Suppose $u_A$ is a right eigenvector of $A$ corresponding to an eigenvalue $\lambda_A$. Similarly, let $u_B^T$ be a left eigenvector of $B$ corresponding to an eigenvalue $\lambda_B$. Then by a simple calculation, we have $T(u_A u_B^T) = \lambda_A \lambda_B u_A u_B^T$, hence $u_A u_B^T$ is an eigenvector of $T$ corresponding to the eigenvalue $\lambda_A \lambda_B$.
The trace can be calculated by summing the eigenvalues of $T$. This involves computing a formula assuming that $A,B$ are diagonalizable, and then using the fact that the diagonalizable matrices are dense coupled with continuity of $\mathbb{tr}$.
Alternatively, we can pick a basis for $\mathbb{C}^{m \times n}$ and compute the trace directly. A simple basis is given by $E_{ij} = e_i e_j^T$. If $X \in \mathbb{C}^{m \times n}$, let $[X]_{ij}$ denote the component of $X$ along $E_{ij}$, ie, $X = \sum_{i,j} [X]_{ij} E_{ij}$. Then the trace of $T$ is given by $\mathbb{tr}(T) = \sum_{i,j} [T(E_{ij})]_{ij}$. A simple computation shows that $[T(E_{ij})]_{ij} = [A]_{ii}[B]_{jj}$, from which the following formula follows: $\mathbb{tr}(T) = \sum_{i,j} [A]_{ii}[B]_{jj} = \sum_i [A]_{ii} \sum_j [B]_{jj} = \mathbb{tr}(A) \mathbb{tr}(B). $