1
$\begingroup$

If $\liminf_{x\to \infty}f(x)>M,$ for some $M>0$, where $f$ is continuous function on $\mathbb R$.

Does this imply that: there exist $x_{o}$ such that for all $x\geq x_{o}$ we have $f(x)>M$? If so, how I can prove it?

I also have another question, just to be sure: If $f(x)\leq g(x)$ for all $x\in \mathbb R$, both are continuous on $\mathbb R$, then $\liminf_{x\to\infty}f(x)\leq \liminf_{x\to\infty} g(x)$

  • 0
    Using Alex R.'s argument, a contradiction will happen. However, I'm going to do this question in another way for fun.2016-02-11

1 Answers 1

0
  1. Let $L = \liminf_{x\to\infty}f(x) = \sup_{N>0}\inf_{x\ge N}f(x)$. Then we have $L>M$, so $M$ isn't a supremum of $\left\{\inf_{x\ge N}f(x)\mid N>0\right\}$. Therefore, $\exists x_0>0$ such that $\inf_{x\ge x_0}f(x)>M$. Hence, $f(x) > M \;\forall x \ge x_0$.
  2. The answer is yes. We're given $f(x)\leq g(x) \;\forall x \in \Bbb R.\tag{1}$ Let $N>0$. We first take infimum on the LHS over all $x\ge N$. $\inf_{x\ge N}f(x) \le g(x) \;\forall x \ge N\tag{2}$ Then $\inf_{x\ge N}f(x)$ is a lower bound of $\left\{g(x)\mid x \ge N\right\}$, while $\inf_{x\ge N}g(x)$ is the greatest lower bound of $\left\{g(x)\mid x \ge N\right\}$. Therefore, one has $\inf_{x\ge N}f(x) \le \inf_{x\ge N}g(x).\tag{3}$ From (1) to (3), we realize that we can take infimum on both sides. Similarly, we can take supremum over $N>0$ on both sides. $\sup_{N>0}\inf_{x\ge N}f(x) \le \sup_{N>0}\inf_{x\ge N}g(x)\tag{4}$ In other words, we have the statement in the OP. $\liminf_{x\to\infty}f(x) \le \liminf_{x\to\infty}g(x)$