Please help me find limit of the sequence $ a_n=\frac{n+1}{n+2} $ and find index $n_0\in\mathbb{N}$ for $\varepsilon=0,01$.
Calculate the limit and $n_0$
0
$\begingroup$
calculus
1 Answers
3
$\lim a_n=\lim\frac{n+1}{n+2}=\lim\frac{n(1+\frac{1}{n})}{n(1+\frac{2}{n})}=\frac{1}{1}=1$, because $\lim\frac{1}{n}=0$ and $\lim\frac{2}{n}=0$ if $n\rightarrow\infty$.
Now find $n_0$
$|a_n-a|<\epsilon$
$|\frac{n+1}{n+2}-1|<0,01$
$|\frac{n+1-(n+2)}{n+2}|<\frac{1}{100}$
$|\frac{n+1-n-2}{n+2}|<\frac{1}{100}$
$|\frac{-1}{n+2}|<\frac{1}{100}$
Implement the formula: $|\frac{a}{b}|=\frac{|a|}{|b|}$ we have
$\frac{|-1|}{|n+2|}<\frac{1}{100}$
Because $|-a|=a$, for all $a\in R$, and because $n\in N$ we have:
$\frac{1}{n+2}<\frac{1}{100}$
$100
$98
$n>98$ $\Rightarrow$ $n_0=98$