0
$\begingroup$

the question begin with prove that

$(\sin A+\cos A)^2 +(\sin B+\cos B)^2+(\sin C+\cos C)^2=\sin 2A-\sin 2B-\sin 2C-1$

subsequently

Given $A+B+C = 180^\circ$ it is proved that $(\sin A+\cos A)^2 +(\sin B+\cos B)^2+(\sin C+\cos C)^2=-4\sin A \cos B \cos C-1$

Last, it asked us to find the range of $\cos B\cos C$ if $A=90^\circ$

1 Answers 1

1

Note that $\widehat{B}=90^{\circ}-\widehat{C}$.

So, $\cos\widehat{B}\cos\widehat{C}=\cos\widehat{B}\cos(90^{\circ}-\widehat{B})=\cos\widehat{B}\sin\widehat{B}=\frac{1}{2}\sin(2\widehat{B})$.

That means that $\cos\widehat{B}\cos\widehat{C}\in\left[-\frac{1}{2};\frac{1}{2}\right]$.

(Supposing that $\widehat{B}$ can have any value)