Suppose that $\vec{G}$ is a directed graph and that $G$ is the undirected graph obtained from $\vec{G}$ by forgetting the direction on each edge. Define $\vec{H}$ to be a minor of $\vec{G}$ if $H$ is a minor of $G$ as undirected graphs and direction on the edges of $\vec{H}$ are the same as the corresponding edges in $\vec{G}$.
Does the Robertson-Seymour Theorem hold for directed graphs (where the above definition of minor is used and our graphs are allowed to have loops and multiple edges)?