1
$\begingroup$

We are given the following matrix: $ A=\begin{pmatrix} b_1 & \lambda_1b_1 & \lambda_1^2b_1 & \ldots &\lambda_1^{n-1}b_1 \\ b_2 & \lambda_2b_2 & \lambda_2^2b_2 & \ldots &\lambda_2^{n-1}b_2\\ \vdots\\ b_n & \lambda_nb_n & \lambda_n^2b_n & \ldots &\lambda_n^{n-1}b_n \\ \end{pmatrix}. $

For what values of $\lambda_k$ and $b_k\,(k=1,\ldots,n)$ is the rank of $A$ equal to $n$?

How does one solve this and what is the solution?

  • 0
    See [here](http://meta.math.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference/5023#5023) for how to type matrices.2012-12-02

1 Answers 1

1

$\det(A)=b_1\cdots b_n \det(V)$, where $\det(V)$ is the determinant of the Vandermonde matrix of $\lambda_1,\cdots,\lambda_n$, so $\det(A)=b_1\cdots b_n \prod\limits_{1\le i< j \le n}(\lambda_j - \lambda_i)$, so if $b_i \neq 0$ and $\lambda_j \neq \lambda_i$ ($i \neq j$), then $A$ is full rank.

  • 0
    Great, thank you so much. :)2012-12-02