Finding Limit
$\lim_{x \to \infty} (2^x + 3^x + 5^x + 7 ^x + 11 ^x +13^x)^{\frac{1}{x}}$
So I let
$y = (2^x + 3^x + 5^x + 7 ^x + 11 ^x +13^x)^{\frac{1}{x}}$
$\ln$ both sides:
$\ln{y} = \frac{1}{x} \ln {(2^x + 3^x + 5^x + 7 ^x + 11 ^x +13^x)}$
Now what?