3
$\begingroup$

What would be the zeros of the following function?

$ \frac{1}{B(xi)^{1/2}}((iA)^{ix})(ix)^{ix}+ \frac{1}{B(-xi)^{1/2}}((-iA)^{-ix})(-ix)^{-ix}=H(x)$

This function is real and I believe it is equal to the cosine of a certain function

$ cos(f(x))=H(x) $ but what is the function $ f(x) $?

The roots satisfy the equation $ f(x)=\pi (n+\frac{1}{2}) $ and the zeros of $H(x)$ are $ x(n)= f^{-1}(n\pi + \frac{\pi}{2}) $. $A$ and $B$ are real constants.

  • 0
    yes 'x' is real i search for the real zeros only :)2012-12-31

0 Answers 0