How would you find the inverse function of $f(x)=e^{x/2}$?
Inverse function of $f(x)=e^{x/2}$
1
$\begingroup$
calculus
functions
inverse
-
0*Real-valued..* $f(x) = e^{g(x)} \iff \log f(x) = g(x).$ – 2012-10-30
2 Answers
4
$y = \exp(x/2) \implies \log_e(y) = \log_e(\exp(x/2)) = x/2 \implies x = 2 \log_e(y)$
-
0@AdiDani: The answer gives $x=f^{-1}(y)$ instead of $y=f^{-1}(x)$. So what? It's the same function $f^{-1}$ no matter what variables you use for writing it. – 2012-10-31
1
$f(x)=y=e^{\frac{x}{2}}$ inverse is $x=e^{\frac{y}{2}}\iff\ln x=\ln e^{\frac{y}{2}}\iff \ln x =\frac{y}{2}\iff y=2\ln x$