Note that $x^2+x-2=(x-1)(x+2)$. There is a problem only if $(x-1)(x+2)$ is $0$ or negative. (If it is $0$, we have a division by $0$ issue, and if it is negative we have a square root of a negative issue.)
Can you find where $(x-1)(x+2)$ is $0$? Can you find where it is negative? Together, these are the numbers which are not in the domain of $f(x)$.
Or, to view things more positively, the function $f(x)$ is defined precisely for all $x$ such that $(x-1)(x+2)$ is positive.
Remark: Let $g(x)=x^2+x-2$. We want to know where $g(x)$ is positive. By factoring, or by using the Quadratic Formula, we can see that $g(x)=0$ at $x=-2$ and at $x=1$.
It is a useful fact that a nice continuous function can only change sign by going throgh $0$. This means that in the interval $(-\infty, -2)$, $g(x)$ has constant sign. It also has constant sign in $(-2,1)$, and also in $(1,\infty)$.
We still don't know which signs. But this can be determined by finding $g(x)$ at a test point in each interval. For example, let $x=-100$. Clearly $g(-100)$ is positive, so $g(x)$ is positive for all $x$ in the interval $(-\infty,0)$.
For the interval $(-2,1)$, $x=0$ is a convenient test point. Note that $g(0) \lt 0$, so $g(x)$ is negative in the whole interval $(-2,1)$. A similar calculation will settle things for the remaining interval $(1,\infty)$.
There are many other ways to handle the problem. For example, you know that the parabola $y=(x+2)(x-1)$ is upward facing, and crosses the $x$-axis at $x=-2$ and $x=1$. So it is below the $x$-axis (negative) only when $-2 \lt x \lt 1$.
Or we can work with pure inequalities. The product $(x+2)(x-1)$ is positive when $x+2$ and $x-1$ are both positive. This happens when $x \gt 1$. The product is also positive when $x+2$ and $x-1$ are both negative. This happens when $x \lt -2$.