1
$\begingroup$

$\def\Arg{\operatorname{Arg}}$I have here a complex equation:

$z^2-\Arg(z)=z\overline z, \qquad z\in \mathbb C$

where $\Arg(z)$ is the argument of $z$, and $\overline z$ is complex conjugate of $z$.

How do we get the solutions of this equation? I started replacing $z=x+iy$ but I can't continue. Any suggestions please?

  • 0
    Try using polar form ($z = re^{i\theta}$).2012-11-07

1 Answers 1

2

$z=re^{it}\Longrightarrow z^2-\arg z=r^2e^{2it}-t\,\,,\,\,z\overline z=|z|^2=r^2\Longrightarrow$

$r^2e^{2it}-t=r^2\Longleftrightarrow r^2\cos 2t-t+r^2i\sin 2t=r^2$

Now compare real and imaginary parts:

$r^2\cos 2t-t=r^2$

$r^2\sin 2t=0$

Can you take it from here?

  • 1
    Yes, thank $y$ou!2012-11-07