2
$\begingroup$

Let $T \in \mathcal{D}'(\mathbb{R}_{+})$ be a distribution on $\mathbb{R}_{+}$ such that for any $f \in \mathcal{D}(\mathbb{R}_{+})$, $f \geqslant 0$ we have $ \langle f, T \rangle \geqslant 0 $ Is it true that there exists a nonnegative measure $\mu$ with support on $\mathbb{R}_{+}$ such that $ \langle f,T \rangle = \int\limits_{0}^{\infty} f(x)\,\mu(dx) $ for any $f \in \mathcal{D}(\mathbb{R}_{+})$?

  • 0
    @Chris thank you very much!2012-11-20

0 Answers 0