Let $A_n \overset{SOT}{\to} A$ where $A$ is invertible. Does $A_n^{-1} \overset{SOT}{\to} A^{-1}$? Does $A_n^{-1} \overset{WOT}{\to} A^{-1}$?
EDIT: Forgot to mention $\{A,A_n\}\in\mathscr{B(H)}$ where $\mathscr{H}$ is a separable Hilbert space.
Let $A_n \overset{SOT}{\to} A$ where $A$ is invertible. Does $A_n^{-1} \overset{SOT}{\to} A^{-1}$? Does $A_n^{-1} \overset{WOT}{\to} A^{-1}$?
EDIT: Forgot to mention $\{A,A_n\}\in\mathscr{B(H)}$ where $\mathscr{H}$ is a separable Hilbert space.