2
$\begingroup$

I'm preparing for an exam in measure theory and found this exercise:

For $p \in [1, \infty]$ find values of $\lambda$ such that $\lim\limits_{\varepsilon \to 0^{+}} \frac{1}{\varepsilon^{\lambda}} \int_{0}^{\varepsilon} f = 0$ for all $f \in L^{p}[0, 1]$.

By Hölder's inequality the limit is 0 if $\lambda$$\frac{p-1}{p}$ and $f(x)=x^{-\alpha}$, $\alpha$ < $\frac{1}{p}$ is a counterexample for the case $\lambda$$\frac{p-1}{p}$.

But I'm not sure about $\lambda =\frac{p-1}{p}$, can anyone help? 

  • 0
    If $f$ is a "bit" more regular, then $\lim_{\varepsilon \to 0} \varepsilon^{-1} \int_0^\varepsilon f=f(0).$ I believe that 1-\lambda > 0 is a necessary condition.2012-04-24

1 Answers 1

3

Let $E_p:=\{\lambda\in\mathbb R: \forall f\in L^p[0,1], \lim_{\varepsilon\to 0^+}\frac 1{\varepsilon^{\lambda}}\int_{[0,\varepsilon]}f(x)dx=0\}$.

  • First case: $p=1$: solved by martini and thomas.en, we have $E_1=(-\infty,0]$.
  • Second case: 1< p<\infty: Indeed, using maps $x\mapsto x^{-\alpha}$ with \alpha<\frac 1p we can see that $E_p\subset (-\infty,\frac{p-1}p]$, and Hölder's inequality shows that $(-\infty,\frac{p-1}p)\subset E_p$, so we have to determine whether $\frac{p-1}p\in E_p$.

Fix a function $f\in L^p[0,1]$, and put $f_n:=f\chi_{\{-n\leq f(x)\leq n\}}\in L^p[0,1]$. We can write \begin{align} \left|\frac 1{\varepsilon^{\frac{p-1}p}}\int_{[0,\varepsilon]}f(x)dx\right|&\leq \frac 1{\varepsilon^{\frac{p-1}p}}\int_{[0,\varepsilon]}\left|f(x)-f_n(x)\right|dx+ \frac 1{\varepsilon^{\frac{p-1}p}}\int_{[0,\varepsilon]}\left|f_n(x)\right|dx\\\ &\leq \frac 1{\varepsilon^{\frac{p-1}p}}\lVert f-f_n\rVert_{L^p}\varepsilon^{\frac{p-1}p}+n\varepsilon^{\frac 1p}\\\ &= \lVert f-f_n\rVert_{L^p}+n\varepsilon^{\frac 1p} \end{align} so for each integer $n$ $\limsup_{\varepsilon\to 0^+}\left|\frac 1{\varepsilon^{\frac{p-1}p}}\int_{[0,\varepsilon]}f(x)dx\right|\leq \lVert f-f_n\rVert_{L^p}.$ Since by the monotone convergence theorem we have $\lVert f-f_n\rVert_{L^p}^p=\int_{[0,1]}\chi_{\{|f|\geq n\}}|f|^p\to 0,$ we conclude that $\frac{p-1}p$ works so for 1< p<\infty we have $E_p=\left(-\infty,\frac{p-1}p\right]$.

  • Third case: $p=+\infty$. As siminore showed, with $f=1$ we can see that if $\lambda\in E_{\infty}$ then \lambda<1, and if \lambda<1 then for $f\in L^{\infty}[0,1]$ we have $\left|\frac 1{\varepsilon^{\lambda}}\int_{[0,\varepsilon]}f(x)dx\right|\leq \lVert f\rVert_{\infty}\varepsilon^{1-\lambda},$ which converges to $0$ as $\varepsilon\to 0$. So $E_{\infty}=(-\infty,1)$.