I am trying to know which one is bigger :$\log_9 71$ or $\log_8 61$ how can i know without using a calculator ?
$\log_9 71$ or $\log_8 61$
-
0@ TMM - I was just raising the question, wasn't criticizing your answer. – 2012-11-03
6 Answers
Ok, so we have that $\frac{61}{64}>\frac{71}{81} \implies \log_{8}\left(\frac{61}{64}\right)>\log_{9}\left(\frac{71}{81}\right)\cdot\log_{8}(9)>\log_{9}\left(\frac{71}{81}\right)$ By application of the change of base formula and the fact that $\log_{8}(9)>1$, which is trivial.
-
2slick solution! – 2012-11-03
$\log_8 61 = \log_8\left(64\left(1-{3 \over 64}\right)\right) = 2 + \log_8\left(1 - {3 \over 64}\right)$
$\log_9 71 = \cdots = 2 + \log_9 \left( 1 - {10 \over 81}\right)$
Let's drop the 2s, and note that both values are negative.
$\log_8\left(1 - {3 \over 64}\right) = {\log(1 - 3/64) \over \log 8} = { 2 \log (1 - 3/64) \over 2 \log 8 } = {\log\left(\left(1-{3 \over 64}\right)^2\right) \over \log 64}$
Now note that
$\left(1-{3 \over 64}\right)^2 > 1 - {6 \over 64} > 1 - {6.4 \over 64} = 1 - {8.1 \over 81} > 1 - {10 \over 81}$
so
${\log\left(\left(1-{3 \over 64}\right)^2\right) \over \log 64} > {\log \left( 1 - {10 \over 81} \right) \over \log 64} > {\log \left( 1 - {10 \over 81} \right) \over \log 9} = \log_9 \left( 1 - {10 \over 81} \right)$
Thus, $\log_8(61)$ is greater.
-
0@KarolisJuodelė - The numerator is negative. – 2012-11-02
Notice that $\log_8:(0,\infty) \to \mathbb{R}$ is strictly concave. This means that we have $\log_8{\left( \frac{x+y}{2}\right)} > \frac{\log_8{x}+\log_8{y}}{2} \implies \log_8{\left( \frac{x+y}{2}\right)^2} > \log_8{(xy)}$
Since $\log_8{9} >1$, we can conclude that $\log_8{\left( \frac{x+y}{2}\right)^2} > \frac{\log_8{(xy)}}{ \log_8{9}}$
Let $x = \sqrt{61}-i\sqrt{10}$ and $y = \sqrt{61}+i\sqrt{10}$. Plugging these in (this is okay because imaginary parts disappear), we find that $\log_8{61}>\frac{\log_8{71}}{\log_8{9}} = \log_9{71}$
You can change the base of the logarithm and put both of them in the same base and then you know that log whose base is bigger than 1 are crescent so u can easily find what's the biggest one.
Change formula: $\log_b x = \frac{\log_a x} {\log_a b}$
-
1You$ $can use the formula without a calculator and then it's easier to analize and extimate the values as also the other answers has shown,I just suggested to put the numbers in the same base to get things easier. – 2012-11-02
If we are allowed to use calculus, we can get a somewhat formal estimate of both numbers: $\log_9 (71) = \log_9 (81) + \log_9(71/81) = 2 + \log_9 \left(1 - \frac{10}{81}\right) \approx 2 - \frac{1}{2 \ln 3}\left(\frac{10}{81}\right), \\ \log_8 (61) = \log_8 (64) + \log_8 (61/64) = 2 + \log_8 \left(1 - \frac{3}{64}\right) \approx 2 - \frac{1}{3 \ln 2}\left(\frac{3}{64}\right).$ Using rough estimates like $\ln 2 \approx 0.7$, $\ln 3 \approx 1.1$, $\frac{10}{81} \approx \frac{1}{8} = 0.125$ and $\frac{3}{64} \approx \frac{3}{60} = 0.05$ we get $\log_9 (71) \approx 2 - \frac{1}{2.1}(0.125) \approx 2 - 0.06 \approx 1.94, \qquad (\text{exact: } \log_9 (71) = 1.940\ldots) \\ \log_8(61) \approx 2 - \frac{1}{2.2}(0.05) \approx 2 - 0.025 \approx 1.975. \qquad (\text{exact: } \log_9(61) = 1.976\ldots)$ So $\log_9 71 < \log_8 61$.
By drawing tangents of $\log$ curves at points $\log_9 81$ and $\log_8 61$ I obtain the following approximations: $\log_9 71 < \log_9 81 - \frac{81-71}{81 \log 9} = 2 - \frac {10}{81 \log 9}$ $\log_8 61 > \log_8 64 - \frac{64-61}{61 \log 8} = 2 - \frac {3}{61 \log 8}$ I can then show that $\frac{10}{81 \log 9} > \frac{3}{61 \log 8}$ as $\frac{10 \cdot 61}{81 \cdot 3} = \frac{610}{243} > 2 > \frac{ \log 9 }{\log 8}$