Let $0
when $\sum_{n=1}^\infty (a_n)^n$ convergent or divergent?
Let $0
when $\sum_{n=1}^\infty (a_n)^n$ convergent or divergent?
If $(a_n)^n=n^{-2}$, then $\sum(a_n)^n$ converges, and $a_n=n^{-2/n}\to1$.
If $(a_n)^n=n^{-1}$, then $\sum(a_n)^n$ diverges, and $a_n=n^{-1/n}\to1$.
Sounds like homework, so here is a hint: What about $a_n := 1-\frac{1}{n}$? (Use $\frac{1}{e} = \lim_{n \to \infty} (a_n)^n$.)