1
$\begingroup$

This question arose from plotting some functions in MATLAB and GeoGebra. Assume we have a function of the form

$f(x)=A \sin(P_n(x))+d \qquad \text{or}\qquad f(x)=A \cos(P_n(x))+d$

where

$P_n(x) = \sum_{i=0}^n a_i x^i,\quad a_i \in \mathbb{R}.$

How do we show that if $f''(x)=0$, then $f(x)=A/2+d$?

1 Answers 1

1

Well, you can't ... take $A = 1$, $d = 0$, and $P_n(x) = x^2$. Then if $f(x) = \cos(x^2)$, $f''(x) = -2\sin(x^2) - 4x^2\cos(x^2)$. This has $f''(0) = 0$ but $f(0) = 1\neq \frac{1}{2}$.

  • 0
    Translate right: $\cos((x-1)^2)$.2012-10-26