9
$\begingroup$

Suppose I have $f:\mathbb{R}^2 \to \mathbb{R}$. What conditions do I need to say that

$\lim_{x \to a} \lim_{y \to b} f(x,y) = \lim_{y \to b} \lim_{x \to a} f(x,y)$

?

What about in a more general case, by taking $X,Y$ and $Z$ topological (Hausdorff) spaces and $f$ from $X \times Y$ to $Z$ ?

Thank you

  • 0
    The above example is nice. Just to clarify, $f(x,y)$ should be defined as $0$ if either $x=0$ or $y=0$. Then $\lim_{(x,y)\rightarrow(0,0)}f(x,y)=0$. But for $x\neq 0$, $\lim_{y\rightarrow 0} f(x,y)$ does not exist.2014-06-28

1 Answers 1

1

Theorem. Let $\{ F_t ; t\in T\}$ be a family of functions $F_t : X \rightarrow \mathbb{C}$ depending on a parameter t; let $\mathcal{B}_X$ be a base $X$ and $\mathcal{B}_{T}$ a base in $T$. If the family converges uniformly on $X$ over the base $\mathcal{B}_{T}$ to a function $F : X \rightarrow \mathbb{C}$ and the limit $\lim_{\mathcal{B}_{T}} F_t(x)=A_t$ exists for each $t\in T$, the both repeated limits $\lim_{\mathcal{B}_{X}}(\lim_{\mathcal{B}_{T}}F_t(x))$ and $\lim_{\mathcal{B}_{T}}(\lim_{\mathcal{B}_{X}}F_t(x))$ exist and the equality

$ \lim_{\mathcal{B}_{X}}(\lim_{\mathcal{B}_{T}}F_t(x))=\lim_{\mathcal{B}_{T}}(\lim_{\mathcal{B}_{X}}F_t(x)) $ holds.

This theorem can be found in books of Zorich (Mathematical Analysis II p. 381).