Observe the magical power of color:
$\color{blue}{5}x^\color{blue}{2}+3x^4-7x^3+\color{green}{5}x+\color{orange}{8}+\color{blue}{2}x^\color{blue}{2}+(\color{green}{-4})x+\color{orange}{9}+(\color{blue}{-6})x^\color{blue}{2}+\color{green}{7}x.$
Instead of Color-Me-Elmo, we have Color-Me-Like-Terms-And-Combine (not as catchy, I know): $3x^4-7x^3+(\color{blue}{5}+\color{blue}{2}+(\color{blue}{-6}))x^\color{blue}{2}+(\color{green}{5}+(\color{green}{-4})+\color{green}{7})x+(\color{orange}{8}+\color{orange}{9}).$
Presto-simplification-o!
Combining Like Terms
In a polynomial $p(x)=a_nx^n+a_{n-1}x^{n-1}+\dots+a_1x+a_0$ and $q(x)=b_nx^n+b_{n-1}x^{n-1}+\dots+b_1x+b_0$, they are added thusly: $ \begin{align} p(x)+q(x)&=a_nx^n+b_nx^n+a_{n-1}x^{n-1}+b_{n-1}x^{n-1}+\cdots+a_1x+b_1x+a_0+b_0\\ &=(a_n+b_n)x^n+(a_{n-1}+b_{n-1})x^{n-1}+\cdots+(a_1+b_1)x+(a_0+b_0). \end{align} $
In other words, add the coefficients of terms with the same power.