1
$\begingroup$

Let $X$ and $Y$ be independent discrete random variables, each taking values $1$ and $2$ with probability $1/2$ each. How do I calculate the covariance between $max(X,Y)$ and $min(X,Y)$?

2 Answers 2

3

First, $ \begin{array}{} \mathrm{P}(\max(X,Y)=2)=\frac34\qquad\text{and}\qquad\mathrm{P}(\max(X,Y)=1)=\frac14\\ \mathrm{P}(\min(X,Y)=2)=\frac14\qquad\text{and}\qquad\mathrm{P}(\min(X,Y)=1)=\frac34\\ \end{array} $ Therefore, $ \mathrm{E}(\max(X,Y))=\frac74\qquad\text{and}\qquad\mathrm{E}(\min(X,Y))=\frac54 $ Furthermore, $ \begin{align} \mathrm{P}(\max(X,Y)\min(X,Y)=4)=\mathrm{P}(\min(X,Y)=2)&=\frac14\\ \mathrm{P}(\max(X,Y)\min(X,Y)=2)\hphantom{\ =\mathrm{P}(\min(X,Y)=2)}&=\frac12\\ \mathrm{P}(\max(X,Y)\min(X,Y)=1)=\mathrm{P}(\max(X,Y)=1)&=\frac14\\ \end{align} $ Therefore, $ \mathrm{E}(\max(X,Y)\min(X,Y))=\frac94 $ Thus, $ \begin{align} &\mathrm{Cov}(\max(X,Y),\min(X,Y))\\ &=\mathrm{E}(\max(X,Y)\min(X,Y))-\mathrm{E}(\max(X,Y))\mathrm{E}(\min(X,Y))\\ &=\frac1{16} \end{align} $

  • 1
    @idealistikz: Indeed! Thanks $f$or catching that.2012-10-01
1

Let $W=\min\{X,Y\}$ and $Z=\max\{X,Y\}$; then the desired covariance is $\mathrm{E}[WZ]-\mathrm{E}[W]\mathrm{E}[Z]$. $W=1$ unless $X=Y=2$, so $\mathrm{Pr}(W=1)=\frac34$ and $\mathrm{Pr}(W=2)=\frac14$, and therefore

$\mathrm{E}[W]=\frac34\cdot1+\frac14\cdot2=\frac54\;.$

The calculation of $\mathrm{E}[Z]$ is similar. So is that of $\mathrm{E}[WZ]$: just average the four possibilities according to their respective probabilities.