Let the three statements be $A$, $B$ and $C$ respectively. Then we can summarize the statements as:
\begin{align} (A &\Leftrightarrow [\neg B \vee \neg C]) \\ \wedge \ (B &\Leftrightarrow [B \vee \neg (B \wedge C)]) \\ \wedge \ (C &\Leftrightarrow [(\neg A \wedge B) \vee \neg C]). \end{align}
Writing out all implications, we get
\begin{align} (A &\Rightarrow [\neg B \vee \neg C]) \\ \wedge \ (A &\Leftarrow [\neg B \vee \neg C]) \\ \wedge \ (B &\Rightarrow [B \vee \neg (B \wedge C)]) \\ \wedge \ (B &\Leftarrow [B \vee \neg (B \wedge C)]) \\ \wedge \ (C &\Rightarrow [(\neg A \wedge B) \vee \neg C]) \\ \wedge \ (C &\Leftarrow [(\neg A \wedge B) \vee \neg C]). \end{align}
Reducing $P \Rightarrow Q$ to $\neg P \vee Q$, we get
\begin{align} &(\neg A \vee [\neg B \vee \neg C]) \\ \wedge& (A \vee \neg [\neg B \vee \neg C]) \\ \wedge& (\neg B \vee [B \vee \neg (B \wedge C)]) \\ \wedge& (B \vee \neg [B \vee \neg (B \wedge C)]) \\ \wedge& (\neg C \vee [(\neg A \wedge B) \vee \neg C]) \\ \wedge& (C \vee \neg [(\neg A \wedge B) \vee \neg C]). \end{align}
Reducing each term individually, we get
\begin{align} &(\neg A \vee \neg B \vee \neg C) \\ \wedge& (A \vee (B \wedge C)) \\ \wedge&\text{true} \\ \wedge& B \\ \wedge& (\neg C \vee (\neg A \wedge B)) \\ \wedge& C. \end{align}
Or, in short,
$B \wedge C \wedge (A \vee (B \wedge C)) \wedge (\neg A \vee \neg B \vee \neg C) \wedge (\neg C \vee (\neg A \wedge B)).$
This statement can only hold if $B$ and $C$ both hold, in which case the third, fourth and fifth term reduce to $\text{true}$, $\neg A$ and $\neg A$. So the statements are consistent if and only if
$\color{blue}{\neg A \wedge B \wedge C}.$
So even if multiple statements could be a lie, the only consistent scenario is that statement $1$ is a lie, and $2$ and $3$ are truths.