1
$\begingroup$

I would like to know, if in general, there is a method of calculus of the following multiple integral : $ I = \int_{\{ (u,v,w) \in \mathbb{R}^3 \ \mid \ u^3 + v^2 + w = -4 \text{ and } u^4 + w^2 = 1 \}} {xyz} \ dx dy dz. $ Thanks a lot.

1 Answers 1

2

The set $\left\{(u,v,w)\in\mathbb{R}^3 ∣ u^3+v^2+w=−4 \wedge u^4+w^2=1\right\}$ has 3-dimensional Lebesgue measure zero, and hence the value of the integral is zero.

  • 0
    $ \{ (u,v,w) \in \mathbb{R}^{3} \ \mid \ u^3 + v^2 + w = -4 \ \ \text{et} \ \ u^4 + w^2 = 1 \} = f^{-1} ( \{ 0 \} ) \bigcap g^{-1} ( \{ 0 \} ) $ with $ f(u,v,w) = u^3 + v^2 + w + 4 \ $ and $ \ g(u,v,w) = u^4 + w^2 - 1 $, then what to do ? Thank you very much.2012-12-27