Let $L_n(x)$ be the $n$-th Legendre polynomial. These polynomials are a complete orthogonal base of $\mathcal{L}^2([-1,1])$ with respect to the inner product $=\int_{-1}^{1}f(x)\,g(x)\,dx$ and they satisfy $\int_{-1}^{1}L_n(x)\,L_m(x)\,dx=\frac{2}{2n+1}\,\delta_{m,n}.$ Since, by the Rodrigues formula, $ L_n(x) = \frac{1}{2^n\,n!}\cdot\frac{d^n}{dx^n}(1-x^2)^n,$ it is not difficult to compute $ \int_{-1}^{1} L_n(x)\,\log(1+x)\,dx = (-1)^{n+1}\frac{2}{n(n+1)}, $ from which it follows that $ \log(1+x) = -\frac{\log 2}{2}+\sum_{n=1}^{+\infty}\frac{2n+1}{n(n+1)}L_n(x).$ Now, if you take $ P_N(x) = -\frac{\log 2}{2}+\sum_{n=1}^{N}\frac{2n+1}{n(n+1)}L_n(x).$ as a polynomial approximation of $\log(1+x)$ with degree $N$, by the orthogonality of the Legendre polynomials you get: $ \|P_N(x)-\log(1+x)\|_2^2 = \sum_{n>N}\frac{(2n+1)^2}{n^2(n+1)^2}\|L_n(x)\|_2^2=$ $ = 2\sum_{n>N}\frac{2n+1}{n^2(n+1)^2}=2\sum_{n>N}\left(\frac{1}{n^2}-\frac{1}{(n+1)^2}\right)=\frac{2}{(N+1)^2},$ with the same magnitude of the error of the best polynomial approximation of degree $N$.
In a similar manner, the polynomials $J_n(x)=\frac{1}{n!}\frac{d^n}{dx^n}(x(1-x))^n$ form a complete orthogonal base of $\mathcal{L}^2([0,1])$ with the standard inner product, $\|J_n\|_2^2 = \frac{1}{2n+1}$ and $\int_{0}^{1}\log(x)\,J_n(x)\,dx = \frac{(-1)^{n+1}}{n(n+1)},$ so if you take $P_N(x)=-1+\sum_{m=1}^{N}\frac{(-1)^{m+1}(2m+1)}{m(m+1)}\,J_m(x)$ you have $\|\log(x)-P_N(x)\|_2^2=\frac{1}{(N+1)^2}.$