5
$\begingroup$

The floor function is given - by Perron's formula - as a Mellin inverse of the zeta function. namely : $\left \lfloor x \right \rfloor=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta(s)\frac{x^{s}}{s}ds\;\;\;(c>1)$ This is easily proven using the Dirichlet series rep. of the zeta function : $\zeta(s)=\sum_{n=1}^{\infty}n^{-s}$. i was wondering if one can obtain the same result using the Hadamard product rep. : $\zeta(s)=\pi^{s/2}\frac{\Pi_{\rho}\left(1-\frac{s}{\rho}\right)}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)}$

0 Answers 0