3
$\begingroup$

Let $p\geq 2$, and $p$ is not a half odd integer. $t\in R$.

Is the following polynomial positive:

$ T_k(t)=\left(\frac t2\right)^p\sum_{j=0}^k\frac{\left(-\frac{t^2}{4}\right)^j\Gamma(p+1)}{j!\Gamma(p+j+1)}. $

Thank you for your help

  • 0
    @Vandermonde: Yes,exactly like you wrote.2012-07-06

1 Answers 1

5

Consider series $ T(t)=\left(\frac{t}{2}\right)^p\sum\limits_{j=0}^\infty\frac{\left(-\frac{t^2}{4}\right)^j\Gamma(p+1)}{j!\Gamma(j+p+1)} $ This is related to the series representation of the Bessel function of order $p$ of the first kind. Indeed $ T(t)=\Gamma(p+1)\sum\limits_{j=0}^\infty\frac{(-1)^j}{j!\Gamma(j+p+1)}\left(\frac{t}{2}\right)^{2j+p}=\Gamma(p+1)J_p(t) $ Since this series converges, then $ \lim\limits_{k\to\infty} T_k(t)=\Gamma(p+1)J_p(t)\tag{1} $ It is known that Bessel functions of the first kind take negative and positive values infinitely many times on $(0,+\infty)$. Hence we may consider $t_0$ such that $\Gamma(p+1)J_p(t_0)<0$. From $(1)$ it follows that for some $k_0$ we would have $ T_k(t_0)<0\quad\text{ for all}\quad k>k_0. $