Let $ F(x,y,y',y'') = \int_0^1 \big(y'^2 + (y + 2y')y'' + kxyy'+y^2\big)dx $ Then, if $h$ is a $C^\infty(0,1)$ $ F\big(x,y+h,(y+h)',(y+h)''\big) - F(x,y,y',y'') = \int_0^1 \left\{(y'' + kxy' +2y)h + (2y' + 2y'' + kxy)h'+(y+2y')h''\right\}dx+O\big(\|h\|^2\big) $ where $\|\cdot\|$ is the appropriate norm. Hence, the Frechet derivative is $ DF \cdot h = \int_0^1 \left\{y'' + kxy' + 2y - \frac{d}{dx}\left(2y' + 2y'' + kxy\right) + \frac{d^2}{dx^2}(y + 2 y')\right\}hdx + \mbox{ B.C.} $ where $ \mbox{B.C.} = \big(2y' + 2y'' + kxy - \tfrac{d}{dx}(y + 2 y')\big)h\Big|_0^1 + (y + 2 y')h'\Big|_0^1 = 0 $ given that $ y(0) = y(1) = 0, \qquad y'(0) = y'(1) = 0. $ The Euler-Lagrange equation is $ y'' + kxy' + 2y - \frac{d}{dx}\left(2y' + 2y'' + kxy\right) + \frac{d^2}{dx^2}(y + 2 y') = 0 $ and if $k = 2$, it can be written as \begin{multline} y'' + 2xy' + 2y - \frac{d}{dx}\left(2y' + 2y'' + 2xy\right) + \frac{d^2}{dx^2}(y + 2 y') = \\ y'' + \frac{d}{dx}\big(2xy\big) - 2y'' - 2y''' - \frac{d}{dx}\big(2xy\big) + y'' +2 y'' = 0 \end{multline} for all $y$. In terms of the functional \begin{multline} y'^2 + (y + 2y')y'' + 2xyy' + y^2 \\ = y'^2 + yy'' + 2y'y'' + \frac{d}{dx}\big(xy^2\big) = y'^2 + yy'' + \frac{d}{dx}\big(y'^2 + xy^2\big) = \frac{d}{dx}\big(yy' + y'^2 +xy^2\big) \end{multline} and then $ F(x,y,y',y'') = \int_0^1 \frac{d}{dx}\big(yy' + y'^2 +xy^2\big)dx = 0 $