Use the definition of partial derivative: $ f_x(0,0) ~=~ \lim_{h\to 0} \frac{f(h,0)-f(0,0)} h ~=~ \lim_{h\to 0} \frac{\frac{h\cdot 0(h^2-0^2)}{h^2+0}-0} h ~=~ \lim_{h\to 0} \frac{0}{h} ~=~ 0 $ A similar computation shows that $f_y(0,0)=0$ too, so that $(0,0)$ is a critical point (i.e. $\nabla f(0,0)=\binom 00$).
EDIT
Now that we know the values of $f_x(0,0)$ and $f_y(0,0)$ we can compute $f_{xy}(0,0)$ and $f_{yx}(0,0)$: $ f_{xy}(0,0) ~=~ \lim_{k\to 0} \frac{f_x(0,k)-f_x(0,0)}k ~=~ \lim_{k\to 0} \frac{f_x(0,k)}k $ and $ f_{yx}(0,0) ~=~ \lim_{h\to 0} \frac{f_y(h,0)-f_y(0,0)}h ~=~ \lim_{h\to 0} \frac{f_y(h,0)}h $ First, note that for $(x,y)\neq(0,0)$ you have $ f_x(x,y)=\frac{y\big(x^4+4x^2y^2-y^4\big)}{\big(x^2+y^2\big)^2} $ and $ f_y(x,y)=\frac{x\big(x^4-4x^2y^2-y^4\big)}{\big(x^2+y^2\big)^2} $ so that for $h,k\neq 0$ $ f_x(0,k)=-k \quad\text{and}\quad f_y(h,0)=h $ Putting all together: $ f_{xy}(0,0) ~=~ \lim_{k\to 0} \frac{f_x(0,k)}k ~=~ \lim_{k\to 0}\frac{-k}{k} ~=~ -1 $ and $ f_{yx}(0,0) ~=~ \lim_{h\to 0} \frac{f_y(h,0)-f_y(0,0)}h ~=~ \lim_{h\to 0} \frac{f_y(h,0)}h ~=~ \lim_{h\to 0}\frac{h}{h} ~=~ 1 $ so $ f_{xy}(0,0)~=~-1 ~~\neq~~ 1~=~f_{yx}(0,0) $