61
$\begingroup$

The $p$-norm on $\mathbb R^n$ is given by $\|x\|_{p}=\big(\sum_{n=1}^\infty |x_{n}|^p\big)^{1/p}$. For $0 < p < q$ it can be shown that $\|x\|_p\geq\|x\|_q$ (1, 2). It appears that in $\mathbb{R}^n$ a number of opposite inequalities can also be obtained. In fact, since all norms in a finite-dimensional vector space are equivalent, this must be the case. So far, I only found the following: $\|x\|_{1} \leq\sqrt n\,\|x\|_{2}$(3), $\|x\|_{2} \leq \sqrt n\,\|x\|_\infty$ (4). Geometrically, it is easy to see that opposite inequalities must hold in $\mathbb R^n$. For instance, for $n=2$ and $n=3$ one can see that for $0 < p < q$, the spheres with radius $\sqrt n$ with $\|\cdot\|_p$ inscribe spheres with radius $1$ with $\|\cdot\|_q$.

It is not hard to prove inequality (4). According to Wikipedia, inequality (3) follows directly from Cauchy-Schwarz, but I don't see how. For $n=2$ it is easily proven (see below), but not for $n>2$. So my questions are:

  1. How can relation (3) be proven for arbitrary $n\,$?
  2. Can this be generalized into something of the form $\|x\|_{p} \leq C \|x\|_{q}$ for arbitrary $0

    ?

  3. Do any of the relations also hold for infinite-dimensional spaces, i.e. in $l^p$ spaces?

Notes:

$\|x\|_{1}^{2} = |x_{1}|^2 + |x_{2}|^2 + 2|x_{1}||x_{2}| \leq |x_{1}|^2 + |x_{2}|^2 + \big(|x_{1}|^2 + |x_{2}|^2\big) = 2|x_{1}|^2 + 2|x_{2}|^2$, hence $=2\|x\|_{2}^{2}$
$\|x\|_{1} \leq \sqrt 2 \|x\|_{2}$. This works because $|x_{1}|^2 + |x_{2}|^2 \leq 2|x_{1}\|x_{2}|$, but only because $(|x_{1}| - |x_{2}|)^2 \geq 0$, while for more than two terms $\big(|x_{1}| \pm |x_{2}| \pm \dotsb \pm |x_{n}|\big)^2 \geq 0$ gives an inequality that never gives the right signs for the cross terms.

  • 0
    Your first link (1) has exactly the equation you seek. Actually a version of Norberts excellent answer, generalized to measure spaces.2016-03-31

1 Answers 1

78
  1. Using Cauchy–Schwarz inequality we get for all $x\in\mathbb{R}^n$ $ \Vert x\Vert_1= \sum\limits_{i=1}^n|x_i|= \sum\limits_{i=1}^n|x_i|\cdot 1\leq \left(\sum\limits_{i=1}^n|x_i|^2\right)^{1/2}\left(\sum\limits_{i=1}^n 1^2\right)^{1/2}= \sqrt{n}\Vert x\Vert_2 $
  2. Such a bound does exist. Recall Hölder's inequality $ \sum\limits_{i=1}^n |a_i||b_i|\leq \left(\sum\limits_{i=1}^n|a_i|^r\right)^{\frac{1}{r}}\left(\sum\limits_{i=1}^n|b_i|^{\frac{r}{r-1}}\right)^{1-\frac{1}{r}} $ Apply it to the case $|a_i|=|x_i|^p$, $|b_i|=1$ and $r=q/p>1$ $ \sum\limits_{i=1}^n |x_i|^p= \sum\limits_{i=1}^n |x_i|^p\cdot 1\leq \left(\sum\limits_{i=1}^n (|x_i|^p)^{\frac{q}{p}}\right)^{\frac{p}{q}} \left(\sum\limits_{i=1}^n 1^{\frac{q}{q-p}}\right)^{1-\frac{p}{q}}= \left(\sum\limits_{i=1}^n |x_i|^q\right)^{\frac{p}{q}} n^{1-\frac{p}{q}} $ Then $ \Vert x\Vert_p= \left(\sum\limits_{i=1}^n |x_i|^p\right)^{1/p}\leq \left(\left(\sum\limits_{i=1}^n |x_i|^q\right)^{\frac{p}{q}} n^{1-\frac{p}{q}}\right)^{1/p}= \left(\sum\limits_{i=1}^n |x_i|^q\right)^{\frac{1}{q}} n^{\frac{1}{p}-\frac{1}{q}}=\\= n^{1/p-1/q}\Vert x\Vert_q $ In fact $C=n^{1/p-1/q}$ is the best possible constant.
  3. For infinite dimensional case such inequality doesn't hold. For explanation see this answer.