0
$\begingroup$

Prove that the distance from the point $(x_0,y_0)^T$ to the line ax + by = 0 is $\frac{|ax_0 + by_0|}{\sqrt{a^2 +b^2}}$, also what is the minimum distance to the line ax + by + c = 0?

My attempt:

$\left( \left( \begin{matrix} x_0 \\ y_0 \end{matrix} \right) - c \left( \begin{matrix} a/b \\ -a/b \end{matrix} \right) \right) . \left( \begin{matrix} a/b \\ -a/b \end{matrix} \right) = 0$ so $\frac{\left( \begin{matrix} x_0 \\ y_0 \end{matrix} \right) . \left( \begin{matrix} a/b \\ -a/b \end{matrix} \right)}{\left( \begin{matrix} a/b \\ -a/b \end{matrix} \right). \left( \begin{matrix} a/b \\ -a/b \end{matrix} \right)} . \left( \begin{matrix} a/b \\ -a/b \end{matrix} \right) = \left( \begin{matrix} \frac{a}{b}(x_0 - y_0) \\ \frac{2a^2}{b} \end{matrix} \right)$ , but how can I complete this to match the the answer given in the question. Also, I do not know how to do part II of this problem.

  • 0
    What is this $(a/b,-a/b)$ you are using? Is that supposed to be a point on the line? Is it actually on the line?2012-10-14

3 Answers 3

1

Given line $ax+by=0$ and point $(x_0,y_0)$, we want to find the distance from the point to the line. This distance is a perpendicular from the point $(x_0,y_0)$ to given line.

Rewriting line equation, $ax+by=0$, to $y=-\frac{a}{b}x$ we can see that the slope, $m$, is $m=-\frac{a}{b}$. We know that the slope of a normal, $m_n$ to given slope, $m$, has the following property:

$m\cdot m_n=-1$

Thus, in our case, $m_n=\frac{b}{a}$; and a point $(x_0,y_0)$. We can construct our normal line to the given one.

$y-y_0=m_n(x-x_0)$ $y=\frac{b}{a}x-\frac{b}{a}x_0+y_0$

We are ready to find the intersection point of two these lines:

$\begin{cases}y=-\frac{a}{b}x \\ y=\frac{b}{a}x-\frac{b}{a}x_0+y_0\end{cases}$

$x(\frac{a}{b}+\frac{b}{a})=\frac{b}{a}x_0-y_0$

$x=\frac{\frac{b}{a}x_0-y_0}{\frac{a^2+b^2}{ab}}=\frac{bx_0-ay_0}{\frac{a^2+b^2}{b}}$

And,

$y=-\frac{a}{b}x=-\frac{a}{b}\frac{bx_0-ay_0}{\frac{a^2+b^2}{b}}=-\frac{a(bx_0-ay_0)}{a^2+b^2}$

Point of intersection is:

$P(\frac{bx_0-ay_0}{\frac{a^2+b^2}{b}},-\frac{a(bx_0-ay_0)}{a^2+b^2})$

Now we compute the distance from $(x_0,y_0)$ to $P$.

$d^2=(\frac{a^2+b^2}{a^2+b^2}x_0-\frac{b^2x_0-aby_0}{{a^2+b^2}})^2+(\frac{a^2+b^2}{a^2+b^2}y_0+\frac{a(bx_0-ay_0)}{a^2+b^2})$

After calculations, we left with:

$d^2=\frac{(ax_0+by_0)^2}{(a^2+b^2)}$

Or,

$d=\frac{|ax_0+by_0|}{\sqrt{a^2+b^2}}$

  • 1
    @diimension: bev$a$kasha -- You are welcome! :)2012-10-19
1

You can follow these steps

1) Find the directional vector of the line $v$.

2) Find the projection $P_{v}^{b}$ of $b=(x_0,y_0)$ on $v$ which is a scalar value.

3) Multiply the unit vector of $v$ by $P_{v}^{b}$ and name it $w$.

4) Find the distance between $w$ and $v$ which is the distance between the point and the line.

  • 0
    I haven't learned projections yet. It is in a couple of more sections.2012-10-14
1

The line $ax+by=0$ is the set of all points $(bt,-at)$, $-\infty\lt t\lt\infty$. The square of the distance from $(x_0,y_0)$ to such a point is $f(t)=(x_0-bt)^2+(y_0+at)^2$ You should be able to find, by the usual calculas techniques, the value of $t$ that minimizes $f$, and then the corresponding minimal value of $f$, and then what you want is the square root of that.

  • 0
    Partial? I only see one variable.2012-10-14