74
$\begingroup$

A numerical calculation on Mathematica shows that

$I_1=\int_0^1 x^x(1-x)^{1-x}\sin\pi x\,\mathrm dx\approx0.355822$

and

$I_2=\int_0^1 x^{-x}(1-x)^{x-1}\sin\pi x\,\mathrm dx\approx1.15573$

A furthur investigation on OEIS (A019632 and A061382) suggests that $I_1=\frac{\pi e}{24}$ and $I_2=\frac\pi e$ (i.e., $\left\vert I_1-\frac{\pi e}{24}\right\vert<10^{-100}$ and $\left\vert I_2-\frac\pi e\right\vert<10^{-100}$).

I think it is very possible that $I_1=\frac{\pi e}{24}$ and $I_2=\frac\pi e$, but I cannot figure them out. Is there any possible way to prove these identities?

  • 0
    @GottfriedHelms, y zhao, Thanks! I will move it to the answer.2012-11-25

3 Answers 3

20

You made a very nice observation! Often it is important to make a good guess than just to solve a prescribed problem. So it is surprising that you made a correct guess, especially considering the complexity of the formula.

I found a solution to the second integral in here, and you can also find a solution to the first integral at the link of this site.

7

Supplementary calculation of residue of the function

$f(z)=e^{z\frac{e^z}{e^z-1}}\frac{e^z}{(e^z-1)^3}$

at its triple pole $z=0$:

$f(z)$ is an odd function.Then

$g(z)=f(z)^{\frac{1}{3}}=e^{\frac{1}{3}z(\frac{e^z}{e^z-1}+1)}\frac{1}{e^z-1}$

is an odd function as well.

Hence $g(z)=\frac{A_0}{z}+A_1 z+\cdots$

and

$Resf(z)_{\vert z=0}=3A_0^2A_1.$

$z=0$ is a simple pole,then we can get $A_0=e^{\frac{1}{3}}$ without hesitation.

$\frac{1}{e^z-1}=\frac{1}{z}-\frac{1}{2}+\frac{1}{12}z+\cdots=\frac{a_0}{z}+a_1+a_2 z+\cdots$

$\frac{z}{1-e^{-z}}+z=1+\frac{3}{2}z+\frac{1}{12}z^2+\cdots=b_0+b_1z+b_2 z^2+\cdots$

Hence

$\exp{(b_0+b_1z+b_2 z^2+\cdots)}=\exp(b_0)+b_1\exp(b_0)z+(b_1^2/2+b_2)\exp(b_0)z^2+\cdots,$

i.e.,

$e^{\frac{1}{3}z(\frac{e^z}{e^z-1}+1)}=e^{\frac{1}{3}}+\frac{1}{2}e^{\frac{1}{3}}z+\frac{11}{72}e^{\frac{1}{3}}z^2+\cdots$

And $A_1=\frac{1}{12}e^{\frac{1}{3}}-\frac{1}{2}\frac{1}{2}e^{\frac{1}{3}}+\frac{11}{72}e^{\frac{1}{3}}=-\frac{1}{72}e^{\frac{1}{3}}$

Therefore $Resf(z)_{\vert z=0}=3A_0^2A_1=-e/24$.

0

Somebody actually made a very interesting tactic on MathOverflow. Here is a link to that idea.

It mainly involved these two integral representations and multiplying the two (Euler Reflection Formula).

Indeed, letting $\ell(u):=u-\ln u$ for $u>0$, note that for $x\in(0,1)$ $\qquad \Gamma(x)x^{-x}=\int_0^\infty e^{-x\ell(u)}\,du=\int_0^\infty e^{-x\ell(u)}\,\frac{du}u $ and also $\qquad \Gamma(1-x)(1-x)^{x-1}=\int_0^\infty e^{(x-1)\ell(v)}\,dv=\int_0^\infty e^{(x-1)\ell(v)}\,\frac{dv}v. $

This is really for the sake of alternate ideas.

  • 0
    Thank you for the upvotes. I do indeed feel that this post needs mentioning.2016-04-08