0
$\begingroup$

Help me please to find: $\lim_{n \to \infty }\frac{n}{\ln\left ( \frac{3n}{10} \right )}$

Thanks.

  • 1
    It helps to think about what happens when n = 1000, n = 100000, n = 1000000000 etc2012-11-16

1 Answers 1

3

$\lim_{n \to \infty }\frac{n}{\ln\left ( \frac{3n}{10} \right )}$ $=\lim_{n \to \infty }\frac{n}{\ln3+\log n-\log{10} }$

This is of the form $\frac {\infty}{\infty}$

So, we can apply L'Hospital's Rule,

$\lim_{n \to \infty }\frac{n}{\ln\left ( \frac{3n}{10} \right )} =\lim_{n \to \infty }\frac{n}{\ln3+\log n-\log{10} } =\lim_{n \to \infty }\frac1{\frac 1n}=\lim_{n \to \infty } n=\infty$


Alternatively without using L'Hospital's Rule,

let $\ln\left ( \frac{3n}{10} \right )=m,n=\frac {10}3 e^m$ and $m\to \infty$ as $n\to \infty$

So, $\lim_{n \to \infty }\frac{n}{\ln\left ( \frac{3n}{10} \right )} =\frac{10}3\lim_{m \to \infty }\frac{e^m}m =\frac{10}3\lim_{m \to \infty }\frac{1+\frac m{1!}+\frac {m^2}{2!}+\cdots }m$ $=\frac{10}3\cdot\lim_{m \to \infty }\{ \frac 1m +m+\frac m{2!}+\cdots\}=\infty $

  • 0
    @Tina, welcome. Hope I could clear the idea.2012-11-17