I have a question about the convergence of the Neumann series:
Let $A$ be a matrix with spectral radius $\rho(A)<1$, i.e., all eigenvalues of $A$ are strictly less than $1$. Does that imply that the series \begin{equation} \sum_{i=0}^{\infty}A^i \end{equation} converges (in the operator norm)? I know how to prove it if the operator norm of $A$ is strictly less than $1$, but I don't know how to prove it if I only know that the spectral radius is less than $1$.
Many thanks for any help!