2
$\begingroup$

So sum law of limits tell us

$\lim_{n\to\infty} (a_n+b_n)=X + Y$ if $\lim_{n\to\infty} a_n = X$ and $\lim_{n\to\infty} b_n = Y$

Here is my attempt to prove it.

Proof

Let $\frac{\epsilon}{2}>0$, then $\exists N_a,N_b:$

(1) $|a_n - X| < \frac{\epsilon}{2}$ whenever $n> N_a$

(2) $|b_n - Y| < \frac{\epsilon}{2}$ whenever $n> N_b$

Add (1) and (2) to get $|a_n - X| + |b_n-Y| < \epsilon \implies |a_n + b_n - (X + Y)| \leq |a_n - X| + |b_n-Y| < \epsilon \iff |a_n + b_n - (X + Y)| < \epsilon$

By setting $N=max\left \{ N_a,N_b \right \}$, we get the result.

I consulted an analysis book and they kinda did the same thing, but I think I worked backwards by adding (1) and (2).

2 Answers 2

3

Let $\epsilon>0$. Then there exist positive integers $N_a$ and $N_b$ such that $|a_n-X|<\frac{\epsilon}{2}$ when $n>N_a$ and $|b_n-Y|<\frac{\epsilon}{2}$ when $n>N_b$. Let $N$ be the maximum of $N_a$ and $N_b$. Then for all $n>N$, we have $|a_n+b_n-(X+Y)|\leq|a_n-X|+|b_n-Y|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.

  • 0
    Okay, but we need to extend the comment box for that message thing to come up2012-09-23
4

By the triangle inequality $|a_n + b_n - X - Y| \leqslant |a_n - X|+| b_n - Y| \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ $\forall n\geqslant N=\max\left \{ N_a,N_b \right \}$