If $ f \equiv 0 $, then choose $ C = 0 $. Also, if $ g \equiv 0 $, then this forces $ f \equiv 0 $, so we can choose any $ C \in \mathbb{C} $. Henceforth, let us assume that $ f,g \not\equiv 0 $.
Suppose that $ g $ never vanishes. Then $ \dfrac{f}{g} $ is entire. As $ \left| \dfrac{f}{g} \right| \leq 1 $, it is also bounded. Hence, by Liouville's Theorem, $ \dfrac{f}{g} = C $ for some constant $ C $, which yields $ f = Cg $.
Now, suppose that $ g $ has zeroes. Denote the zero sets of $ f $ and $ g $ by $ \mathcal{Z}_{f} $ and $ \mathcal{Z}_{g} $ respectively. Clearly, $ \mathcal{Z}_{g} \subseteq \mathcal{Z}_{f} $. By the Quotient Rule, $ \dfrac{f}{g} $ is complex-differentiable, thus holomorphic, on $ \mathbb{C} \setminus \mathcal{Z}_{g} $. Pick $ z_{0} \in \mathcal{Z}_{g} $. As $ \mathcal{Z}_{g} $ is a discrete subset of $ \mathbb{C} $, there exists an $ r_{0} > 0 $ such that $ g(z) \neq 0 $ for all $ z \in D(z_{0},r_{0}) \setminus \{ z_{0} \} $. Let the complex power series representations of $ f $ and $ g $ on $ D(z_{0},r_{0}) $ be given by $ \displaystyle \sum_{k=0}^{\infty} a_{k} (z - z_{0})^{k} $ and $ \displaystyle \sum_{k=0}^{\infty} b_{k} (z - z_{0})^{k} $ respectively. Clearly, $ a_{0} = b_{0} = 0 $. However, there must exist smallest $ M,N \in \mathbb{N} $ such that $ a_{M},b_{N} \neq 0 $, otherwise $ f = g \equiv 0 $, contrary to our earlier assumption (at the end of the first paragraph). Hence, $ \forall z \in D(z_{0},r_{0}) \setminus \{ z_{0} \}: \quad \left( \frac{f}{g} \right)(z) = \frac{\displaystyle \sum_{k=M}^{\infty} a_{k} (z - z_{0})^{k}}{\displaystyle \sum_{k=N}^{\infty} b_{k} (z - z_{0})^{k}} = (z - z_{0})^{M - N} \cdot \frac{\displaystyle \sum_{k=0}^{\infty} a_{k + M} (z - z_{0})^{k}}{\displaystyle \sum_{k=0}^{\infty} b_{k + N} (z - z_{0})^{k}}. $ It is easily seen from this that $ \lim_{\substack{z \rightarrow z_{0}; \\ z \in D(z_{0},r_{0}) \setminus \{ z_{0} \}}} \left| \left( \frac{f}{g} \right)(z) \right| $ (i) converges when $ M \geq N $ and (ii) diverges to $ \infty $ when $ M < N $. The second scenario cannot happen because $ \left| \left( \dfrac{f}{g} \right)(z) \right| \leq 1 $ for all $ z \in \mathbb{C} \setminus \mathcal{Z}_{g} $. Therefore, $ M \geq N $, which allows us to define a holomorphic $ F_{0}: D(z_{0},r_{0}) \rightarrow \mathbb{C} $ by $ \forall z \in D(z_{0},r_{0}): \quad {F_{0}}(z) = (z - z_{0})^{M - N} \cdot \frac{\displaystyle \sum_{k=0}^{\infty} a_{k + M} (z - z_{0})^{k}}{\displaystyle \sum_{k=0}^{\infty} b_{k + N} (z - z_{0})^{k}}. $ Clearly, $ F_{0} $ agrees with $ \dfrac{f}{g} $ on the punctured disk $ D(z_{0},r_{0}) \setminus \{ z_{0} \} $, and $ |F_{0}| \leq 1 $. Enumerating the elements of $ \mathcal{Z}_{g} $ as $ z_{i} $, starting with the $ z_{0} $ just considered, we can find corresponding disks $ D(z_{i},r_{i}) $ and holomorphic functions $ F_{i}: D(z_{i},r_{i}) \rightarrow \mathbb{C} $ that agree with $ \dfrac{f}{g} $ on those disks. Then $ F := \left( \frac{f}{g} \right) \cup \left( \bigcup_{i} F_{i} \right) $ is an entire function satisfying $ |F| \leq 1 $. By Liouville's Theorem, $ F \equiv C $ for some constant $ C $, and so $ \dfrac{f}{g} = C|_{\mathbb{C} \setminus \mathcal{Z}_{g}} $. This implies that $ f|_{\mathbb{C} \setminus \mathcal{Z}_{g}} = C \cdot g|_{\mathbb{C} \setminus \mathcal{Z}_{g}} $. By the discreteness of $ \mathcal{Z}_{g} $ and by the continuity of both $ f $ and $ g $, we can conclude that $ f = Cg $.