This is a complete description for the necessary and sufficient conditions for the matrices to exist. I'd leave 3 for you to do, since it's just combining 1 and 2.
Think about the Kernel. If $v \in \operatorname{Null}(A)$, $Av = 0$, then $0=LA v= Wv $, so $v \in \operatorname{Null}(W)$. Hence, $\operatorname{Null}(A) \subseteq \operatorname{Null}(W)$.
Conversely, if $\operatorname{Null}(A) \subseteq \operatorname{Null}(W)$, let $\{ v_1, \ldots, v_i, v_{i+1} , \ldots, v_j, v_j, \ldots v_m\}$ be a basis of $\mathbb{R}^m$ such that $\{v_k\}_{k=1}^i$ is a basis for $\operatorname{Null}(A)$, $\{v_k\}_{k=1}^j$ is a basis for $\operatorname{Null}(W)$. Notice that $\{ Av_k \}_{k=i+1}^m$ is a linearly independent set, and so is $\{ Wv_k\} _ {k = j+1}^m$. Define $L$ to be the linear transformation such that $L(Av_k) =0$ for $k = i+1 $ to $j$, $L(Av_k) = W_k $ for $k= j+1$ to $m$, and extend $L$ to $\mathbb{R}^n$ (it doesn't matter how you extend it). Then, $LA = W$ as linear transformation from $\mathbb{R} ^m \rightarrow \mathbb{R}^n$, by checking its action on the basis.
Think about the Range Space. If $w \in \operatorname{Range}(W)$, then there exists $v \in \mathbb{R}^m$ such that $w = W v$, then we have $ A (R v) = w$, and so $w \in \operatorname{Range}(A)$. This shows that $\operatorname{Range}(W) \subseteq \operatorname{Range}(A)$.
Conversely, if $\operatorname{Range}(W) \subseteq \operatorname{Range}(A)$, let $\{v_1, \ldots, v_i, v_{i+1}, \ldots, v_j, v_{j+1}, \ldots v_m\}$ be a basis of $\mathbb{R}^m$ such that $\{ W v_k\}_{k=1}^i$ is a basis for $\operatorname{Range}(W)$, $\{ A v_k\}_{k=1}^j$ is a basis for $\operatorname{Range}(A)$. Define $R$ to be the linear transformation such that $Rv_k$ is the vector which satisfies $A R v_k = W v_k$ for $k=1$ to $i$ (Why must this exist?), and $Rv_k = 0$ for $k=i+1$ to $m$. Then, $ARv_k = W v_k$ on the basis, hence $AR = W$.