1
$\begingroup$

In simplifying $[3a(b-c)+5][-3a(b-c)-5],$ I used $4(au+bv)(cu+dv)=acu^2+(ad+bc)uv+bdv^2.$

I failed to apply the formula to the equation because $a=3a$, $b=-3a$, $c=5$, $d=-5$, $u=(b-c)$, $v=?$

There's no value of $v$ so I tried to find other special product but it's only

$(au+bv)(cu+dv)=acu^2+(ad+bc)uv+bdv^2$ fit to the equation.

  • 1
    One factor's the negative of the other. You know how to square a binomial?2012-07-14

1 Answers 1

1

Hint: Let $x=3a(b-c)$ and $y=5$. Then \begin{align}[3a(b-c)+5][-3a(b-c)-5]&=(x+y)(-x-y)\\\\ &=(x+y)\cdot(-1)(x+y)\\\\ &=-(x+y)^2\\\\ &=-x^2-2xy-y^2. \end{align}