What is the inverse of \[ \begin{pmatrix} 1&0&0\\0&\cos x &\sin x\\ 0 &\sin x &-\cos x \end{pmatrix} \] Please help me to solve the above problem.
Find the inverse a matrix with trigonometic entries
-
0After you ask a question here, if you get an acceptable answer, you shoul$d$ "accept" the ans$w$er by clicking the check mark ✓ next to it. This scores points for you and for the person who answered your question. If you don't do this, people are less likely to answer your later questions. – 2012-09-19
2 Answers
Let $A_x :=\left[ \begin{array}{cc} \cos x & \sin x \\ \sin x & -\cos x \end{array} \right]$, and let $R_x :=\left[ \begin{array}{cc} \cos x & -\sin x \\ \sin x & \cos x \end{array} \right]$ be the matrix of the rotation by angle $x$ in the plane (that is, for all ${\bf v}$ in $\mathbb R^2$, $\ R_x\cdot {\bf v}$ is the rotated version of $\bf v$), we have that $A_x = R_x\cdot \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]\ \text{ and }\ (R_x)^{-1} = R_{-x} = \left[ \begin{array}{cc} \cos x & \sin x \\ -\sin x & \cos x \end{array} \right]\text{, so} $ $(A_x)^{-1} = \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]\cdot R_{-x}$ So, by easy matrix multiplication, one can verify that the additional $1$ in the additional dimension is not hurting much, ie. the requested inverse is: $ \left[ \begin{array}{ccc} 1&0&0\\ 0 &\cos x & \sin x \\ 0 & \sin x & -\cos x \end{array} \right] $
-
0...and we thus see that the given matrix is in fact orthogonal. – 2012-09-20
Implement the formula $\def\adj{\operatorname{adj}}A^{-1}=\frac{1}{\det A}\cdot \adj A$
Find $\det A$
$\det A=\begin{vmatrix} 1&0&0\\0&\cos x &\sin x\\ 0 &\sin x &-\cos x \end{vmatrix}=-1$
Find $\adj A$
$A_{11}=(-1)^{1+1}\left\lvert \begin{array}{cc} \cos x & \sin x \\ \sin x & -\cos x \end{array} \right\rvert=-1$
$A_{12}=(-1)^{1+2}\left\lvert \begin{array}{cc} 0 & \sin x \\ 0 & -\cos x \end{array} \right\rvert=0$
$A_{13}=(-1)^{1+3}\left\lvert \begin{array}{cc} 0 & \cos x \\ 0 & \sin x \end{array} \right\rvert=0$
$A_{21}=(-1)^{2+1}\left\lvert \begin{array}{cc} 0 & 0 \\ \sin x & -\cos x \end{array} \right\rvert=0$
$A_{22}=(-1)^{2+2}\left\lvert \begin{array}{cc} 1 & 0 \\ 0 & -\cos x \end{array} \right\rvert=-\cos x$
$A_{23}=(-1)^{2+3}\left\lvert \begin{array}{cc} 1 & 0 \\ 0 & \sin x \end{array} \right\rvert=-\sin x$
$A_{31}=(-1)^{3+1}\left\lvert \begin{array}{cc} 0 & 0 \\ \cos x & \sin x \end{array} \right\rvert=0$
$A_{32}=(-1)^{3+2}\left\lvert \begin{array}{cc} 1 & 0 \\ 0 & \sin x \end{array} \right\rvert=-\sin x$
$A_{33}=(-1)^{3+3}\left\lvert \begin{array}{cc} 1 & 0 \\ 0 & \cos x \end{array} \right\rvert=\cos x$
$A^{-1}=\left\lvert \begin{array}{ccc} 1&0&0\\ 0 &\cos x & \sin x \\ 0 & \sin x & -\cos x \end{array} \right\rvert$