Let $X_1,\cdots X_n$ i.i.d bernoulli(p) r'v's
Let $A = \sum_{i=1}^nX_i \geq l$, and $B= \sum_{i=1}^n X_i \geq k$
Then $A \circ B = \sum_{i=1}^nX_i \geq l+k$ (disjoint occurance of A, B)
Im trying to see why $\mathbb{P}(A\circ B)\leq \mathbb{P}(A)\mathbb{P}(B)$ holds without using the BK-inequality.