20
$\begingroup$

Here is a fun integral I am trying to evaluate:

$\int_{0}^{\infty}\frac{\sin^{2n+1}(x)}{x} \ dx=\frac{\pi \binom{2n}{n}}{2^{2n+1}}.$

I thought about integrating by parts $2n$ times and then using the binomial theorem for $\sin(x)$, that is, using $\dfrac{e^{ix}-e^{-ix}}{2i}$ form in the binomial series.

But, I am having a rough time getting it set up correctly. Then, again, there is probably a better approach.

$\frac{1}{(2n)!}\int_{0}^{\infty}\frac{1}{(2i)^{2n}}\sum_{k=0}^{n}(-1)^{2n+1-k}\binom{2n}{k}\frac{d^{2n}}{dx^{2n}}(e^{i(2k-2n-1)x})\frac{dx}{x^{1-2n}}$

or something like that. I doubt if that is anywhere close, but is my initial idea of using the binomial series for sin valid or is there a better way?.

Thanks everyone.

  • 0
    @AsafKaragila : Thank you, by space do you mean time wise? I was just thinking I should wait between edits, or something else?2013-03-01

5 Answers 5

19

Using $ \sin^{2n+1}(x) = \sum_{k=0}^n \frac{(-1)^k }{4^n} \binom{2n+1}{n+k+1} \sin\left((2k+1)x\right) $ We get $ \begin{eqnarray} \int_0^\infty \frac{\sin^{2n+1}(x)}{x}\mathrm{d} x &=& \sum_{k=0}^n \frac{(-1)^k }{4^n} \binom{2n+1}{n+k+1}\int_0^\infty \frac{\sin\left((2k+1)x\right)}{x}\mathrm{d} x\\ &=& \sum_{k=0}^n \frac{(-1)^k }{4^n} \binom{2n+1}{n+k+1}\int_0^\infty \frac{\sin\left(x\right)}{x}\mathrm{d} x \\ &=& \frac{\pi}{2^{2n+1}}\sum_{k=0}^n (-1)^k \binom{2n+1}{n+k+1} = \frac{\pi}{2^{2n+1}} \binom{2n}{n} \end{eqnarray} $ The latter sum is evaluated using telescoping trick: $ \sum_k (-1)^k \binom{2n+1}{n+k+1} = \sum_k (-1)^k \frac{2n+1}{n+k+1} \binom{2n}{n+k} = (-1)^{k+1} \binom{2n}{n+k} =: g(k) $ meaning that $ g(k+1) - g(k) = (-1)^k \binom{2n+1}{n+k+1} $ Hence $ \sum_{k=0}^n (-1)^k \binom{2n+1}{n+k+1} = \sum_{k=0}^n \left(g(k+1)-g(k)\right) = g(n+1) - g(0) = -g(0) = \binom{2n}{n} $

  • 0
    @Sasha thanks ^_^2013-08-08
15

Since $\dfrac{\sin^{2n+1}(x)}{x}$ is an even function, we can integrate over the whole real line and divide by $2$.

Write $\sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}$. Since there are no singularities and the integrand vanishes as $|x|\to\infty$, we can move the path of integration in the direction of $-i$. Expand using the binomial theorem, and close the paths of integration in two ways: for the integrands with $e^{+ikx}$ circle back counter-clockwise around the upper half-plane ($\gamma^+$); for the integrands with $e^{-ikx}$ circle back clockwise around the lower half-plane ($\gamma^-$).

Note that $\gamma^-$ contains no poles, so those integrals can be ignored.

