Let $n \in N$ and $q\geq 2$.
I am trying to calculate the following sum: $ \sum_{i=0}^{\sqrt n/2}\sum_{j= i \sqrt n }^{(i+1)\sqrt n}\frac{(-1)^q2^q(\frac{n}{2}-j)^q}{(n-j)!j!} $
Any help will be appreciated.
Thank you.
Let $n \in N$ and $q\geq 2$.
I am trying to calculate the following sum: $ \sum_{i=0}^{\sqrt n/2}\sum_{j= i \sqrt n }^{(i+1)\sqrt n}\frac{(-1)^q2^q(\frac{n}{2}-j)^q}{(n-j)!j!} $
Any help will be appreciated.
Thank you.