According to the given information we have, $4\sqrt{ab} = 5(\frac{2ab}{a+b})$
$(a+b) =\frac{5}{2}\sqrt{ab})$
$\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}} = \frac{5}{2}$
Let , $t$ $ =$ $\sqrt{\frac{a}{b}}$
$[t+\frac{1}{t}=\frac{5}{2}].....................Eq(1)$
A clever person will immediately infer that $t=\frac{1}{2}$
But if its a subjective question we have to justify that also, so
$({t+\frac{1}{t}})^2=\frac{25}{4}$
$t^2 +\frac{1}{t^2} = \frac{17}{4}$ NOW, $(t-\frac{1}{t})^2= t^2+\frac{1}{t^2} -2 =\frac{9}{4}$
$[t-\frac{1}{t}=\frac{3}{2} ] .....................Eq(2)$ neglecting the negative value as we know that L.H.S.>0 , since $,t>0$
From Eq(1) and Eq(2) we have $t=4$, hence $a=4b$