Possible Duplicate:
Proving that $ \frac{1}{\sin(45°)\sin(46°)}+\frac{1}{\sin(47°)\sin(48°)}+...+\frac{1}{\sin(133°)\sin(134°)}=\frac{1}{\sin(1°)}$
Find the smallest postive integer n such that :
$\dfrac{1}{\sin 45^\circ \sin 46^\circ} + \dfrac1{\sin 47^\circ \sin 48^\circ} + \dots + \dfrac1{\sin 133^\circ \sin 134^\circ} = \dfrac1{\sin n^\circ}$