3
$\begingroup$

Let $A$ be a Noetherian ring, $\mathfrak{p},\mathfrak{q}\subset A$ distinct prime ideals of the same height, $N$ an $A_\mathfrak{p}$-module of finite length. Then is it true that $\operatorname{Hom}_A(N,E(A/\mathfrak{q}))=0,$ where $E(A/\mathfrak{q})$ is the injective hull of $A/\mathfrak{q}$?

The main trouble here is that $N$ may not be finitely generated over $A$. If it were, I would use formulas like \begin{eqnarray} \operatorname{Ass}\operatorname{Hom}_A(N,E(A/\mathfrak{q}))&=&\operatorname{Supp}_AN\cap\operatorname{Ass}E(A/\mathfrak{q})\ &=&V(\mathfrak{p})\cap\lbrace\mathfrak{q}\rbrace\ &=&\emptyset. \end{eqnarray}

  • 0
    @Steve Yes; Sorry, I edited that in.2012-03-04

1 Answers 1

2

Suppose $\phi\in\operatorname{Hom}_A(N,E(A/\mathfrak{q}))$, and $\phi(n)=e\neq0$. We will derive a contradiction.

Since $N$ is of finite length over $A_{\mathfrak{p}}$, $\mathfrak{p}^kN=0$ for some $k$. Since $\mathfrak{p}\not\subset\mathfrak{q}$, $\exists a\in\mathfrak{p}^k\backslash\mathfrak{q}$, so $a$ acts as a unit on $E(A/\mathfrak{q})$. Then $0=\phi(an)=ae\neq0,$ a contradiction.