Let $\mathcal{F}$ be a locally free coherent sheaf on $X$ and $\mathcal{G}$ be any coherent sheaf on $X$. Let $\text{rank}(\mathcal{F})=r$. Suppose $r>1$. We have $\mathcal{F}=\tilde{M}$ for some projective $A$-module $M$. As $X$ is integral, $X$ is connected. Let $\eta$ be the generic point of $X$. Set $\mathcal{O}_{X,\eta}=K$. Then the rank of $\mathcal{F}$ is the dimension of the $K$-vectorspace $M\otimes_AK$ and the latter is the rank of the projective $A$-module $M$. As $A$ is a Dedekind ring, $M\cong A^{r-1}\oplus I$ for some ideal $I$ (see the structure theorem in http://www.math.uchicago.edu/~may/MISC/Dedekind.pdf ) and hence for any finitely generated $A$-module $N$ there is an exact sequence $ M^n\to M^m\to N\to 0.$ Thus for any coherent sheaf $\mathcal{G}$ there is an exact sequence $\mathcal{F}^n\to\mathcal{F}^m\to\mathcal{G}\to 0.$
If $r=1$ $\mathcal{F}$ is an invertible sheaf. As $X$ is affine, for any coherent sheaf $\mathcal{G}$, $\mathcal{G}\otimes\mathcal{F}^{-1}$ is globally generated. So there is an exact sequence $\mathcal{O}_X^m\to\mathcal{G}\otimes\mathcal{F}^{-1}\to 0.$ Tensoring with $\mathcal{F}$ yields an exact sequence $\mathcal{F}^m\to\mathcal{G}\to 0$ and again we obtain an exact sequence
$\mathcal{F}^n\to\mathcal{F}^m\to\mathcal{G}\to 0.$