0
$\begingroup$

$\begin{array}{ccccccccc} &&0&&0&&0\\ &&\downarrow &&\downarrow && \downarrow\\ 0 & \to & \mathbb{Z}_2\{a\} & \to & \mathbb{Z}_2\{a\} & \to & 0 & \to & 0\\ & &\downarrow & & \downarrow &&\downarrow\\ 0&\to&\mathbb{Z}_2\{a\}\oplus\mathbb{Z}_2\{b\} & \xrightarrow{f} & G & \xrightarrow{g} & \mathbb{Z}_2\{c\} & \to & 0\\ &&\downarrow & &\downarrow & & \downarrow\\ 0 & \to & \mathbb{Z}_2\{b\} & \xrightarrow{h} & \mathbb{Z}_2\{y\}\oplus\mathbb{Z}_2\{z\} & \xrightarrow{i} & \mathbb{Z}_2\{c\} & \to &0\\ &&\downarrow && \downarrow &&\downarrow\\ &&0 && 0 && 0 \end{array}$

where $\mathbb{Z}_2\{a\}$ means that $a$ generates $\mathbb{Z}_2$ and $y=h(b)$ and $i(z)=c$.

In the diagram, first and third rows are split and first and third columns are split.

Then second row($0 \to \mathbb{Z}_2 \oplus \mathbb{Z}_2 \to G \to \mathbb{Z}_2 \to 0$) or second column($0 \to \mathbb{Z}_2 \to G\to \mathbb{Z}_2 \oplus \mathbb{Z}_2 \to 0$) is split? Or $G$ is isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_2$?

  • 0
    @user26170: Yes, both are possible; the direct sum is certainly possible, the question was whether the non-split case was possible. It is. And please don't e-mail me with questions that you are asking here.2012-03-03

1 Answers 1

1

Although the problem has been answered in the comments, I thought I'd make an observation that makes things more obvious. It is possible to produce such diagrams as a direct sum of two subdiagrams:

$ \begin{array}{ccccc} \mathbb{Z}_2 &\to& \mathbb{Z}_2 &\to& 0 \\ \downarrow & & \downarrow & & \downarrow \\ \mathbb{Z}_2 &\to& H &\to& \mathbb{Z}_2 \\ \downarrow & & \downarrow & & \downarrow \\ 0 &\to& \mathbb{Z}_2 &\to& \mathbb{Z}_2 \end{array} $ and

$ \begin{array}{ccccc} 0 &\to& 0 &\to& 0 \\ \downarrow & & \downarrow & & \downarrow \\ \mathbb{Z}_2 &\to& \mathbb{Z}_2 &\to& 0 \\ \downarrow & & \downarrow & & \downarrow \\ \mathbb{Z}_2 &\to& \mathbb{Z}_2 &\to& 0 \end{array} $

Off the cuff, I believe every way to fill in your diagram has such a direct sum decomposition. This simplification makes it easier to see that there are two possibilities for $H$.