1
$\begingroup$

Help me prove $a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2)\geq6abc$

  • 0
    Hint: $1 + b^2 \geq 2b$, $1 + c^2 \geq 2c$,...2012-07-15

2 Answers 2

3

$a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2)\geq6abc$

Since

$(a-bc)^2\geq 0$,

$(b-ac)^2\geq 0$,

$(c-ab)^2\geq 0$,

then

$a^2+b^2c^2\geq 2abc$,

$b^2+a^2c^2\geq 2abc$,

$c^2+a^2b^2\geq 2abc$.

By of collectted through for through three inequalities last will be obtained

$a^2+b^2c^2+b^2+a^2c^2+c^2+a^2b^2\geq6abc$,

or

$a^2+a^2b^2+b^2+b^2c^2+c^2+a^2c^2\geq6abc$.

0

LHS=$\sum a^2\ +\ \sum(ab)^2$

Applying A.M. ≥ G.M.,

$\sum a^2 ≥ 3(abc)^{\frac{2}{3}} $

$\sum (ab)^2 ≥ 3(abc)^{\frac{4}{3}} $

Taking summation,$ LHS ≥ 3((abc)^{\frac{2}{3}} + (abc)^{\frac{4}{3}}) $

But $(abc)^{\frac{2}{3}} + (abc)^{\frac{4}{3}}$ ≥ 2 abc (applying A.M. ≥ G.M.,)

LHS ≥ 3(2abc)