I working through Apostol's calculus, and I need to prove integrating by parts that :
$\int (a^2 - x^2)^n \,dx = \frac{x (a^2 - x^2)^n}{2n + 1} + \frac{2 a^2 n}{2n+1} \int (a^2 - x^2)^{n-1} \,dx + C $
Now, using the integration by parts formula after first division the integral to parts I arrive at:
$\int (a^2 - x^2)^n \,dx = x(a^2 - x^2)^n + 2n \int x^2 (a^2 - x^2)^{n-1} \,dx $
I could substitute and solve the integral, but I need to do something else. I multiply the first expression on the right by $ \frac{2n + 1}{2n +1}$ which leads to:
$x(a^2 - x^2)^n + 2n \int (a^2 - x^2)^{n-1} \,dx = \frac{x (a^2 - x^2)^n}{2n + 1} + \frac{2nx (a^2 - x^2)^n}{2n + 1} + 2n\int x^2(a^2 - x^2)^{n-1} \,dx$
and I am somewhat close. If I try something else, I end up even closer:
$\int (a^2 - x^2)^n \,dx = \begin{pmatrix} f(x)= a^2 - x^2 | f'(x)=-2x\\ g'(x)=(a^2-x^2)^{n-1} |g(x)=\int(a^2-x^2)^{n-1} \,dx \end{pmatrix} = $ $(a^2-x^2)\int(a^2-x^2)^{n-1} \,dx + 2\int x \Big(\int(a^2-x^2)^{n-1} \,dx \Big)\,dx =$ $(a^2-x^2)\int(a^2-x^2)^{n-1} \,dx +x^2\int(a^2-x^2)^{n-1} \,dx = a^2\int(a^2-x^2)^{n-1} \,dx $
But I think I made a mistake somewhere... could somebody help me out? I'm really stuck!
Thanks!