How can we compute the sum $ \sin(f_1) + \sin(f_2) $ I know it is $ 2\sin\left(\frac{f_2 + f_1}{2}\right) \cos\left(\frac{f_2 - f_1}{2}\right) $ but how can it be derived with elementary trigonometric identites?
Sum of two sine curves
1
$\begingroup$
trigonometry
3 Answers
2
The sine angle addition rule reads:
$\sin(u\pm v)=\sin(u)\cos(v)\pm\sin(v)\cos(u)$
You can prove your identity by rewriting $f_1=\frac{f_2+f_1}{2}-\frac{f_2-f_1}{2}$ and similarily for $f_2$ and applying the sine addition formula twice.
1
$f_1= \frac{f_1+f_2}{2}+\frac{f_1-f_2}{2}$ $f_2= \frac{f_1+f_2}{2}-\frac{f_1-f_2}{2}$
0
$\sin(f_1) + \sin(f_2)=\sin \cfrac {2f_1}{2}+ \sin\cfrac {2f_2}{2}$