2
$\begingroup$

If $M$ is $2n+1$ dimensional manifold, and $M'= M\times \mathbb R$ Let $x_1,y_1,... x_n, y_n,t', t$ be coordiante of $M'$. With $t$ for coordinate for $\mathbb R$. Let $ \omega= \sum_{i=1}^n dx_i\wedge dy_i+ dt'\wedge dt$ $i: M\to M'$ be inclusion. How to calculate $i^*(\omega )$.

By definition: for $v, w\in T_p M$, we should have $\alpha_p(v,w)= i^*\omega(v,w)= \omega_{i(p)}(di_p(v), di_p(w))$ $\alpha_p(v,w)= \left(\sum_{i=1}^n dx_i\wedge dy_i+ dt'\wedge dt\right)\left(\sum_{j=1}^nv_j\frac{\partial}{\partial x_j}+v_0\frac{\partial}{\partial t'},\sum_{j=1}^nw_j\frac{\partial}{\partial x_j}+w_0\frac{\partial}{\partial t'}\right) $ After that i am getting confuse... How to write $\alpha$. I want an expression for $\alpha$.

  • 0
    Yes. You can answer your own question, then it won't be unanswered anymore.2012-06-16

0 Answers 0