5
$\begingroup$

I wanted to compute the sum $\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}.$ And I thought it would be easiest to do this by making it a function, differentiating it and integrating it then.

So I did: $f_n(a)=\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}a^k$ $f_n'(a)=\sum_{k=1}^{n}\binom{n}{k}a^{k-1}=\frac{(a+1)^n-1}{a}$ And finally $f_n(a)=\int\frac{(a+1)^n-1}{a}\mathrm{d}a+C(n)$ where $C(n)$ is an unknown constant depending on $n$.

The first problem is the integral of course, so here it stops.

Can anyone help me calculating this integral or is there another way to calculate the sum?

EDIT: another approach:

I get, using Pascal's identity, $S(n)=\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}=\frac{1}{n}+\sum_{k=1}^{n-1}\left(\frac{1}{k}\binom{n-1}{k-1}+\frac{1}{k}\binom{n-1}{k}\right)=\sum_{k=1}^{n}\frac{1}{n}\binom{n}{k}+\sum_{k=1}^{n-1}\frac{1}{k}\binom{n-1}{k}$

So I have the recursion $S(n)=\frac{2^n-1}{n}+S(n-1)$, with $S(1)=\frac{2^1-1}{1}$.

Thus $\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}=\sum_{k=1}^{n}\frac{2^k-1}{k}$ if that might help.

Also, $f_n(a)=\displaystyle\sum_{k=1}^{n}\frac{(a+1)^k-1}{k}$ for the same reason.

  • 0
    Essentially a duplicate of "[The integral $\int_0^1 \frac{(x+1)^n-1}{x} dx$](http://math.stackexchange.com/q/96287/)." The conclusion on that question is that there is no nice, simpler expression.2012-12-03

1 Answers 1

1

Here is a formula for the sum in terms of the hypergeometric function

$\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}= n\, _3F_2(1,1,1-n;\,2,2;\,-1).$

$\,_3F_2(a_1,a_2,a_3;b_1,b_2;z) = \sum_{n=0}^\infty {(a_1)_n (a_2)_n (a_3)_n\over (b_1)_n (b_2)_n } \, {z^n \over n!} $

  • 0
    I agree, but one can always try to.2012-12-03