1
$\begingroup$

I need help finding,

$\lim_{t\to\infty}\int_0^t \exp((t-s)A)g(s)\,\mathrm{d}s$ when $\lim_{t\to\infty} |g(t)|=g_0$

Here A is a nxn matrix, whose eigenvalues satisfy $\Re(\alpha_j)<0$ and g(t) is a vector.

Please help me I feel stuck. When A is just a complex number $A=\alpha$ $\lim_{t\to\infty}\int_0^t \exp((t-s)\alpha) g(s)\mathrm{d}s=\lim_{t\to\infty} exp(t\alpha)\int_0^t\exp((-s)\alpha) g(s)\mathrm{d}s$

What is the $\lim \int_0^t\exp(-s\alpha) g(s)\mathrm{d}s ?$

  • 0
    @pragabhava Where does is go when Lim g(0)-g_0?2012-11-27

0 Answers 0