{for all } f \in\operatorname{Hom}(C,A).$ For all $c \in C$ we have \begin{align*} (\eta\varepsilon \star f)(c) &= (m \circ (\eta \varepsilon \otimes f) \circ \Delta)(c)\\ &=(m \circ (\eta \otimes f) \circ (\varepsilon \otimes \operatorname{id}) \circ \Delta)(c)\\ &= (m \circ (\eta \otimes f))(1_{\mathbb K} \otimes c)\\ &= m(\mathbf 1 \otimes f(c))\\ &= f(c), \end{align*} hence $\eta\varepsilon \star f = f$. Similarly one shows $f \star \eta\varepsilon = f$.