given the following region $R=\lbrace m,n \geq0$, $1 \geq m+n \geq 2\rbrace$ where $(m,n) \in \mathbb{R}^2$.write in polar coordinates $(r, \theta)$ the following double integral $\int\int_R m \,dA$
polar form of a double integral
2
$\begingroup$
calculus
-
2Yes. You are correct. $\int_0^{\frac{\pi}{2}}\int_{\frac{1}{\cos\theta + \sin\theta}}^{\frac{2}{\cos\theta +\sin\theta}}r^2\cos\theta drd\theta$. – 2012-06-10