1
$\begingroup$

If the 'Lenstra - Pomerance - Wagstaff' conjecture is true, there are infinite Mersenne primes. In this case, if we consider the series: $S_N=\sum_{k=1}^N \frac{1 }{M_k}$ where $M_k$ is $k^{th}$ Mersenne prime, does the limit: $S_\infty=\lim_{N\to\infty}S_N$ converges to a finite value? Thanks.

  • 1
    Yes. Actually the sum over all Mersenne numbers M:k, prime or not, converges.2012-09-17

1 Answers 1

5

Yes, since \[ \sum_{k=1}^\infty \frac 1{M_k} \le \sum_{k=1}^\infty \frac 1{2^k-1} < \infty. \]