Possible Duplicate:
What's the difference between $\mathbb{Q}[\sqrt{-d}]$ and $\mathbb{Q}(\sqrt{-d})$?
Let $\mathbb Q[i]=\{a+ib|a, b\in \mathbb Q\}$ Any nonzero element $a+ib\in\mathbb{Q}[i]$ has an inverse element because $\frac{1}{a+ib}=\frac{a-ib}{a^2+b^2}\in\mathbb{Q}.$
Is it true that $\mathbb{Q}(i)=\mathbb{Q}[i]$?
Thanks!