How do I sum $\sum_{n=1}^{\infty} \sin\frac{n!\pi}{120}$
Summing $\sum_{n=1}^{\infty} \sin\frac{n!\pi}{120}$
3
$\begingroup$
real-analysis
sequences-and-series
-
8A little experimentation would go a long way. – 2012-06-01
1 Answers
14
Note that $\sin \left(\dfrac{n! \pi}{120} \right) = 0$ for all $n \geq 5$. Hence, $\sum_{n=1}^{\infty} \sin \left(\dfrac{n! \pi}{120} \right) = \sin \left(\dfrac{1! \pi}{120} \right) + \sin \left(\dfrac{2! \pi}{120} \right) + \sin \left(\dfrac{3! \pi}{120} \right) + \sin \left(\dfrac{4! \pi}{120} \right)$