Any one know how to graph a function defined as an infinite series? I need to graph the function $f(x)=\sum_{n=1}^{\infty}\bigg(n^{2}\tan^{-1}(x- n^{2}) +n^{2}\tan^{-1}(x+ n^{2}) \bigg) $ $x\in \mathbb R$.
EDIT: So, as Peter suggested, we can simplify the function using $\tan^{-1} a + \tan^{-1} b = \tan^{-1}((a + b) / (1 - ab))$ to be $f(x)=\sum_{n=1}^{\infty} n^{2} \tan^{-1}\bigg(\frac{2x}{ 1-(x^{2}-n^{4})}\bigg)$