So I am trying to prove that for a set $E$ of finite measure, and for $1 \leq p < \infty$, $||f||_p \leq (m(E))^{1 - 1/p}||f||_{\infty}$. But I think I have proved the wrong thing. Can you help me see where I went wrong?
My proof is something like
$||f||_p =\left(\int_E |f|^p\right)^{1/p} \leq \left(\int_E ||f||_{\infty}^p\right)^{1/p} = \left(||f||_{\infty}^p \int_E 1\right)^{1/p} = ||f||_{\infty} (m(E))^{1/p},$
which is not what was asked for in the problem.
Thanks!