3
$\begingroup$

Let $D$ be a region given as the set of $(x, y)$ with $a \leq x \leq b\quad\text{and}\quad-\Phi(x) \leq y \leq \Phi(x)$ where $Φ$ is a nonnegative continuous function on the interval $[a, b]$.

Let $f(x, y)$ be a function on $D$ such that $f(x, y) = - f(x, - y)$ for all $(x , y) \in D$.

Argue that $\displaystyle \iint_D f(x, y) dA = 0.$

3 Answers 3

2

Let $I$ the integral, make the substitution $t=-y$, which leaves $D$ invariant, to get that $I=-I$.

2

Integrate with respect to $y$ first. $\iint_D f(x,y)\,{\rm d}A=\int_a^b\int_{-\Phi(x)}^{\Phi(x)}f(x,y)\,{\rm d}y\,{\rm d}x$ Use your condition on $f(x,y)$ to show that the inner integral is $=0$.

0

let $I= \displaystyle \iint_D f(x,y)\,{d}A=\int_a^b\int_{-\Phi(x)}^{\Phi(x)}f(x,y)\,{d}y\,{d}x =\int_a^b\int_{-\Phi(x)}^{\Phi(x)}-f(x,-y)\,{d}y\,{d}x$, now replacing -y by t we get, $I = \displaystyle\int_a^b\int_{\Phi(x)}^{-\Phi(x)}f(x,t)\,{d}t\,{d}x = -\int_a^b\int_{-\Phi(x)}^{\Phi(x)}f(x,t)\,{d}t\,{d}x = -I$
now $I=-I$ thus $I = 0$.

  • 1
    Careful! The inequalities $\Phi(x)\leq t\leq -\Phi(x)$ do not make sense, since $\Phi$ is a nonnegative function.2012-09-28