2
$\begingroup$

I've these two series, and I would like a closed form:

$ \sum_{k=-\infty}^{\infty} \frac{x+kx_0-h}{|x+kx_0|^3}$

$ 3\sum_{k=-\infty}^{\infty} \frac{(x+kx_0-h)(x+kx_0)^2}{|x+kx_0|^5} $

Mathematica gives me these closed forms ($A=x_0$, $B=h$):

Sum[(x + k*A - B)/((abs (x + k*A))^3), {k, -Infinity, Infinity}] 
  =   (1/(2 A^3 abs^3))(2 A PolyGamma[1, x/A] + 2 A PolyGamma[1, 1 - x/A] +       B PolyGamma[2, x/A] - B PolyGamma[2, 1 - x/A]) 
Sum[((x + k*A - B)*(x + k*A)^2)/(abs (x + k*A)^5), {k, -Infinity, Infinity }] 
=  (1/(2 A^3 abs))(2 A PolyGamma[1, x/A] + 2 A PolyGamma[1, 1 - x/A] + B      PolyGamma[2, x/A] - B PolyGamma[2, 1 - x/A]) 

Now, first of all, when it writes $abs^3$ this should mean $|x|^3$ or $|x-kx_0|^3$? And at last, does this make sense? Is there an analytical way to reach this (or a better) conclusion?

Thanks!

  • 0
    Ups, thank you so much!2012-06-22

1 Answers 1

1

If $0 < x < x_0$, $x + k x_0 > 0$ for $k \ge 0$ and $< 0$ for $k \le -1$, so your first sum is $ - \sum_{k=-\infty}^{-1} \frac{x + k x_0 - h}{(x + k x_0)^3} + \sum_{k=0}^{\infty} \frac{x + k x_0 - h}{(x + k x_0)^3}$ which Maple evaluates as $ \frac{ h\Psi \left( 2,{\dfrac {x}{{ x_0}}} \right) +2 { x_0}\ \Psi \left( 1,{\dfrac {x}{ x_0}}\right) { x_0}}{2\, { x_0}^3}+ \frac{ h\Psi \left( 2,1-\dfrac{x}{ x_0} \right) -2\,{x_0}\,\Psi \left( 1,1-\dfrac{x}{x_0} \right) } {2\, {x_0}^3} $

The second sum is just $3$ times the first if $x$ and $x_0$ are real, because $(x + k x_0)^2 = \left| x + k x_0 \right|^2$.

EDIT: If $x_0 > 0$ and $s$ is the fractional part of $x/x_0$ (so $0 < s < 1$ and $x/x_0 - s$ is an integer) then $x + k x_0 > 0$ for $k \ge n = s - x/x_0$ and $<0$ for $k \le n-1$, your first sum is $ - \sum_{k=-\infty}^{n-1} \frac{x + k x_0 - h}{(x + k x_0)^3} + \sum_{k=n}^{\infty} \frac{x + k x_0 - h}{(x + k x_0)^3}$ which Maple evaluates as $ \dfrac{2 \Psi(1,s)}{ x_0^2} + \dfrac{h \Psi(2,s)}{x_0^3} + \dfrac{\pi^3 h \cot(\pi s) \csc(\pi s)^2}{x_0^3} - \dfrac{\pi^2 \csc(\pi s)^2}{x_0^2} $

  • 0
    Yes, but what about the closed form if $x$ can be every value, so not necessarily 0?2012-06-22