The problem is like this:
Fix $n$ a positive integer. Suppose that $z_{1},\cdots,z_{n} \in \mathbb C$ are complex numbers satisfying $|\sum_{j=1}^{n}z_{j}w_{j}| \le 1$ for all $w_{1},\cdots,w_{n} \in \mathbb C$ such that $\sum_{j=1}^{n}|w_{j}|^{2}\le 1$. Prove that $\sum_{j=1}^{n}|z_{j}|^{2}\le 1$.
For this problem, I so far have that $|z_{i}|^{2}\le 1$ for all $i$ by plugging $(0, \cdots,0,1,0,\cdots,0)$ for $w=(w_{1},\cdots,w_{n} )$
Also, by plugging $(1/\sqrt{n},\cdots,1/\sqrt{n})$ for $w=(w_{1},\cdots,w_{n} )$ we could have $|z_{1}+\cdots+z_{n}|\le \sqrt{n}$
I wish we can conclude that $|z_{i}|\le 1/\sqrt{n}$ for each $i$.
Am I in the right direction?
Any comment would be grateful!