5
$\begingroup$

Let $x,y,z >0$. Prove that:$\dfrac{x}{\sqrt{y^2+yz+z^2}}+\dfrac{y}{\sqrt{z^2+zx+x^2}}+\dfrac{z}{\sqrt{x^2+xy+y^2}} \ge \sqrt{3}$

My solution:

By Hölder, $\left(\sum\frac{x}{\sqrt{4y^2+yz+4z^2}}\right)^2(\sum x(4y^2+yz+4z^2)) \ge (x+y+z)^3$

Let us denote $\sum_{sym} x^2y = X$, so we have to prove $(x+y+z)^3 \ge 4X+3xyz \iff \sum x^3 +3xyz \ge X$ which is Schur.

How to prove it in a different way ?

  • 4
    I notice that you get the equality when $x=y=z$. So how about defining $\varphi(x,y,z) = \displaystyle\frac{x}{\sqrt{y^2+yz+z^2}} + \displaystyle\frac{y}{\sqrt{x^2+xz+z^2}} + \displaystyle\frac{z}{\sqrt{y^2+yx+z^2}}$, study the function $\varphi$ on $(\mathbb{R}^{+*})^3$, and prove it reaches its minimum when $x=y=z$ ?2012-07-20

2 Answers 2

6

The function $f(x) = \frac 1 {\sqrt x}$ is convex, by Jensen's inequality $ \dfrac{x}{\sqrt{y^2+yz+z^2}}+\dfrac{y}{\sqrt{z^2+zx+x^2}}+\dfrac{z}{\sqrt{x^2+xy+y^2}} \geq \\ \frac {(x + y + z)^{3/2}} { \sqrt{x(y^2 + yz + z^2) + y(z^2 + zx + x^2) + z(x^2 + xy + y^2)} } $ Our inequality becomes $ x(y^2 + yz + z^2) + y(z^2 + zx + x^2) + z(x^2 + xy + y^2) \leq \frac 1 3 (x + y + z)^3 $ Expanding both sides, it is reduced to $ xyz\leq \frac {x^3 + y^3 + z^3} {3} $ that is true by AM-GM.

0

We need to prove that $\sum_{cyc}x\sqrt{(x^2+xy+y^2)(x^2+xz+z^2)}\geq\sqrt{3\prod_{cyc}(x^2+xy+y^2)}.$ Now, by C-S $(x^2+xy+y^2)(x^2+xz+z^2)=\left(\left(x+\frac{y}{2}\right)^2+\frac{3}{4}y^2\right)\left(\left(x+\frac{z}{2}\right)^2+\frac{3}{4}z^2\right)\geq$ $\geq\left(\left(x+\frac{y}{2}\right)\left(x+\frac{z}{2}\right)+\frac{3}{4}yz\right)^2=\left(x^2+\frac{x(y+z)}{2}+yz\right)^2.$ Thus, it remains to prove that $\left(\sum_{cyc}(2x^3+x^2y+x^2z+2xyz)\right)^2\geq12\prod_{cyc}(x^2+xy+y^2).$ Let $x+y+z=3u$, $xy+xz+yz=3v^2$ and $xyz=w^3$.

Since $\prod\limits_{cyc}(x^2+xy+y^2)$ is a linear expression of $w^3$, we see that $\left(\sum_{cyc}(2x^3+x^2y+x^2z+2xyz)\right)^2-12\prod_{cyc}(x^2+xy+y^2)=81w^6+A(u,v^2)w^3+B(u,v^2),$ which says that the inequality $\left(\sum_{cyc}(2x^3+x^2y+x^2z+2xyz)\right)^2-12\prod_{cyc}(x^2+xy+y^2)\geq\left(\sum_{cyc}(x^3-x^2y-x^2z+xyz)\right)^2$ is a linear inequality of $w^3$, which says that it remains to prove the last inequality for an extremal value of $w^3$, which happens in the following cases.

  1. $w^3\rightarrow0^+$.

Let $z\rightarrow0^+$ and $y=1$.

We obtain $(x-1)^2(3x^4+14x^3+12x^2+12x+4)\geq0,$ which is obvious;

  1. $y=z=1$, which gives $(x-1)^2(x^3+6x^2+9x+8)x\geq0.$ Done!