1
$\begingroup$

1) $a, b, c$ are triangle edges's length such that $abc = 1$. Find max: $\frac{bc}{a^{2}b+a^{2}c}+\frac{ac}{b^{2}a+b^2c}+\frac{ab}{c^2a+c^{2}b}$

My idea: $\frac{bc}{a^{2}b+a^{2}c}+\frac{ac}{b^{2}a+b^2c}+\frac{ab}{c^2a+c^{2}b}=\frac{abc}{a^3(b+c)}+\frac{abc}{b^{3}(c+a)}+\frac{abc}{c^3(a+b)}$ Then use AM-GM ? I just can find min: $\frac{1}{a^{3}\left ( b+c \right )}+\frac{1}{b^{3}\left ( c+a \right )}+\frac{1}{c^{3}\left ( a+b \right )}\geq \frac{3}{2}$

2) Find for $x$, $y$, $z$ such that $\left\{\begin{matrix} xy + 2(x+y)=0\\ \ yz + 2(y+z)=-3\\ zx + 2(z+x)=5 \end{matrix}\right.$

(Some one should edit my post: correct grammar...)

  • 0
    I think we can't find max of $\frac{bc}{a^{2}b+a^{2}c}+\frac{ac}{b^{2}a+b^2c}+\frac{ab}{c^2a+c^{2}b}$2012-11-23

2 Answers 2

2

Hint: For your second question, subtracting the equations in pairs suggests the substitution $a=x+2,\quad b=y+2, \quad c=z+2.$ Try this in the original set of equations.

3

For $0 < \epsilon < 1$ and $a = \epsilon^2$, $b = c = \frac 1 \epsilon$ we have $ abc = 1\\ a = \epsilon^2 \leq \frac 2 \epsilon = b + c \\ b = \frac 1 \epsilon \leq \frac 1 \epsilon + \epsilon^2 = a + c \\ c = \frac 1 \epsilon \leq \frac 1 \epsilon + \epsilon^2 = a + b $ All question conditions are satisfied.

Now $ I := \frac{bc}{a^{2}b+a^{2}c}+\frac{ac}{b^{2}a+b^2c}+\frac{ab}{c^2a+c^{2}b} \geq \frac{bc}{a^{2}b+a^{2}c} = \frac 1 {a^3(b +c)} = \frac 1 {2\epsilon^5} $ so for arbitrarily small $\epsilon$ we get arbitrarily great $I$.