3
$\begingroup$

http://en.wikipedia.org/wiki/Monotone_likelihood_ratio says

neither monotone hazard rates nor stochastic dominance imply the MLRP

what is an example? Is there any necessary and sufficient condition for stochastic dominance?

2 Answers 2

1

There are no doubt many examples, but for example consider two distributions on the interval $[0,1]$ one bimodal at $\frac{1}{4}$ and $\frac{3}{4}$ and the other unimodal at $\frac{1}{2}$: $Y$ with density $f(x)=1 - \cos(4\pi x)$ and $Z$ with density $g(x)=1 - \cos(2 \pi x)$.

Then $\Pr(Y \le x ) \gt \Pr(Z \le x )$ in the open interval $(0,1)$ [and equal elsewhere] so there is stochastic dominance.

But in this example the likelihood ratio $\frac{f(x)}{g(x)}$ is not monotone: it falls and then rises.

0

A simple example might be considering discrete pdfs like,

\begin{gather} f(x)=\begin{cases} 0.1\quad x=0\\ 0.1\quad x=5\\ 0.9\quad x=10 \end{cases} \end{gather} and

\begin{gather} g(x)=\begin{cases} 0.05 \quad x=0\\ 0.05 \quad x=5\\ 0.9\quad x=10 \end{cases} \end{gather}