$\int_C x^2dS$ where C: $x^2+y^2=r^2$ So, $ x=r\cos(\theta) $ $ y=r\sin(\theta) $ $ 0 \leq \theta \leq \pi $ How would arc length of this curve go? $ dS = \sqrt{\left(\frac{dr}{d\theta}\right)^2+r^2}d\theta $ What should I put in $\left(\frac{dr}{d\theta}\right)^2$ and $r^2$?
Help with the line integral $\int x^2dS$ where C is a upper-half of a circle $x^2+y^2=r^2$
1
$\begingroup$
calculus
integration
definite-integrals
1 Answers
1
$r$ is constant and $> 0$ in a circle. Therefore:
$ \frac{dr}{d\theta}=0 $
And
$ ds = \sqrt{(0)^2+(r)^2} d\theta = r d\theta $
From there, your integral should be straightforward.
Another way to look at it:
\begin{align} ds &= \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \ d\theta \\ \frac{dx}{d\theta} &= -r\sin{\theta} \\ \frac{dy}{d\theta} &= r\cos{\theta} \\ \Rightarrow ds &= \sqrt{(-r\sin{\theta})^2 + (r\cos{\theta})^2}d\theta = r d\theta \\ \end{align}
-
0The solution I got is $\frac{r^3\pi}{2}$. – 2012-03-04