91
$\begingroup$

Compute

$\int_{0}^{1} \frac{\ln(x+1)}{x^2+1} \mathrm dx$

  • 3
    Why don't you try to show some of your work....2015-06-12

7 Answers 7

112

Put $x = \tan\theta$, then your integral transforms to $I= \int_{0}^{\pi/4} \log(1+\tan\theta) \ d\theta \tag{1}$

Now using the property that $\int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx$ we have $I = \int_{0}^{\pi/4} \log\biggl(1+\tan\Bigl(\frac{\pi}{4}-\theta\Bigr)\biggr) \ d\theta = \int_{0}^{\pi/4} \log\biggl(\frac{2}{1+\tan\theta} \biggr) \ d\theta\tag{2}$

Adding $(1)$ and $(2)$ we get $2I = \int_{0}^{\pi/4} \log(2) \ d\theta\Rightarrow I= \log(2) \cdot \frac{\pi}{8}$

58

Consider: $I(a) = \int_0^1 \frac{\ln (1+ax)}{1+x^2} \, dx$ than, the derivative $I'$ is equal: $I'(a) = \int_0^1 \frac{x}{(1+ax)(1+x^2)} \, dx = \frac{2 a \arctan x - 2\ln (1+a x) + \ln (1+x^2)}{2(1+a^2)} \Big|_0^1\\ = \frac{\pi a + 2 \ln 2}{4(1+a^2)} - \frac{\ln (1+a)}{1+a^2}$ Hence: $I(1) = \int_0^1 \left( \frac{\pi a + 2 \ln 2}{4(1+a^2)} - \frac{\ln (1+a)}{1+a^2} \right) \, da \\ 2 I(1) = \int_0^1 \frac{\pi a + 2 \ln 2}{4(1+a^2)} \, da = \frac{\pi}{4} \ln 2$ Divide both sides by $2$ and you're done.

  • 1
    @Astrobleme in case you are still wondering, it is partial fractions!2017-11-27
45

Good evening, I've got another method by putting $x=(1-t)/(1+t)$, we obtain $\int_0^1\frac{\ln (x+1)}{x^2+1}dx=\int_1^0\frac{\ln\frac{2}{1+t}}{\left(\frac{1-t}{1+t}\right)^2+1}\cdot\left\{-\frac{2}{(1+t)^2}\right\}dt =\int_0^1\frac{\ln 2-\ln (1+t)}{t^2+1}\ dt.$ You can finish easily.

  • 0
    Great solution (+1) but how does one even think of that substitution in such situation? I mean, this is a clearly a "let's try it out and hope it works method". The accepted solution is more straightforward.2018-03-10
34

If $(1+x)(1+y)=2$, then $\begin{align} x&=\frac{1-y}{1+y}\\ 1+x^2&=2\frac{1+y^2}{(1+y)^2}\\ \frac{1+x^2}{1+x}&=\frac{1+y^2}{1+y} \end{align}\tag{1} $ and since $(1+y)\,\mathrm{d}x+(1+x)\,\mathrm{d}y=0$ we get $ \frac{\mathrm{d}x}{1+x^2}=-\frac{\mathrm{d}y}{1+y^2}\tag{2} $ Therefore, $ \begin{align} \int_0^1\frac{\log(1+x)}{1+x^2}\mathrm{d}x &=\int_0^1\frac{\log(2)-\log(1+y)}{1+y^2}\mathrm{d}y\tag{3} \end{align} $ Adding the left side to both sides and dividing by $2$ yields $ \begin{align} \int_0^1\frac{\log(1+x)}{1+x^2}\mathrm{d}x &=\frac12\int_0^1\frac{\log(2)}{1+y^2}\mathrm{d}y\\ &=\frac\pi8\log(2)\tag{4} \end{align} $

  • 0
    I excuse Mr robjohn. I did'nt see your answer.2013-06-04
24

Start with $\begin{align*} \int_0^{\pi/4} \ln(1+\tan x)dx &= \int_0^{\pi/4} \ln(\sin x+\cos x)dx - \int_0^{\pi/4} \ln(\cos x)dx \\ &= \int_0^{\pi/4} \ln\left(\cos(x-\frac{\pi}4)\right)dx +\int_0^{\pi/4} \ln(\sqrt 2)dx - \int_0^{\pi/4} \ln(\cos x)dx. \end{align*}$ Now change $\pi/4-x=t$ in the first integral: $=\int_0^{\pi/4} \ln(\cos t) dt +\int_0^{\pi/4} \ln(\sqrt 2)dx - \int_0^{\pi/4} \ln(\cos x)dx$ and the result follows. Changing $x=\tan u$ in the first integral yields your integral. As far as I know these are said Bertrand's integrals.

@Chandrasehkar: see here http://ocw.mit.edu/courses/mathematics/18-304-undergraduate-seminar-in-discrete-mathematics-spring-2006/projects/integratnfeynman.pdf

  • 1
    @Unoqualunque: The link was really helpful. thanks2012-06-09
12

Let us consider $A=\iint_{[0,1]^2}\frac{x}{(1+xy)(1+x^2)}dx dy$ By Fubini's theorem, we have : $A=\int_0^1\left[\frac{1}{1+x^2}\int_0^1\frac{x\,dy}{1+xy}\right]dx=\int_0^1\frac{\ln(1+x)}{1+x^2}dx$ and$A=\int_0^1\left[\int_0^1\frac{x}{(1+xy)(1+x^2)}dx\right]dy$But$\frac{x}{(1+xy)(1+x^2)}=\frac{1}{1+y^2}\left(\frac{-y}{1+xy}+\frac{x+y}{1+x^2}\right)$and therefore$A=\int_0^1\frac{1}{1+y^2}\left(-\ln(1+y)+\frac{\ln(2)}{2}+\frac{\pi y}{y}\right)dy=-A+\frac{\pi\ln(2)}{4}$Finally :$\boxed{\int_0^1\frac{\ln(1+x)}{1+x^2}dx=\frac{\pi\ln(2)}{8}}$

  • 0
    @SandeepSilwal : it is merely a partial fraction decomposition in the real domain (where the main variable is considered to be $x$). No magic at all in it ;-) The interesting part is that this transformation leads to an explicit calculation.2018-09-22
-4

you can use the residu theory to calculate the integral of ln|1+x|/(1+x^2) between - inf and + inf by putting f(z)=ln|1+z|/(1+z^2) amd we obtain (Pi/2)*ln(2) then int(ln|1+x|/(1+x^2),x=-inf..inf)= int(same function,x=-inf..-1)+int(same function,x=-1..0)+int(same function,x=0..1)+int(same function,x=1..inf) then by putting t=-x in the first and second integrals we obtain: int(ln|1-x^2|/(1+x^2),x=0..1)+int(ln|1-x^2|/(1+x^2),x=1..inf)=(Pi/2)*ln(2) then by putting t=1/x in the second integral we obtain: int(ln|1-x^2|/(1+x^2),x=0..1)-int(ln(x)/(1+x^2),x=0..1)=(Pi/4)*ln(2) and we put x=(1-t)/(1+t) in the first integral we obtain after calculus : int(ln(1+x)/(1+x^2),x=0..1)=(Pi/8)*ln(2)

  • 0
    @Michel I mean, compared to the accepted answer, which one is much easier to read? Also, you spelled "residue" wrong.2018-05-20