Let $1 . Also assume that $t \in [-1,1]$. Prove that there exists a constant $k \in \mathbb{R}$ that depends on $p$, such that: $| |t+1|^p - |t|^p - 1 | \leq k ( |t|^{p-1} + |t| ).$ Which would be equivalent to: $ \sup_{t\in[-1,1]} \left\{ \frac{||t+1|^p - |t|^p -1|}{|t|^{p-1} + |t|} \right\} < \infty.$ Any hint would be appreciatied.
$| |t+1|^p - |t|^p - 1 | \leq k ( |t|^{p-1} + |t| )$ for some $k$
-
0I would try to use some integral like $\int_0^t(x+1)^{p-1}-x^{p-1}dx=\frac{1}{p}\left((t+1)^p-t^p-1\right)$ together with a max estimate of the integral. – 2012-10-23
1 Answers
For $t\ne0$, $ \frac{||t+1|^p - |t|^p -1|}{|t|^{p-1} + |t|} \leq\frac{||t+1|^p - 1|}{|t|^{p-1} + |t|} + \frac{|t|^p }{|t|^{p-1} + |t|} \leq\frac{||t+1|^p - 1|}{|t|} + \frac{|t|^p }{|t|^{p-1}} =\frac{||t+1|^p - 1|}{|t|} + |t|. $ On the interval $[-1/2,3/2]$ the function $t\mapsto (t+1)^p$ is differentiable and $|t+1|=t+1$ (the choice is arbitrary, it only matters that it is $>-1$). By the Mean Value Theorem, there exist numbers $c_t$ between $t+1$ and $1$ (so $c_t\in[0,2]$) with $ (t+1)^p-1=pc_t^{p-1}\,t, $ and so $ |\,|t+1|^p-1|=|(t+1)^p-1|=|pc_t^{p-1}t|\leq p2^{p-1}|t|, $ i.e. $ \frac{|(t+1)^p-1|}{|t|}\leq p2^{p-1}. $ For $t<-1/2$, $ \frac{|\,|t+1|^p-1|}{|t|}\leq\frac{|t+1|^p+1}{1/2}\leq 2(2^p+1). $ Going back to the first inequality, we get $ \frac{||t+1|^p - |t|^p -1|}{|t|^{p-1} + |t|} \leq \max\{p2^{p-1},2(2^p+1)\} +1. $