2
$\begingroup$

I would like to get an asymptotic limit at the following integral: for $p\ge 2, n \in N$, $t \ge 0$ $ \int_{0}^{\frac 12 \sqrt{(n+1)!}}\left(1-\frac{t^2}{2^2(n+1)!}\right)^p \mathrm{d} t $ I think substitution $t=\frac 12 \sqrt{(n+1)!}y$ should work. But after the substittution, I don't know what to do.

Thank you for your help.

  • 0
    yes, $n \in N$.2012-05-03

1 Answers 1

5

Performing the substitution $ t = \frac{y}{2} \sqrt{(n+1)!}$, the integral becomes: $ \frac{\sqrt{(n+1)!}}{2} \int_0^1 \left( 1 - \frac{y^2}{16} \right)^p \mathrm{d} y = \frac{\sqrt{(n+1)!}}{2} \sum_{k=0}^\infty \frac{1}{2k+1} \binom{p}{k} \frac{(-1)^k}{16^k} $ So as $n$ grows, so does the magnitude of the integral.