Compute the following limitation: $\lim_{x\to0}\ x^2\left(1+2+3+...+\left[\frac1{|x|}\right]\right)$.
What is the valuation of $\lim_{x\to0}\ x^2\left(1+2+3+...+\left[\frac1{|x|}\right]\right)$?
2
$\begingroup$
calculus
-
2What is $[...]$? Is it the floor function? – 2012-12-29
1 Answers
4
Recall that $1 + 2 + 3 + \cdots + \cdots + n = \dfrac{n(n+1)}2$ If $\vert x \vert \in \left(\dfrac1{n+1}, \dfrac1n\right]$, we have $\lfloor 1/\vert x \vert \rfloor = n$ and hence we get that $1 + 2 + 3 + \cdots + \cdots + \lfloor 1/\vert x \vert \rfloor = \dfrac{\lfloor 1/\vert x \vert \rfloor(\lfloor 1/\vert x \vert \rfloor+1)}2 = \dfrac{n(n+1)}2$ Then $x^2 \left(1 + 2 + 3 + \cdots + \cdots + \lfloor 1/\vert x \vert \rfloor \right) = \dfrac{x^2n(n+1)}2 \in \left(\dfrac{n}{2(n+1)}, \dfrac{n+1}{2n} \right]$ Hence, as $n \to \infty$ i.e. as $\vert x \vert \to 0$, we get the limit as $1/2$.
-
1@aliakbar Kindly consider accepting and up-voting helpful answers to other questions you have asked so far as well. – 2012-12-29