0
$\begingroup$

Let $f \in L^p(\Omega)$ and $\varepsilon >0$. Show that exist a ball $B_R \subset \mathbb{R}^n$ such that $\int_{\Omega \backslash B_R}|f|^p < \varepsilon$.

  • 0
    Also, you should ask a question rather than state an exercise.2012-08-29

1 Answers 1

5

Hint: $\int_\Omega = \sum_{n=1}^\infty \int_{\Omega \cap \{x: n-1 \le |x| < n\}}$