I'm stuck on the follow practice problem, can anyone help:
Prove that: $\lim_{R\to\infty} \int_{0}^{R} \cos{x} /(1+x) dx = \int_{0}^{\infty} \sin{x} /(1+x)^2$ dx
I'm stuck on the follow practice problem, can anyone help:
Prove that: $\lim_{R\to\infty} \int_{0}^{R} \cos{x} /(1+x) dx = \int_{0}^{\infty} \sin{x} /(1+x)^2$ dx
Have you tried justifying integration by parts?