How to to evaluate $ \ \int_{- \infty}^{\infty} \frac{x \sin (3x)}{x^2 +4}\,dx \ $ using Jordan's Lemma?
Evaluate $ \ \int_{- \infty}^{\infty} \frac{x \sin (3x)}{x^2 +4}\,dx \ $ using Jordan's Lemma
1
$\begingroup$
calculus
complex-analysis
trigonometry
1 Answers
0
Hint: Consider the complex integral
$ \int_{C} \frac{ z\,{\rm e}^{3 i z} }{ (z^2 + 4)} dz \,.$
See here for the contour $C$.