3
$\begingroup$

The matrices $A=\begin{pmatrix}5 & -3 \\ 4 & -2\end{pmatrix}$ and $B=\begin{pmatrix}-1 & 1\\-6 & 4\end{pmatrix}$ are similar. By knowing that similar matrices have the same eigenvalues, find a matrix $T$ such that $A=TBT^{-1}.$

any idea or proof is welcome :) thanks .

  • 1
    Oh, *now* that looks better.2012-12-02

1 Answers 1

2

Evaluate $\,A'$s eigenvalues:

$p_A(t):=\det(tI-A)=\left|\begin{array}{}t-5&\;\;\;3\\-4&t+2\end{array}\right|=t^2-3t+2=(t-2)(t-1)$

Thus, the eigenvalues of $\,A\,$ are $\,1,2\,$. Find now one eigenvector for each eigenvalue:

$(i)\;\;t=1:\;\;\;\;\;\;-4x+3y=0\Longleftrightarrow y=\frac{4}{3}x\Longrightarrow \binom{3}{4}$ ${}$

$(i)\;\;t=2:\,\,\,\,\,\,-3x+3y=0\Longleftrightarrow x=y\Longrightarrow \binom{1}{1}$

Well, as we know, we get that

$S=\left(\begin{array}{}3&1\\4&1\end{array}\right)$

Take it from here

  • 0
    @Do$n$A$n$to$n$ie Thanks :) it is interesting. Could you give some ideas about http://math.stackexchange.com/questions/247720/constructing-matrix-with-nullspace-containing-particular-vector. merci :)2012-12-02