I am not understanding an example. I think I missed something really obvious. Can someone point it out to me?
Let $X_i$ be iid Bernoulli random variables, taking values 0 and 1 with probability 1/2.
then $\lim\limits_{n\rightarrow\infty} 1/n \log \mathbb{P}(S_n \geq an ) = - I(a)$ for $a\in[0,1]$, where
$I(z) = \log(2) + z\log(z) + (1-z)\log(1-z)$
In the sketch proof, it started with $I(z) = I(1-z)$
I must have missed something here or I am being really dumb, or both. As I can see $\mathbb{P}(S_n \geq an )$ is decreasing in $a$, therefore $-I(z)$ should be a decreasing function, and $I$ should be an increasing function?
PS why is Large Deviation Principles not a tag? or is there a closely related one?