1
$\begingroup$

Compute $\lim_{n\to\infty}\frac{1}{n}(1+\sqrt[n]{2}+\sqrt[n]{3}+\cdots+ \sqrt[n]{n}-n)$

$\lim_{x\to\infty}\frac{x^{\ln x}}{{(\ln x)}^x}$

  • 0
    One can find more than one solution to the first question, for example by approximating by integral. It is just that there is a lot of slack, so much cruder estimate will do.2012-12-27

1 Answers 1

1

Calculation with brute force: $\lim_{x\to\infty}\frac{x^{\ln x}}{{(\ln x)}^x}=\lim_{x\to\infty}\frac{e^{\ln^2 x}}{{e^{\ln(\ln x) x}}}=\lim_{x\to\infty}e^{\ln^2 x-x\ln(\ln x)} $ Then, $\lim_{x\to\infty}\ln^2 x-x\ln(\ln x)=\lim_{x\to\infty}\frac{\frac{\ln^2 x}x-\ln(\ln x)}{\frac1x}=\frac{0-\infty}{0^+}=-\infty $ Thus, $\lim_{x\to\infty}\frac{x^{\ln x}}{{(\ln x)}^x}=\lim_{x\to\infty}e^{\ln^2 x-x\ln(\ln x)}=0 $

  • 0
    @DonAntonio Yeah I noticed. Thanks2012-12-27