2
$\begingroup$

Does there exist generators $S$ and $T$ for the modular group $\Gamma=PSL(2,\mathbb{Z})$ with the following property:

$S+S^{-1}+T+T^{-1}=0$

Here is a candidate:

$S=\left[\begin{array}{cc} -1 & 0 \\ 1 & -1 \\ \end{array}\right], \,T=\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \\ \end{array}\right]$

Just not sure if these two generate $\Gamma$.

1 Answers 1

4

Yes, your choice for $S$ and $T$ generate the modular group $\Gamma=PSL_2(\mathbb{Z})$. Other choices would also work.

The standard choice of generators is $ \Gamma = \left \langle \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right], \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] \right \rangle.$

You already have $T=\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right]$. Notice that $TST=\left[ \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right] = - \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right]$. Since we can obtain the standard generators for $\Gamma$ as products of $S$, $T$, and their inverses, we conclude that $S$ and $T$ generate $\Gamma$.


Just to clarify for anyone not familiar with all the matrix groups, $PSL_2(\mathbb{Z})=SL_2(\mathbb{Z})/\left\{1,-1\right\}$ is the group of 2x2 matrices over the integers with determinant 1, modulo the subgroup of scalar transformations, which in this case is just $\{1,-1\}$. That's why it doesn't matter if I obtain $\left[ \begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right]$ or $\left[ \begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right]$; they represent the same element in $PSL_2(\mathbb{Z})$.

  • 0
    @JacksonWalters: OK, I understand what you mean now. That's nice to know. I suppose any choice of (representatives of) generators for $PSL(2,\mathbb{Z})$ will be generators of $SL(2,\mathbb{Z})$, since (\pm \left[ \begin{smallmatrix} 0 & 1 \\-1 & 0 \end{smallmatrix} \right])^2 = -I_2.2012-05-19