It's being a long time since I have done maths, but now for image processing I am trying to find the derivative of the following function respect to $x$: $\frac{ax}{\sqrt{x^2+a^2}}$ where $a$ is a constant.
Derivative of $\frac{ax}{\sqrt{x^2+a^2}}$
-
0by the way, this is the Perona-Malik diffusion function – 2012-05-30
6 Answers
You can use the Quotient Rule, or the Product Rule and the Chain Rule. We have: $f(x) = \frac{ax}{\sqrt{x^2+a^2}}$ So: $\begin{align*} \frac{df}{dx} &= \frac{\sqrt{x^2+a^2}(ax)' - ax\left(\sqrt{x^2+a^2}\right)'}{\sqrt{x^2+a^2}^2}\\ &= \frac{a\sqrt{x^2+a^2} - ax\left(\frac{2x}{2\sqrt{x^2+a^2}}\right)}{x^2+a^2}\\ &= \frac{a\sqrt{x^2+a^2} - \frac{ax^2}{\sqrt{x^2+a^2}}}{x^2+a^2}\\ &= \frac{a(x^2+a^2) - ax^2}{(x^2+a^2)^{3/2}}\\ &= \frac{a^3}{(x^2+a^2)^{3/2}}. \end{align*}$
You could use the rule for the derivative of a ration, of course: $\left(\frac{u}{v}\right)'=\frac{u'v-v'u}{v^2}$ however, such examples involving radicals are usually easily handled by taking logarithm as the first step and keeping in mind the chain rule $\log{\left(u(x)\right)}=\frac{u'(x)}{u(x)}$ from there on:
$f(x)=\frac{ax}{\sqrt{x^2+a^2}}$ $\log{f(x)} = \log{a}+\log{x}-\frac{1}{2}\log{\left(x^2+a^2\right)}$ $\frac{f'(x)}{f(x)}=\frac{1}{x}-\frac{x}{x^2+a^2}$ $f'(x)=\frac{a}{\sqrt{x^2+a^2}}-\frac{ax^2}{\sqrt{\left(x^2+a^2\right)^3}}=\frac{a^3}{\sqrt{\left(x^2+a^2\right)^3}}$
-
0corrected, thank you for pointing out – 2012-05-29
To beat this further into the ground, here's a way to make the differentiation easy by doing a little up front algebra.
$\frac{ax}{\sqrt{x^2 + a^2}} \;\; = \;\; \frac{1}{\frac{1}{ax}\sqrt{x^2 + a^2}} \;\; = \;\; \frac{1}{\sqrt{\left(\frac{1}{a^2 x^2}\right)(x^2 + a^2)}}$
$= \;\; \frac{1}{\sqrt{a^{-2} + x^{-2}}} \;\; = \;\; \left(a^{-2} + x^{-2}\right)^{-\frac{1}{2}}$
Now the derivative is an easy power rule computation:
$\left(-\frac{1}{2}\right)\left(a^{-2} + x^{-2}\right)^{-\frac{3}{2}}\left(-2x^{-3}\right)$
Supposing that a is constant according to quotient rule $\left(\frac{ax}{\sqrt{x^2+a^2}}\right)'=\frac{a\sqrt{x^2+a^2}-ax\frac{1}{2\sqrt{x^2+a^2}}2x}{x^2+a^2}=\frac{a\sqrt{x^2+a^2}-ax^2\frac{1}{\sqrt{x^2+a^2}}}{x^2+a^2}=\frac{a^3}{(x^2+a^2)^{\frac{3}{2}}}$
I like to use product rule when dealing with derivatives of rational functions. This way you need to remember only one rule instead of two.
$\left(\frac{ax}{\sqrt{x^2+a^2}}\right)' = a(x(x^2+a^2)^{-1/2})' = a(-x^2(x^2+a^2)^{-3/2}+(x^2+a^2)^{-1/2} )$
which can be simplified to
$\frac{a^3}{(x^2+a^2)^{3/2}}$
Let us suppose that 'a' is a constant. Making the substitution, $ x^{2} + a^2 = t $ we have upon differentiating $ \frac{\mathrm{d} (x^{2} + a^2)}{\mathrm{d} t} = \frac{\mathrm{d} t}{\mathrm{d} t} \\ \\ \Rightarrow 2x\frac{\mathrm{d} x}{\mathrm{d} t} = 1 \\ \Rightarrow 2xdx = dt \\ \Rightarrow xdx = dt/2 $ Using the substitution in the integral, it reduces to $a/2\int 1/\sqrt{t} dt \\ = a/2 \frac{t^{(-1/2)+1}}{(-1/2)+1} \\ = a/2 \frac{t^{1/2}}{1/2} \\ = at^{1/2} $ Using the value of t $= a\sqrt{x^{2}+a^{2}}$
-
0I read that the question asked for differentiation **after** I did the integration. And since I suck at LaTeX, I couldn't let half an hour of figuring brackets go waste. – 2012-11-22