21
$\begingroup$

How can you prove that: $\|A\|_2 \le \|A\|_F$ I cannot use: $\|A\|_2^2 = \lambda_{max}(A^TA)$ It makes sense that the 2-norm would be less than or equal to the Frobenius norm but I don't know how to prove it. I do know:

$\|A\|_2 = \max_{\|x\|_2 = 1} {\|Ax\|_2}$

and I know I can define the Frobenius norm to be:

$\|A\|_F^2 = \sum_{j=1}^n {\|Ae_j\|_2^2}$ but I don't see how this could help. I don't know how else to compare the two norms though.

  • 0
    $\Vert A\Vert_F^2 = trace(AA^T)$. Now compute the same thing for $AU$ and use the fact that $U$ is orthogonal.2012-12-07

6 Answers 6

25

Write $x=\sum_{j=1}^nc_je_j$, for coefficients $c_1,\ldots,c_n$. Suppose that $\|x\|_2=1$, i.e. $\sum_j |c_j|^2=1$. Then \begin{align} \|Ax\|_2^2&=\left\|\sum_j c_j\,Ae_j\right\|_2^2\leq\left(\sum_j|c_j|\,\|Ae_j\|_2\right)^{2}\\ \ \\ &\leq\left(\sum_j|c_j|^2\right)\sum_j\|Ae_j\|_2^2=\sum_j\|Ae_j\|_2^2=\|A\|_F^2, \end{align} where the triangle inequality is used in the first $\leq$ and Cauchy-Schwarz in the second.

As $x$ was arbitrary, we get $\|A\|_2\leq\|A\|_F$.

  • 0
    Not that I can thin$k$ of. In any case I simplified the argument by using the triangle inequality (basically, the previous version had a built-in proof of the triangle inequality, which by the way I don't think you can prove without CS).2012-12-07
14

In fact, the proof from $\left\| \mathbf{A}\right\|_2 =\max_{\left\| \mathbf{x}\right\|_2=1} \left\| \mathbf{Ax} \right\|_2$ to $\left\| \mathbf{A}\right\|_2 = \sqrt{\lambda_{\max}(\mathbf{A}^H \mathbf{A})}$ is straight forward. We can first simply prove when $\mathbf{P}$ is Hermitian $ \lambda_{\max} = \max_{\| \mathbf{x} \|_2=1} \mathbf{x}^H \mathbf{Px}. $ That's because when $\mathbf{P}$ is Hermitian, there exists one and only one unitary matrix $\mathbf{U}$ that can diagonalize $\mathbf{P}$ as $\mathbf{U}^H \mathbf{PU}=\mathbf{D}$ (so $\mathbf{P}=\mathbf{UDU}^H$), where $\mathbf{D}$ is a diagonal matrix with eigenvalues of $\mathbf{P}$ on the diagonal, and the columns of $\mathbf{U}$ are the corresponding eigenvectors. Let $\mathbf{y}=\mathbf{U}^H \mathbf{x}$ and substitute $\mathbf{x} = \mathbf{Uy}$ to the optimization problem, we obtain

$ \max_{\| \mathbf{x} \|_2=1} \mathbf{x}^H \mathbf{Px} = \max_{\| \mathbf{y} \|_2=1} \mathbf{y}^H \mathbf{Dy} = \max_{\| \mathbf{y} \|_2=1} \sum_{i=1}^n \lambda_i |y_i|^2 \le \lambda_{\max} \max_{\| \mathbf{y} \|_2=1} \sum_{i=1}^n |y_i|^2 = \lambda_{\max} $

Thus, just by choosing $\mathbf{x}$ as the corresponding eigenvector to the eigenvalue $\lambda_{\max}$, $\max_{\| \mathbf{x} \|_2=1} \mathbf{x}^H \mathbf{Px} = \lambda_{\max}$. This proves $\left\| \mathbf{A}\right\|_2 = \sqrt{\lambda_{\max}(\mathbf{A}^H \mathbf{A})}$.

