Forgive my poor math background, what I need is detail
!
I added my progress here for someone like me.
$ s_n^2=\frac {\sum_{i=1}^{n}(x_i-\bar{x}_n)^2}{n-1} \\ = \frac {\sum_{i=1}^n(x_i - \bar{x}_{n-1} + \bar{x}_{n-1} - \bar{x}_n)^2}{n-1} \\ = \frac {\sum_{i=1}^{n}(x_i - \bar{x}_{n-1})^2 + 2\sum_{i=1}^n(x_i - \bar{x}_{n-1})(\bar{x}_{n-1} - \bar{x}_n) + \sum_{i=1}^n(\bar{x}_{n-1} - \bar{x}_n)^2} {n-1} \\ = \frac {(\sum_{i=1}^{n-1}(x_i - \bar{x}_{n-1})^2 + (x_n - \bar{x}_{n-1})^2) + (2\sum_{i=1}^{n-1}(x_i - \bar{x}_{n-1})(\bar{x}_{n-1} - \bar{x}_n) + 2(x_n - \bar{x}_{n-1})(\bar{x}_{n-1} - \bar{x}_n)) + \sum_{i=1}^n(\bar{x}_{n-1} - \bar{x}_n)^2} {n-1} \\ = \frac {(n-2)s_{n-1}^2 + (x_n - \bar{x}_{n-1})^2 + 0 + 2(x_n - \bar{x}_{n-1})(\bar{x}_{n-1} - \bar{x}_n)) + n(\bar{x}_{n-1} - \bar{x}_n)^2} {n-1} \\ = \frac {(n-2)s_{n-1}^2 + x_n^2 - 2x_n\bar{x}_{n-1} + \bar{x}_{n-1}^2 + 2x_n \bar{x}_{n-1} - 2x_n \bar{x}_n - 2\bar{x}_{n-1}^2 + 2\bar{x}_{n-1}\bar{x}_n + n\bar{x}_{n-1}^2 - 2n\bar{x}_{n-1}\bar{x}_n + n\bar{x}_n^2} {n-1} \\ = \frac {(n-2)s_{n-1}^2 + x_n^2 + \bar{x}_{n-1}^2 - 2x_n \bar{x}_n - 2\bar{x}_{n-1}^2 + 2\bar{x}_{n-1}\bar{x}_n + n\bar{x}_{n-1}^2 - 2n\bar{x}_{n-1}\bar{x}_n + n\bar{x}_n^2} {n-1} \\ = \frac {(n-2)s_{n-1}^2 + x_n^2 - 2x_n\bar{x}_{n-1} + \bar{x}_{n-1}^2 + 2x_n \bar{x}_{n-1} - 2x_n \bar{x}_n - 2\bar{x}_{n-1}^2 + 2\bar{x}_{n-1}\bar{x}_n + n\bar{x}_{n-1}^2 - 2n\bar{x}_{n-1}\bar{x}_n + n\bar{x}_n^2} {n-1} \\ = \frac {(n-2)s_{n-1}^2 + (x_n^2 - 2x_n\bar{x}_n + \bar{x}_n^2) + (n-1)(\bar{x}_{n-1}^2 - 2\bar{x}_{n-1}\bar{x}_n + \bar{x}_n^2)} {n-1} \\ = \frac {(n-2)s_{n-1}^2 + (n-1)(\bar{x}_{n-1} - \bar{x}_n)^2 + (x_n - \bar{x}_n)^2} {n-1} \\ = \frac {n-2}{n-1}s_{n-1}^2 + (\bar{x}_{n-1} - \bar{x}_n)^2 + \frac {(x_n - \bar{x}_n)^2}{n-1} $
and
$ (\bar{x}_{n-1} - \bar{x}_n)^2 + \frac {(x_n - \bar{x}_n)^2}{n-1} \\ = (\bar{x}_{n-1} - \frac {x_n + (n-1)\bar{x}_{n-1}}{n})^2 + \frac {(x_n - \frac {x_n + (n-1)\bar{x}_{n-1}}{n})^2}{n-1} \\ = \frac {1}{n} (x_n - \bar{x}_{n-1})^2 $
so
$ s_n^2 = \frac{n-2}{n-1}s_{n-1}^2 + \frac{1}{n}(x_n - \bar{x}_{n-1})^2 $