1
$\begingroup$

What am I missing here?

Let $A,B$ be matrix-valued functions of $(x,y)$. Given that $A_x-B_y+AB-BA=0$ where the subscript denotes partial differentiation w.r.t. that variable, I wish to show that $\alpha_x-\beta_y+\alpha\beta-\beta\alpha=0$ where for an invertible matrix $M$, $\alpha=MAM^{-1}+M_yM^{-1}$ and $\beta=MBM^{-1}+M_xM^{-1}$

What I've done: I tried to directly substitute the $\alpha,\beta$ into the equation, giving: $[M_xAM^{-1}+MA_xM^{-1}+MA(M^{-1})_x+M_{xy}M^{-1}+M_{y}(M^{-1})_x]-[M_yBM^{-1}+MB_yM^{-1}+MB(M^{-1})_y+M_{xy}M^{-1}+M_{x}(M^{-1})_y]+MABM^{-1}+M_yBM^{-1}+MAM^{-1}M_xM^{-1}+M_yM^{-1}M_xM^{-1}-MBAM^{-1}-M_xAM^{-1}-MBM^{-1}M_yM^{-1}-M_xM^{-1}M_yM^{-1}$


Cancelling and using $A_x-B_y+AB-BA=0$, $=[MA(M^{-1})_x+M_{y}(M^{-1})_x]-[MB_yM^{-1}+M_{x}(M^{-1})_y]+MAM^{-1}M_xM^{-1}+M_yM^{-1}M_xM^{-1}-MBM^{-1}M_yM^{-1}-M_xM^{-1}M_yM^{-1}$


However, I don't see how to proceed. Any help is appreciated.

  • 0
    Maybe you can use the fact that $(\Delta^{-1})_x = - \Delta^{-1} \Delta_x \Delta^{-1}$ (cf. the derivative of $f(x)=\frac{1}{x}$ is $f'(x) = -\frac{1}{x^2}$).2012-11-22

0 Answers 0