Let $r$ be the number of rows, and $c$ be the number of columns. Then there are $14r$ boys, and $10c$ girls. So we have the total number of seats $rc=14r+10c+3$ or $rc-14r-10c-3=0$. Completing the multiple, we get $(r-10)(c-14)=143=11*13$. So $r-10=11$ and $c-14=13$ or $r=21$ and $c=27$ giving 567 chairs. There is another solution with $r-10=13$ and $c-14=11$ giving 575 chairs.
An example seating 'b' is boy, 'g' is girl, and 'e' is empty.
gggggggggggggbbbbbbbbbbbbbb bbbbbbbbbbbbbgggggggggggggb ggggggggggggbbbbbbbbbbbbbbg bbbbbbbbbbbbgggggggggggggbb gggggggggggbbbbbbbbbbbbbbgg bbbbbbbbbbbgggggggggggggbbb ggggggggggbbbbbbbbbbbbbbggg bbbbbbbbbbgggggggggggggbbbb gggggggggbbbbbbbbbbbbbbgggg bbbbbbbbbgggggggggggggbbbbb ggggggggbbbbbbbbbbbbbbggggg bbbbbbbbgggggggggggggbbbbbb gggggggbbbbbbbbbbbbbbgggggg bbbbbbbgggggggggggggbbbbbbb ggggggbbbbbbbbbbbbbbggggggg bbbbbbgggggggggggggbbbbbbbb gggggbbbbbbbbbbbbbbgggggggg bbbbbgggggggggggggbbbbbbbbb ggggbbbbbbbbbbbbbbggggggggg bbbbgggggggggggggbbbbbbbbbb eeebbbbbbbbbbbbbbgggggggggg