4
$\begingroup$

$\sum_{k=1}^{\infty}\left(\frac{1}{k^{\log k}}\right)$ this is converge. But how? I think here we use comparison thm.

  • 1
    Please avoid using `$$` and `\displaystyle` in the title.2012-12-27

2 Answers 2

10

Try comparing this series to $\sum_{k=1}^\infty \frac{1}{k^2}.$ Since $\log(x)\geq 2$ for $x\geq e^2$, after throwing out finitely many terms you can prove convergence.

Added: Alternatively, by using the Cauchy condensation test, we need only prove the convergence of $\sum_{n=0}^{\infty}\frac{2^n}{2^{n^{2}\log2}}.$

2

Let $a_k = 1/k^{\log k}$. Then $\begin{eqnarray*} \frac{a_{k+1}}{a_k} &=& \frac{k^{\log k}}{(k+1)^{\log (k+1)}} \\ &=& \exp \left[\log^2 k - \log^2(k+1)\right]. \end{eqnarray*}$ Now show $\log^2 k < \log^2(k+1)$ for $k\ge 1$ and apply the ratio test.