What will be the value of $P(12)+P(-8)$ if $P(x)=x^{4}+ax^{3}+bx^{2}+cx+d$ provided that $P(1)=10$, $P(2)=20$, $P(3)=30$?
I put these values and got three simultaneous equations in $a, b, c, d$. What is the smarter way to approach these problems?
What will be the value of $P(12)+P(-8)$ if $P(x)=x^{4}+ax^{3}+bx^{2}+cx+d$ provided that $P(1)=10$, $P(2)=20$, $P(3)=30$?
I put these values and got three simultaneous equations in $a, b, c, d$. What is the smarter way to approach these problems?
Two remarks, to avoid almost every computation:
Thus, $P(12)+P(-8)=10\cdot(12-8)+11\cdot10\cdot9\cdot(12+z)+9\cdot10\cdot11\cdot(8-z)$, that is, $P(12)+P(-8)=10\cdot4+11\cdot10\cdot9\cdot(12+z+8-z)=40+990\cdot20=19840$.
I'm not sure this is the smartest way, but here's one way.
Define $Q(x) = P(x) - x^4$ which satisfies the conditions $Q(1) = 9, Q(2) = 4, Q(3) = -51.$
So $a,b,c,d$ satisfy the matrix identity
$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} \begin{pmatrix} d \\ c \\ b \\ a \end{pmatrix} = \begin{pmatrix} 9 \\ 4 \\ -51 \end{pmatrix}.$ To solve this, find the kernel of the matrix (a bit of linear algebra), which turns out to be $<\begin{pmatrix} -6 \\ 11 \\ -6 \\ 1 \end{pmatrix}>$ and add a particular solution, for example where $a = 0$: $b = -25, c = 70, d = -36$.
So your polynomial is given by $P(x) = x^4 + ax^3 + (-25-6a)x^2 + (11 + 70a)x + (-36 - 6a)$ for some $a$ which we can't determine.
You then get $P(12) + P(-8) = 17940 + 990a + 1900 - 990a = 19840.$
Other way doing this:
We try to find reals $e,f,g$ such that $P(12)+P(-8)=eP(1)+fP(2)+gP(3)$. So, if we try to equal "$x^k$ evaluated", we gain a system of equations: $ \left\{\begin{array}{ccc} 1^ke+2^kf+3^kg&=&12^k+(-8)^k \end{array}\right.,\quad k=0,\cdots,4 $ In particular, $ \left\{\begin{array}{ccc} e+f+g&=&1+1\\ e+2f+3g&=&12+(-8)\\ e+2^2f+3^2g&=&12^2+(-8)^2 \end{array}\right. $ and we obtain $e=100,f=-198,g=100$. Verifying the others values for $k$: $ \left\{\begin{array}{ccc} 100+2^3(-198)+3^3\cdot100&=&12^3+(-8)^3\\ 100+2^4\cdot(-198)+3^4\cdot100&=&12^4+(-8)^4 + 19800 \end{array}\right. $
So, $P(12)+P(-8)=100P(1)-198P(2)+100P(3)+1980=19840$