-1
$\begingroup$

Evaluate$ \ \int_0^{2 \pi} \frac{\sin^2 \theta}{5 + 4 \cos \theta}\,d \theta \ $ using contour integration and the calculus of residues

  • 1
    Possible duplicate of [Evaluate $\int_0^{2\pi} \frac{\sin^2\theta}{5+4\cos\theta}\,\mathrm d\theta$](https://math.stackexchange.com/questions/1061705/evaluate-int-02-pi-frac-sin2-theta54-cos-theta-mathrm-d-theta)2017-10-03

1 Answers 1

0

Put $z=e^{i\theta}$ so that you're integrating counter-clockwise around the unit circle in the complex plane. Express your integrand in terms of $z$, using $\cos\theta=\frac{1}{2}\left(e^{i\theta}+e^{-i\theta}\right),$ etc. Then it should be a straightforward residue problem.

  • 0
    either way works, though the formula you wrote for $\sin\theta$ is off by an overall minus sign.2012-11-28