0
$\begingroup$

Can we find a expansion for $x^{\frac{1}{k}} \quad (k\in \mathbb{Z})$ using alternative power series?

I can find things like

$(x+1)^{\frac{1}{k}}=1+\frac{x}{k}+\frac{\left(\frac{1}{k}-1\right) x^2}{2 k}+\frac{(k-1) (2 k-1) x^3}{6 k^3}+\frac{\left(\frac{1}{k}-3\right) \left(\frac{1}{k}-2\right) \left(\frac{1}{k}-1\right) x^4}{24 k}+\frac{\left(\frac{1}{k}-4\right) \left(\frac{1}{k}-3\right) \left(\frac{1}{k}-2\right) \left(\frac{1}{k}-1\right) x^5}{120 k}+\frac{\left(\frac{1}{k}-5\right) \left(\frac{1}{k}-4\right) \left(\frac{1}{k}-3\right) \left(\frac{1}{k}-2\right) \left(\frac{1}{k}-1\right) x^6}{720 k}+\frac{\left(\frac{1}{k}-6\right) \left(\frac{1}{k}-5\right) \left(\frac{1}{k}-4\right) \left(\frac{1}{k}-3\right) \left(\frac{1}{k}-2\right) \left(\frac{1}{k}-1\right) x^7}{5040 k}+\frac{\left(\frac{1}{k}-7\right) \left(\frac{1}{k}-6\right) \left(\frac{1}{k}-5\right) \left(\frac{1}{k}-4\right) \left(\frac{1}{k}-3\right) \left(\frac{1}{k}-2\right) \left(\frac{1}{k}-1\right) x^8}{40320 k}+\frac{\left(\frac{1}{k}-8\right) \left(\frac{1}{k}-7\right) \left(\frac{1}{k}-6\right) \left(\frac{1}{k}-5\right) \left(\frac{1}{k}-4\right) \left(\frac{1}{k}-3\right) \left(\frac{1}{k}-2\right) \left(\frac{1}{k}-1\right) x^9}{362880 k}+\frac{\left(\frac{1}{k}-9\right) \left(\frac{1}{k}-8\right) \left(\frac{1}{k}-7\right) \left(\frac{1}{k}-6\right) \left(\frac{1}{k}-5\right) \left(\frac{1}{k}-4\right) \left(\frac{1}{k}-3\right) \left(\frac{1}{k}-2\right) \left(\frac{1}{k}-1\right) x^{10}}{3628800 k}+O\left(x^{11}\right)$

But I would like a expansion of $x^{\frac{1}{k}}$. I know this is will not work to $(x+a)^{\frac{1}{k}}$ when a is equal to 0, but we can find another expansions for $\log(x)$ that looks like power series like these ones.

So, how can I perform this?

  • 0
    GarouDan: Why do you neglect to answer the question asked in the comment above?2012-07-14

2 Answers 2

1

You can't get this. The function $x\mapsto x^{1/k}$ does not admit a nice extension to the complex plane in a neighborhood of zero.

0

Actually, you can only achieve this if and only if 1/k is an integer.

  • 0
    Hun. We can assume k is integer. Will help me.2012-06-14