3
$\begingroup$

Let $a,b,c >0$

Prove the inequality $\displaystyle{\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{1}{a+b+c+1} \geq 1}$

I dont even know where to begin.

Only interested in hints (not solution)

2 Answers 2

11

Hint :

$\frac{a}{a+1} > \frac{a}{a+b+c+1}$

$\frac{b}{b+1} > \frac{b}{a+b+c+1}$

$\frac{c}{c+1} > \frac{c}{a+b+c+1}$

  • 1
    The whole expression is > \frac{a+b+c+1}{a+b+c+1} = 12012-03-15
4

We have $a+1\leq a+b+c+1$, $b+1\leq a+b+c+1$ and $c+1\leq a+b+c+1$ so $\frac 1{x+1}\geq \frac 1{1+a+b+c}$ where $x=a,b$ or $c$. Now multiply by $x$ to get $\frac x{x+1}\geq \frac x{1+a+b+c}$ and sum.

  • 0
    Sorry I reversed the inequalities, now I think it's correct.2012-03-15