Show that if $x_n \to x$ then $\sqrt{x_n} \to \sqrt{x}$ I have been stuck on this for a while. I tried $|\sqrt{x_n} - \sqrt{x}| = \frac{|x_n - x|}{|\sqrt{x_n} + \sqrt{x}|},$ and then I at least can get the top to be as small as I want, so I have $\frac{\epsilon}{|\sqrt{x+\epsilon} + \sqrt{x}|},$ but I get stuck here at choosing the N, and I don't know if my first step in breaking down the absolute value is legitimate. Please help.
Show that if $x_n \to x$ then $\sqrt{x_n} \to \sqrt{x}$
7
$\begingroup$
real-analysis
sequences-and-series
limits
radicals
-
1You might be interested in this [post](http://math.stackexchange.com/q/67032/) which asks how to prove that $x^{1/n}$ is continuous for all $n$ and all x >0. In particular, my answer there explains a similar idea as yours. – 2012-01-15
2 Answers
7
- You want to treat the case $x=0$ separately.
- When $x\neq 0$, the identity you used is the way to go. Next use $\sqrt{x_n}+\sqrt{x}\geq \sqrt{x}$.
2
Let $\epsilon > 0$. Since $(x_n)\rightarrow x$, then for some $N\in \mathbb{N}$, we have, $|x_n-x|<\epsilon \sqrt{x} \hspace{10pt} \text{when}\hspace{10pt} n\geq N$ This implies $\frac{|x_n-x|}{\sqrt{x}}<\epsilon \hspace{10pt} \text{when}\hspace{10pt} n\geq N$ Notice, \begin{align*} |\sqrt{x_n}-\sqrt{x}|&=|\sqrt{x_n}-\sqrt{x}|\left(\frac{\sqrt{x_n}+\sqrt{x}}{\sqrt{x_n}+\sqrt{x}}\right)\\ &=\frac{|x_n-x|}{\sqrt{x_n}+\sqrt{x}}\\ &\leq \frac{|x_n-x|}{\sqrt{x}} \end{align*} So, when $n\geq N$, $|\sqrt{x_n}-\sqrt{x}|\leq\frac{|x_n-x|}{\sqrt{x}}<\epsilon $ Hence, $(\sqrt{x_n})\rightarrow \sqrt{x}$.