2
$\begingroup$

Suppose a point has a random location in the circle of radius 1 around the origin. The coordinates $(X,Y)$ of the point have a joint density

$f_{X,Y}(x,y) = \begin{cases}\frac{2}{\pi}(x^2+y^2)&\mathrm{\ if \ } x^2+y^2\le1\\ 0&\mathrm{\ otherwise\ }\end{cases}$

Let $D$ be the distance from the random point to the center of the circle. How do I compute the $nth$ moment of $D$, $E(D^n)$, for $n = 1,2,...m$?

  • 0
    Are you sure you have copied this problem correctly, that is, are you sure the joint density is indeed a valid density function? Hint: use LOTUS, the Law of the Unconscious Statistician.2012-09-28

2 Answers 2

3

We have $D=\sqrt{X^2+Y^2}$, so the $n$-th moment of $D$ is the integral of $(x^2+y^2)^{n/2}\left(\frac{2}{\pi}\right)(x^2+y^2)$ over the unit disk. Thus we want to integrate $\displaystyle\frac{2}{\pi}\displaystyle(x^2+y^2)^{1+\frac{n}{2}}$ over the unit disk.

Change to polar coordinates.

  • 0
    No problem, you are welcome. It gave me the chance to notice and fix a "typo," I had $x^2+y^2$ where I meant $X^2+Y^2$.2014-05-15
0

For every $0\leqslant x\leqslant1$, $\mathrm P(D\leqslant x)=\int\limits_0^{2\pi}\int\limits_0^x(2/\pi)r^2\cdot r\mathrm dr\mathrm d\theta=\int_0^x4r^3\mathrm dr$ hence the density $f_D$ of $D$ is such that $f_D(x)=4x^3\cdot \mathbf 1_{0\leqslant x\leqslant1}$.

In particular, $\mathrm E(D^n)=\int\limits_0^1x^n\cdot f_D(x)\mathrm dx=\int\limits_0^14x^{n+3}\mathrm dx=4/(n+4)$.

One can note that $D^4$ is uniform on $(0,1)$.