1
$\begingroup$

For $1\leq k \leq m,$ let $f_k :\mathbb{C}^n \rightarrow \mathbb{C}$ be a multivariate polynomial map. With $\mathbf{x} \equiv (x_1,\ldots,x_n)$, consider the map $F(\mathbf{x}) \equiv \{f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_m(\mathbf{x}) \},$ where $m > n.$ Is it true that $Im(F)$ has measure zero in $\mathbb{C}^m.$

  • 0
    I want an overdetermined system. So m > n2012-04-01

1 Answers 1

2

Yes. Since each $F$ is locally Lipschitz, the image has Hausdorff dimension $\le n$.

  • 0
    Sorry, yes. I'll edit.2012-04-01