Consider the integral $ I(x, q) = \int_0^{\text{arctanh}(x)} q^{-w} \text{tanh}(w) dw $
Can this integral be simplified any further?
Consider the integral $ I(x, q) = \int_0^{\text{arctanh}(x)} q^{-w} \text{tanh}(w) dw $
Can this integral be simplified any further?
The change of variable $z=\tanh(w)$ yields: $\displaystyle \color{red}{I(x,\mathrm e^{2r})=\int_0^x(1-z)^{r-1}(1+z)^{-r-1}z\,\mathrm dz} $.