$\lim_{x\to 0^+} \frac{1}{x}=\infty$
But with l'Hospital's Rule
$\lim_{x\to 0^+} \frac{1}{x}=\lim_{x\to 0^+} \frac{0}{1}=0$
So where's my naive mistake?
$\lim_{x\to 0^+} \frac{1}{x}=\infty$
But with l'Hospital's Rule
$\lim_{x\to 0^+} \frac{1}{x}=\lim_{x\to 0^+} \frac{0}{1}=0$
So where's my naive mistake?
I believe l'Hopital's rule works only for indeterminate forms.
l'Hospital's Rule works on limits of the form "$\frac{0}{0}$" and "$\frac{\infty}{\infty}$" so you can not use it to evaluate your limit.
You can find the complete list of conditions you need to verify befote using l'Hospital's Rule here