We will use the identity $ \begin{align} \sum_{k=0}^m(-1)^k\binom{n}{k} &=\sum_{k=0}^m(-1)^k\binom{n}{k}\binom{m-k}{m-k}\\ &=(-1)^m\sum_{k=0}^m\binom{n}{k}\binom{-1}{m-k}\\ &=(-1)^m\binom{n-1}{m} \end{align} $ Finally, to the point: $ \begin{align} \int_0^\infty\sin^{2n+1}(x)\frac{\mathrm{d}x}{x} &=\frac12\int_{-\infty}^\infty\sin^{2n+1}(x)\frac{\mathrm{d}x}{x}\\ &=\left(-\frac14\right)^{n+1}i\int_{-\infty}^\infty\left(e^{ix}-e^{-ix}\right)^{2n+1}\frac{\mathrm{d}x}{x}\\ &=\left(-\frac14\right)^{n+1}i\sum_{k=0}^{n}(-1)^k\binom{2n+1}{k}\int_{\gamma^+}e^{ix(2n-2k+1)}\frac{\mathrm{d}x}{x}\\ &+\left(-\frac14\right)^{n+1}i\sum_{k=n+1}^{2n+1}(-1)^k\binom{2n+1}{k}\int_{\gamma^-}e^{ix(2n-2k+1)}\frac{\mathrm{d}x}{x}\\ &=\left(-\frac14\right)^{n+1}i\sum_{k=0}^{n}(-1)^k\binom{2n+1}{k}2\pi i\\ &=\left(-\frac14\right)^{n}\frac{\pi}{2}\sum_{k=0}^{n}(-1)^k\binom{2n+1}{k}\\ &=\left(-\frac14\right)^{n}\frac{\pi}{2}(-1)^n\binom{2n}{n}\\ &=\frac{1}{4^n}\frac{\pi}{2}\binom{2n}{n} \end{align} $

  • 0
    There it is RobJohn!!!. :):) That is along the lines I was thinking, but I got discombobulated in all of that. Thanks much. Your use of contours was clever.2012-07-17
6

One more just for luck...

Use the evenness of the integrand, the binomial expansion of $\sin(x)^{2n}$ in terms of exponentials, and the Fourier transform representation of the rectangular function and you have:

\begin{aligned} \frac{1}{2}\int _{-\infty}^{\infty }\!{\frac { \sin \left( x \right) ^{ 2\,n+1}}{x}}{dx}&=\frac{1}{{2}^{2n+1}}\sum _{k=0}^{2\,n} {2\,n\choose k} \left( -1 \right) ^{n-k}\int _{-\infty }^{\infty }\!{\frac {\sin \left( x \right) {{\rm e}^{-2ix \left( n-k \right) }}}{x}}{dx}\\ &=\frac {\pi }{{2}^{2n+1}}\sum _{k=0}^{2\,n}{2\,n\choose k} \left( -1 \right) ^{n-k} \cases{1 &$ \left| n-k \right| <1/2$\cr 1/2 &$ \left| n-k \right| =1/2$\cr 0&$ \left| n-k \right|>1/2 $\cr}\\ &=\frac{\pi}{{2}^{2n+1}}{2\,n\choose n} \end{aligned} The rectangular function advantageously shows us that the only non-zero-weighted term in the sum is the $k=n$ term and we are spared any further manipulation or evaluation of sums.

  • 1
    Thanks Graham. Ol' Fourier comes in handy :)2013-08-09
6

There is a theorem that states if $f(x)$ is continuous and $\pi$-peridodic on $\mathbb{R}$, then $ \displaystyle\int_{-\infty}^{\infty} \frac{\sin x}{x} f(x) \ dx = \int_{0}^{\pi} f(x) \ dx. $

See Graham Hesketh's comment for a way to prove this.

