I was recently asked this question by my friend. Suppose the two individuals participating in a toss are not near each other, but could communicate over a telephone. How does one construct a fair coin toss experiment that is mutually agreeable to both of them? They can't agree on a function of quantities like the time or the telephone number, as these decide the winner a priori (before the experiment is conducted).
I suggested they disconnect the call and try again; whoever manages to reach the other first is the winner. But the state machine involved here is a bit complicated to get the simple (0.5,0.5) probabilities.
PS: They do not trust each other, so one of them can't toss a fair coin and convey its outcome to the other. Both of them throwing simultaneously also doesn't work, as the second person has the incentive to lie when they are communicating the results to each other.