2
$\begingroup$

Given $a,b,c,d\mathbb\in{R}$ and $a>b$ and $d>c$ how do I prove that $a-c>b-d$?

I started the proof like this: given: $a>b$ I can add to both sides of the ineqality -c therefore I get: $a-c > b-c$

How can I show now that $a-c>b-d$?

Thanks a lot for your time and help.

  • 1
    if d > c, then -c > -d and therefore a-c>b-c>b-d2012-03-30

2 Answers 2

2

if $d > c$, then $-c > -d$ and therefore $a-c>b-c>b-d$

  • 0
    Sweet, thanks :)2012-03-30
4

You could verify that $(a-c) - (b-d)>0$. Towards this end, use the fact that both $a-b>0$ and $d-c>0$.