Using this theorem, $ \begin{align} \int_{0}^{\infty} \frac{\sin^{2n+1} (x)}{x} \ dx &= \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin^{2n+1} (x)}{x} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin x}{x} \sin^{2n} (x) \ dx \\ &= \frac{1}{2} \int_{0}^{\pi} \sin^{2n} (x) \ dx = \int_{0}^{\frac{\pi}{2}} \sin^{2n} (x) \ dx \\ &= \frac{\pi}{2^{2n+1}} \binom{2n}{n}. \tag{1} \end{align}$

$(1)$ http://en.wikipedia.org/wiki/Wallis%27_integrals

  • 0
    This is the famous Lobachevsky integral theorem2018-09-05
2

I am just adding the proof of the identity for those who have interest: $ \sin^{2n+1} x = \frac{1}{4^n}\sum_{k=0}^{n}(-1)^{n-k}\binom{2n+1}{k}\sin\left(\left(2(n-k)+1\right)x\right). $ Using the complex representation and the Binomial Theorem, we have $\begin{aligned} \sin^{2n+1}x&=\left(\frac{\mathrm{e}^{ix}-\mathrm{e}^{-ix}}{2i}\right)^{2n+1}\\ &=\frac{(-1)^n}{2^{2n+1}i}\sum_{k=0}^{2n+1}\binom{2n+1}{k}\mathrm{e}^{i(2n+1-k)x}(-1)^k\mathrm{e}^{i(-kx)}\\ &=\frac{(-1)^n}{2^{2n+1}i}\sum_{k=0}^{2n+1}(-1)^k\binom{2n+1}{k}\mathrm{e}^{i(2(n-k)+1)x}\\ &=\frac{(-1)^n}{2^{2n+1}i}\sum_{k=0}^{2n+1}(-1)^k\binom{2n+1}{k}\left[\cos\left(\left(2(n-k)+1\right)x\right) + i\sin\left(\left(2(n-k)+1\right)x\right)\right]\\ &=\frac{(-1)^n}{2^{2n+1}}\sum_{k=0}^{2n+1}(-1)^k\binom{2n+1}{k}\left[\sin\left(\left(2(n-k)+1\right)x\right) - i\cos\left(\left(2(n-k)+1\right)x\right)\right] \end{aligned} $

Now, observe that $\begin{aligned} \sum_{k=0}^{2n+1} a_{k} &= \sum_{k=0}^{n}a_{k}+\sum_{k=n+1}^{n+n+1}a_{k}\\ &=\sum_{k=0}^{n}a_{k}+\sum_{k=0}^{n}a_{n+1+k}\\ &=\sum_{k=0}^{n}a_{k}+\sum_{k=0}^{n}a_{n+1+n-k}\\ &=\sum_{k=0}^{n}\left(a_{k}+a_{2n+1-k}\right) \end{aligned} $ Apply with $a_{k}=(-1)^{k}\binom{2n+1}{k}\left[\sin\left(\left(2(n-k)+1\right)x\right) - i\cos\left(\left(2(n-k)+1\right)x\right)\right]$, so $\begin{aligned} a_{2n+1-k}&=-(-1)^{k}\binom{2n+1}{2n+1-k}\left[-\sin\left(\left(2(n-k)+1\right)x\right) - i\cos\left(\left(2(n-k)+1\right)x\right)\right]\\ &=(-1)^{k}\binom{2n+1}{k}\left[\sin\left(\left(2(n-k)+1\right)x\right) + i\cos\left(\left(2(n-k)+1\right)x\right)\right]. \end{aligned} $ Then, $ a_{k}+a_{2n+1-k}=2(-1)^{k}\binom{2n+1}{k}\sin\left(\left(2(n-k)+1\right)x\right). $ Therefore, $\begin{aligned} \sin^{2n+1} x&=\frac{1}{4^{n}}\sum_{k=0}^{n}(-1)^{n-k}\binom{2n+1}{k}\sin\left(\left(2(n-k)+1\right)x\right)\\ &=\frac{1}{4^n}\sum_{k=0}^{n}(-1)^k\binom{2n+1}{n-k}\sin\left((2k+1)x\right)\\ &=\frac{1}{4^n}\sum_{k=0}^{n}(-1)^k\binom{2n+1}{n+k+1}\sin\left((2k+1)x\right), \end{aligned}$ as desired.