7
$\begingroup$

General and particular solution for this first-order nonlinear ODE :

$y'(x)+\frac{1}{x}=\frac{1}{y}$

  • 0
    And the stated problem is to prove something about the solution, or actually to write it down explicitly?2012-12-15

1 Answers 1

1

$y'(x)+\dfrac{1}{x}=\dfrac{1}{y}$

$y\dfrac{dy}{dx}+\dfrac{y}{x}=1$

This belongs to an Abel equation of the second kind.

Let $x=e^{-t}$ ,

Then $\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{\dfrac{dy}{dt}}{-e^{-t}}=-e^t\dfrac{dy}{dt}$

$\therefore-e^ty\dfrac{dy}{dt}+e^ty=1$

$y\dfrac{dy}{dt}-y=-e^{-t}$

This belongs to an Abel equation of the second kind in the canonical form.

Please follow the method in https://arxiv.org/ftp/arxiv/papers/1503/1503.05929.pdf