41
$\begingroup$

Let $X$ be a non-negative random variable and $F_{X}$ the corresponding CDF. Show, $E(X) = \int_0^\infty (1-F_X (t)) \, dt$ when $X$ has : a) a discrete distribution, b) a continuous distribution.

I assumed that for the case of a continuous distribution, since $F_X (t) = \mathbb{P}(X\leq t)$, then $1-F_X (t) = 1- \mathbb{P}(X\leq t) = \mathbb{P}(X> t)$. Although how useful integrating that is, I really have no idea.

  • 2
    As far as usefulness, this can be more numerically stable than differentiating $F$, mulitplying by $t$, and integrating. Actually, most random variables don't have pdfs, so differentiating $F$ may not even be possible.2015-10-26

3 Answers 3

41

For every nonnegative random variable $X$, whether discrete or continuous or a mix of these, $ X=\int_0^X\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\gt t}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\geqslant t}\,\mathrm dt, $ hence

$ \mathrm E(X)=\int_0^{+\infty}\mathrm P(X\gt t)\,\mathrm dt=\int_0^{+\infty}\mathrm P(X\geqslant t)\,\mathrm dt. $


Likewise, for every $p>0$, $ X^p=\int_0^Xp\,t^{p-1}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\gt t}\,p\,t^{p-1}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\geqslant t}\,p\,t^{p-1}\,\mathrm dt, $ hence

$ \mathrm E(X^p)=\int_0^{+\infty}p\,t^{p-1}\,\mathrm P(X\gt t)\,\mathrm dt=\int_0^{+\infty}p\,t^{p-1}\,\mathrm P(X\geqslant t)\,\mathrm dt. $

  • 1
    @see Yes, your reading of these formulas and the proof in your first comment are both correct.2017-02-12
12

Copied from Cross Validated / stats.stackexchange:

enter image description here

where $S(t)$ is the survival function equal to $1- F(t)$. The two areas are clearly identical.