How about just writing: $(x-\alpha)(x-\beta)=(x-\alpha^2)(x-\beta^2)$, so either $\alpha = \alpha^2$ and $\beta=\beta^2$ or $\alpha=\beta^2$ and $\beta=\alpha^2$.
If $\alpha=\alpha^2$, then $\alpha=0\text{ or }1$. Similarly, $\beta=0\text{ or } 1$. So there are three such equations (because $(\alpha,\beta)=(0,1)$ and $(\alpha,\beta)=(1,0)$ yield the same quadratic.)
On the other hand, if $\alpha = \beta^2$ and $\beta=\alpha^2$, then $\alpha^4=\alpha$. If $\alpha=0\text{ or } 1$, then $\beta=\alpha$ and we already covered those quadratics above. So assume $\alpha\neq 0,1$. Then $0=\alpha^2+\alpha +1 = \frac{\alpha^4-\alpha}{\alpha^2-\alpha}$. But then, $\beta=\alpha^2$ is also a root of $x^2+x+1$, so that's one last quadratic. ($\beta = \alpha^2 = -(\alpha+1)$ so $\beta^2 + \beta + 1 = \alpha^2+2\alpha+1 - (\alpha+1) + 1 = \alpha^2 + \alpha +1 = 0$.)
So you get four quadratics, $x^2$, $x^2-x$, $x^2-2x+1$, and $x^2+x+1$.
So the total is $4$.