Which of the following integral domains are Euclidean domains?
- $\mathbb{Z}[\sqrt{-3}]$
- $\mathbb{Z}[x]$
- $\mathbb{R}[x^2,x^3]=\{f=\sum_{i=0}^n a_ix^i\in\mathbb{R}[x]:a_1=0\}$
- $(\mathbb{Z}[x]/(2,x))[y]$
How can we solve this problem. Can anyone suggest me something. Thanks