I really appreciate it if someone help me solving this integral:
$ \int \frac 1x \cdot \operatorname{Erfc}^n x\, dx,$
where $\operatorname{Erfc}$ is the complementary error function, defined as $\operatorname{Erfc}=\frac 2{\sqrt \pi}\int_x^{+\infty}e^{-t^2}dt$.
thank you