0
$\begingroup$

Suppose $f\colon[0,\infty)\to[0,\infty)$ is differentiable with continuous derivative such that its derivative f' is nonincreasing. Does this imply that $f$ is non-decreasing?.

1 Answers 1

4

Yes. If f'(x)\lt0 for some $x\geqslant0$, then f'(y)\leqslant -c for every $y\geqslant x$, with $c\gt0$. The mean value theorem yields $f(y)\leqslant f(x)+cx-cy$ for every $y\geqslant x$. Since $f(x)+cx-cy\to-\infty$ when $y\to+\infty$, this contradicts the assumption that $f\geqslant0$ everywhere. Thus, f'(x)\geqslant0 for every $x\geqslant0$, in particular $f$ is nondecreasing.

  • 0
    @TaoHong洪涛 `mean value theory can not get it`... ??2012-03-30