Assume $\mathbf{w}\neq\mathbf{0}$. We have $ <\mathbf{w},\mathbf{x}>=||\mathbf{w}||\, ||\mathbf{x}|| \cos(\varphi)=||\mathbf{w}|| \cos(\varphi), $ where $0\leq\varphi\leq\pi$ the angle between $\mathbf{w}$ and $\mathbf{x}$.
If $w_i\leq 0$ for all $i$ we obtain the minimal value in the only case $\varphi=\pi$ and $\mathbf{x}=\frac{\mathbf{w}}{||\mathbf{w}||}$.
If there are $i_0, j_0$ such that $w_{i_0}>0$ and $w_{j_0}<0$ then choose $\mathbf{y}$ such that $y_{i_0}:=0$ and $y_{j_0}:=-w_{j_0}$. Then $\mathbf{x}=\frac{\mathbf{y}}{||\mathbf{y}||}$.
If $w_i\geq 0$ for all $i$ then project $\mathbf{w}$ to the coordinate-axes. We obtain the vectors $\mathbf{w}_1,\ldots,\mathbf{w}_n$. The angles between $\mathbf{w}$ and $\mathbf{w}_i$ are $\varphi_i$. Choose $i_0$ such that the angle would be maximal (it is not necessarily unique). Then $\mathbf{x}=\frac{\mathbf{w}_{i_0}}{||\mathbf{w}_{i_0}||}$.