1
$\begingroup$

$\displaystyle \lim_{x\to0} \frac{\sqrt[3]{ax+b}-2}x = \frac 5{12}$

How do you solve for constants $a$ and $b$?

2 Answers 2

7

As the denominator goes $\to 0$, so must the numerator, hence $\sqrt[3]{ax+b}\to 2$ and $ax+b\to 8$ This gives you $b=8$. Note that this allows you to interpete the limit as $f'(0)$ where $f'(x)=\sqrt[3]{ax+8}$, whence you can find $a$.

2

You can use $(x^3-y^3)=(x-y)(x^2+xy+y^2)$ with $x=\sqrt[3]{ax+b},y=2$ and multiply the term $\big(\sqrt[3]{(ax+b)^2}+2\sqrt[3]{ax+b}+4\big)$ into nominator and denominator of the limit: $\displaystyle \lim_{x\to0} \frac{\big(\sqrt[3]{ax+b}-2\big)\big(\sqrt[3]{(ax+b)^2}+2\sqrt[3]{ax+b}+4\big)}{x\big(\sqrt[3]{(ax+b)^2}+2\sqrt[3]{ax+b}+4\big)} = \lim_{x\to0} \frac {ax+b-8}{x\big(\sqrt[3]{(ax+b)^2}+2\sqrt[3]{ax+b}+4\big)}\\= \lim_{x\to0} \frac {x(a+\frac{b-8}{x})}{x\big(\sqrt[3]{(ax+b)^2}+2\sqrt[3]{ax+b}+4\big)}=\lim_{x\to0} \frac {(a+\frac{b-8}{x})}{\big(\sqrt[3]{(ax+b)^2}+2\sqrt[3]{ax+b}+4\big)}$ which should be definite and equals to $5/12$. So the term $(a+\frac{b-8}{x})$ should be certain and then $b$ must be $8$ at $x=0$. Now put $b=8$ in your fraction: $\lim_{x\to0} \frac {a}{\big(\sqrt[3]{(ax+8)^2}+2\sqrt[3]{ax+8}+4\big)}$ which is $5/12$. I think it is easy to find $a$.

  • 0
    @amWhy: Thanks Amy. I hope you have had a good day, up yo now. ;-)2013-03-30