How to prove this ? $-\frac\pi2 = \lim_{x\to\infty}\sum_{n=1}^{\infty}(-1)^n \frac{x^{2n-1}}{(2n)! \ln 2n}$
A curious limit for $-\frac{\pi}{2}$
-
0Not a surprise. I asked permission to post it here. Do I need to give credit to others in my questions ? – 2012-10-04
1 Answers
Using $\int_0^\infty \left(2 n\right)^{-t} \mathrm{d} t = \frac{1}{\ln(2n)}$ the sum becomes $ \sum_{n=1}^\infty (-1)^n \frac{x^{2n-1}}{(2n)! \cdot \ln(2n)} = \int_0^\infty \left(\sum_{n=1}^\infty (-1)^n \frac{x^{2n-1}}{(2n)! \cdot (2n)^t} \right)\mathrm{d}t $ Now, further using $ \int_0^\infty u^{t-1} \mathrm{e}^{-2 n u} \mathrm{d} u = \Gamma(t) (2n)^{-t} $ we rewrite the sum as a double integral: $ \sum_{n=1}^\infty (-1)^n \frac{x^{2n-1}}{(2n)! \cdot \ln(2n)} = \int_0^\infty \left( \int_0^\infty \frac{u^{t-1}}{\Gamma(t)}\mathrm{d}t \right) \frac{\cos\left(x \mathrm{e}^{-u}\right)-1}{x} \mathrm{d} u $ In the large $x$ limit, the main contribution to the integral comes from large $u$. For large $u$, $ \int_0^\infty \frac{u^{t-1}}{\Gamma(t)}\mathrm{d}t \approx \sum_{t=1}^\infty \frac{u^{t-1}}{\Gamma(t)} = \mathrm{e}^{u} $
Thus: $ \begin{eqnarray} \lim_{x \to \infty} \sum_{n=1}^\infty (-1)^n \frac{x^{2n-1}}{(2n)! \cdot \ln(2n)} &=& \lim_{x \to \infty} \int_0^\infty \mathrm{e}^{u} \frac{\cos\left(x \mathrm{e}^{-u}\right)-1}{x} \mathrm{d} u = \lim_{x \to \infty} \int_1^\infty \frac{\cos\left(x/w\right)-1}{x} \mathrm{d} w \\ &=& \lim_{x \to \infty} \int_{1/x}^\infty \left(\cos\left(\frac{1}{v}\right)-1\right) \mathrm{d} v = \int_{0}^\infty \left(\cos\left(\frac{1}{v}\right)-1\right) \mathrm{d} v \\ &=& -\frac{\pi}{2} \end{eqnarray} $
-
0uh, i missed this gem (+1) – 2018-06-12