0
$\begingroup$

Let $A$ be a finite-dimensional Jordan algebra over $\mathbb{R}$, i.e. a finite-dimensional real vector space with a commutative bilinear product $\circ: A \times A \rightarrow A$ satisfying $(a^2 \circ b) \circ a = a^2 \circ (b \circ a)$ for all $a, b \in A$. Let $Q = \{ a^2 \mid a \in A\}$ be the cone of squares.

I want to show: $Q$ is cone (i.e. closed under addition and multiplication with non-negative reals and $Q \cap -Q = \{0\}$).

The only thing I don't know how to show: If $a, b \in Q$, then $a + b = c^2$ for some $c \in Q$. How can I show this?

  • 0
    I've seen th$i$s claim several times, e.g. in chapter III.2 in "Analysis on Symmetric Cones" by Faraut & Koranyi, or in "Perspectives on the Formalism of Quantum Theory" (http://uwspace.uwaterloo.ca/handle/10012/7017), the latter being my primary source of interest.2012-12-06

1 Answers 1

0

It is likely this is false for a general Jordan algebra, even finite dimensional over $\mathbb R.$ I downloaded the review of Faraut and Kuranyi by Kenneth Gross, and he emphasizes in a footnote he says:

What is now called a symmetric cone in older terminology was referred to as a domain of positivity, and what is now known as a Euclidean Jordan algebra was called a formally real Jordan algebra.

Now, from page 3 of McCrimmon's book, we find

A Jordan algebra is formally real if

$ x_1^2 + \cdots + x_n^2 = 0 \; \Longrightarrow \; x_1 = \cdots = x_n = 0. $

This is A Taste of Jordan Algebras by Kevin McCrimmon, about 2003.

So, my advice is to see if you can prove your cone property with formal reality as an axiom. As a matter of taste in terminology, I don't see how you can call something a domain of positivity if the sum of strictly positive elements can be zero. If it does not work out, you have several people to ask for a counterexample, that is showing what goes wrong when not formally real.

P S I think you will like the description of Euclidean Jordan algebras in Newton's Algorithm in Euclidean Jordan Algebras, with Applications to Robotics by Uwe Helmke, Sandra Ricardo, Shintaro Yoshizawa.

  • 0
    @PeterTamaroff, as long as I tried to keep the Latex as part of the block quote, it insisted on putting those>signs beginning each line of the quote. But since the Latex part is a bit long, that got split over a line, in the end the > became part of the Latex. There is probably some trick for making the whole thing come out right, that is the gray shading including the Latex, but I do not know how. Anyway, thanks for pointing it out. Not a typo in the usual sense.2012-12-07