Let:$a,b,c,d>0$ be real numbers ,how to prove that :
$\frac{a^2+b^2+c^2}{a^5+b^5+c^5}+\frac{b^2+c^2+d^2}{b^5+c^5+d^5}+\frac{c^2+d^2+a^2}{c^5+d^5+a^5}+\frac{d^2+a^2+b^2}{d ^5+a^5+b^5}\le\frac{a+b+c+d}{abcd}$.
Edit : I think I proved it. From Cauchy inequality we have $ \left(\sum\limits_{cyc}x^5\right)\left(\sum\limits_{cyc}x\right)\geq \left(\sum\limits_{cyc}x^3\right)^2 $ From Chebyshev inequality it follows $ \left(\sum\limits_{cyc}x\right)\left(\sum\limits_{cyc}x^2\right)\leq 3\left(\sum\limits_{cyc}x^3\right)^2 $ hence $ \frac{\left(\sum\limits_{cyc}x^5\right)}{\left(\sum\limits_{cyc}x^2\right)}= \frac{\left(\sum\limits_{cyc}x^5\right)\left(\sum\limits_{cyc}x\right)}{\left(\sum\limits_{cyc}x\right)\left(\sum\limits_{cyc}x^2\right)}\leq \frac{3}{\left(\sum\limits_{cyc}x^3\right)}\leq \frac{1}{xyz} $ In the last step I used AM-GM inequality. The rest is clear.
Is there a different way to prove it ?