Note that the function $\dfrac{n}{\sigma(n)}$ is multiplicative. Hence, if $n = p_1^{k_1}p_2^{k_2} \ldots p_m^{k_m}$, then we have that $\dfrac{n}{\sigma(n)} = \dfrac{p_1^{k_1}}{\sigma \left(p_1^{k_1} \right)} \dfrac{p_2^{k_2}}{\sigma \left(p_2^{k_2} \right)} \ldots \dfrac{p_m^{k_m}}{\sigma \left(p_m^{k_m} \right)}$ Hence, it suffices to prove it for $n = p^k$ where $p$ is a prime and $k \in \mathbb{Z}^+$.
Let $n=p^k$, then $\sigma(n) = p^{k+1}-1$. This gives us that $\dfrac{n}{\sigma(n)} = p^k \times \dfrac{p-1}{p^{k+1}-1} = \dfrac{p^{k+1} - p^k}{p^{k+1} - 1} = 1 - \dfrac{p^k-1}{p^{k+1}-1}.$ Since $p > 1$, we have that $p(p^k-1) < p^{k+1} - 1 \implies \dfrac{p^k-1}{p^{k+1}-1} < \dfrac1p \implies 1 - \dfrac{p^k-1}{p^{k+1}-1} > 1 - \dfrac1p$. Hence, if $n=p^k$, then $\dfrac{n}{\sigma(n)} > \left( 1 - \dfrac1p\right)$ Since, $\dfrac{n}{\sigma(n)}$ is multiplicative, we have the desired result.