1
$\begingroup$

Given some convex function $f(x)$, $x >0$ we can define a distribution $F \in \mathcal{D}'(0,\infty)$ using Lebesgue-Stieltjes integral $ \langle F, \varphi \rangle =\int\limits_{0}^{\infty}\varphi(x) \, df'(x), \; \; \; \varphi\in \mathcal{D}(0,\infty) $ If function $f(x) \in C^{2}(0,\infty)$, then $ \langle F, \varphi \rangle = \int\limits_{0}^{\infty} \varphi(x)f''(x)\,dx = \int\limits_{0}^{\infty} f(x) \varphi''(x) \, dx, \;\;\; \varphi \in \mathcal{D}(0,\infty) $ How to show that for general convex function $f(x)$, $x>0$ we also have $ \int\limits_{0}^{\infty} \varphi(x) \, df'(x) = \int\limits_{0}^{\infty} f(x) \varphi''(x) \, dx $ for any $\varphi(x) \in \mathcal{D}(0,\infty)$? It is sufficient to show that for any convex function $f(x)$, $x>0$ we can find a sequence of $C^{2}(0,\infty)$ functions $f_{n}(x)$, such that $f_{n}'(x) \to f'(x)$ in points of continuity of $f'(x)$ and at the same time for any $\varphi(x) \in \mathcal{D}(0,\infty)$ $ \int\limits_{0}^{\infty} f_{n}(x) \varphi(x) \, dx \to \int\limits_{0}^{\infty} f(x) \varphi(x) \, dx. $ If such sequence $f_{n}(x)$ is found we can pass to the limit in equality $ \int\limits_{0}^{\infty} \varphi(x) \, df_{n}'(x) = \int\limits_{0}^{\infty} f_{n}(x) \varphi(x) \, dx $ to obtain the desired result.

0 Answers 0