$ \left(\sum^n_{i=1}{a_i}^2\right)\cdot\left(\sum^n_{i=1}{b_i}^2\right)-\left(\sum^n_{i=1}{a_i}{b_i}\right)^2=\sum_{i
An identity involving products of sums
-
0Try induction in $n$. – 2012-12-08
2 Answers
HINT: It may help to look first at a small example, say with $n=3$:
$\begin{align*} &\left(\sum_{i=1}^3a_i^2\right)\left(\sum_{i=1}^3b_i^2\right)-\left(\sum_{i=1}^3a_ib_i\right)^2\\\\ &\qquad=\left(a_1^2+a_2^2+a_3^2\right)\left(b_1^2+b_2^2+b_3^2\right)-\left(a_1b_1+a_2b_2+a_3b_3\right)^2\\\\ &\qquad=\color{red}{a_1^2b_1^2+a_2^2b_2^2+a_3^2b_3^2}+\color{blue}{\left(a_1^2b_2^2+a_2^2b_1^2\right)+\left(a_1^2b_3^2+a_3^2b_1^2\right)+\left(a_2^2b_3^2+a_3^2b_2^2\right)}\\ &\qquad\qquad-\left[\color{red}{\left(a_1^2b_1^2+a_2^2b_2^2+a_3^2b_3^2\right)}+2a_1b_1a_2b_2+2a_1b_1a_3b_3+2a_2b_2a_3b_3\right]\\\\ &\qquad\color{blue}{\left(a_1^2b_2^2+a_2^2b_1^2\right)+\left(a_1^2b_3^2+a_3^2b_1^2\right)+\left(a_2^2b_3^2+a_3^2b_2^2\right)}\\ &\qquad\qquad-\Big(2a_1b_2a_2b_1+2a_1b_3a_3b_1+2a_2b_3a_3b_2\Big)\\\\ &\quad=\left(a_1^2b_2^2+a_2^2b_1^2-2a_1b_2a_2b_1\right)+\left(a_1^2b_3^2+a_3^2b_1^2-2a_1b_3a_3b_1\right)+\left(a_2^2b_3^2+a_3^2b_2^2-2a_2b_3a_3b_2\right)\\\\ &\quad=\sum_{1\le i
This should suggest that you want to split $\left(\sum^n_{i=1}{a_i}^2\right)\left(\sum^n_{i=1}{b_i}^2\right)$ splits into three parts: the terms $a_i^2b_j^2$ with $i=j$, those with $i
$\begin{align*} \left(\sum^n_{i=1}a_i^2\right)\left(\sum^n_{i=1}b_i^2\right)&=\color{red}{\sum_{i=1}^na_i^2b_i^2}+\color{blue}{\sum_{1\le i
Now try to mimic the rest of the computation in $(1)$ in the general case.
Hint:
$\left(\sum_{i=1}^n a_i^2 \right) \cdot \left(\sum_{j=1}^n b_j^2 \right) = \sum_{\substack{i,j=1 \\i \not= j}}^n a_i^2 \cdot b_j^2 + \sum_{i=1}^n a_i^2 \cdot b_i^2 = \sum_{i
Use something similar for the second summand and you obtain the given formula.