1
$\begingroup$

Consider a continuous function $\phi: \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}_{\geq 0}$ and a locally bounded function $\psi:\mathbb{R}^n \rightarrow \mathbb{R}^m$.

So we study functions of the kind $\phi(x,\psi(y))$ for $x,y \in \mathbb{R}^n$.

Prove the following proposition.

Fixed $\bar x \in \mathbb{R}^n$, for any $\epsilon>0$ there exists $\delta > 0$ such that

$ \max_{(x,y) \in X \times X} \{ \phi(x,\psi(y)) - \phi(y,\psi(y)) \} < \epsilon $

where $X = {\bar x} + \delta \mathbb{B}$ is the closed ball around $\bar x$.

  • 0
    So maybe we can write $\max_{(x,y) \in X^2} \{ \phi(x,\psi(y))-\phi(y,\psi(y)) \} \leq \max_{(x,y) \in X^2, \ z \in \overline{\psi(\{X\})}} \{ \phi(x,z)-\phi(y,z) \}. $ Then we notice that $(x,y,z) \mapsto \phi(x,z)-\phi(y,z)$ is continuous and the result follows.2012-05-14

0 Answers 0