f(t) is continuous function.So I know that $\int _0^x {f(t) dt}=$ "The net signed area between $t=0, y=0, t=x$, and $y=f(t)$"
And I can find the same result with endless small rectangulars areas method.
"The net signed area between $t=0, y=0, t=x$, and $y=f(t)$"=$\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n f(\frac{kx}{n})$
Therefore,
$\int _0^x {f(t) dt}=\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n f(\frac{kx}{n})$
Is there any other analytical method (such as transform methods or any other one) to prove that the equation is correct?
EDIT:During my attempts to proof the equality, I have noticed that the equality can be proved via power series expression of $f(x)$. I did not think that way before asking the question. I would like to share it with you. It is also welcome your comments about my approach and waiting for your different methods to show a proof via another method as well.
$ f(x) =f(0)+\frac{f'(0)x}{1!}+\frac{f''(0)x^2}{2!}+.....=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n $
$\int _0^x {f(t) dt}=\int _0^x(\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} t^n)dt=\sum_{n=0}^{\infty} (\frac{f^{(n)}(0)}{n!}\int _0^x t^n dt)=\sum_{n=0}^{\infty} (\frac{f^{(n)}(0)}{n!}\frac{x^{n+1}}{n+1})$ $\int _0^x {f(t) dt}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)x^{n+1}}{(n+1)!}$ $(1)$
$f(\frac{kx}{n})=\sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m!} (\frac{kx}{n})^m$ $\sum \limits_{k=1}^{n} k^m=\frac{n^{m+1}}{m+1}+a_mn^m+....+a_1n=\frac{n^{m+1}}{m+1}+\sum \limits_{j=1}^m a_jn^j$ where $a_j$ are constants. More information about summation http://en.wikipedia.org/wiki/Summation
$\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n f(\frac{kx}{n})=\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n \sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m!} (\frac{kx}{n})^m=\lim_{n\to\infty} \frac{x}{n}\sum_{m=0}^{\infty} \frac{x^m}{n^m} \frac{f^{(m)}(0)}{m!} \sum \limits_{k=1}^n k^m=\lim_{n\to\infty} \frac{x}{n}[f(0)n+\frac{f'(0)x}{n 1!}(\frac{n^2}{2}+\frac{n}{2})+ \frac{f''(0)x^2}{n^2 2!}(\frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6})+\frac{f'''(0)x^3}{n^3 3!}(\frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4})+\frac{f^{(4)}(0)x^4}{n^4 4!}(\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30})+...... ]= \lim_{n\to\infty} [f(0)x+\frac{f'(0)x^2}{n^2 1!}(\frac{n^2}{2}+\frac{n}{2})+ \frac{f''(0)x^3}{n^3 2!}(\frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6})+\frac{f'''(0)x^4}{n^4 3!}(\frac{n^4}{4}+\frac{n^3}{2}+\frac{n^2}{4})+\frac{f^{(4)}(0)x^5}{n^5 4!}(\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30})+...... ]= [f(0)x+\frac{f'(0)x^2}{ 2!}+ \frac{f''(0)x^3}{ 3!}+\frac{f'''(0)x^4}{ 4!}+\frac{f^{(4)}(0)x^5}{ 5!}+...... ]$
$\lim_{n\to\infty} \frac{x}{n}\sum \limits_{k=1}^n f(\frac{kx}{n})=\sum_{m=0}^{\infty} \frac{f^{(m)}(0)x^{m+1}}{(m+1)!}$ $(2)$
Equation $(1)$ and equation $(2)$ are equal to each other. The proof is completed.