Putting $D=A-45^{\circ}$ etc, $D+E+F=(A+B+C-135^{\circ})=45^{\circ}$
$1+\tan A=1+\tan(D+45^{\circ})=\frac{2}{1-\tan D}$ appyling $\tan(A+B)=\frac{\tan A+ \tan B}{1-\tan A \tan B}$
So, $\frac{2}{1 + \tan A}=1-\tan D$
Now the problem reduces to minimize $\tan D+\tan E+ \tan F$ where $D+E+F=45^{\circ}$ and $D,E,F>0$
If we can show that the minimum value occurs when $D=E=F$, we are done.
(i) Observe that $\tan x $ is convex for $x=D,E$ or $F$, as $\frac{d\tan x}{dx}=sec^2x$ and $\frac{d^2\tan x}{dx^2}=2\sec^2x\tan x>0$ as $D+E+F=45^{\circ}$ and $D,E,F>0$.
Using the Jensen's Inequality, we get that $\sum_{i=1}^n \tan A_i \ge n \cdot \tan \left( \frac{A_1 + A_2 + \cdots+ A_n}{n} \right) $ if $\sum_{i=1}^n A_i$ is constant.
So, the value of $\tan D+\tan E+ \tan F$ is minimized when $D=E=F$.
(ii) Alternatively, $\tan D+\tan E+ \tan F=\tan D+\tan E+ \tan (45^{\circ} - D - E)=g(D,E)$(say),
Applying partial derivative wrt to D, $\frac{\partial g}{\partial D}=\sec^2D+sec^2(45^{\circ} - D - E)\cdot (-1)$
$\frac{\partial g}{\partial D}=0=>\sec^2D=sec^2(45^{\circ} - D - E)=>D=±(45^{\circ} - D - E)$
If $D=-(45^{\circ} - D - E)$, then $E=45^{\circ}$ which is impossible as $D,E,F>0$,
so, $D=45^{\circ} - D - E=>E=45^{\circ} - 2D$
Putting this is in $D+E+F=45^{\circ}=>F=D$
Applying partial derivative wrt to E, $\frac{\partial g}{\partial E}=\sec^2E+sec^2(45^{\circ} - D - E)\cdot (-1)$
$\frac{\partial g}{\partial E}=0=>\sec^2E=sec^2(45^{\circ} - D - E)$
So, $\sec^2E=\sec^2D=>D=E$ as $D,E,F>0$,
So, $\frac{\partial g}{\partial E}=0=\frac{\partial g}{\partial D}=>D=E=F$
Using Second Derivative Test for $g(D,E)$, we can show that $min(g(D,E))=g(D,E)_{D=E=F}=g(15^{\circ}, 15^{\circ})$
So, the minimum value of $\tan D+\tan E+ \tan F$ is $3 (\tan15^{\circ})=3(2-\sqrt 3)$