2
$\begingroup$

I determined this whole partition but I just want to have the finer the partition for example:

I have this

 M[{{1, 2, 3, 4, 5}}]+M[{{1}, {2, 3, 4, 5}}]+M[{{2}, {1, 3, 4, 5}}]+M[{{5}, {1, 2, 3, 4}}]+M[{{3}, {1, 2, 4, 5}}]+M[{{4}, {1, 2, 3, 5}}]+M[{{1, 2}, {3, 4, 5}}]+M[{{1, 3}, {2, 4, 5}}]+M[{{1, 4}, {2, 3, 5}}]+M[{{1, 5}, {2, 3, 4}}]+M[{{2, 4}, {1, 3, 5}}]+M[{{2, 3}, {1, 4, 5}}]+M[{{2, 5}, {1, 3, 4}}]+M[{{3, 4}, {1, 2, 5}}]+M[{{3, 5}, {1, 2, 4}}]+M[{{4, 5}, {1, 2, 3}}]+M[{{1}, {2}, {3, 4, 5}}]+M[{{1}, {3}, {2, 4, 5}}]+M[{{1}, {4}, {2, 3, 5}}]+M[{{1}, {5}, {2, 3, 4}}]+M[{{1}, {2, 3}, {4, 5}}]+M[{{1}, {2, 4}, {3, 5}}]+M[{{1}, {2, 5}, {3, 4}}]+M[{{2}, {3}, {1, 4, 5}}]+M[{{2}, {4}, {1, 3, 5}}]+M[{{2}, {5}, {1, 3, 4}}]+M[{{2}, {1, 3}, {4, 5}}]+M[{{2}, {1, 4}, {3, 5}}]+M[{{2}, {1, 5}, {3, 4}}]+M[{{3}, {4}, {1, 2, 5}}]+M[{{3}, {5}, {1, 2, 4}}]+M[{{3}, {1, 2}, {4, 5}}]+M[{{3}, {1, 4}, {2, 5}}]+M[{{3}, {1, 5}, {2, 4}}]+M[{{4}, {5}, {1, 2, 3}}]+M[{{4}, {1, 2}, {3, 5}}]+M[{{4}, {1, 3}, {2, 5}}]+M[{{4}, {1, 5}, {2, 3}}]+M[{{5}, {1, 2}, {3, 4}}]+M[{{5}, {1, 3}, {2, 4}}]+M[{{5}, {1, 4}, {2, 3}}]+M[{{1}, {2}, {3}, {4, 5}}]+M[{{1}, {2}, {4}, {3, 5}}]+M[{{1}, {2}, {5}, {3, 4}}]+M[{{1}, {3}, {4}, {2, 5}}]+M[{{1}, {3}, {5}, {2, 4}}]+M[{{1}, {4}, {5}, {2, 3}}]+M[{{2}, {3}, {4}, {1, 5}}]+M[{{2}, {3}, {5}, {1, 4}}]+M[{{2}, {4}, {5}, {1, 3}}]+M[{{3}, {4}, {5}, {1, 2}}]+M[{{1}, {2}, {3}, {4}, {5}}] 

but i like take :

  • only the partition with cardinality = 2

For example :

  M{{1, 2, 3, 4, 5}}+M{{1}, {2, 3, 4, 5}}+M[{{2}, {1, 3, 4, 5}}+M[{{5}, {1, 2, 3, 4}}+M{{3}, {1, 2, 4, 5}}+M{{4}, {1, 2, 3, 5}}+M{{1, 2}, {3, 4, 5}}+M[{{1, 3}, {2, 4, 5}}]+M{{1, 4}, {2, 3, 5}}+M{{1, 5}, {2, 3, 4}}+M{{2, 4}, {1, 3, 5}}+M[{{2, 3}, {1, 4, 5}}+M{{2, 5}, {1, 3, 4}}+M{{3, 4}, {1, 2, 5}}+M{{3, 5}, {1, 2, 4}}+M{{4, 5}, {1, 2, 3}} 

display after the finer partition in order, For example for the previous result does not show :

 M{{2}, {1, 3, 4, 5}} , because 2 > 1   M{{5}, {1, 2, 3, 4}} , because 5 > 1,2,3,4 

how can I do this ?

Thanks

0 Answers 0