4
$\begingroup$

Considering these 3 equations:

$ \alpha_{1} = \arg \max\limits_{\alpha \geq 0} \quad \Big \{ (\alpha - 1) \big (\frac{1/\alpha}{1/\alpha + 1/2 \alpha_{2} + 1/2 \alpha_{3}} \big)^2 \Big \} \\ \alpha_{2} = \arg \max \limits_{\alpha \geq 0} \quad \Big \{ (\alpha - 1) \big (\frac{1/2 \alpha}{1/\alpha_{1} + 1/2 \alpha + 1/2 \alpha_{3}} \big)^2 \Big \} \\ \alpha_{3} = \arg \max \limits_{\alpha \geq 0} \quad \Big \{ (\alpha - 1) \big (\frac{1/2 \alpha}{1/\alpha_{1} + 1/2 \alpha_{2} + 1/2 \alpha} \big)^2 \Big \} \\ $

What would be the most appropriate numerical method to solve the system ? Thanks.

  • 0
    Solution is alpha_1 = 5,56 and alpha_{2 & 3} = 3,56. Reference : page 14 of a Columbia Business School paper [link](http://www4.gsb.columbia.edu/null/download?&exclusive=filemgr.download&file_id=737539). Any idea about an appropriate numerical method ?2012-11-08

0 Answers 0