2
$\begingroup$

This is on the same theme as in this post, where the Fourier transform was derived using simple function.

Let $f:[0,1] \to [0,1]$ be the Cantor function.
Then $f$ is the cumulative distribution of a Cantor distributed random variable $ X=\sum_{n=1}^\infty 3^{-n} Y_n $ where the $Y_n$ are i.i.d. and takes values $0$ and $2$ with equal probability.

In this MO post, it is stated that $ E(e^{itY_n})=e^{it/2}\cos(3^{-n} t). $

How do we get that? I have $ E(e^{itY_n})=\frac{e^{it2/3^n}+1}{2}. $

Also, it is stated in the post that $ \hat f(t)=\frac{1}{it} -\frac{1}{it}\hat {f'}(t). $

How do we get this one? I thought $ \hat f(t)=\frac{1}{it}\hat {f'}(t) $ only.

  • 0
    @joriki I though this was done automatically somehow. Thanks for notifying me that I should do it explicitly.2012-10-25

1 Answers 1

3

We have \begin{align} E[e^{itX}]&=\prod_{n=1}^{+\infty}E[e^{it3^{-n}Y_n}]\\ &=\prod_{n=1}^{+\infty}\frac{e^{it2\cdot 3^{-n}}+1}2\\ &=\prod_{n=1}^{+\infty}e^{it \cdot 3^{-n}}\cos(t3^{—n})\\ &=\prod_{n=1}^{+\infty}e^{it \cdot 3^{-n}}\prod_{n=1}^{+\infty}\cos(t3^{-n})\\ &=\exp\left(it\sum_{n\geq 1}3^{—n}\right)\prod_{n=1}^{+\infty}\cos(t3^{-n})\\ &=\exp(it/2)\prod_{n=1}^{+\infty}\cos(t3^{-n}). \end{align}