3
$\begingroup$

Consider the following integral:

$ \int_{0}^{\infty} e^{-xt} \ln(1+\sqrt{t})dt $

Calculate its asymptotic expansion to ALL orders as $x\rightarrow\infty$.

It seems the natural thing to do is expand the integrand as a Taylor series and integrate term-by-term. I've been given the hint that I can express difficult integrals in terms of the Gamma function. I also am required to discuss the convergence of the resulting series.

$ e^{-xt}=\sum_{k=0}^{\infty}\frac{(-xt)^{k}}{k!} $

$ \ln(1+\sqrt{t})=\sum_{k=1}^{\infty} (-1)^{k+1} \frac{t^{k/2}}{k} $

I understand how to use this to get the leading order behavior, but how to get the behavior at all orders?

  • 1
    Spoiler: [Watson's Lemma](http://en.wikipedia.org/wiki/Watson's_lemma)2012-10-27

1 Answers 1

6

In the present case, there is a shortcut to Watson's lemma (mentioned in the comments), which is to scale properly the variable of integration of the integral $I(x)$ to be evaluated.

Let $x=1/z^2$ with $z\gt0$, hence $z\to0^+$. Using the change of variable $t\to z^2t$, one gets $ I(x)=z^2\int_0^{+\infty}\mathrm e^{-t}\log(1+z\sqrt{t})\,\mathrm dt. $ For every $N\geqslant0$, an expansion of $\log(1+s)$ up to order $s^N$ when $s\to0$ is $ \log(1+s)=\sum_{n=1}^N(-1)^{n-1}\frac1ns^n+o(s^{N}). $ This yields $ I(x)=z^2\sum_{n=1}^N(-1)^{n-1}I_nz^n+o(z^{N+2})=\sum_{n=1}^N(-1)^{n-1}I_nx^{-1-n/2}+o(x^{-1-N/2}), $ where, for every $n\geqslant1$, $ I_n=\frac1n\int_0^{+\infty}\mathrm e^{-t}t^{n/2}\,\mathrm dt=\frac1n\Gamma\left(\frac{n}2+1\right)=\frac12\Gamma\left(\frac{n}2\right). $ Finally, for every $N\geqslant0$, $ I(x)=\sum_{n=1}^N(-1)^{n-1}\frac12\Gamma\left(\frac{n}2\right)x^{-1-n/2}+o(x^{-1-N/2}). $ Note that the radius of convergence of the series $\sum\limits_n\Gamma\left(\frac{n}2\right)t^n$ being zero, the formulas above are indeed asymptotic expansions.

  • 0
    If the series was convergent for $x$ large, the integral in the first displayed equation of my answer would be analytic in a neighborhood of $z=0$. But $z\mapsto\log(1+z\sqrt{t})$ has radius of convergence $1/\sqrt{t}$, which can be made as small as one wants, for large values of $t$. Hence one can expect no positive radius of convergence for the integral.2012-10-27