Given a 5 card poker hand from a standard deck, I'm looking to calculate the probability of getting: all 1 suit, 2 different suits, 3 different suits or 4 different suits. All one suit is straight-forward - $\frac{\binom{13}{5}*\binom{4}{1}}{\binom{52}{5}}$- pick five different ranks, each from the same suit.
Likewise, 4 seems fairly simple: $\frac{\binom{4}{1}\binom{13}{2}\binom{13}{1}^3}{\binom{52}{5}}$ - pick one suit to grab two cards from, then pick one card from each other suit.
Its on 2 and 3 that I get kind of stuck - I'm not sure how to set them up! I don't see why something along the lines of
$\frac{\binom{4}{2}*\binom{26}{6} - \binom{13}{5}*\binom{4}{1}}{\binom{52}{5}}$ doesn't work for 2 suits; i.e. picking 2 suits, choose 5 cards, subtracting off the ways in which you could end up with one suit. Similarly, for 3 I would expect
$\frac{\binom{4}{3}*\binom{39}{5}-\binom{4}{2}*\binom{26}{5}}{\binom{52}{5}}$ to give the answer (picking 5 cards from the group containing 3 suits, subtracting off those hands with fewer than 3 suits), but if I sum the probabilities it comes out incorrectly.
Thank you very much for your help!