4
$\begingroup$

Kindly asking, what can I do about series

$ \left(\frac{1}{3}\right)^2+\left(\frac{1\times 4}{3\times 6}\right)^2+\left(\frac{1\times 4\times 7}{3\times 6\times 9}\right)^2+...+\left(\frac{1\times 4\times 7\times...\times (3n-2)}{3\times 6\times 9\times...\times3n}\right)^2+...$

Indeed, the ratio test fails. Thank you.

  • 0
    Not sure if this fact is useful, but the fractions are the terms in the expansion of $(1-x)^{-\frac{1}{3}}$.2012-11-27

2 Answers 2

3

Let $a_n$ be the $n$th term. The ratio of successive terms is $\frac{a_{n+1}}{a_n} = \frac{(3n+1)^2}{9(n+1)^2} = 1 - \frac{4}{3n} + O\left(\frac{1}{n^2}\right).$ Thus, the series converges by Raabe's test, which tells us that if $\left|\frac{a_{n+1}}{a_{n}}\right| \sim 1 - \frac{s}{n} \hspace{5ex}(n\to\infty),$ then the series converges absolutely if $s>1$, diverges if $s<1$, and may converge or diverge if $s=1$.

2

$\frac{1\times 4\times 7\times\cdots\times (3n-2)}{3\times 6\times 9\times\cdots\times3n}\leqslant\frac1{(n+1)^{2/3}}$

  • 0
    @PeterTamaroff Sure: one proves this inequality the obvious way (induction on $n$) and one uses it the obvious way (square it and compare the series in the post to the Riemann series of exponent $4/3$).2012-11-28