I am having difficulties thinking about how an argument for the following exercise should proceed:
Let $p: Y \rightarrow X$ and $q: Z \rightarrow X$ be $G$-coverings (i.e., covering maps such that $X = Y /G = Z/G$ (quotient spaces)), with $X$ connected and locally path connected. Let $\phi: Y \rightarrow Z$ and $\psi: Y \rightarrow Z$ be maps of $G$-coverings (i.e., a covering homomorphism such that $\phi(g \cdot y) = g \cdot \phi(y)$ for all $g \in G$ and $y \in Y$, same with $\psi$). Assume that $\phi(y) = \psi(y)$ for some $y \in Y$. Show that $\phi(y) = \psi(y)$ for every point $y \in Y$.
If $Y$ is connected, this should be an immediate consequence of the unique lifting property for maps, but in the general case I am lost, and I am curious to know if anyone visiting would know how to proceed.