Define $\ell^p = \{ x (= \{ x_n \}_{-\infty}^\infty) \;\; | \;\; \| x \|_{\ell^p} < \infty \} $ with $\| x \|_{\ell^p} = ( \sum_{n=-\infty}^\infty \|x_n \|^p )^{1/p} $ if $ 1 \leqslant p <\infty $, and $ \| x \|_{\ell^p} = \sup _{n} | x_n | $ if $ p = \infty $. Let $k = \{ k_n \}_{-\infty}^\infty \in \ell^1 $.
Now define the operator $T$ , for $x \in \ell^p$ , $ (Tx)_n = \sum_{j=-\infty}^\infty k_{n-j} x_j \;\;(n \in \mathbb Z).$ Then prove that $T\colon\ell^p \to\ell^p$ is a bounded, linear operator with $ \| Tx \|_{\ell^p} \leqslant \| k \|_{\ell^1} \| x \|_{\ell^p}. $
Would you give me a proof for this problem?