Suppose $(G,+,0)$ is an abelian group and $M,N\subseteq G$ two subsets.
Let $\langle M\rangle$ denotes the subgroup of $G$ generated by $M$ and let $\varphi:G\to G/\langle M\rangle$ denotes the quotient map.
Are $(G/\langle M\rangle)/\langle \varphi(N)\rangle$ and $G/\langle M\cup N\rangle$ isomorphic?