While reading about Weierstrass' Theorem and holomorphic functions, I came across a statement that said: "Let $U$ be any connected open subset of $\mathbb{C}$ and let $\{z_j\} \subset U$ be a sequence of points that has no accumulation point in $U$ but that accumulates at every boundary point of $U$."
I was curious as to why such a sequence exists. How would I be able to construct such a sequence?