1
$\begingroup$

enter image description here

How do I find the position of the point on the circumference tagged as ?,? in terms of x and y

1 Answers 1

1

Denote the unknown point $\,(a,b)\,$ , then we have the vectors

$A:=(x,y-2)-(x,y)=(0,-2)\,\,\,,\,\,\,B:=(a,b)-(x,y)=(a-x,b-y)$

and now using the relation between inner product and $\cos\,$ we get:

$\frac{\sqrt 3}{2}=\cos 30=\frac{A\cdot B}{||A||\,\,||B||}=\frac{2(y-b)}{2\cdot \sqrt{(x-a)^2+(y-b)^2}}\Longrightarrow$

$\Longrightarrow (x-a)^2+(y-b)^2=\frac{4}{3}(y-b)^2\Longrightarrow (x-a)^2=\frac{1}{3}(y-b)^2\Longrightarrow$

$\Longrightarrow x-a=\pm\frac{1}{\sqrt 3}\,(y-b)$

I think you can take it from here (Note the double sign as you can have your unknown point to the right or to the left of the bottom one)

  • 0
    @user494461 , please do note the edit to my answer, though it is a minor one.2012-09-21