Prove that
$Y= \left\{ x=(x_n)_{n \in\mathbb{N}} \in c_{0}(\mathbb N )~ \Bigg | ~\sum_{n=1}^{\infty} x_n = 0 \right\}$
is a dense linear subspace of $ c_0( \mathbb N)$.
where $ \displaystyle{c_0( \mathbb N) = \left\{ x=(x_n)_{n \in\mathbb{N}} \in \mathbb R ^{\mathbb N} : \lim_{n \to \infty} x_n =0 \right\}}$
I cannot prove that it is dense.
Any help?
Thank you in advance!