3
$\begingroup$

Can anybody help me understand this proof?

In Rotman's 'An introduction to homological algebra' in Proposition 6.75 (iii). Flabby sheaves $\mathcal{L}$ are acyclic (Page 381), in the proof it says

Let $\mathcal{L}$ be flabby. Since there are enough injectives, there is an exact sequence $0 \rightarrow \mathcal{L} \rightarrow \mathcal{E} \rightarrow \mathcal{Q} \rightarrow 0$ with $\mathcal{E}$ injective. Now $\mathcal{E}$ is flabby, by Corollary 6.74 (Corollary 6.74 says that every injective sheaf $\mathcal{E}$ over a space $X$ is flabby), and so $\mathcal{Q}$ is flabby, by part (ii) (Part (ii) says: Let 0 \rightarrow \mathcal{L}' \rightarrow \mathcal{L} \rightarrow \mathcal{Q} \rightarrow 0 be an exact sequence of sheaves. If \mathcal{L}' and $\mathcal{L}$ are flabby, then $\mathcal{Q}$ is flabby). We prove that $H^{q}(\mathcal{L}) = 0$ by induction on $q \geq 1$. If $q = 1$, the long exact cohomology sequence contains the fragment

$H^{0}(\mathcal{E}) \rightarrow H^{0}(\mathcal{Q}) \rightarrow H^{1}(\mathcal{L}) \rightarrow H^{1}(\mathcal{E})$.

Since $H^{1}(\mathcal{E}) = \left\{ 0\right\}$, we have $H^{1}(\mathcal{L}) = coker(\Gamma(\mathcal{E}) \rightarrow \Gamma(\mathcal{Q}))$. But this cokernel is $0$, by part (i), and so $H^{1}(\mathcal{L}) = \left\{ 0\right\}$...

Q: I don't get where the coker part came from? Why is $H^{1}(\mathcal{L}) = coker(\Gamma(\mathcal{E}) \rightarrow \Gamma(\mathcal{Q}))$?? I'm lost here

  • 0
    Haha @GeorgesElencwajg Good one, that's a lovely dog, Swag2012-02-20

1 Answers 1

5

The exact sequence fragment $H^{0}(\mathcal{E}) \rightarrow H^{0}(\mathcal{Q}) \rightarrow H^{1}(\mathcal{L}) \rightarrow H^{1}(\mathcal{E})$ becomes, after the observation that the last term is $0$, $H^{0}(\mathcal{E}) \rightarrow H^{0}(\mathcal{Q}) \rightarrow H^{1}(\mathcal{L}) \rightarrow 0.$ Because this is exact, the map $H^0(\mathcal{Q})\to H^1(\mathcal{L})$ is onto. Therefore, by the isomorphism theorems, $H^1(\mathcal{L}) \cong \frac{H^0(\mathcal{Q})}{\mathrm{ker}(H^0(\mathcal{Q})\to H^1(\mathcal{L}))}.$ But since the sequence is exact, $\mathrm{ker}(H^0(\mathcal{Q})\to H^1(\mathcal{L})) = \mathrm{Im}(H^0(\mathcal{E})\to H^0(\mathcal{Q}))$. So: $H^1(\mathcal{L}) \cong \frac{H^0(\mathcal{Q})}{\mathrm{ker}(H^0(\mathcal{Q})\to H^1(\mathcal{L}))} = \frac{H^0(\mathcal{Q})}{\mathrm{Im}(H^0(\mathcal{E})\to H^0(\mathcal{Q}))} = \mathrm{Coker}(H^0(\mathcal{E})\to H^0(\mathcal{Q})).$

  • 0
    This is awesome, thanks bro2012-02-20