I have a questionlike: if $dX=\mu \, dt+\sigma \, dW$, where $W$ is a standard B.m. Then, is this expectation still o,$\int_0^t X(r) \, dW(r)$ ? Thank you all.
Expectation of $\int_0^t X(r) \, dW(r)$ where $dX=\mu \, dt+\sigma \, dW$
0
$\begingroup$
stochastic-integrals
stochastic-calculus
-
0Are $\mu, \sigma$ constants or stochastic processes? If the latter, what do you know about them? – 2012-08-14