I'd like to give a suggestion for the equality
$\displaystyle \int_{1/3}^{1/2} \frac{\text{arctanh } t}{t}\text{ d}t=-\int_{1/3}^{1/2} \frac{\log v}{1-v^2}\text{ d}v$
The idea is to rewrite $\displaystyle \text{arctanh } t=\int_0^t \frac{1}{1-s^2}\text{ d}s$, so that we have
$\displaystyle \int_{1/3}^{1/2} \frac{\text{arctanh } t}{t}\text{ d}t=\int_{1/3}^{1/2} \int_0^t \frac{1}{1-s^2} \frac{1}{t} \text{ d}s \text{ d}t$
Now we can change the order of integration (note that the region isn't "simple"):
$\displaystyle \int_{1/3}^{1/2} \int_0^t \frac{1}{1-s^2} \frac{1}{t} \text{ d}s \text{ d}t=\int_{0}^{1/3} \int_{1/3}^{1/2} \frac{1}{1-s^2} \frac{1}{t} \text{ d}t \text{ d}s+\int_{1/3}^{1/2} \int_{s}^{1/2} \frac{1}{1-s^2} \frac{1}{t} \text{ d}t \text{ d}s$
It is very easy to explicitly evaluate several of the terms now:
$\begin{align*} &=\displaystyle \frac{1}{2} \log(3/2) \log(2)+\int_{1/3}^{1/2} \frac{\log(1/2)-\log s}{1-s^2}\text{ d}s \\ &=\frac{1}{2} \log(3/2) \log(2)+\int_{1/3}^{1/2} \frac{\log(1/2)}{1-s^2}\text{ d}s - \int_{1/3}^{1/2} \frac{\log s}{1-s^2}\text{ d}s \\ &=\frac{1}{2} \log(3/2) \log(2)-\frac{1}{2} \log(3/2) \log(2) - \int_{1/3}^{1/2} \frac{\log s}{1-s^2}\text{ d}s \\ &=- \int_{1/3}^{1/2} \frac{\log s}{1-s^2}\text{ d}s \end{align*}$
This is precisely the desired term!