I have no clue whether the following answers have made headway. As a result, I'll take a stab at this:
For (1), you had to provide an adequate counterexample.
Now, for (2), consider the following: Let $f$ be a function from set $X$ to set $Y$. Likewise, let $g$ be a function from set $Y$ to set $Z$. Thus, $g\circ f$ is a function from set $X$ to set $Z$. We see that $g\circ f$ has an inverse since we can perform $f^{-1}\circ g^{-1}$ to get back to $X$.
Let's decode that. Does it make more sense to think that $f$ is a bridge from place $X$ to place $Y$ and that $g$ is a bridge from place $Y$ to place $Z$? Well, if we have bridges back---that is, $g^{-1}$ being a bridge from place $Z$ to place $Y$ and $f^{-1}$ being a bridge from place $Y$ to place $X$---is it not self evident that to get from place $Z$ to place $X$ we simply take bridge $g^{-1}$ and then bridge $f^{-1}$, and we call this combined route $f^{-1}\circ g^{-1}$? :)
For sake of completeness, here's what I just said in the dry-Algebra language:
Let $f: X\to Y$ and $g: Y \to Z$. Thus, $g\circ f: X \to Z$.
If we have $f^{-1}: Y\to X$ and $g^{-1}: Z \to Y$, we have that $f^{-1}\circ g^{-1}: Z \to X$.
Letting the identity map be $I$, we have $f^{-1}\circ g^{-1}\circ g\circ f=I$. Therefore, $f^{-1}\circ g^{-1}$ is the inverse map of $g \circ f$.