3
$\begingroup$

What can be the possible value of $a+b+c$ in the following case?

$a^{2}-bc=3$ $b^{2}-ca=4$ $c^{2}-ab=5$

$0, 1, -1$ or $1/2$?


After doing $II-I$, $III-I$ and $III-II$, I got, $(a+b+c)(b-a)=1$ $(a+b+c)(c-a)=2$ $(a+b+c)(c-b)=1$

I'm unable to solve further, please help.

  • 2
    Try comparing the first two of your equations - $a+b+c \neq 0$ so $(c-a) = 2(b-a)$ and see if that helps you to make further progress.2012-07-20

2 Answers 2

6

You have

$\left\{ \begin{align*} &(a+b+c)(b-a)=1\\ &(a+b+c)(c-a)=2\\ &(a+b+c)(c-b)=1\;. \end{align*}\right.\tag{1}$

These clearly imply that $a+b+c\ne 0$, so the first and third of these imply that $b-a=c-b$. In other words, $\langle a,b,c\rangle$ is an arithmetic progression. (The second equation of $(1)$ confirms this.) Set $d=b-a$; then $b=a+d$ and $c=a+2d$, so $a+b+c=3(a+d)$, and each of the equation in $(1)$ reduces to $3d(a+d)=1$.

Going back to the original equations, we see that

$\begin{align*} 3&=a^2-bc=a^2-(a+d)(a+2d)\\ &=-3ad-2d^2=-3d(a+d)+d^2\\ &=d^2-1\;, \end{align*}$

or $d^2=4$. Thus, $d=\pm 2$, $1=3d(a+d)=\pm6(a+d)$, and $a+b+c=3(a+d)=\pm\frac12$.

  • 0
    ok then i will delete my answer2012-07-20
3

$(a-b)^2+(b-c)^2+(c-a)^2=2(3+4+5)=24$

Now $a-b=\dfrac1{a+b+c}$ etc.

Putting the values of $a-b, b-c, c-a;$

$\frac1{(a+b+c)^2}(1^2+2^2+1^2)=24$

$\implies(a+b+c)^2=\frac14$

$\implies a+b+c=\pm\frac12$