0
$\begingroup$

Prove that the limit $\lim_{x \to \infty} (x/(x+1))(\sin(x^2)) = \lim_{x \to \infty} \frac{x \sin x^2 }{x+1}$ does not exist as x approaches positive infinity

  • 3
    Hint: consider the facts that (a) $\sin x$ will take values +1 and -1 infinitely often, and (b) the fraction at the front approaches a fixed value.2012-10-31

3 Answers 3

3

It is sufficient to choose two sequences $\left\lbrace {x_n^{(1)}}\right\rbrace$ and $\left\lbrace {x_n^{(2)}}\right\rbrace$ such that $\lim\limits_{n \rightarrow \infty} x_n^{(1)}=+\infty, \quad \lim\limits_{n \rightarrow \infty} x_n^{(2)}=+\infty $ and $\lim\limits_{n \rightarrow \infty} \sin{\left(x_n^{(1)}\right)^2} \ne \lim\limits_{n \rightarrow \infty} \sin{\left(x_n^{(2)}\right)^2}$ what means that $\lim\limits_{x \rightarrow +\infty} \sin{x^{2}}$ does not exist.

0

HINT

Note that $\lim_{x \to \infty} \dfrac{x}{x+1} \sin(x^2) =\left(\lim_{x \to \infty} \dfrac{x}{x+1} \right) \left(\lim_{x \to \infty} \sin(x^2) \right)$

What can you say about $\lim_{x \to \infty} \dfrac{x}{x+1}$ and $\lim_{x \to \infty} \sin(x^2)$? (The first term is nice and converges whereas the second one is the problematic one).

  • 0
    I'm not sure equality can be used in case of divergent limits...2012-10-31
0

Hint Make the change of variables $x=\frac{1}{y}$ (now you are considering the limit of the function as $y \to 0 $) and pick up the sequence $ {\frac{\sqrt{2}}{\sqrt{(2n+1)\pi}}} $ which goes to zero as $n\to \infty$ and see the values the function achieves as $n \to \infty$.