How to find the following two integrals? $\int_{0}^{1}{\sqrt{{{x}^{3}}-{{x}^{4}}}dx}$ and $\int_{0}^{1}{x\sqrt{{{x}^{3}}-{{x}^{4}}}dx}$
How to find these integrals?
2 Answers
$I:=\int_0^1 x\sqrt {x^3-x^4}\,dx=\int_0^1 x^2\sqrt{x-x^2}\,dx=\int_0^1x^2\sqrt{\frac{1}{4}-\left(\frac{1}{2}-x\right)^2}\,dx=$
$=\frac{1}{2}\int_0^1x^2\sqrt{1-\left(1-2x\right)^2}\,dx $
Substitute now
$\sin u=1-2x\Longrightarrow \cos u\,du=-2\,dx\,,\,x=0\Longrightarrow u=\frac{\pi}{2}\;\;,\;x=1\Longrightarrow u=\frac{3\pi}{2}\,\,,\,\text{thus:}$
$I=-\frac{1}{4}\int_{\pi/2}^{3\pi/2}\left(\frac{1-\sin u}{2}\right)^2\sqrt{1-\sin^2u}\cos u\,du=$
$-\frac{1}{16}\int_{\pi/2}^{3\pi/2}\left(\cos^2u-2\sin u\cos^2u+\cos^2u\sin^2u\right)du=\ldots\,\,etc.$
-
1Thank you very much! It helped me a lot! – 2012-12-09
One semi-mechanical but unpleasant way to attack both is to bring an $x$ "out." We end up having to integrate $x\sqrt{x-x^2}$ and $x^2\sqrt{x-x^2}$.
Note that $x-x^2=\frac{1}{4}-(x-\frac{1}{2})^2$. This may suggest a substitution. Best would be $x-\frac{1}{2}=\frac{1}{2}u$. After the substitutions, we end up with integrals of familiar shape.
-
0Seems to be a nice hint, +1. – 2012-12-09