How do I compute a tan limit with a fraction?
$\lim_{h\rightarrow 0}\frac{\tan(-\frac{\pi}{4})+1}{h}$
How do I compute a tan limit with a fraction?
$\lim_{h\rightarrow 0}\frac{\tan(-\frac{\pi}{4})+1}{h}$
Since $ \tan(- \pi /4 ) + 1 = 0$, we have
$ \lim_{h \rightarrow 0} \frac{\tan \left ( \frac{- \pi}{4} \right ) + 1}{h} = \lim_{h \rightarrow 0} \frac{0}{h} = \lim_{x \rightarrow 0} 0 = 0 $