0
$\begingroup$

Why does $-E \left(\frac{1}{2 \sigma^4}- \frac{(X-\mu)^2}{\sigma^6} \right) = \frac{1}{2 \sigma^4}$

Shouldn't it be $-\frac{1}{2 \sigma^4}$? Note that $X \sim N(\mu, \sigma^2)$.

  • 1
    Or, as has been mis-attributed as a poem by W. H. Auden, "Minus times minus equals plus, The reason for this we need not discuss. "2012-04-24

2 Answers 2

3

Your expression evaluates to $-\frac{1}{2\sigma^4} +\operatorname {Var} X \cdot \frac{1}{\sigma^6} =-\frac{1}{2\sigma^4} + \frac{\sigma^2}{\sigma^6} = \ldots $

Note. I have used the fact that $\operatorname{Var} X = \operatorname{E}(X-\mu)^2$.
Taking advantage of the fact that $X \sim N(\mu, \sigma^2)$, we immediately get $\operatorname{Var} X = \sigma^2$ without much work. ;)

0

No, it is not.

Here is a full answer:

By definition: $\begin{align}\mathbb{E}((X-\mu)^2)=\sigma^2 \tag{$\ast$}\end{align}$

Now, it is easy to see what you have:

$\begin{align} -\mathbb{E}\left(\frac 1 {2\sigma^4}-\frac{(X-\mu)^2}{\sigma^6}\right)&=-\frac 1 {2\sigma^4}+\frac 1 {\sigma^6}\mathbb{E}((X-\mu)^2)\\&\overset{( \ast)}{=}\frac{\sigma^2}{\sigma^6}-\frac{1}{2\sigma^4}\\&=\frac{1}{2\sigma^4}\end{align}$

  • 0
    Right!! Will edit to reflect that. Thank you @DilipSarwate . _Whew_ What world am I in?2012-04-24