how can I show that $\limsup_{n\to\infty} (a_n + b_n) \geq \limsup_{n\to\infty}(a_n) + \liminf_{n\to\infty}(b_n)$
proving an inequality involving limit superior and limit inferior
2
$\begingroup$
real-analysis
sequences-and-series
limsup-and-liminf
-
0See also this question: [Properties of $\liminf$ and $\limsup$ of sum of sequences](http://math.stackexchange.com/questions/70478/) – 2012-03-25
1 Answers
5
Use $\limsup_n (x_n+y_n) \le \limsup_n x_n + \limsup_n y_n$, with $x_n = a_n+b_n$ and $y_n = -b_n$.