1
$\begingroup$

I want to prove $|w\overline{z}+\overline{w}z|\leq 2|wz|$.

My attempt:

$\begin{array}{c c}|w\overline{z}+\overline{w}z| & =|(c+id)(a-ib)+(c-id)(a+ib)| \\ & =|2(ac+bd)| \\ & =\sqrt{4(ac+bd)^2} \\ & =2\sqrt{(ac+bd)^{2}}\end{array}$

Now

$\begin{array}{c c} 2|wz| & =2|(a+bi)(c+id)| \\ & =|2(ac-bd)+2i(ad+bc)| \\ & =2\sqrt{(ac-bd)^{2}+(ad+bc)^{2}}, \end{array}$

but $(ac+bd)^{2}>0$ y $(ac-bd)^{2}\geq 0$ so the second term is larger.

Is my procedure right?

  • 1
    @DanieladelCarmen Note that $(ad-bc)^2 \geq 0$ and hence $(ad)^2 + (bc)^2 - 2adbc \geq 0$ and hence $(ad)^2 + (bc)^2 \geq 2acbd$.2012-05-17

1 Answers 1

2

Your answer appears to be right, but you may enjoy a different way to go about it is by using the identity $z\overline{z}=|z|^2$. To me, this method gives a bit more of a geometric idea of what is going on. With this identity in mind: $|w\overline{z}+\overline{w}z|^2=(w\overline{z}+\overline{w}z)\overline{(w\overline{z}+\overline{w}z)}=(w\overline{z}+\overline{w}z)^2$

Now expand this to $(w\overline{z})^2+2(w\overline{w}z\overline{z})+(\overline{w}z)^2$

The middle term is $2|wz|^2$. The other two terms are conjugates, so the sum is real-valued and there may be some cancellation going on in the imaginary terms when we sum them. That is, $(w\overline{z})^2+(\overline{w}z)^2\le2|wz|^2$

Hence, we have $|w\overline{z}+\overline{w}z|^2\le 4|wz|^2$

$|w\overline{z}+\overline{w}z|\le 2|wz|$