Can someone explain to me why the interior of rationals is empty? That is $\text{int}(\mathbb{Q}) = \emptyset$?
The definition of an interior point is "A point $q$ is an interior point of $E$ if there exists a ball at $q$ such that the ball is contained in $E$" and the interior set is the collection of all interior points.
So if I were to take $q = \frac{1}{2}$, then clearly $q$ is an interior point of $\mathbb{Q}$, since I can draw a ball of radius $1$ and it would still be contained in $\mathbb{Q}$.
And why can't I just take all the rationals to be the interior?
So why can't I have $\text{int}\mathbb{(Q)} = \mathbb{Q}$?