0
$\begingroup$

let $\overset{\backsim} {g}(x)=g(-x)$;

suppose $u,\phi,\psi$ always make the integral significant,$E_n$ is the n-dimensional euclidean space. Then how to prove

$\int_{E_n}(u*\phi)(x)\psi(x)dx=\int_{E_n}u(x)(\overset{\backsim} {\phi}(x)*\psi(x))dx$ ?

  • 1
    Lol. It's the first time I ever see the symbol $\backsim$ be used.2012-10-10

1 Answers 1

0

We have \begin{align*} \int_{E_n} (u * \phi)(x)\psi(x)\, dx &= \int_{E_n} \int_{E_n} u(y)\phi(x-y)\, dy\,\psi(x)\, dx\\ &= \int_{E_n} \int_{E_n} u(y)\phi(x-y)\psi(x)\, dx\, dy\\ &= \int_{E_n} u(y) \int_{E_n} \overset\backsim\phi(y-x)\psi(x)\,dx\, dy\\ &= \int_{E_n} u(y)(\overset\backsim\phi * \psi)(y)\, dy \end{align*}