Let $\Omega\subset\mathbb{R}^n$ be a bounded domain. Let $u,v,v_n\in L^p(\Omega)$ and suppose that $\|u+v_n\|_p\rightarrow\|u+v\|_p$
Is true that $\|v_n\|_p\rightarrow\|v\|_p$
Thanks
Let $\Omega\subset\mathbb{R}^n$ be a bounded domain. Let $u,v,v_n\in L^p(\Omega)$ and suppose that $\|u+v_n\|_p\rightarrow\|u+v\|_p$
Is true that $\|v_n\|_p\rightarrow\|v\|_p$
Thanks
This is false. Consider the constant functions $u=-1,v_n=1+(-1)^n,v=0$.