Possible Duplicate:
Series converges implies $\lim{n a_n} = 0$
How do I show that the following:
If $ a_1 \geq a_2\geq ... \geq a_n\geq...$ and $\sum a_n$ converges then $\lim (n a_n) = 0$?
Thanks.
Possible Duplicate:
Series converges implies $\lim{n a_n} = 0$
How do I show that the following:
If $ a_1 \geq a_2\geq ... \geq a_n\geq...$ and $\sum a_n$ converges then $\lim (n a_n) = 0$?
Thanks.