$\hspace{2cm}$
Since $\overline{AB}=\overline{AL}$, $\triangle ABL$ is isosceles. $\overline{AK}$ bisects $\angle BAL$; therefore, $\overline{BL}\perp\overline{AK}$. Let $J$ be the intersection of $\overline{BL}$ and $\overline{AK}$. Drop perpendicular $\overline{KN}$ to $\overline{AB}$ and perpendicular $\overline{KP}$ to $\overline{AC}$.
$\angle ABC=130^\circ$ and $\angle ABJ=80^\circ$; therefore, $\angle JBK=50^\circ$. Being an external angle of $\triangle ABC$, $\angle NBK=50^\circ$. Therefore, $\triangle BJK=\triangle BNK$. Thus, $\overline{NK}=\overline{JK}$. $\triangle ANK=\triangle APK$; therefore $ \overline{PK}=\overline{NK}=\overline{JK} $ Thus, $K$ is the center of the excircle to $\triangle ABL$ tangent to $\overline{BL}$.
Being an external angle of $\triangle AMC$, $\angle KMC=20^\circ$. Therefore, $\triangle KMC$ is isosceles, giving $\overline{MK}=\overline{KC}$.
Because $\triangle CKP$ is a $30{-}60{-}90$ triangle, we can place $Q$ so that $\triangle CQP$ is also $30{-}60{-}90$ and $\triangle KQC$ is equilateral. Therefore, $\overline{KQ}=\overline{KC}$. Furthermore, $\overline{KP}=\overline{QP}=\frac12\overline{KQ}$. Thus, $ \frac{\overline{JK}}{\overline{MK}}=\frac{\overline{KP}}{\overline{KQ}}=\frac12 $ Therefore, $\overline{MJ}=\overline{JK}$, and $\triangle MBK$ is isosceles. Since $\angle MBJ=\angle JBK=50^\circ$, we have that $\angle BMJ=40^\circ$, which leaves $\angle AMB=140^\circ$.