1
$\begingroup$

If $f(x)=a|\sin x|+be^{|x|}+c|x|^3$ is differentiable at $x=0$, find the values of $a,b,c$.

I know that the derivative exists at $x=0$ iff $f'(0^+)=f'(0^-)$, but I can't find $f'(x)$. Please help. Thanks in advance.

  • 1
    There is not$a$unique set of $a,b,c$, e.g. $0,0,c$ will do for any $c\in \mathbb R$.2012-12-12

3 Answers 3

0

Hint: We have, for $x \in [-\pi, \pi]$ (which is enough for this problem):

$f(x) = \begin{cases}a \sin(x) + be^x + cx^3,\ \mathrm{if}\ x \ge 0 \\ -a \sin(x) + be^{-x} - cx^3,\ \mathrm{if}\ x < 0\end{cases}, x \in [-\pi, \pi]$

Then differentiate on $[-\pi, 0)$ and $(0, \pi]$.

  • 0
    @Josh: Fixed. It does work for $x \in [-\pi, \pi]$ :)2012-12-13
1

$f'(0^-)=\displaystyle{\lim_{x\to0^-}\dfrac{f(x)-f(0)}{x}=\lim_{x\to0^-}\dfrac{a|\sin(x)|+be^{|x|}+c|x|^3-b}{x}\displaystyle}=\\\displaystyle{\lim_{x\to0^-}\dfrac{-a\sin(x)+be^{-x}-cx^3-b}{x}=g'(0)}$
where $g(x)=-a\sin(x)+be^{-x}-cx^3.$
Now in a similar way find $f'(0^+)$ and set $f'(0^+)=f'(0^-)$ to find the relation between $a,b,c$ s.t. $f$ is differentiable.

1

Hint: Deal separately with positive and negative $x$. To deal with positive $x$, replace $|x|$ everywhere by $x$, and differentiate as usual.

If $x$ is negative, then $|x|=-x$. To deal with negative $x$, replace $|x|$ everywhere by $-x$, and differentiate as usual. It will make life simpler if you note that $\sin(-x)=-\sin x$ and $(-x)^3=-x^3$.