3
$\begingroup$

Let $x_1, \ldots, x_n$ be vectors in the normed space $(X, \|\cdot\|)$. Let $\mu$ be the Lebesgue measure on the cube $[-1,1]^n$. Denote vectors in $[-1,1]^n$ by $y=(y_1, \ldots, y_n)$.

Are the following integrals equivalent: $ \int_{[-1,1]^n}\left\|\sum_{i=1}^nx_iy_i\right\|d\mu(y) \quad \mbox{and} \quad \sum_{y\in {\{-1,1\}^n}}\left\|\sum_{i=1}^nx_iy_i\right\| $

Under 'equivalent' I mean that each integral bounded above by a constant multiple of the other.

  • 2
    *Equivalent* in the sense of *equal* or of *each bounded above by a constant multiple of the other*?2012-07-28

0 Answers 0