How to evaluate this integral:
$I_{a,b} = \int_{1}^{\infty} \frac{\ \exp\left(-a t\right)}{ 1-b t} \mathrm{d}t $
where $a, b \in R^*_+$ ?
How to evaluate this integral:
$I_{a,b} = \int_{1}^{\infty} \frac{\ \exp\left(-a t\right)}{ 1-b t} \mathrm{d}t $
where $a, b \in R^*_+$ ?
Assuming that $b<1$ so that $1-bt >0 $.
Thanks to @anon this can be done by making the substitution :
1). $u=1-bt$, with $\mathrm{d}t = (-1/b) \mathrm{d}u$, so : $I_{a,b} =\frac{\exp(-\frac{a}{b})}{b} \ \int\limits_{-\infty}^{1-b} \frac{\ \exp\left(\frac{a}{b} u\right)}{u} \mathrm{d}u$
2.) $v=\frac{a}{b}u$ with $\frac{\mathrm{d}v}{v}=\frac{\mathrm{d}u}{u}$ , then: $I_{a,b} =\frac{\exp(-\frac{a}{b})}{b} \ \int\limits_{-\infty}^{(1-b)\frac{a}{b}} \frac{\ \exp(v)}{v} \mathrm{d}v$
Hence. $I_{a,b} =\frac{\exp(-\frac{a}{b})}{b} \ Ei({(1-b)\frac{a}{b}})$ where $Ei(x) =\int\limits_{-\infty}^{x} \frac{\ \exp(t)}{t} \mathrm{d}t $ : The Exponential Integral Function