0
$\begingroup$

The general solution of the heat equation $\left\{\begin{array}{rcl} \partial_tu-\Delta u &=& 0\\ u(x,0)&=& f \end{array} \right.$ is given by $u(x,t)=\int\limits_{\mathbb R^n}\Phi(x-y,t)f(y)\mathrm dy$ with the fundamental solution $\Phi$ (wikipedia).

So why is the solution $u\in C^0([0,\infty)\times\mathbb R^n)\cap C^\infty((0,\infty)\times\mathbb R^n)$ bounded if f is bounded?

1 Answers 1

4

The fundamental solution is positive, integrable on $\mathbb{R}^n$ and $\int_{\mathbb{R}^n}\Phi(x,t)\,dx=1$ for all $t>0$. Then $ |u(x,t)|\le\int_{\mathbb{R}^n}\Phi(x-y,t)|f(y)|\,dy\le\sup_{y\in\mathbb{R}^n}|f(y)|\int_{\mathbb{R}^n}\Phi(x-y,t)\,dy=\sup_{y\in\mathbb{R}^n}|f(y)|<\infty. $

  • 0
    Hello @Aguirre, can we adopt this method for $u_t -\Delta u + a(x) u=0$, where $a$ is essentially bounded ? Thank you in advance.2018-12-25