5
$\begingroup$

Let $f(x)$ be continuous and positive on $[0,+\infty)$. Suppose $\int_0^{+\infty}\frac{1}{f(x)}dx<+\infty. $ How can one show that $\lim_{s\to +\infty}\frac{\int_0^{s}f(x)dx}{s^2}=+\infty?$

  • 0
    Hint: If g(x) > 0 everywhere and $\int_0^\infty g(x)\ dx$ is finite, then $g(x) = O(x^n)$ for what $n$?2012-02-04

1 Answers 1

6

For $t>0$, we have $t=\int_t^{2t}\frac 1{\sqrt{f(\xi)}}\sqrt{f(\xi)}d\xi\leq \left(\int_t^{2t}\frac 1{f(\xi)}d\xi\right)^{1/2}\left(\int_t^{2t}f(\xi)d\xi\right)^{1/2}$ so $s^2\leq \int_s^{2s}\frac{dx}{f(x)}\cdot \int_s^{2s}f(\xi)d\xi$ and so $\frac{\int_0^{2s}f(\xi)d\xi}{s^2}\geq\frac{\int_s^{2s}f(\xi)d\xi}{s^2}\geq \frac 1{\int_s^{2s}\frac{d\xi}{f(\xi)}},$ and we can conclude, since the fact that $\int_0^{+\infty}\frac{d\xi}{f(\xi)}$ converges implies that $\lim_{s\to \infty}\int_s^{2s}\frac{d\xi}{f(\xi)}=0$.

  • 0
    Very slick, +1.2012-02-04