Im in an intro course to abstract algebra and we have been focusing completely on rings/the chinese remainder theorem and this question came up in the review and totally stumped me (we only have basic definitions of groups and subgroups and homomorphisms).
I think that $U_8$ is the group of units modulo 8, and $S_4$ is the permutation group of 4 letters. Ive figured out what $S_4$ looks like by examining certain sets of permutations but dont understand homomorphisms enough to be able to name the one in question. I do know that im looking for something of the form $f(ab) = f(a)f(b)$, but thats about it.
I was told a hint: that the units mod 8 were cosets which are relativley prime to 8, which i think would be $[1],[3],[5],[7]$ in mod 8, though im not really sure why this is the case. What I do notice is that each of these elements has an order of 2, which i think somehow should relate to the order of my permutations in $S_4$, but again, i'm not certain.
Any help is much appreciated, thanks.