I am trying to show that $ \lim \limits_{k \rightarrow \infty } \int \limits_{-\pi}^\pi f(x)\cos(kx)dx = 0 \textit{ and } \lim \limits_{k \rightarrow \infty } \int \limits_{-\pi}^\pi f(x)\sin(kx)dx = 0 $ I am assuming that $f \in L^2(-\pi, \pi)$ and that the sequence $ \lbrace \phi_k\rbrace_{k=1}^\infty= \lbrace \frac{1}{\sqrt{2 \pi}}, \frac{\cos(x)}{\sqrt{\pi}}, \frac{\sin(x)}{\sqrt{\pi}},..., \frac{\cos(kx)}{\sqrt{\pi}}, \frac{\sin(kx)}{\sqrt{\pi}},... \rbrace $ is orthonormal and in $L^2(-\pi, \pi)$. I have started the problem by using the Bessel inequality, which says that $\sum \limits _ {k=1}^\infty h_k^2 \leq \parallel f \parallel_2^2 $ where $h_k = \langle f, \phi_k \rangle$. I know that all elements of the sequence are orthogonal so $\langle f_k, f_l \rangle= 0$ where $k,l \in R$ and $k \neq l$. I also now that the sequence is orthonormal so $\parallel f \parallel_2 = 1$.
I can rewrite the Bessel inequality as follows $ \sum \limits _ {k=1}^\infty h_k^2 \leq \parallel f \parallel_2^2 \Rightarrow \sum \limits _ {k=1}^\infty \langle f, \phi_k \rangle^2 \leq 1 $ This can be simplified further to $ \sum \limits _ {k=1}^\infty \int \limits_{-\pi}^\pi (f \phi_k ) \int \limits_{-\pi}^\pi (f \phi_k )\leq 1 \Rightarrow \sum \limits _ {k=1}^\infty \int \limits_{-\pi}^\pi (f \phi_k )^2 \leq 1 $ From here I am stuck. Was my methodology correct?