I am trying to figure out what my book did, I can't make sense of the example.
"Since the degree of the numberator is greater than the degree of the denominator, we first perform the long division. This enables us to write
$\int \frac{x^3 + x}{x -1} dx = \int \left(x^2 + x + 2 + \frac{2}{x-1}\right)dx = \frac{x^3}{3} + \frac{x^2}{2} + 2x + 2\ln|x-1| + C$
I am mostly concerned with the transformation of the problem by long division I think.
I attempt to do this on my own.
$(x+1)$ and $(x^3 + x)$ inside the long division bracket
I am left with $x^2 - 1$ on top and a leftover -1
This is not in their answer, I do not know how they did that.