2
$\begingroup$

Suppose that $f$ is analytic in the unit disc D = {$z \in \mathbb{C}$ : |$z$| < 1} and $|$f($z$)$| \le 1/(1-|$z$|)$ for all $z\in D$.

Let $f($z$)= \sum _{n=0}^{\infty } a_nz^n$ be the power series expansion of f about $0$.

Prove that $|a_n| \le (n+1)(1+1/n)^{n} < e(n+1)$

  • 0
    @matt No reason to apologize. It is just a matter of not making some questions pop "off" in main.2012-10-14

2 Answers 2

0

Recall that Cauchy integral formula gives us $ a_n= \frac{1}{2\pi i}\int\limits_{\partial B(0,r)}\frac{f(z)}{z^{n+1}}dz \frac{1}{2\pi i}\int\limits_{0}^{2\pi}\frac{f(r e^{it})}{(re^{it})^{n+1}}d(r e^{it})= \frac{1}{2\pi}\int\limits_{0}^{2\pi}\frac{f(r e^{it})}{r^n e^{int}}dt $ hence $ |a_n|\leq \frac{1}{2\pi}\int\limits_{0}^{2\pi}\frac{|f(r e^{it})|}{r^n |e^{int}|}dt\leq \frac{1}{2\pi}\int\limits_{0}^{2\pi}\frac{dt}{r^n (1-|r e^{it}|)}= \frac{1}{r^n (1-r)} $ As the consequence $ a_n\leq\min\limits_{r\in(0,1)}\frac{1}{r^n (1-r)}=(n+1)\left(1+\frac{1}{n}\right)^n $ I suggest you to fill the gaps.

  • 0
    use calculus to find point of minimum. Find derivative, find stationary points, substitute into the function2012-10-14
0

Here are some hints.

  1. Cauchy's theorem can help you recover $a_n$ from $f$.
  2. Use the inequality $|\int f| \leq \int |f|$
  3. What is the minimum of $\frac{1}{z^{n+1}(1-z)}$ when $z\in (0,1)$?