So I am giving this expression D +B’C’ + CD’ +A B’C and I ask to simplify it
When working through it I get
D+B'C'+CD'+AB'C D'(A'B'+CD'+AB) D'(A'B'+A(B'+B)) D'(A'B'+AC') D'(B'+A)
Am I on the right track or am I completely missing the point?
So I am giving this expression D +B’C’ + CD’ +A B’C and I ask to simplify it
When working through it I get
D+B'C'+CD'+AB'C D'(A'B'+CD'+AB) D'(A'B'+A(B'+B)) D'(A'B'+AC') D'(B'+A)
Am I on the right track or am I completely missing the point?
Try using the following rules: $A + \overline{A }B = A + B$, and $A + A B = A$ (and convince your self that they are true).
Then you could do \begin{eqnarray} D + \overline{B} \overline{C} + C\overline{D} +A \overline{B} C & = & D + C + \overline{B} \overline{C}+A \overline{B} C \\ & = & D + C + \overline{B} + A \overline{B} C \\ & = & D + C + \overline{B} \end{eqnarray}