1
$\begingroup$

How to show if $\chi_{0}$ is the trivial $\text{Dirichlet Character}$ then $\lim_{\xi \to 1} (\xi -1) L(\xi,\chi_{0}) = \frac{\Phi(N)}{N}$

where $\Phi$ is the $\text{Euler's Totient}$.

1 Answers 1

5

Here are some hints:

  • Use the product formula for $L(s, \chi) = \displaystyle\prod_{p} \biggl(1- \frac{\chi(p)}{p^s}\biggr)^{-1}$. Note $\chi_{0}(n) = \left\{\begin{array}{cc} 1 & p \nmid n \\\ 0 & p \mid n\end{array}\right.$

  • Use the formula $\Phi(n) = \displaystyle n \cdot \prod_{p} \biggl(1-\frac{1}{p}\biggr)$

  • Use the fact that $\displaystyle\lim_{z \to 1}\: (z-1)\:\zeta(z) =1$.

Complete solution:

See page 10 of the following link

  • 0
    Thanks a lot for the answer.2012-04-17