1
$\begingroup$

If I have an integral $\int_{-1}^1 u\;dv$ that upon performing integration by parts yields:

$ \int_{-1}^1 u\;dv=-\int_{-1}^1 v\;du $

(i.e. $uv\bigg|_{-1}^1=0$).

Is there a trick that I can use to evaluate the integral?

Specifically:

$ \int_{-1}^{1}C_{n_1}^{l_1}(x)\cdot(1-x^2)^{l_1-l_2}\frac{d^{n_2}}{dx^{n_2}}\left[(1-x^2)^{n_2+l_2-1/2}\right]dx $ $ =-\int_{-1}^{1}(2l_{1}C_{n_1-1}^{l_1+1}(x)\cdot(1-x^2)^{l1-l2}-2x(l_1-l_2)C_{n_1}^{l_1}(x)\cdot(1-x^2)^{l_1-l_2-1})\times $ $ \frac{d^{n_2-1}}{dx^{n_2-1}}\left[(1-x^2)^{n_2+l_2-1/2}\right]dx $

Note: the $C_n^l(x)$ is a gegenbauer polynomial.

  • 0
    @Norbert: I realize it wa$s$ a bi$t$ ge$n$e$r$al to begin with, but it wa$s$ intended to be a heuri$s$tic question. I've added the specific equation I'm t$r$ying to integrate, though I think its complexity might not make the principle transparent. – 2012-01-13

1 Answers 1

1

Use a Gauss–Gegenbauer quadrature rule. Your integrand is a polynomial of degree at most $n_1$ times a weight $l_1 - 1/2$ which corresponds to the orthogonal family $(C_n^{l_1})_n$. You only need the roots of $C_{\frac{n_1+1}{2}}^{l_1}$ for the quadrature to yield exact value in your case.

See this article for details (this one as well).