Let $I$ be a small filtered category. Let $F\colon I \rightarrow \textbf{CRng}$ be a functor, where $\textbf{CRng}$ is the category of commutative rings. We write $A_i = F(i)$ for $i \in I$, $A =$ colim $A_i$. Suppose $I$ has an initial object $0$. Let $M_0, N_0$ be $A_0$-modules. Suppose $M_0$ is of finite presentation. Then colim $\textrm{Hom}_{A_i}(M_0\otimes_{A_0} A_i, N_0\otimes_{A_0} A_i)$ is canonically isomorphic to $\textrm{Hom}_{A}(M_0\otimes_{A_0} A, N_0\otimes_{A_0} A)$?
filtered colimit of $Hom_{A_i}(M_0\otimes_{A_0} A_i, N_0\otimes_{A_0} A_i)$
1 Answers
Yes. The universal property of scalar extension says $\textrm{Hom}_{A_i}(M_0 \otimes_{A_0} A_i, N_0 \otimes_{A_0} A_i) \cong \textrm{Hom}_{A_0} (M_0, N_0 \otimes_{A_0} A_i)$ naturally, so $\varinjlim \textrm{Hom}_{A_i}(M_0 \otimes_{A_0} A_i, N_0 \otimes_{A_0} A_i) \cong \varinjlim \textrm{Hom}_{A_0} (M_0, N_0 \otimes_{A_0} A_i) \cong \textrm{Hom}_{A_0} (M_0, \varinjlim N_0 \otimes_{A_0} A_i)$ where in the last step we have used the fact that $M_0$ is of finite presentation; and since $N_0 \otimes_{A_0} (-)$ is a left adjoint, $\varinjlim N_0 \otimes_{A_0} A_i \cong N_0 \otimes_{A_0} \varinjlim A_i \cong N_0 \otimes_{A_0} A$ and therefore $\varinjlim \textrm{Hom}_{A_i}(M_0 \otimes_{A_0} A_i, N_0 \otimes_{A_0} A_i) \cong \textrm{Hom}_{A_0}(M_0, N_0 \otimes_{A_0} A) \cong \textrm{Hom}_A(M_0 \otimes_{A_0} A, N_0 \otimes_{A_0} A)$ as claimed.
-
0The proof I posted [here](http://math.stackexchange.com/questions/265916/on-colim-hom-a-algb-c-i) covers this. – 2012-12-28