6
$\begingroup$

Show that if $f : E \rightarrow [0,\infty]$, $\lim \limits _{k\rightarrow \infty} f_k = f$ on $E$, and $f_k \leq f$ on $E$ for each $k \in N$, then $\lim \limits _{k\rightarrow \infty} \int \limits _E f_k = \int \limits _E f$

An idea was to show that $\lim \limits _{k\rightarrow \infty} \int \limits _E f_k \leq \int \limits _E f$ and $\lim \limits _{k\rightarrow \infty} \int \limits _E f_k \geq \int \limits _E f$. I am able to prove $\lim \limits _{k\rightarrow \infty} \int \limits _E f_k \leq \int \limits _E f$ but am struggling to prove the second condition. My idea was to use fatou's lemma to get $ \int \limits _E \liminf \limits _{k\rightarrow \infty} f_k = \int \limits _E \lim \limits _{k\rightarrow \infty} f_k = \int \limits _E f \leq \liminf \limits _{k\rightarrow \infty} \int \limits _E f_k = \lim \limits _{k\rightarrow \infty} \int \limits _E f_k $ but I don't know how to show $\liminf \limits _{k\rightarrow \infty} f_k = \lim \limits _{k\rightarrow \infty} f_k$, besides showing $\liminf \limits _{k\rightarrow \infty} f_k = \limsup \limits _{k\rightarrow \infty} f_k$ .

Any ideas on how I could finish this? Also, is my approach wrong? Could I do it a better way?

  • 0
    It does, so you may infer the sought equality directly. You may want to read up on properties of $\lim, \liminf, \limsup$ and how they interact.2012-10-17

1 Answers 1

1

Writing $\lim_{k\to\infty}\int_Ef_k$ is not correct once we have not proved that the limit exists. Anyway, we can apply Fatou lemma to $f-f_k$ to get an inequality involving $\limsup_{k\to +\infty}\int_Ef_k$. With what we get: $\limsup_{k\to+\infty}\int_E f_k\leq \int_E f\leq \liminf_{k\to+\infty}\int_E f_k$. (this works when the integral of $f$ is finite). If $f$ is not integrable then the first application of Fatou lemma shows that $\int_Ef_k$ converges to $+\infty$.

  • 0
    I didn't give a lot of details as it's homework. Now I edited.2012-10-16