For two Gaussian-distributed variables, $ Pr(X=x) = \frac{1}{\sqrt{2\pi}\sigma_0}e^{-\frac{(x-x_0)^2}{2\sigma_0^2}}$ and $ Pr(Y=y) = \frac{1}{\sqrt{2\pi}\sigma_1}e^{-\frac{(x-x_1)^2}{2\sigma_1^2}}$. What is probability of the case X > Y?
The probability of one Gaussian larger than another.
-
0@Nate: *Many otherwise reputable textbooks use this notation deliberately*... OK. (But not in the part of the world where I live.) Any examples? – 2012-08-03
2 Answers
Suppose $X$ and $Y$ are jointly normal, i.e. no independence is needed. Define $Z = X - Y$. It is well known that $Z$ is Gaussian, and thus is determined by its mean $\mu$ and its variance $\sigma^2$. $ \mu = \mathbb{E}(Z) = \mathbb{E}(X) - \mathbb{E}(Y) = \mu_1 - \mu_2 $ $ \sigma^2 = \mathbb{Var}(Z) = \mathbb{Var}(X) + \mathbb{Var}(Y) - 2 \mathbb{Cov}(X,Y) = \sigma_1^2 + \sigma_2^2 - 2 \rho \sigma_1 \sigma_2 $ where $\rho$ is the correlation coefficient. Now: $ \mathbb{P}(X>Y) = \mathbb{P}(Z>0) = 1- \Phi\left(-\frac{\mu}{ \sigma}\right) = \Phi\left(\frac{\mu}{ \sigma}\right) = \frac{1}{2} \operatorname{erfc}\left(-\frac{\mu}{\sqrt{2}\sigma}\right) $
-
2I believe the $\sqrt{2}$ should not appear in the standard CDFs, at the last line. – 2018-06-03
I assume that $X$ and $Y$ are independent. Let $Z=X-Y$ then $Z\sim\cal{N}(x_0-y_0,\sigma_0^2+\sigma_1^2)$. Accordingly
$P(Z>0)=\int_0^\infty\frac{1}{\sqrt{2\pi(\sigma_0^2+\sigma_1^2)}}\exp\left(\frac{-(z-x_0+y_0)^2}{2(\sigma_0^2+\sigma_1^2)}\right)\mathrm{d}z$
if we use the complementary error function $\operatorname{erf}c(x)=\frac{2}{\sqrt\pi}\int_x^\infty e^{-t^2}dt$ with $t=\frac{z-x_0+y_0}{\sqrt{2(\sigma_0^2+\sigma_1^2)}}$, we have $\sqrt{2(\sigma_0^2+\sigma_1^2)}dt=dz$ $P(Z>0)=\frac{2}{2\sqrt{\pi}\sqrt{2(\sigma_0^2+\sigma_1^2)}}\int_{t=\frac{y_0-x_0}{\sqrt{2(\sigma_0^2+\sigma_1^2)}}}^\infty e^{-t^2}\sqrt{2(\sigma_0^2+\sigma_1^2)}dt$ and we get finally $P(Z>0)=\frac{1}{2}\operatorname{erfc}\left(\frac{y_0-x_0}{\sqrt{2(\sigma_0^2+\sigma_1^2)}}\right)$
-
0Yes it has to be erfc of course. It is obvious in the text. Proof is correct. – 2012-08-03