3
$\begingroup$

Lets $G$ is finite abelian group (such that for any $x\in G$ $x+x=0$, i.e. $G=\mathbb{Z}_{2}^{\oplus k}$ for some $k\in\mathbb{N}$) and $(\cdot,\cdot):G\times G\to \mathbb{Z}_{2}$ is symmetrical bilinear form.

Know that: $(a, m)=0,$ $(a, p)=1,$ $(b, m)=1,$ $(b, p)=0.$

Is it true that $(a, b) = 1?$

Thanks.

  • 0
    @joriki: Lets $G$ is finite2012-03-01

2 Answers 2

2

No, this is not true: Take the canonical dot product, with $k=2$, $a=p=(0,1)$, $b=m=(1,0)$.

0

It can go either way. Consider $k=3$ and the bilinear form defined by the usual inner product

$(x,y)=x_1y_1+x_2y_2+x_3y_3$

Then we can arrange $a,b,p,m$ so that $(a,b)$ is either $0$ or $1$ to our liking:

$\begin{array}{|c|c|c|}\hline a &(1,0,0) & (1,0,1) \\ b & (0,1,0) & (0,1,1) \\ p & (1,0,0) & (1,0,0) \\ m & (0,1,0) & (0,1,0) \\ \hline (a,b) & 0 & 1 \\ \hline \end{array} $