3
$\begingroup$

Which is the easiest way to find the value of $\sum \limits_{n=1}^k \frac{(-1)^{n-1}\times 2n}{{(2n-1)\times (2n+1)}} $

There is a hint, which says we can use $ {{1 \over 2}\over{r-1}} + {{1 \over 2}\over{r+1}} = {r \over{(r-1) (r+1)} } $

but I am not sure how, any ideas guys?

  • 0
    Oops! I didn't refreshed the page before commenting.2012-01-18

1 Answers 1

2

From the hint, use partial fractions to write $ {(-1)^{n-1}2n\over (2n-1)(2n+1) }={1\over2}{(-1)^{n-1}\over 2n+1}+{1\over2}{(-1)^{n-1}\over 2n-1} $ So, $ \sum_{n=1}^k {(-1)^n 2n\over(2n-1)(2n+1) }= {1\over 2}\sum\limits_{n=1}^k \Bigl[{(-1)^{n-1} \over 2n+1}+ {(-1)^{n-1} \over 2n-1}\Bigr]. $ The series is collapsing (the left hand term in one parenthetical expression below cancels with the right hand term in the next parenthetical expression): $\eqalign{ \textstyle{1\over 2}\sum\limits_{n=1}^k \Bigl[{(-1)^{n-1} \over 2n+1}+ {(-1)^{n-1} \over 2n-1}\Bigr] &= \textstyle{1\over 2} \Bigl[ (\color{maroon}{1\over3}+1 ) - (\color{darkgreen}{1\over5}+\color{maroon}{1\over3} ) -({1\over7}+\color{darkgreen}{1\over5})+\cdots +(-1)^{k-1}({1\over 2k+1}+{1\over2k-1} ) \Bigr]\cr &= \textstyle{1\over 2} \bigl[1 +(-1)^{k-1} {1\over 2k+1} \bigr]. } $