If $M$ is a $3 \times 3$ matrix such that $ \begin{aligned} \begin{pmatrix} 0 & 1 &2\end{pmatrix}M &= \begin{pmatrix} 1 & 0 &0\end{pmatrix} \text{ and}\\ \begin{pmatrix} 3 & 4 &5\end{pmatrix}M &= \begin{pmatrix} 0 & 1 &0\end{pmatrix} \text{ ,} \end{aligned} $ then $\begin{pmatrix} 6 &7 &8\end{pmatrix}M$ is equal to
(A) $\begin{pmatrix} 2 &1 &−2\end{pmatrix}$
(B) $\begin{pmatrix} 0 &0 &1\end{pmatrix}$
(C) $\begin{pmatrix} -1 &2 &0\end{pmatrix}$
(D) $\begin{pmatrix} 9 &10 &8\end{pmatrix}$
i know that $M$ is a $3 \times 3$ matrix so we have 9 unknown and from these two equation we get six unknown so i can't solve it