The following is Sheldon Ross's definition:
We say that the random variables $X,Y$ have a bivariate normal distribution if, for some constants \mu_x,\mu_y,\sigma_x>0,\sigma_y>0, -1<\rho < 1, their joint density function is given, for all -\infty < x,y < \infty, by $f(x,y)=\frac{\exp\left(-\frac1{2(1-\rho^2)}\left(\left(\frac{x-\mu_x}{\sigma_x}\right)^2+\left(\frac{y-\mu_y}{\sigma_y}\right)^2-2\rho\frac{(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right)\right)}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}$
Is there a combinatorial/intuitive meaning of this definition?