4
$\begingroup$

Background:

Let $G$ be a group of size $k\cdot p^n$.

Let $S$ be the set of all subsets of size $p^n$ of $G$.

Define the map $f\colon G \times S \rightarrow S$ by $(g, s) \mapsto gs$ if $s \in S$.

I would like to create the group action table of $f$ with GAP. So in the case of $S_3$ I would get a table with twenty rows ( elements of $S$ ) and six columns ( elements of $S_3$ ) containing $gs$.

Question: How do I create a ( this ) group action table with GAP?

1 Answers 1

6

You'll find it easier to work with GAP if you switch to right actions.

G := SymmetricGroup( 3 );; S := Combinations( AsSet( G ), 3 );;  myLeftAction := function( act, pnt ) # useless for Orbits, Stabilizer, etc.   return AsSet( List( pnt, x -> act*x ) ); end;  myRightAction := function( pnt, act )   return AsSet( List( pnt, x -> x*act ) ); end;;  table := List( S, s -> List( G, g -> myRightAction( s, g ) ) );;  PrintArray( table ); # If you have around 200 columns of screen Browse( table ); # takes less screen space, but requires the Browse package  # Here is a way to display them in 72 columns using one-line notation Display(   JoinStringsWithSeparator( List( table, row ->   JoinStringsWithSeparator( List( row, ent ->   JoinStringsWithSeparator( List( ent, perm ->   JoinStringsWithSeparator( ListPerm( perm, NrMovedPoints(G) ),   "" )), "|")), " ")), "\n" )); 
  • 0
    How did you learn GAP that well? - See: http://math.stackexchange.com/questions/104195/what-is-the-best-way-to-self-study-gap#comment244563_1041952012-01-31