5
$\begingroup$

If $f(x) = \frac{4^x}{4^x+2} $ then find the value of $f\left(\frac{1}{1999}\right) + f\left(\frac{2}{1999}\right) + f\left(\frac{3}{1999}\right) +\cdots+f\left(\frac{1999}{1999}\right).$

I tried it by changing expression to $f(x) =1 - \frac{2}{4^x+2}$ but I am not able to cancel any term.

Is there is any other trick to do it? Thanks in advance.

  • 4
    @JeremyCarlos I intended that as a compliment to you. So, your comment comes to me as rather rude.2012-03-22

1 Answers 1

16

Hint:

Observe

$f(x)+f(1-x)=1$

So, $\begin{align}&f\left(\dfrac 1 {1999}\right)+f\left(\dfrac 2 {1999}\right)+ \cdots+f\left(\dfrac{1998}{1999}\right)+f\left(\dfrac{1999}{1999}\right)\\&=f\left(\dfrac 1 {1999}\right)+f\left(\dfrac{1998}{1999}\right)+f\left(\dfrac 2 {1999}\right)+f\left(\dfrac {1997} {1999}\right)+\cdots +f\left(\dfrac{999}{1999}\right)+f\left(\dfrac{1000}{1999}\right)+f(1)\\&=999+f(1)\\&=999+\dfrac 2 3\\&=\dfrac {2999} 3\end{align}$


$\begin{align}f(x)+f(1-x)&=\dfrac{4^x}{4^x+2}+\dfrac{4^{1-x}}{4^{1-x}+2}\\&=\dfrac{4^x}{4^x+2}+\dfrac{\dfrac{4}{4^x}}{\dfrac{4}{4^x}+2}\\&=\dfrac{4^x}{4^x+2}+\dfrac 4 {2 \cdot4^x+4}\\&=\dfrac{4^x}{4^x+2}+\dfrac{\not{4}~~2}{\not2(4^x+2)}\\&=\dfrac{4^x+2}{4^x+2}\\&=1\end{align}$

  • 1
    @kannappan no.but your comment to jeremy carlos made me think so2012-03-23