Show that $ \int_{-1}^{1} \frac{\log|z-x|}{\pi\sqrt{1-x^2}}dx = \log{\frac{|z+\sqrt{z^2-1}|}{2}},\quad z \in \mathbb{C} $
How can I apply the Joukowski conformal map to this problem? Thanks.
Show that $ \int_{-1}^{1} \frac{\log|z-x|}{\pi\sqrt{1-x^2}}dx = \log{\frac{|z+\sqrt{z^2-1}|}{2}},\quad z \in \mathbb{C} $
How can I apply the Joukowski conformal map to this problem? Thanks.