Consider the regular Sturm-Liouville Problem:
$-\frac{d}{dx} \Bigg( p(x)\frac{dv}{dx} \Bigg)=\lambda \rho (x)v$ $\alpha _1v(0)-\beta _1v'(0)=0$ $\alpha _2v(L)-\beta _2v'(L)=0$ with $p(x),\rho (x)$ positive on $[0,L]$, $p,p',\rho $ continuous on $[0,L]$ and for $i=1,2$, we have $\alpha _i,\beta _i $ non-negative with $\alpha _i+\beta _i >0$.
Show $\lambda=0$ is an eigenvalue iff $\alpha _1=\alpha _2=0$.
Using the Rayleigh quotient, we have $\lambda =\frac{-p(x)v(x)v'(x)\Bigg|^L_0 +\int^L_0 p(x)(v'(x))^2dx}{\int^L_0\rho(x)(v(x))^2dx}$
It's clear that $\alpha _1=\alpha _2=0$ implies $\lambda=0$ is an eigenvalue, but I'm not seeing the reverse implication.
Any help?
Thanks!