Let $p_1,\ldots,p_n\in\mathbb{N}$ be different prime numbers, it can be shown that $[\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_n}):\mathbb{Q}]=2^n$ and in any case it is clearly finite since $[\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_n}):\mathbb{Q}]\leq2^n$.
Since $char(\mathbb{Q})=0$ then $\mathbb{Q}$ is perfect hence every field extension is separable, in particular $\mathbb{Q}(\sqrt{p_{1}},\sqrt{p_{2}},\ldots,\sqrt{p_{n}})/\mathbb{Q}$ is separable.
Since $\mathbb{Q}(\sqrt{p_{1}},\sqrt{p_{2}},\ldots,\sqrt{p_{n}})/\mathbb{Q}$ is a finite and separable field extension, by the primitive element theorem, it holds that there exist $\alpha\in\mathbb{Q}(\sqrt{p_{1}},\sqrt{p_{2}},\ldots,\sqrt{p_{n}})$ s.t $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{p_{1}},\sqrt{p_{2}},\ldots,\sqrt{p_{n}})$.
I wish to find such element $\alpha$ (i.e. a primitive element, that we know exist).
I know how to do this in the case $n=2$, I tried to generalize and prove this claim by induction, in the induction step I need to prove:
$\sqrt{p_{1}}+\cdots+\sqrt{p_{n-1}}\in\mathbb{Q}(\sqrt{p_{1}}+\sqrt{p_{2}}+\sqrt{p_{n}})$
$\sqrt{p_{n}}\in\mathbb{Q}(\sqrt{p_{1}}+\sqrt{p_{2}}+\sqrt{p_{n}})$
What I tried to do is to look at :
$ \begin{align} & (\sqrt{p_{1}}+\sqrt{p_{2}}+\sqrt{p_{n}})(\sqrt{p_{1}}+\sqrt{p_{2}}-\sqrt{p_{n}}) \\ & =((\sqrt{p_{1}}+\sqrt{p_{2}}+\sqrt{p_{n-1}})+\sqrt{p_{n}})((\sqrt{p_{1}}+\sqrt{p_{2}}+\sqrt{p_{n-1}})-\sqrt{p_{n}}) \\ & =(\sqrt{p_{1}}+\cdots+\sqrt{p_{n-1}})^{2}-p_{n} \end{align} $
If $n=2$ then this product is in $\mathbb{Q}$ hence in $\mathbb{Q}(\sqrt{p_{1}}+\sqrt{p_{2}})$ hence $\sqrt{p_{1}}-\sqrt{p_{2}}\in\mathbb{Q}(\sqrt{p_{1}}+\sqrt{p_{2}})$ so adding we get $\sqrt{p_1}\in\mathbb{Q}(\sqrt{p_1}+\sqrt{p_2})$ hence $\sqrt{p_2}\in\mathbb{Q}(\sqrt{p_1}+\sqrt{p_2})$ and we have proven $(2)$
So the reason I fail here is that I can't manage to show $\sqrt{p_{1}}+\sqrt{p_{2}}-\sqrt{p_{n}}\in\mathbb{Q}(\sqrt{p_{1}}+\sqrt{p_{2}}+\sqrt{p_{n}}).$
Can someone please help me find a primitive element, or help complete the proof I am trying to do here ? help is very much appriciated!