2
$\begingroup$

Let $f: \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ be continuous.

Consider $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ strictly increasing, continuous and such that $g(0)=0$.

I think this is an interesting (maybe trivial) question:

are $f(\cdot)$ and $g(f(\cdot))$ sharing the same minima?

  • 2
    For all $x$ and $y$ in $\mathbb R^n$, $f(x) \le f(y)$ if and only if $g(f(x)) \le g(f(y))$, so yes.2012-05-10

0 Answers 0