8
$\begingroup$

How we can find

$\sum_{n=1}^{9999} \frac{1}{(\sqrt{n+1}+\sqrt{n})(\sqrt[4]{n}+\sqrt[4]{n+1})} $

2 Answers 2

23

Hint: Compute $(\sqrt{n+1}+\sqrt{n})(\sqrt[4]{n+1}+\sqrt[4]{n})(\sqrt[4]{n+1}-\sqrt[4]{n})$.

  • Warm up: Simplify the expression $(a^2+b^2)(a+b)(a-b)$.
  • Pre-warm up: Simplify the expression $(a+b)(a-b)$ and deduce that $\sum\limits_{n=1}^{99}\frac1{\sqrt{n+1}+\sqrt{n}}=9$.
  • 0
    @Mike Thanks for the help.2012-09-16
-2

$\frac {1}{(\sqrt {n+1}+\sqrt {n})(\sqrt[4] {n+1}+\sqrt[4] {n})}=\frac {(\sqrt[4] {n+1}-\sqrt[4] {n})}{(\sqrt {n+1}+\sqrt {n})(\sqrt[4] {n+1}+\sqrt[4] {n})(\sqrt[4] {n+1}-\sqrt [4]{n})}=\frac {(\sqrt[4] {n+1}-\sqrt [4]{n})}{n+1-n}=\sqrt[4] {n+1}-\sqrt[4] {n}$ so the sum is transformed to $\sum _{n=1}^{9999} \sqrt[4] {n+1}-\sqrt[4] {n}=\sqrt[4] {10000}-\sqrt[4] {1}=9$.