Using the inequality of Cauchy-Schwarz in Euclidean space $\mathbb{R}^3$(with the usual product), show that if $a,b,c \in \mathbb{R}^+$ different from zero, then:$9 \leq (a+b+c)\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ Inequality of Cauchy-Schwarz, $|\langle\ v\ ,\ u\ \rangle|\leq||v||\cdot||u||, \forall v,u \in\mathbb{R}^3$.
Using the inequality of Cauchy-Schwarz in Euclidean space $\mathbb{R}^3$
0
$\begingroup$
linear-algebra
1 Answers
2
Hint Compare the RHS. Can you think of any vectors $u,v$ so that
$\| u \|^2=a+b+c$ $\|v\|^2=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$