3
$\begingroup$

I want to prove that (without using Fatou's lemma)

for every $k \in N$ let $f_k$ be a nonnegative sequence $f_k(1),f_k(2),\ldots$

$\sum^\infty_{n=1}\liminf_{k \to \infty} f_k(n) \le \liminf_{k \to \infty} \sum^\infty_{n=1}f_k(n)$

Can you give some hint for me about that? hat

  • 0
    Thank you for help. I got this question. Then I wonder why this inequality do for only liminf not for limsup either?2012-05-08

1 Answers 1

4

Hints:

  • Fix an integer $N$, and show that $\sum_{n=1}^N\liminf_{k\to +\infty}f_k(n)\leq \liminf_{k\to +\infty}\sum_{n=1}^Nf_k(n).$
  • Show that $\sum_{n=1}^Nf_k(n)\leq \sum_{n=1}^{+\infty}f_k(n)$.
  • Conclude, still using that all the terms are non-negative.