My professor is of no help at all. He's foreign and is giving assignments that are written poorly, and is teaching stuff far beyond what he's supposed to be teaching at this level.
Nonetheless, he's given this as a problem on an assignment and I'm inclined to believe that it's not solvable based on how it's written.
Prove from the axioms of Boolean algebra that $x\cdot (\overline{y\cdot \overline{x}+\overline{y}}))=(x+x)\cdot (y+0)$
Notice how first off, there's no opening bracket in front of the x. I'm assuming it's meant to be there, by the fact that there's an extra closing bracket.
Now. I've gotten so far as to expand it as follows:
$(x+x)\cdot ((\overline{y\cdot \overline{x}})\cdot y)$ $(x+x)\cdot ((\bar{y}+x)\cdot y)$ $(x+x)\cdot ((y\cdot \bar{y})+(x\cdot y))$ $(x+x)\cdot (0+(x\cdot y))$
But I cannot figure out how $x\cdot y$ can possibly simplify to $y$. Therefore I ask, is this even doable? or am I doing something wrong?
Edit: Just in case it's relevant (and I honestly cant' say I know if it is), here's the list of axioms he gave at the start of the problem. I had just assumed that they were a hint, and not actually required for the problem.
- $x+y=y+x$, $x\cdot y=y\cdot x$
- $(x+y)+z=x+(y+z)$, $(x\cdot y)\cdot z=x\cdot (y\cdot z)$
- $x\cdot (y+z)=x\cdot y+x\cdot z$, $x+y\cdot z=(x+y)\cdot (x+z)$
- $x+0=x$, $x\cdot 1=x$
- $x+\bar{x}=1$, $x\cdot \bar{x}=0$
- $0\neq 1$