The relation $\preceq$ isn’t symmetric.
Let $f(x)=1$ and $g(x)=x$ for all $x\in[0,\to)$. Then with $\lambda=1$ we have
$1=f(x)\le x+2=g(x+1)+1$ for all $x\in[0,\to)$, so $f\preceq g$. Now suppose that $g\preceq f$; then there is some $\lambda\ge 1$ be such that $x+1=g(x)\le\lambda f(\lambda x+\lambda)+\lambda=2\lambda$ for all $x\in[0,\to)$, which is clearly impossible. Thus, $f\preceq g\not\preceq f$, and $\preceq$ is not symmetric.
To show that $\preceq$ is transitive, you must show that if $f,g$, and $h$ are functions such that $f\preceq g$ and $g\preceq h$, then $f\preceq h$. Your hypothesis gives you constants $\lambda,\mu\ge 1$ such that $f(x)\le\lambda g\big(\lambda x+\lambda\big)+\lambda\tag{1}$ and $g(x)\le\mu h\big(\mu x+\mu\big)+\mu\tag{2}$ for all $x\in[0,\to)$, and you want to show that there is a constant $\nu\ge 1$ such that $f(x)\le\nu h\big(\nu x+\nu\big)+\nu$ for all $x\in[0,\to)$. If you combine $(1)$ and $(2)$ in the most obvious way, you get
$\begin{align*} f(x)&\le\lambda\Big(\mu h\big(\mu(\lambda x+\lambda)+\mu\big)+\mu\Big)+\lambda\\ &=\lambda\mu h\big(\lambda\mu x+\lambda\mu+\mu\big)+\lambda\mu+\lambda\;. \end{align*}$
What happens now if you take $\nu=\lambda\mu+\lambda+\mu\,$?