3
$\begingroup$

Let $(a_n)$ be a sequence of real numbers and $g\in \mathbb{R} $. Assume that $ \frac{a_1+\cdots+a_n}{n}\rightarrow g$ as $n \rightarrow \infty$. Now let $k \in \mathbb{N}$. Is it then $\frac{a_{k+1}+\cdots+a_{k+n}}{n} \rightarrow g $

Thanks.

2 Answers 2

2

Yes: $\frac{a_{k+1}+\cdots+a_{k+n}}n=\frac{k+n}n\left(\frac{a_1+\cdots+a_{k+n}}{k+n}-\frac{a_1+\cdots+a_k}{k+n}\right)\;,$ which clearly approaches $g$ as $n\to\infty$.

1

Yes this is true since $\lim_{n\rightarrow\infty}\frac{a_1+a_2+\cdots +a_k}{n}=0,$ as the numerator is a fixed constant since $k$ is fixed. This means we can remove the first $k$ terms without affecting the limit.

  • 0
    May I ask you what happened to $a_{k+n}$ in your limit above?2012-01-18