2
$\begingroup$

I still hard time to find surface area of function... I have

The given curve is rotated about the $y$-axis. Find the area of the resulting surface. $x= \sqrt{a^2-y^2},\quad y\in\left[0,\frac{a}{2}\right]$

If you have any idea, would you post your idea ? Thank you :)

2 Answers 2

2

We have formula $\text{Surface area } S = \int 2\pi x \sqrt{1+\left(\frac{dx}{dy}\right)^2} dy$ we have $x= \sqrt{a^2-y^2}$ and $\frac{dx}{dy}= \frac{-y}{\sqrt{a^2-y^2}}$. Hence we have, $S=\int_0^{\frac{a}{2}}2\pi \sqrt{a^2-y^2}\sqrt{1+ \frac{y^2}{{a^2-y^2}}} dy$ $=\int_0^{\frac{a}{2}}2\pi \sqrt{a^2-y^2} \frac{a}{\sqrt{a^2-y^2}}dy $ $=\int_0^{\frac{a}{2}}2\pi .a dy$ $=\pi .a^2$

2

I’m going to suggest an intuitive, non-rigorous way of thinking about the problem.

For each $y\in[0,a/2]$ you’re revolving a little bit of arc, $ds$, around the $y$-axis. The distance of that bit of arc from the $y$-axis is $\sqrt{a^2-y^2}$, its $x$-coordinate, so it’s going travel in a circle around the $y$-axis, covering a distance of $2\pi\sqrt{a^2-y^2}$, and generate a bit of surface with an area of $dA=2\pi\sqrt{a^2-y^2}ds\;.\tag{1}$

Now what is $ds$? You get that from the arc length formula: $ds=\sqrt{(dx)^2+(dy)^2}$. In this case you have $x$ given as a function of $y$, so $y$ is your independent variable, and you should ‘divide’ and ‘multiply’ the arc length formula by $dy$ to get

$ds=\sqrt{\left(\frac{dx}{dy}\right)^2+\left(\frac{dy}{dy}\right)^2}\,dy=\sqrt{\left(\frac{dx}{dy}\right)^2+1}\,dy\;.\tag{2}$

Now substitute $(2)$ into $(1)$ to get $dA=2\pi\sqrt{a^2-y^2}\sqrt{\left(\frac{dx}{dy}\right)^2+1}\,dy$ and integrate: $\begin{align*}A&=\int_0^{a/2}2\pi\sqrt{a^2-y^2}\sqrt{\left(\frac{dx}{dy}\right)^2+1}\,dy\\ &=2\pi\int_0^{a/2}\sqrt{(a^2-y^2)\left(\left(\frac{dx}{dy}\right)^2+1\right)}\,dy\;. \end{align*}$