8
$\begingroup$

I understand that $a^{\log_b(n)} = n^{\log_b(a)}.$

What is the math behind this transformation that allows you to swap the $a$ and $n$?

  • 0
    Take the base-$b$ logarithms of both sides for starters.2012-04-28

2 Answers 2

9

By definition, $a=b^{\log_b(a)}$ and $n=b^{\log_b(n)}$. Therefore $a^{\log_b(n)}=(b^{\log_b(a)})^{\log_b(n)}=b^{\log_b(a)\cdot\log_b(n)}=(b^{\log_b(n)})^{\log_b(a)}=n^{\log_b(a)}.$

0

Use change of base on $\log_b(n)$ and write it as $\frac{\log_a(n)}{\log_a(b)}$. Thus, $a^{\frac{\log_a(n)}{\log_a(b)}}=n^{\frac{1}{\log_a(b)}}=n^{\log_b(a)}$.

  • 0
    I hope this helps: $a^{\frac{\log_a(n)}{\log_a(b)}}=\left(a^{\log_a(n)}\right)^{\frac{1}{\log_a(b)}}=n^{\frac{1}{\log_a(b)}}=n^{\log_b(a)}$. In general, $\log_a(b) = \frac{\log_b(b)}{\log_b(a)} = \frac{1}{\log_b(a)}$.2012-04-29