The inverse of the matrix
$A=\left( \matrix{1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} }\right)$
is
$A^{-1}=\left( \matrix{ 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 } \right)$.
Then, perhaps the matrix
$B=\left( \matrix{1 & \frac{1}{2} & ... & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & ... & \frac{1}{n+1} \\ ... & ... & & ...\\ \frac{1}{n} & \frac{1}{n+1} & ... & \frac{1}{2n-1} }\right)$
is invertible and $B^{-1}$ has integer entries. How can I prove it?