0
$\begingroup$

Let $f:[0,\infty)\rightarrow \mathbb{R}$ be continuous function satisfying $\int_{0}^{f(x)}t^2dt=x^3(1+x)^2$ then what is $f(2)$, what I did: I put $x=2$ both side and got $f(2)=6$, can anyone check it for me?

  • 0
    linked to [this](http://math.stackexchange.com/questions/153409/a-question-on-definite-integral-to-find-a-value)2012-06-03

2 Answers 2

0

If you integrate it out, you will get $\dfrac{f(x)^3}{3} = x^3(1+x)^2$ Hence, $f(x)^3 = 3x^3(1+x)^2$ Setting $x = 2$, gives us $f(2)^3 = 3 \times 2^3 \times 3^2 = 6^3.$ Since $f(x) \in \mathbb{R}$, we get that $f(2) = 6$.

1

$\int_{0}^{f(x)}t^2dt=\frac{{f(x)}^3}{3}=x^3(1+x)^2$

$\Downarrow$

${f(x)}^3=3x^3(1+x)^2$ $\Downarrow$

${f(2)}^3=3 \cdot2^3(1+2)^2=3^3 \cdot 2^3$ $\Downarrow$

$f(2)=3 \cdot 2 =6$