2
$\begingroup$

I know this is sort of a nonissue, but in one of the exercises the author asks us to prove

If $0\leq c<+\infty$, then $\int cf=c\int f$ where $f:\mathbb{R}^{d}\to[0,+\infty]$ (note $f$ is not assumed measurable, just unsigned).

The integral is the "lower unsigned Lebesgue integral" as is usually defined, except that as stated $f$ is any unsigned function.

This is easy enough to show, however, he adds a parenthetical note stating: "(The case $c=+\infty$ unfortunately is not true, but this is somewhat tricky to show.)

I can't think of a counter-example when the convention $\infty\cdot0=0$ is used. Anyone have an idea?

  • 0
    Elaborating on my last comment, I guess for a 'suitable' choice of bijection $\alpha:\mathbb{R}/\mathbb{Q}\to[0,1]$ setting $f$ as the projection $\mathbb{R}\to\mathbb{R}/\mathbb{Q}$ followed by $\alpha$ would work.2016-04-23

0 Answers 0