2
$\begingroup$

How to calculate the following integral: for positive constants $a_1, \cdots, a_{n+1}, $ and $i>0$ $ \int_{S^n\bigcap\{u_m\geq 0,\ m=1,\cdots, n+1\}}\left(\sum_{m=1}^{n+1} \frac{u_m}{a_m}\right)^{-i}du, $ where $u=(u_1, \cdots, u_{n+1})\in S^n,$ the unit sphere.

Thanks a lot!

  • 0
    The evaluating process may be the same for any $n.$ In fact, I need it may less than $C(\frac{a_1\cdots a_{n+1}}{a_2\cdots a_{n+1}})^i$ if $a_1\leq\cdots\leq a_{n+1}.$2012-06-15

0 Answers 0