Find an explicit solution of the initial value problem $dy/dx = x^4 / (y+1)$ when $y(1) = 2$
Find an explicit solution of the initial value problem
0
$\begingroup$
calculus
ordinary-differential-equations
1 Answers
2
$\dfrac{dy}{dx} = \dfrac{x^4}{y+1} \implies (y+1) dy = x^4 dx \implies \dfrac{(y+1)^2}2 = \dfrac{x^5}5 + c$ When $x=1$, $y=2$ and hence $\dfrac{(2+1)^2}2 = \dfrac{1}5 + c \implies c = \dfrac92 - \dfrac15 = \dfrac{43}{10}$ Hence, $\dfrac{(y+1)^2}2 = \dfrac{x^5}5 + \dfrac{43}{10}$