2
$\begingroup$

If $E\subset R^n$ be a Lebesgue measurable set and let $(f_k)$ be a sequence of non-negative Lebesgue measurable function on E such that $\lim f_k=f$ a.e. I want to prove that if $\int_E fd\lambda<\infty$,and$\lim_k \int_E f_kd\lambda=\int_E fd\lambda,$then$\lim_k \int_A f_kd\lambda=\int_A fd\lambda$ for every Lebesgue measurable set $A\subset E$.

Does it hold if $\displaystyle\int_E fd\lambda=\infty$?

2 Answers 2

1

Here is a counter example in the case when $\int f = \infty$:

Take $E = \mathbb{R}$ and set $f_k = 1_{(-\infty, 0)} + 1_{(k,k+1)} \rightarrow 1_{(-\infty, 0)}$ And take $A = [0,\infty)$.

0

For the first question, use Fatou's lemma and the sequence $g_k:=f_k+f-|f-f_k|\geqslant 0$.

For the second part, take $f_n:=\chi_{(n,n+1)}+\chi_{(-1,0)}\frac 1x$ and $f:=\chi_{(-1,0)}\frac 1x$, $A:=[0,+\infty)$.

  • 0
    I've edited, the first attempt didn't worked.2012-12-08