This is a question pertaining to Humphrey's Introduction to Lie Algebras and Representation Theory
Is there an explanation of the lemma in §4.3-Cartan's Criterion? I understand the proof given there but I fail to understand how anybody could have ever devised it or had the guts to prove such a strange statement...
Lemma: Let $k$ be an algebraically closed field of characteristic $0$. Let $V$ be a finite dimensional vector space over $k$, and $A\subset B\subset \mathrm{End}(V)$ two subspaces. Let $M$ be the set of endomorphisms $x$ of $V$ such that $[x,B]\subset A$. Suppose $x\in M$ is such that $\forall y\in M, \mathrm{Tr}(xy)=0$. Then, $x$ is nilpotent.
The proof uses the diagonalisable$+$nilpotent decomposition, and goes on to show that all eigenvalues of $x$ are $=0$ by showing that the $\mathbb{Q}$ subspace of $k$ they generate has only the $0$ linear functional.
Added: (t.b.) here's the page from Google books for those without access: