We know that a finite lattice $L$ is modular if and only if for all $s,t,u \in L$ such that $s \le u$, we have $ s \vee (t \wedge u)=(s \vee t) \wedge u. $
If we remove the condition $s \le u$, that is, if
for all $s,t,u \in L$ a finite lattice $L$ satisfies $s \vee (t \wedge u)=(s \vee t) \wedge u$ for all $s,t,u \in L,$ what is such an $L$ would be?