1
$\begingroup$

How to prove the integral

$\int_0^{\infty} \int_0^z e^{a(y^2 - z^2) - 2M(y - z)} \; dy \; dz$

is infinite, where $a$ and $M$ are positive numbers?

1 Answers 1

1

We have for $z\geq 1$ \begin{align*} \int_0^ze^{a(y^2-z^2)-2M(y-z)}dy&=\int_0^ze^{a((z-t)^2-z^2)+2Mt}dt\\ &=\int_0^ze^{a(-2zt+t^2)+2Mt}dt\\ &\geq \int_0^ze^{-2azt}dt\\ &=-\frac 1{2az}\left[e^{-2atz}\right]_{t=0}^{t=z}\\ &=\frac{1-e^{-2az^2}}{2az}\\ &\geq \frac{1-e^{-2a}}{2az}\geq 0, \end{align*} and $\int_1^{+\infty}\frac 1{z}dz$ is divergent, so we are done.

  • 0
    You are right, I missed a term, now I think it's correct.2012-02-21