6
$\begingroup$

Geometry: Auxiliary Lines

As shown in the figure: Prove that $a\,+\,b\,+\,c=d$ enter image description here

  • 0
    Sorry for the typo. I have just edited it.2012-11-04

1 Answers 1

0

enter image description here

Using sine law of triangle, $\frac e{\sin(144^{\circ}-x)}=\frac g{\sin 36^{\circ}}$ and $\frac e{\sin(138^{\circ}-x)}=\frac {g+f}{\sin 42^{\circ}}$

So, $f=e\left(\frac{\sin 42^{\circ}}{\sin(138^{\circ}-x)}-\frac{\sin 36^{\circ}}{\sin(144^{\circ}-x)}\right)$

$=e\left(\frac{\sin 42^{\circ}\sin(144^{\circ}-x)-\sin 36^{\circ}\sin(138^{\circ}-x)}{\sin(138^{\circ}-x)\sin(144^{\circ}-x)}\right)$

$2\sin 42^{\circ}\sin(144^{\circ}-x)$ $=\cos(102^{\circ}-x)-\cos({186^\circ}-x)$ using $2\sin A\sin B$ $=\cos(102^{\circ}-x)+\cos(6^\circ-x)$ as $\cos(180^{\circ}+y)=-\cos y$

$2\sin 36^{\circ}\sin(138^{\circ}-x)=\cos(102^{\circ}-x)-\cos({174^\circ}-x)$ $=\cos(102^{\circ}-x)+\cos(6^\circ+x)$ as $\cos({174^\circ}-x)=\cos\{180^\circ-(6^\circ+x)\}=-\cos(6^\circ+x)$

So, $f=e\frac{\cos(6^\circ-x)-\cos(6^\circ+x)}{2\sin(138^{\circ}-x)\sin(144^{\circ}-x)}=\frac{e\sin x\sin 6^\circ }{\sin(138^{\circ}-x)\sin(144^{\circ}-x)}$

For $f=a, x=12^\circ, a=\frac{e\sin 12^\circ\sin 6^\circ }{\sin126^{\circ}\sin132^{\circ}}$

For $f=b, x=60^\circ, b=\frac{e\sin 60^\circ\sin 6^\circ }{\sin78^{\circ}\sin84^{\circ}}$

For $f=c, x=96^\circ, c=\frac{e\sin 96^\circ\sin 6^\circ }{\sin42^{\circ}\sin48^{\circ}}$

$2\sin42^{\circ}\sin48^{\circ}=\cos 6^\circ -\cos 90^\circ=\cos 6^\circ$

and $\sin 96^\circ=\sin(90+6)^\circ=\cos 6^\circ$

So,$ c=2e\sin 6^\circ $

For $f=d, x=108^\circ, d=\frac{e\sin 108^\circ\sin 6^\circ }{\sin30^{\circ}\sin36^{\circ}}=\frac{2e\sin 72^\circ\sin 6^\circ }{\sin36^{\circ}}=4e\cos 36^\circ \sin 6^\circ$