2
$\begingroup$

Consider a symmetric random walk $P(X_i=1)=P(X_i=-1)=1/2$, $S_0=0$, $T_a=\min(n:S_n=a)$

We already know that $P(T_a>T_{-b})=1-P(T_{-b}< T_a)=\frac{b}{a+b}$ and $E(\min\{T_a,T_{-b}\})=ab$.

Prove: $E(T_a \times 1\{T_a< T_{-b}\})=\frac{(a+2b)ab}{3(a+b)}.$

I can rewrite the expectation as

$E(\min\{T_a,T_{-b}\})=E(T_a \times 1\{T_a< T_{-b}\})+E(T_{-b} \times 1\{T_{-b}< T_a\})$

But I don't know what to do next step? Anyone could give some hints? Thanks a lot.

  • 0
    Thanks a lot. This is the question i want to ask.2012-06-09

1 Answers 1

1

For every integer $-b\leqslant x\leqslant a$, let $t_x=\mathrm E_x(T_a:T_a\lt T_{-b})$. Then $t_{-b}=t_a=0$ and the Markov property after one step yields $ t_x=\mathrm P_x(T_a\lt T_{-b})+\frac12(t_{x-1}+t_{x+1}), $ for every integer $-b\lt x\lt a$. Write this as $ (\Delta t)_x=-\mathrm P_x(T_a\lt T_{-b})=-\frac{x+b}{a+b}, $ where $\Delta$ is the discrete Laplacian operator, defined by $ (\Delta u)_x=\frac12(u_{x-1}+u_{x+1})-u_x. $ Let us check the effect of $\Delta$ on some simple sequences:

  • If $u_x=1$ for every $x$, then $(\Delta u)_x=0$.
  • If $u_x=x$ for every $x$, then $(\Delta u)_x=0$.
  • If $u_x=x^2$ for every $x$, then $(\Delta u)_x=1$.
  • If $u_x=x^3$ for every $x$, then $(\Delta u)_x=3x$.

One sees that $\Delta t=\Delta t^{c,d}$, where, for every $(c,d)$, $t^{c,d}$ is defined by $ t_x^{c,d}=\frac{c+dx-3bx^2-x^3}{3(a+b)}. $ If $t_{-b}^{c,d}=t_a^{c,d}=0$, then $t=t^{c,d}$ on $\{-b,a\}$ and $\Delta t=\Delta t^{c,d}$ on $(-b,a)$, thus $\Delta (t-t^{c,d})=0$. The maximum principle shows that $t=t^{c,d}$ everywhere.

In particular, $t_0=\frac{c}{3(a+b)}$ if $(c,d)$ solves the system $t^{c,d}_{-b}=t^{c,d}_a=0$. This yields $c=ab(a+2b)$. QED.

  • 0
    $E_x=E(\ \mid S_0=x)$.2012-06-10