-1
$\begingroup$

Oh sorry everyone, I have just written the problem. Thanks for the warning.

$\sum_{n=1}^{\infty}\frac{(x+3)^n}{n\cdot 3^{n}}$

I could not determine the radius of convergence and the interval of convergence of the series where n starts at 1 and goes up to infinity.

Can anyone help me? Thanks for any help! :))

  • 1
    oh i see. thank you for the explanantion @johnD2012-12-25

1 Answers 1

2

We're looking at $ \sum_{n=0}^\infty \frac{(x+3)^n}{n\cdot 3^n}. $

Applying the ratio test, we have $ \lim_{n\to\infty} \left| \frac{\left(\frac{(x+3)^{n+1}}{(n+1)\cdot 3^{n+1}}\right)}{\left(\frac{(x+3)^n}{n\cdot 3^n}\right)} \right| = \lim_{n\to\infty} \left|\frac{n(x+3)}{3(n+1)}\right| = \lim_{n\to\infty} \left(\frac{|x+3|}{3}\cdot\frac{n}{n+1}\right). $ The factor $\dfrac{|x+3|}{3}$ does not change as $n$ changes, so it can be pulled out: $ =\frac{|x+3|}{3} \lim_{n\to\infty} \frac{n}{n+1} = \frac{|x+3|}{3}\cdot 1 $

Thus the series converges if $\dfrac{|x+3|}{3}<1$ and diverges if $\dfrac{|x+3|}{3}>1$.

Now solve the inequality $ \frac{|x+3|}{3}<1 $ for $x$.