It is a problem in my homework. Let $ X = \{x \in C[0,1] : x(0) = 0\} $ with norm $\Vert\cdot\Vert_\infty$. Denote $ M =\left\{ x \in X : \int\limits_0^1 x(t)=0\right\} $ If $\Vert x_0\Vert_\infty=1$ and $x_0\in X$ how to prove that $d(x_0,M)<1$
The distance between a point and a set
0
$\begingroup$
real-analysis
functional-analysis
lp-spaces
1 Answers
0
Consider functional $ F:X\to\mathbb{R}:x\mapsto\int\limits_{0}^{1}x(t)dt $ and prove that $M=\mathrm{Ker}(f)$ and $\Vert F\Vert=1$.
Recall that $ \mathrm{dist}(x_0,M)=\frac{|F(x_0)|}{\Vert F\Vert} $ Here you can find the proof of this fact.
For $x\in C([0,1])$ with $\sup_{t\in[0,1]}|x(t)|1$ the integral $\left|\int_0^1 x(t)dt\right|$ will attain its maximum for the functions $x(t)=1$ and $x(t)=-1$. But you don't have this functions in the space $X$. So show that $ \forall x\in X\quad\Vert x\Vert_\infty=1\implies|F(x_0)|<1 $
Conclude that $d(x_0,M)<1$
-
0@SachchidanandPrasad, indeed consider functions $y_n(t)=\max(1,nt)$ and choose $n$ so that F(y)>\alpha. – 2017-08-28