Is there any way to find the sum of the below series ?
$\underbrace{10^2 + 14^2 + 18^2 +\cdots}_{41\text{ terms}}$
I got asked this question in a competitive exam.
Is there any way to find the sum of the below series ?
$\underbrace{10^2 + 14^2 + 18^2 +\cdots}_{41\text{ terms}}$
I got asked this question in a competitive exam.
This series equals
$\sum_{n=0}^{40} (10+4n)^2= 4\sum_{n=0}^{40} (5+2n)^2= 4\sum_{n=0}^{40} (25+20n+4n^2)= 4\left(25\sum_{n=0}^{40}1 +20\sum_{n=0}^{40}n+4\sum_{n=0}^{40}n^2\right)$
Now recall that
$\sum_{n=0}^m 1=m+1$
$\sum_{n=0}^m n=\frac{m(m+1)}{2}$
$\sum_{n=0}^m n^2=\frac{m(m+1)(2m+1)}{6}$
Let $A=10^2+14^2+18^2+\dots$ to 41 terms. Then $A=4B$, where $B=5^2+7^2+9^2+\dots$ to 41 terms. Let $C=6^2+8^2+10^2+\dots$ to 41 terms. Then $B+C=5^2+6^2+7^2+\dots=(1^2+2^2+3^2+\dots)-(1^2+2^2+3^2+4^2)$ where the sums go to $86^2$. Also, $C=4D$, where $D=3^2+4^2+5^2+\dots=(1^2+2^2+3^2+\dots)-(1^2+2^2)$ where the sums go to $43^2$. So you can calculate $D$ from Argon's last formula, then from $D$ you can get $C$; you can get $B+C$ from Argon, then $B$, then, finally, $A$.