2
$\begingroup$

How does the strong approximation theorem for global function fields looks like?

For the number field $\mathbb{Q}$ it can be expressed as the surjection

$ \mathbb{Q}^\times \times \mathbb{R}^\times \times \prod\limits_{p} \mathbb{Z}_p \twoheadrightarrow \mathbb{A}^\times.$

I want to understand the image of the adelic norm.

  • 0
    Yes, great. Thank you.2012-04-19

1 Answers 1

1

Let $k$ be a global function field, i.e., a finite extension $\mathbb{F}_{q}(T)$, then $\left\| \cdotp \right\|_{\mathbb{A}} \twoheadrightarrow q^{\mathbb{Z}} \subset (0, \infty)$!

  • 0
    you are welcome!2013-10-21