1
$\begingroup$

Problem:

Find the flux of of the field $F$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin, when $F = zx\hat{i} + zy\hat{j} + z^2\hat{k}$.

  • 0
    I'm having a hard time getting n hat2012-02-26

2 Answers 2

6

The way you calculate the flux of $F$ across the surface $S$ is by using a parametrization $r(s,t)$ of $S$ and then $ \int\!\!\!\!\int_S F\cdot n\, dS = \int\!\!\!\!\int_D F(r(s,t))\cdot (r_s\times r_t)\, dsdt, $ where the double integral on the right is calculated on the domain $D$ of the parametrization $r$.

In this case, since $S$ is a sphere, you can use spherical coordinates and get the parametrization $ r(\theta, \phi)=(a\cos\theta\sin\phi, a\sin\theta\sin\phi, a\cos\phi),\ \ 0\leq\theta\leq\frac\pi2,\ \ 0\leq\phi\leq\frac\pi2. $ The "first octant" is chosen by the region where we let $\theta$ and $\phi$ vary (if you think carefully about it you'll see that $\pi/2$ is the right choice above).

Now the partial derivatives: $ r_\theta=(-a\sin\theta\sin\phi,a\cos\theta\sin\phi, 0),\ \ \ r_\phi=(a\cos\theta\cos\phi, a\sin\theta\cos\phi, -a\sin\phi). $ The normal vector: \begin{eqnarray} r_\theta\times r_\phi&=&\left|\begin{matrix}i& j& k\\ -a\sin\theta\sin\phi&a\cos\theta\sin\phi& 0\\ a\cos\theta\cos\phi& a\sin\theta\cos\phi& -a\sin\phi \end{matrix}\right| \\ \ \\ &=&(-a^2\cos\theta\sin^2\phi, -a^2\sin\theta\sin^2\phi, -a^2\sin\phi\cos\phi). \end{eqnarray} Since we want the direction away from the origin, we need to reverse the signs in the normal vector. Now \begin{eqnarray} F(r(\theta,\phi))\cdot(r_\theta\times r_\phi)&=& (a^2\cos\theta\sin\phi\cos\phi,a^2\sin\theta\sin\phi\cos\phi,a^2\cos^2\phi) \\ & &\cdot(a^2\cos\theta\sin^2\phi, a^2\sin\theta\sin^2\phi, a^2\sin\phi\cos\phi) \\ &=& a^4\cos^2\theta\sin^3\phi\cos\phi+a^4\sin^2\theta\sin^3\phi\cos\phi+a^4\sin\phi\cos^3\phi\\ &=& a^4\sin\phi\cos\phi(\cos^2\theta\sin^2\phi+\sin^2\theta\sin^2\phi+\cos^2\phi)\\ &=&a^4\sin\phi\cos\phi. \end{eqnarray} Finally, $ \int\!\!\!\!\int_S F\cdot n\, dS = \int_0^{\pi/2}\!\!\int_0^{\pi/2}a^4\sin\phi\cos\phi\,d\theta d\phi=\frac\pi2\,a^4\left.\frac{\sin^2\phi}2\right|_0^{\pi/2}=\frac{\pi a^4}4 $

  • 0
    Thank you so much for all of your help, you really saved me!2012-02-26
1

This is $\int_R F \cdot n \,dS$ where $R$ denotes the boundary of portion of the sphere $x^2 + y^2 + z^2 = a^2$ where $x,y,z \geq 0$, because $F \cdot n $ is zero on the flat sides of $R$ and thus the integral over those portions is zero.

By the divergence theorem, the integral is $\int_O div\, F \,dx\,dy\,dz$, where $O$ is the portion of the sphere where $x,y,z \geq 0$. This is $\int_O 4z \,dx\,dy\,dz$ Converting to spherical coordinates this is $\int_0^{\pi \over 2} \int_0^{\pi \over 2}\int_0^a 4\rho^3 \cos(\phi)\sin(\phi)\,d\rho\,d\theta\,d\phi$ $= {\pi \over 2}\int_0^a 4\rho^3\,d\rho\int_0^{\pi \over 2}\cos(\phi)\sin(\phi)\,d\phi$ $= {\pi a^4 \over 2}\bigg({1 \over 2}\sin^2(\phi)\big|_{\phi = 0}^{\phi = {\pi \over 2}}\bigg)$ $= {\pi a^4 \over 4}$

  • 2
    alright, it's been corrected, thanks for pointing that out.2012-02-26