1
$\begingroup$

A homework: Calculate the integral $\int_{|z|=r}\frac{|dz|}{z-1}$, $z$ is a complex variable, and $r\neq1$.

When $r<1$, it can be obtained by the mean value formula, I get stacked in the case $r>1$.

  • 0
    of course we can solve it by $z=r e^{i \theta}$, but it is a long calculation.2012-10-22

1 Answers 1

4

Hint:

Use polar coordinates $z=r{e^{i\varphi}}$ on the circle $|z|=r \ $; then $|dz|=r\ d\varphi, \quad 0 \leqslant \varphi< 2 \pi,\\ \int\limits_{|z|=r}\frac{|dz|}{z-1}=\int\limits_{0}^{2\pi}\frac{r\ d\varphi}{r{e^{i\varphi}}-1}.$ \begin{gather} \int\limits_{0}^{2\pi}\frac{r\ d\varphi}{r{e^{i\varphi}}-1}=\int\limits_{0}^{2\pi}\frac{r\ d\varphi}{r{e^{i\varphi}}\left(1 - \frac{e^{-i\varphi}}{r}\right)}. \end{gather} In the case $r>1$ we can expand \begin{gather} \frac{1}{1 - \frac{e^{-i\varphi}}{r}}=\sum\limits_{k=0}^{\infty}{\frac{e^{-ik\varphi}}{r^k}}. \end{gather} Note that series is absolutely convergent, so we can integrate it: \begin{gather} \int\limits_{0}^{2\pi}\frac{r\ d\varphi}{r{e^{i\varphi}}\left(1 - \frac{e^{-i\varphi}}{r}\right)}=\sum\limits_{k=0}^{\infty}\int\limits_{0}^{2\pi}{\frac{e^{-i(k+1)\varphi}}{r^k}d\varphi}. \end{gather} Since $k \ne -1, \quad \int\limits_{0}^{2\pi}e^{-i(k+1)\varphi}\ d\varphi=0,$ therefore, $\int\limits_{0}^{2\pi}\frac{r\ d\varphi}{r{e^{i\varphi}}\left(1 - \frac{e^{-i\varphi}}{r}\right)}={0}$

  • 0
    @van abel: Thanks, You are absolutely right!2012-10-23