2
$\begingroup$

I encountered this differential equation in mathematical biology. How can I solve it?

$ \frac{\partial}{\partial t}F(s,t) = \frac{a}{2}(1-F(s,t))^2 $

and $ F(s,0)=s $

1 Answers 1

6

Fix $s$ and consider $g(t)=F(s,t)$. Then g'=\frac12a(1-g)^2 hence \frac{g'}{(1-g)^2}=\frac12a, which yields $\frac1{1-g(t)}=\frac12at+\frac1{1-g(0)}$. Since $g(0)=s$, $ F(s,t)=\frac{at+(2-at)s}{at+2-ats}=\frac{2s+at(1-s)}{2+at(1-s)}. $