Let $E_p:=\{\lambda\in\mathbb R: \forall f\in L^p[0,1], \lim_{\varepsilon\to 0^+}\frac 1{\varepsilon^{\lambda}}\int_{[0,\varepsilon]}f(x)dx=0\}$.
- First case: $p=1$: solved by martini and thomas.en, we have $E_1=(-\infty,0]$.
- Second case: 1< p<\infty: Indeed, using maps $x\mapsto x^{-\alpha}$ with \alpha<\frac 1p we can see that $E_p\subset (-\infty,\frac{p-1}p]$, and Hölder's inequality shows that $(-\infty,\frac{p-1}p)\subset E_p$, so we have to determine whether $\frac{p-1}p\in E_p$.
Fix a function $f\in L^p[0,1]$, and put $f_n:=f\chi_{\{-n\leq f(x)\leq n\}}\in L^p[0,1]$. We can write \begin{align} \left|\frac 1{\varepsilon^{\frac{p-1}p}}\int_{[0,\varepsilon]}f(x)dx\right|&\leq \frac 1{\varepsilon^{\frac{p-1}p}}\int_{[0,\varepsilon]}\left|f(x)-f_n(x)\right|dx+ \frac 1{\varepsilon^{\frac{p-1}p}}\int_{[0,\varepsilon]}\left|f_n(x)\right|dx\\\ &\leq \frac 1{\varepsilon^{\frac{p-1}p}}\lVert f-f_n\rVert_{L^p}\varepsilon^{\frac{p-1}p}+n\varepsilon^{\frac 1p}\\\ &= \lVert f-f_n\rVert_{L^p}+n\varepsilon^{\frac 1p} \end{align} so for each integer $n$ $\limsup_{\varepsilon\to 0^+}\left|\frac 1{\varepsilon^{\frac{p-1}p}}\int_{[0,\varepsilon]}f(x)dx\right|\leq \lVert f-f_n\rVert_{L^p}.$ Since by the monotone convergence theorem we have $\lVert f-f_n\rVert_{L^p}^p=\int_{[0,1]}\chi_{\{|f|\geq n\}}|f|^p\to 0,$ we conclude that $\frac{p-1}p$ works so for 1< p<\infty we have $E_p=\left(-\infty,\frac{p-1}p\right]$.
- Third case: $p=+\infty$. As siminore showed, with $f=1$ we can see that if $\lambda\in E_{\infty}$ then \lambda<1, and if \lambda<1 then for $f\in L^{\infty}[0,1]$ we have $\left|\frac 1{\varepsilon^{\lambda}}\int_{[0,\varepsilon]}f(x)dx\right|\leq \lVert f\rVert_{\infty}\varepsilon^{1-\lambda},$ which converges to $0$ as $\varepsilon\to 0$. So $E_{\infty}=(-\infty,1)$.