And then, because the $n\times n$ matrix $\mathbf{A}^H \mathbf{A}$ is positive semidefinite, all of its eigenvalues are not less than zero. Assume $\text{rank}~\mathbf{A}^H \mathbf{A}=r$, we can put the eigenvalues into a decrease order:

$ \lambda_1 \geq \lambda_2 \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0. $

Because for all $\mathbf{X}\in \mathbb{C}^{n\times n}$, $ \text{trace}~\mathbf{X} = \sum\limits_{i=1}^{n} \lambda_i, $ where $\lambda_i$, $i=1,2,\ldots,n$ are eigenvalues of $\mathbf{X}$; and besides, it's easy to verify $ \left\| \mathbf{A}\right\|_F = \sqrt{\text{trace}~ \mathbf{A}^H \mathbf{A}}. $

Thus, through $ \sqrt{\lambda_1} \leq \sqrt{\sum_{i=1}^{n} \lambda_i} \leq \sqrt{r \cdot \lambda_1} $ we have $ \left\| \mathbf{A}\right\|_2 \leq \left\| \mathbf{A}\right\|_F \leq \sqrt{r} \left\| \mathbf{A}\right\|_2 $

10

The Frobenius norm is sub-multiplicative, therefore $||Ax||_F \leq ||A||_F ||x||_F$, which gives:

$\forall x \neq 0 \quad \frac{ ||Ax||_2 } {||x||_2} = \frac{ ||Ax||_F } {||x||_F} \leq ||A||_F $

So you have an upper bound for the quotient, and since the supremum (here maximum) is by definition smaller than any other upper bound, you immediately get:

$ \underset{x \neq 0}{\max}{\frac{||Ax||}{||x||}} =||A||_2 \leq ||A||_F $

1

We will denote a normalized vector (i.e. $\frac{\vec{v}}{|\vec{v}|}$) by $\vec{v^*}$. ($|\vec{v}|\vec{v^*}={\vec{v}}$)

We will write the rows of $A$ as transposes of the vectors $a_1,\cdots,a_n$. Since the $i$th row of $A$ is $\vec{a_i}^\top$, the $i$th entry $(A\vec{x})_i$ of $A\vec{x}$ is $\vec{a_i} \cdot \vec{x}$.

$ ||A||^2= \sup |A\vec{x^*}|^2= \sup \sum_{i=1}^n(A\vec{x^*})_i^2= \sup \sum_{i=1}^n(\vec{a_i} \cdot \vec{x^*})^2 $ $ \le \sup \sum_{i=1}^n|\vec{a_i}|^2|\vec{x^*}|^2= \sum_{i=1}^n|\vec{a_i}|^2= |A|^2 \implies ||A|| \leq |A| $

1

Use the following two facts/properties:

  1. The Frobenius norm and the 2-norm coincide for vectors: $\|u\|_2 = \|u\|_{F}$.
  2. The Frobenius norm is submultiplicative: $\|AB\|_{F} \leq \|A\|_{F}\|B\|_{F}$ for any compatible matrices $A$,$B$ (in particular when, $B$ is a vector).

The proof then goes like this: $ \begin{align*} \|A\|_{2} &= \sup_{\|u\|_{2}=1}\|Au\|_{2} \quad \text{(Definition of 2-norm)}\\&= \sup_{\|u\|_{2}=1}\|Au\|_{F} \quad \text{(Property 1)} \\&\leq \sup_{\|u\|_{2}=1}\|A\|_{F}\|u\|_{F} \quad \text{(Property 2)}\\&= \sup_{\|u\|_{2}=1}\|A\|_{F}\|u\|_{2} \quad \text{(Property 1)}\\&= \|A\|_{F}\sup_{\|u\|_{2}=1}\|u\|_{2} \\&= \|A\|_{F}. \end{align*} $