I am told to consider the $m \times n$ matrices $E_{pq}$ described by:
$[E_{pq}]_{ij} = \left\{ \begin{array}{ll} 1 & \textrm{if } i=p\textrm {, }j=q \\ 0 & \textrm{otherwise} \end{array} \right.$
Which are supposed to form the natural basis for the set of $m \times n$ matrices. What I'm struggling with is… visualizing these matrices, I suppose. What does one look like? For some reason I can't work that out from the definition above, and here I thought I knew the notation but it just doesn't make sense in this particular case. I'm not sure what exactly $p$, $q$, $i$ and $j$ represent here, it's like maybe one pair of them ought to have been $m$ and $n$ instead, but which?
All I could get was that they all have a single 1 in the lower-right corner and every other entry is 0, like so
$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$
but that doesn't seem right. I'm thinking more like it's the set of all $m \times n$ matrices with a single entry 1 (not just the corner) and all others 0, but I can't get that to match the definition above.
Neither Wikipedia, Wolfram|Alpha or Google turned up anything.