1
$\begingroup$

How to solve a recurrence equation with non-constant coefficients? The equation is $ 120(3k+1)(18k^3-21k-2)(k+2)a_{3k-6}=120(54k^4-117k^2+4)(k-1)a_{3k-5}+(k-1)^2(3k^2-2)^2k^3(k+2)(k+1)(6k^2+6k-1). $ Here $a_0=7, a_1=42, a_2=189, a_3=708, a_4=2121$. This equation has non-constant coefficient. Are there some general method to solve this equation?

Thank you very much.

Edit: the other two equations are $ (3k+2)(18k^3+54k^2+33k-1)a_{3k-5} = (3k+1)(18k^3-21k-2)a_{3k-4}+(1/120)k^2(3k^2+6k+1)(k+1)^2(3k^2-2)(k-1)(k+2)(6k^2+6k-1). $

$ (120(k+2))(54k^4+216k^3+207k^2-18k-59)a_{3k-4} = (120(k-1))(3k+2)(18k^3+54k^2+33k-1)a_{3k-3}+k^2(k+3)(k+2)(k+1)^2(6k^2+18k+11)(3k^2+6k+1)(k-1)(3k^2-2). $

I think one method can be as follows: assume that $a_{3k}=\sum_{i=1}^{8} c_ik^i, a_{3k+1}=\sum_{i=1}^{8} d_ik^i, a_{3k+2}=\sum_{i=1}^{8} e_ik^i$ and compute $a_1, \ldots, a_{24}$. Then plugin $k=1, \ldots, 24$ and solve $c_1, \ldots, c_8, d_1, \ldots, d_8, e_1, \ldots, e_8$. But it is complicated. Are there some simpler method?

  • 0
    Let $k=\frac{n}{3}$ will turn the three recurrence equations to the forms of http://faculty.pccu.edu.tw/~meng/Math15.pdf and thus can solve generally. The only thing is the coefficients are too evil.2012-06-19

1 Answers 1

1

$ a_{3k}=7+(41202419/960)*k^4-(395482/15)*k+(265589/96)*k^6-(18229213/240)*k^3+(3429283/48)*k^2-(5861/20)*k^7+(6357/320)*k^8-(3320263/240)*k^5 $

$ a_{3k+1}=42+(43899229/960)*k^4-(554191/20)*k+(1428773/480)*k^6-(159973/2)*k^3+(18215401/240)*k^2-306*k^7+(7047/320)*k^8-(290869/20)*k^5 $

$ a_{3k+2}=189+(15627897/320)*k^4-(286389/10)*k+(513099/160)*k^6-(6676233/80)*k^3+(6480093/80)*k^2-(6333/20)*k^7+(7773/320)*k^8-(1212243/80)*k^5 $

  • 0
    Thanks for providing the reference in the comment!2017-02-10