4
$\begingroup$

how to evaluate this integral: $l(y)=\int\limits_\beta^\infty \theta\exp(-y\theta)\alpha\exp(-\alpha\theta) \, d\theta$ where $\alpha,\beta,\theta,y>0.$ Because I find it infinity! Can anyone help me to evaluate this integral? Thank you.$$ I find this solution :\left(\left.\frac{-1}{(\alpha+y)^2}\exp(-(\alpha+y)\theta)\right)\right|_{\beta}^\infty-\left.\frac{\theta}{(\alpha+y)}\exp(-(\alpha+y)\theta)\right|_{\beta}^\infty.$ $$$ in which in the second term, I obtain infinity value!

  • 0
    @Dilawar Or not.2012-11-13

2 Answers 2

1

The product $ \begin{align} x\exp(-x) &=x/\exp(x)\\ &=x/(1+x+x^2/2+x^3/6+\dots)\\ &=1/(1/x+1+x/2+x^2/6+\dots) \end{align} $ $1/x\to0$ as $x\to\infty$ . Sum of other terms in the denominator $\to\infty$ as $x\to\infty$. So the product $x\exp(-x)\to0$ as $x\to\infty$.

  • 0
    It makes answers easier to read if you use [MathJax](http://meta.math.stackexchange.com/q/5020).2013-01-16
0

You're wrong, your 2nd term is not infinite ! Indeed exponential growth is much stronger than polynomial one, so $\lim_{x \to +\infty} x.e^{-x} = 0$.

Beware of the $\alpha$ factor inside the integral and signs, I found for my part: $ l(y) = \left( \frac\alpha{(y + \alpha)^2} - \frac{\alpha \beta}{y + \alpha} \right) e^{-(y + \alpha) \beta} $