Here's a group theoretic proof that one can use plus some euclidean geometry.
Let $X$ be a regular platonic solid. Now I believe you can let a finite subgroup of $SO_3$ act on $X$ by acting on the faces, edges or vertices. Now to each face you can draw a line perpendicular to that face, and let $SO_3$ act on that line instead. We will call such a line a pole. Similarly one can let $SO_3$ act on the poles above an edge and a vertex. So now we have that $SO_3$ is acting on the set of poles associated to a face,edge or vertex. If $p$ is a pole above a vertex, let
$|G_p| = r_p = \text{number of faces that meet at a vertex}.$
If p' is a pole above an edge, let
|G_{p'}| = r_{p'} = \text{number of faces that meet at an edge} = 2.
Finally if p'' is a pole above a face, let
|G_{p''}| = r_{p''} = \text{number of sides a face has} = n.
Now it is not hard to show (I can provide a proof of this) that
\sum_{\text{over all poles $p,p'$ or $p''$}}(r_p - 1) = 2|G| - 2
where $G$ is the group of rotational symmetries of $X$. In fact the proof of the formula above is group theoretic: One looks at the order of group elements and orders of stabilisers.
Now at the same time we know that the number of poles is equal to $V + F + E$, where $V$ is the number of vertices, $F$ the number of faces and $E$ the number of edges. If you use this information and plug it into our formula above, we have that
$kV + nF + 2E - (V + F + E) = 2|G| - 2.$
At the same time, the Orbit - Stabiliser Theorem gives us that $kV = nF = 2E = |G|$. Hence
$\begin{eqnarray} 3nF - V - F - E &=& 2|G| - 2 \\ \\ \implies \frac{3nF}{|G|} - \frac{1}{k} - \frac{1}{n} - \frac{1}{2} &=& 2 - \frac{2}{|G|}. \end{eqnarray}$
However $3nF/|G| = 3$, so that upon simplifying we have
$\begin{eqnarray} \frac{1}{2} + \frac{2}{|G|} &=& \frac{1}{k} + \frac{1}{n} \\ \implies \frac{1}{k} + \frac{1}{n} &>& 2. \end{eqnarray}$
The task now is reduced to finding integers that satisfy that inequality above. Since $k,n \geq 3$, the only possible integer solutions are $k=3, n=3$ or $k=3,n=4$ or $k=3, n=5$ or $k=4,n=3$ or $k=5,n=3.$
In the first case for example, we have a regular polyhedron made out of an equilateral triangle, with 3 faces (made out of equilateral triangles) meeting at a vertex. The tetrahedron does satisfy these requirements, but as Mariano has noted above it remains to check that the tetrahedron is the only one that satisfies this. Similarly one has to check that the other 4 cases only give the octahedron, cube, dodecahedron and icosahedron. I leave this to you to check!
$\textbf{Edit:}$ Mariano has told me that the proof that there is a finite subgroup of $SO_3$ acting on $X$ is not trivial.