If the 'Lenstra - Pomerance - Wagstaff' conjecture is true, there are infinite Mersenne primes. In this case, if we consider the series: $S_N=\sum_{k=1}^N \frac{1 }{M_k}$ where $M_k$ is $k^{th}$ Mersenne prime, does the limit: $S_\infty=\lim_{N\to\infty}S_N$ converges to a finite value? Thanks.
Series of Mersenne primes
1
$\begingroup$
sequences-and-series
number-theory
prime-numbers
-
1Yes. Actually the sum over all Mersenne numbers M:k, prime or not, converges. – 2012-09-17
1 Answers
5
Yes, since \[ \sum_{k=1}^\infty \frac 1{M_k} \le \sum_{k=1}^\infty \frac 1{2^k-1} < \infty. \]