I need to find the following: $ -2\frac{\partial^2 Y_0}{\partial x\,\partial\zeta}-\frac{\partial Y_0}{\partial x}-xY_0 $ given: $ Y_0=A_0 (x)+B_0 (x)e^{-\zeta} $
find the second derivative
1
$\begingroup$
multivariable-calculus
-
0If you intended to write partial derivatives, use $\partial$ ("\partial") instead of $\delta$. – 2012-09-29
1 Answers
1
Well, $\displaystyle\frac{\partial Y_0}{\partial x} = A_0'(x)+B_0'(x)e^{-\zeta}$,
then $\displaystyle\frac{\partial^2 Y_0}{\partial x\partial\zeta} = \frac{\partial}{\partial\zeta}\frac{\partial Y_0}{\partial x} = -B_0'(x)e^{-\zeta}$.