$X=(-\infty,\infty)$, $\mathcal{F}_n$ is the $\sigma$-field generated by $[0,1),[1,2),...,[n-1,n)$. Prove $\mathcal{F}_n\subset \mathcal{F}_{n+1}$ and $\cup_{n=1}^\infty\mathcal{F}_n$ is not a $\sigma$-field.
My solution:
$\mathcal{F}_{n+1}=\mathcal{F}_{n}\cup[n,n+1)\Rightarrow \mathcal{F}_n\subset \mathcal{F}_{n+1}$.
Proof by contradiction. If $\cup_{n=1}^\infty\mathcal{F}_n=[0,\infty)$ is a $\sigma$-field, then $\emptyset\in\cup_{n=1}^\infty\mathcal{F}_n \Rightarrow X=(-\infty,\infty)\subset\cup_{n=1}^\infty\mathcal{F}_n=[0,\infty)$, which is a contradiction. So, $\cup_{n=1}^\infty\mathcal{F}_n$ is not a $\sigma$-field.
I wonder if my proof is right or not. Thanks in advance.
The above is wrong. Let me try again.
$\mathcal{F}_{n}=\sigma([0,1),...,[n-1,n)),\mathcal{F}_{n+1}=\sigma([0,1),...,[n-1,n),[n,n+1))$.
Proof by contradiction. If $\mathcal{F}_n\supset \mathcal{F}_{n+1}\Rightarrow \mathcal{F}_n\supset \mathcal{F}_{n+1}\supset\{[0,1),...,[n-1,n),[n,n+1)\}\supset\{[0,1),...,[n-1,n)\}\Rightarrow \mathcal{F}_{n}$ is not the smallest $\sigma$-field containing $\{[0,1),...,[n-1,n)\}$, which is a contradiction.
Proof by contradiction. If $\cup_{n=1}^\infty\mathcal{F}_n$ is a $\sigma$-field, then $\cup_{n=1}^\infty\mathcal{F}_n=\cup_{n=1}^\infty\sigma([0,1),...,[n-1,n))\supset\cup_{n=1}^\infty\{[0,1),...,[n-1,n)\}=[0,\infty)$, i.e., $\cup_{n=1}^\infty\mathcal{F}_n$ is the smallest $\sigma$-field containing $[0,\infty)$. Since $\cup_{n=1}^\infty\mathcal{F}_n$ is a $\sigma$-field, $\emptyset\in\cup_{n=1}^\infty\mathcal{F}_n \Rightarrow X\in\cup_{n=1}^\infty\mathcal{F}_n\Rightarrow X=(-\infty,\infty)$ is also the smallest $\sigma$-field containing $[0,\infty)$, which is not true. So, $\cup_{n=1}^\infty\mathcal{F}_n$ is not a $\sigma$-field.