A theorem proven by Frobenius states that
If $n$ divides the order of a finite group $G$, then the number of solutions to $x^n = 1$ in $G$ is a multiple of $n$.
Articles discussing this theorem say that this result was proven by Frobenius in 1895, a precise reference given is
F. G. Frobenius, Verallgemeinerung des Sylow'schen Satzes, Sitzungsberichte der Königl. Preuß. Akad. der Wissenschaften (Berlin) (1895), 981-993
I am currently studying this theorem and its generalizations, and I would be interested in reading the original paper by Frobenius. However, I haven't been able to find a copy of it anywhere. Does anyone know where I could find it (preferably online)?
If the paper cannot be found, I would like to know what the original proof of Frobenius was like. The usual double induction proof can be found in Burnside's Theory of Finite Groups (1897), I guess the proof there might be very similar to the original proof of Frobenius. The same proof is also given in the book Theory and Applications of Finite Groups by G. A. Miller, H. F. Blichfeldt and L. E. Dickson (1916).
Also, according to Finkelstein [*], Frobenius discusses the theorem and its generalizations in the following papers:
F. G. Frobenius, Über auflösbare Gruppen, Sitzungberichte der Königl. Preuß. Akad. Wissenschaften (Berlin) (1893), 337-345.
F. G. Frobenius, Über endliche Gruppen,Sitzungsberichte der Königl. Preuß. Akad. der Wissenschaften (Berlin) (1895), 81-112.
F. G. Frobenius, Verallgemeinerung des Sylow'schen Satzes,Sitzungsberichte der Königl. Preuß. Akad. der Wissenschaften (Berlin) (1895), 981-993.
F. G. Frobenius, Über auflösbare Gruppen II,Sitzungsberichte der Königl. Preuß. Akad. der Wissenschaften (Berlin) (1895), 1027-1044.
F. G. Frobenius, Über auflösbare Gruppen III,Sitzungsberichte der Königl. Preuß. Akad. der Wissenschaften (Berlin) (1901), 849-875.
F. G. Frobenius, Über einen Fundamentalsatz der Gruppentheorie II,Sitzungsberichte der Königl. Preuß. Akad. der Wissenschaften (Berlin) (1907), 428-437.
Any idea where these could be found? Again, I haven't been able to find a copy of any of these papers and I'm not sure if they have been published anywhere afterwards.
[*] H. Finkelstein, Solving equations in groups: A survey of Frobenius' theorem Periodica Mathematica Hungarica Volume 9, Issue 3, pp 187-204, (1978).