1
$\begingroup$

I have tried to evaluate the following integral for the last few hours, and I did not succeed:

$ \int\limits_{0}^{2 \pi} e^{\mathrm{i} \cdot n \cdot\mathrm{arcsin}(r \cdot\mathrm{sin}(\theta))} \cdot e^{\mathrm{i}\cdot m \cdot \mathrm{arcsin}(r \cdot \mathrm{cos}(\theta))} d \; \theta$

for $0. And also this other integral:

$ \int\limits_{0}^{2 \pi} e^{\mathrm{i} \cdot n \cdot\mathrm{arctan}(t \cdot\mathrm{sin}(\theta))} \cdot e^{\mathrm{i}\cdot m \cdot \mathrm{arctan}(t \cdot \mathrm{cos}(\theta))} d \; \theta.$

Here $m$ and $n$ are integers, and $t \in \mathbb{R}$ is scalar.

I am pretty sure that is nonzero, if and only if $n=m$, and indepedent of $r$ otherwise, but I cannot figure what substitution makes this easy to see.

  • 0
    Please, think over the question before asking it - at this moment the whole thing has changed two times!2012-05-15

1 Answers 1

1

This addresses the question in its original form, where $\arcsin$ was used.

First, let's massage the integral: $ \begin{eqnarray} \mathcal{I} &=& \int_0^{2 \pi} \exp\left( i n \arcsin(r \sin(\theta)) + i m \arcsin(r \cos(\theta)) \right) \mathrm{d} \theta \\ &\stackrel{\theta \to 2\pi - \theta}{=}& \int_0^{2 \pi} \exp\left( -i n \arcsin(r \sin(\theta)) + i m \arcsin(r \cos(\theta)) \right) \mathrm{d} \theta \end{eqnarray} $ Now averaging out both lines: $ \begin{eqnarray} \mathcal{I} &=& \int_0^{2 \pi} \cos\left(n \arcsin(r \sin(\theta)) \right)\cdot \exp\left( i m \arcsin(r \cos(\theta)) \right) \mathrm{d} \theta \\ &=& 2 \int_0^{\pi} \cos\left(n \arcsin(r \sin(\theta)) \right)\cdot \cos\left( m \arcsin(r \cos(\theta)) \right) \mathrm{d} \theta \end{eqnarray} $

Here is a counter-example to your claim. Let $r = \frac{1}{2}$, and $n=1$, $m=2$. Then the integrand is positive, and hence the integral does not vanish:

enter image description here

Added The above counterexample actually carries over to the case with $\arctan$ just the same, i.e. the integrand is positive.

  • 1
    @late_learner $\int_0^{2\pi} = \int_0^{\pi} + \int_{\pi}^{2\pi}$. In the second integral change variables, $\theta = \pi + \theta$, and use $\cos(\pi+\theta) = -\cos(\theta)$. Then combined two integrals into one, and simplify the integrand.2012-05-15