It is a well known fact that if $A,B\in M_{n\times n}(\mathbb C)$ and $AB=BA$, then $e^Ae^B=e^Be^A.$
The converse does not hold. Horn and Johnson give the following example in their Topics in Matrix Analysis (page 435). Let $A=\begin{pmatrix}0&0\\0&2\pi i\end{pmatrix},\qquad B=\begin{pmatrix}0&1\\0&2\pi i\end{pmatrix}.$ Then $AB=\begin{pmatrix}0&0\\0&-4\pi^2\end{pmatrix}\neq\begin{pmatrix}0&2\pi i\\0&-4\pi^2\end{pmatrix}=BA.$ We have $e^A=\sum_{k=0}^{\infty}\frac 1{k!}\begin{pmatrix}0&0\\0&2\pi i\end{pmatrix}^k=\sum_{k=0}^{\infty}\frac 1{k!}\begin{pmatrix}0^k&0\\0&(2\pi i)^k\end{pmatrix}=\begin{pmatrix}e^0&0\\0&e^{2\pi i}\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}.$
For $S=\begin{pmatrix}1&-\frac i{2\pi}\\0&1 \end{pmatrix},$ we have $e^B=e^{SAS^{-1}}=Se^AS^{-1}=S\begin{pmatrix}1&0\\0&1\end{pmatrix}S^{-1}=\begin{pmatrix}1&0\\0&1\end{pmatrix}.$
Therefore, $A,B$ are such non-commuting matrices that $e^Ae^B=\begin{pmatrix}1&0\\0&1\end{pmatrix}=e^Be^A.$
It is clear that $\pi$ is important in this particular example. In fact, the authors say what follows.
It is known that if all entries of $A,B\in M_n$ are algebraic numbers and $n\geq 2,$ then $e^A\cdot e^B=e^B\cdot e^A$ if and only if $AB=BA.$
No proof is given. How does one go about proving that?