Note to this calculating;
$[\frac{x-2}{2}]=2\Longrightarrow 2\leq\frac{x-2}{2}<3\Longrightarrow 4\leq x-2<6\Longrightarrow 6\leq x<8$ so the set $f^{-1}(\{2\})$ is equal to $[6,8)$.
Now;
$\forall y\in\mathbb{Z}\; :\; f^{-1}(\{y\})=\{x\in\mathbb{R}|[\frac{x-2}{2}]=y\}$ ... $\Longrightarrow\{x\in\mathbb{R}|x\in[2y+2,2y+4)\}$
In final;
$\Longrightarrow \forall T\subset\mathbb{R}\; :\; f^{-1}(T)=\cup_{y\in T\cap\mathbb{Z}}[2y+2,2y+4)$
and if $T\cap\mathbb{Z}=\emptyset$ then $f^{-1}(T)=\emptyset$ too.
And about existence of inverse functions. If a function be one-to-one it has left-inverse and if it be onto it has right-inverse. for existence both it should be bijective. But always we can define a function which bring back any point of range to set of elements that their value by f is them. like what we had done above.