I need to find an infinitely differentiable function from $\mathbb{R}$ to $\mathbb{R}$ which is zero for all negative values and nonzero fo all positive values.
Thank you in advance
I need to find an infinitely differentiable function from $\mathbb{R}$ to $\mathbb{R}$ which is zero for all negative values and nonzero fo all positive values.
Thank you in advance
$f(x)=\left\{\begin{array}{rcl} 0 &\mbox{if} & x\leq 0 \\ \exp\left(-\frac{1}{x^2}\right)&\mbox{if}&x>0\end{array}\right.$ is a good candidate. For any $n\in\mathbb{N}$ we have: $\frac{d^n}{dx^n}\exp\left(-1/x^2\right) = p(1/x) \exp\left(-1/x^2\right)$ where $p$ is a polynomial, so: $\lim_{x\to 0^+} \frac{d^n}{dx^n}\exp\left(-1/x^2\right) = \lim_{z\to +\infty} p(z)\,e^{-z^2} = 0.$