1
$\begingroup$

Why is the following implication true?

${d\over dt}\vec v(t)=\vec n\times \vec v(t) \implies \vec n\cdot\vec v(t)=\vec n\cdot \vec v(0)$

I think the result can be obtained by expressing $\vec v(t)$ in a Taylor series expansion in $t$. And from $\displaystyle {d\over dt}\vec v(t)=\vec n\times \vec v(t) $, we see that $\vec n\cdot \vec v^{(n)}(0)=0$ due to the $\times \vec n$ bit.

Is there a more direct way?

1 Answers 1

1

$ \vec n\cdot\frac{d\vec v(t)}{dt}=\vec n\cdot(\vec n\times \vec v(t))=0 $ then $ \frac{d}{dt} \vec n\cdot\vec v(t)=0 $ that means $\vec n\cdot\vec v(t)=constant$. The constant can be fixed through $\vec v(0)$ and you are done.