Here's my problem could someone show me what the steps are?
$2 \cos \alpha \cos \beta = \cos( \alpha + \beta) + \cos( \alpha − \beta)$
Here's my problem:
Here's my problem could someone show me what the steps are?
$2 \cos \alpha \cos \beta = \cos( \alpha + \beta) + \cos( \alpha − \beta)$
Here's my problem:
To see something along the lines of the exercise, you need to know that, $2\cos A\cos B=\cos (A+B)+\cos(A-B)$
From here, now substitute, $A=\alpha$ and $B=\beta$ to see the result!
If you know that, $\cos A+\cos B=2\cos\left(\dfrac{A+B}{2}\right)\cos\left(\dfrac{A-B}{2}\right)$
Now set $A=\alpha+\beta$ and $B=\alpha-\beta$. Can you evaluate what $A+B$ and $A-B$ are to see your result?
Do you know that $\begin{align}\cos(\alpha+\beta)&=\cos\alpha\cos\beta-\sin\alpha\sin\beta\tag{1}\\\cos(\alpha-\beta)&=\cos\alpha\cos \beta+\sin\alpha\sin\beta\tag{2}\end{align}$
Add $(1)$ and $(2)$ to see your result.