I'm trying to prove the following: If $T$ is a first-order theory with the property that for every natural number $n$ there is a natural number $m>n$ such that $T$ has an $m$-element model then $T$ has an infinite model.
My thoughts: If $M$ is an $n$-element model then $\varphi_n = \exists v_1, \dots, v_n ((v_1 \neq v_2) \land \dots \land (v_{n-1} \neq v_n))$ is true in $M$. Can I use this to show that $T$ has an infinite model? How? Perhaps combine it with the compactness theorem somehow? Thanks for your help.