As noted by Phira and Byron Schmuland, the product diverges. I find an asymptotic expression for the product for large $n$, Eqn. (3) below.
I have found some inspiration for this solution in @sos440's answer here.
With a little work, one can show that $\begin{equation*} \log \left(\prod_{k=1}^n{n\choose k}\right)^{1/n} = -\frac{n+1}{n}\log n! + (n+1)\log n + 2 \sum_{j=1}^n \frac{j}{n}\log\frac{j}{n}. \tag{1} \end{equation*}$ For a derivation of (1), see below. Using Stirling's approximation, and the fact that $\sum_{j=1}^n \frac{j}{n}\log\frac{j}{n} \approx n\int_0^1 x \log x = -n/4$ (the error here is $O(\log(n)/n)$), we get $\begin{equation*} \log \left(\prod_{k=1}^n{n\choose k}\right)^{1/n} \sim \frac{n}{2}+1 - \frac{1}{2} \log 2\pi n.\tag{2} \end{equation*}$ Therefore, $\begin{equation*} \left(\prod_{k=1}^n{n\choose k}\right)^{1/n} \sim \frac{e^{n/2+1}}{\sqrt{2\pi n}}. \tag{3} \end{equation*}$ Clearly the product diverges. For $n=10$, $100$, and $1000$ the left and right side of (3) agree to $12\%$, $2.0\%$, and $0.28\%$, respectively.
From (3) we get the result $\lim_{n\to\infty} \left(\prod_{k=1}^n{n\choose k}\right)^{1/n^2} = \sqrt{e}$ for free. (Use $\lim_{n\to\infty} x^{1/n} = 1$ for $0.)
Derivation of Eqn. (1)
Note that $\begin{eqnarray*} \log \left(\prod_{k=1}^n{n\choose k}\right)^{1/n} &=& \log \left(\prod_{k=0}^n{n\choose k}\right)^{1/n} \\ &=& \frac{1}{n} \sum_{k=0}^n \log {n\choose k} \\ &=& \frac{1}{n} \sum_{k=0}^n \left(\log n! - \log k! - \log (n-k)! \right)\\ &=& \frac{1}{n} \left((n+1)\log n! - 2 \sum_{k=0}^n\log k! \right). \end{eqnarray*}$ But $\begin{eqnarray*} \sum_{k=0}^n\log k! &=& \sum_{k=1}^n\log k! \\ &=& \sum_{k=1}^n \sum_{j=1}^k \log j \\ &=& \sum_{j=1}^n \sum_{k=j}^n \log j \\ &=& \sum_{j=1}^n (n+1-j) \log j \\ &=& (n+1)\sum_{j=1}^n \log j - \sum_{j=1}^n j (\log j -\log n + \log n) \\ &=& (n+1)\log n! - \frac{n(n+1)}{2} \log n - \sum_{j=1}^n j\log\frac{j}{n}. \end{eqnarray*}$ Eqn. (1) follows immediately.
Some key identities: $\begin{eqnarray*} \log n! &=& \sum_{k=1}^n \log k \\ \sum_{k=j}^n 1 &=& n+1-j \\ \sum_{k=1}^n k &=& \frac{n(n+1)}{2} \\ \sum_{k=1}^n \sum_{j=1}^k a_{j k} &=& \sum_{j=1}^n \sum_{k=j}^n a_{j k} \end{eqnarray*}$