$\phi(H) = H$ for $\phi$ any automorphism in $G$.
I tried to find a homomorphism for which $H$ is the kernel, which shows that $H$ is normal. However, I tried to have it maps $g$ to $\phi(gH) = \phi(g)H$, but cannot show it preserves the operation because we don't know that $\phi(a)\phi(b) = \phi(a)H\phi(b)H = \phi(a)\phi(b)H$ as we don't have $H$ is normal.
Is this the right way to go? Or should I try something else?