If we know $X_n \rightarrow_p Y$ and $X_n \rightarrow Z\space a.s.$ can we say that $P(Y=Z)=1$
A question about almost sure converges.
1
$\begingroup$
probability
1 Answers
1
Yes. Because $\forall \epsilon > 0$ $P(|Y-Z| > \epsilon) = P(|Y-X_n + X_n - Z| > \epsilon) $ $\leq P(|X_n-Z|+|X_n - Y| > \epsilon)$ $\leq P(|X_n-Z| > \epsilon/2) + P(|X_n-Y|>\epsilon/2) \quad (*)$ Take limits an $n\rightarrow \infty$ to get $P(|Y-Z| > \epsilon)= 0 \quad \forall \epsilon > 0$
This implies $P(|Y-Z| = 0) = 1$.
Proof of $(*)$ $P(|X_n-Z|+|X_n - Y| > \epsilon) = P(|X_n-Z|+|X_n - Y| > \epsilon, |X_n -Y| > \epsilon/2) + P(|X_n-Z|+|X_n - Y| > \epsilon,|X_n -Y| \leq \epsilon/2)$ $\leq P(|X_n-Y|>\epsilon/2) + P(|X_n-Z| > \epsilon/2)$ The last step follows as : $a+b >c, b< c/2 \Rightarrow a> c/2$.
-
0E$x$actly. Co$n$vergence in $a$lmost sure implies convergence in probability. – 2012-12-08