I would greatly appreciate some help in finding $\lim \ a_n$ if $a_n = \frac{1}{\sqrt[3]{n^3+1}} + \frac{1}{\sqrt[3]{n^3+2}}+\cdots+\frac{1}{\sqrt[3]{n^3+n}}.$
Find $\lim \ a_n$ if $a_n = \frac{1}{\sqrt[3]{n^3+1}} + \frac{1}{\sqrt[3]{n^3+2}}+\cdots+\frac{1}{\sqrt[3]{n^3+n}}.$
1
$\begingroup$
calculus
limits
1 Answers
4
HINT:
Note that $\dfrac1{\sqrt[3]{n^3+n}} \leq \dfrac1{\sqrt[3]{n^3+k}} \leq \dfrac1{\sqrt[3]{n^3+1}}$ for all $k \in \{1,2,3,\ldots,n\}$.
Hence, $\dfrac1{\sqrt[3]{1+1/n^2}} = \dfrac{n}{\sqrt[3]{n^3+n}} \leq \sum_{k=1}^{n} \dfrac1{\sqrt[3]{n^3+k}} \leq \dfrac{n}{\sqrt[3]{n^3+1}} = \dfrac1{\sqrt[3]{1+1/n^3}}$
Now apply the squeeze/sandwich theorem.