Definition of the problem
I have to prove the following statement:
Let $\left(E,\left\langle \cdot,\cdot\right\rangle \right)$ be an inner product space over $\mathbb{R}$. prove that for all $x,y\in E$ we have $ \left(\left\Vert x\right\Vert +\left\Vert y\right\Vert \right)\left|\left\langle x,y\right\rangle \right|\leq\left\Vert x+y\right\Vert \cdot\left\Vert x\right\Vert \left\Vert y\right\Vert . $
My efforts
I tried two different ways to prove that, both unsuccessfull..
First:
First, by squaring the whole inequality:
$ \left(\left\Vert x\right\Vert +\left\Vert y\right\Vert \right)^{2}\left|\left\langle x,y\right\rangle \right|^{2}\leq\left\Vert x+y\right\Vert ^{2}\cdot\left\Vert x\right\Vert ^{2}\left\Vert y\right\Vert ^{2}. $ We have from Cauchy-Schwarz that $ \left|\left\langle x,y\right\rangle \right|\leq\left\Vert x\right\Vert \cdot\left\Vert y\right\Vert $ So we obtain $ \left(\left\Vert x\right\Vert +\left\Vert y\right\Vert \right)^{2}\left|\left\langle x,y\right\rangle \right|^{2}\leq\left(\left\Vert x\right\Vert +\left\Vert y\right\Vert \right)^{2}\cdot\left\Vert x\right\Vert ^{2}\left\Vert y\right\Vert ^{2}=\left(\left\Vert x\right\Vert ^{2}+\left\Vert y\right\Vert ^{2}+2\left\Vert x\right\Vert \left\Vert y\right\Vert \right)\cdot\left\Vert x\right\Vert ^{2}\left\Vert y\right\Vert ^{2}. $ By Pythagorean theorem, we obtain $ \left(\left\Vert x\right\Vert +\left\Vert y\right\Vert \right)^{2}\left|\left\langle x,y\right\rangle \right|^{2}\leq\left(\left\Vert x+y\right\Vert ^{2}+2\left\Vert x\right\Vert \left\Vert y\right\Vert \right)\cdot\left\Vert x\right\Vert ^{2}\left\Vert y\right\Vert ^{2}. $ We're almost there, except an extra term very annoying: $ \left(\left\Vert x\right\Vert +\left\Vert y\right\Vert \right)^{2}\left|\left\langle x,y\right\rangle \right|^{2}\leq\left\Vert x+y\right\Vert ^{2}\cdot\left\Vert x\right\Vert ^{2}\left\Vert y\right\Vert ^{2}+2\left\Vert x\right\Vert ^{3}\left\Vert y\right\Vert ^{3}. $
Second
I tried after to use only the Cauchy-Schwarz inequality, not squared: $ \left(\left\Vert x\right\Vert +\left\Vert y\right\Vert \right)\left|\left\langle x,y\right\rangle \right|\leq\left(\left\Vert x\right\Vert +\left\Vert y\right\Vert \right)\cdot\left\Vert x\right\Vert \left\Vert y\right\Vert . $
My question
Could you give me a hint/idea on how to solve this problem? which Lemma/Theorem should I use?
Thank you
Franck