Let $K$ be a number field. The theorems of class field theory tell us that given any modulus $\mathfrak{m}$ for $K$, there is a unique Abelian extension $K_{\mathfrak{m}}$ such that the kernel of the Artin map of $K_{\mathfrak{m}}/K$ with respect to $\mathfrak{m}$ is precisely the subgroup of principal fractional ideals congruent to $1 \pmod{\mathfrak{m}}$. This is the Ray class field.
Moreover, we know that the conductor of $K_{\mathfrak{m}}/K$ divides $\mathfrak{m}$. Is it equal in general? If not, what are counterexamples?