Let $G$ be a subgroup of $\mathrm{GL}(n,\mathbb{F})$. Denote by $G^T$ the set of transposes of all elements in $G$. Can we always find an $M\in \mathrm{GL}(n,\mathbb{F})$ such that $A\mapsto M^{-1}AM$ is a well-defined map from $G$ to $G^T$?
For example if $G=G^T$ then any $M\in G$ will do the job.
Another example, let $U$ be the set of all invertible upper triangular matrices. Take $M=(e_n\,\cdots\,e_2\,e_1)$ where $e_i$ are the column vectors that make $I=(e_1\,e_2\,\cdots\,e_n)$ into an identity matrix. Then $M$ do the job. For $n=3$, here what the $M$ will do $\begin{pmatrix}a&b&c\\ 0&d&e\\ 0&0&f\end{pmatrix}\mapsto M^{-1}\begin{pmatrix}a&b&c\\ 0&d&e\\ 0&0&f\end{pmatrix} M=\begin{pmatrix}f&e&c\\0&d&b\\0&0&a\end{pmatrix}^T$
Thank you.