2
$\begingroup$

Let $E/\mathbb{Q}$ be an elliptic curve. Recall that Szpiro's conjecture says that for every $\epsilon > 0$, there exists $C_\epsilon$ such that $ |\Delta_E| \leq C_\epsilon(N_E)^{6 + \epsilon}, $ where $\Delta_E$ is the minimal discriminant of $E$ and $N_E$ is the conductor of $E$.

One consequence of Szpiro's conjecture is Fermat's Last Theorem for sufficiently large exponents and the $ABC$-conjecture for the exponent $3/2$.

My question is are there any other known consequences of Szpiro's conjecture (references are appreciated)?

EDIT: Preferably a consequence of the Szpiro conjecture that is distinct from a consequence of the $ABC$-conjecture.

  • 0
    Cool---thanks for the link.2012-05-20

1 Answers 1

3

The abstract of a paper by Joe Silverman at http://arxiv.org/abs/0908.3895 says,

"It is known that Szpiro's conjecture, or equivalently the ABC-conjecture, implies Lang's conjecture giving a uniform lower bound for the canonical height of nontorsion points on elliptic curves. In this note we show that a significantly weaker version of Szpiro's conjecture, which we call "prime-depleted," suffices to prove Lang's conjecture."

For what it's worth (probably less than epsilon), Szpiro's conjecture has a Facebook page, http://www.facebook.com/pages/Szpiros-conjecture/139143682780725?nr=133320400042160.

  • 0
    Ok then. I shall hold off a bit then. Thanks again for the help though.2012-05-20