4
$\begingroup$

I would like to negate the following:

$\exists x, \forall y, \forall z ((F(x,y) \land G(x,z)) \rightarrow H(y,z))$

Would the following proposed solution be correct?

(1) First simplify what is in the brackets - $((F(x,y) \land G(x,z)) \rightarrow H(y,z))$

$(\lnot(F(x,y) \land G(x,z)) \lor H(y,z))$

(2) $\forall x, \exists y, \exists z \lnot ( \lnot(F(x,y) \land G(x,z)) \lor H(y,z)) $

$\equiv \forall x, \exists y, \exists z((F(x,y) \land G(x,z)) \land \lnot H(y,z))$

  • 0
    cheers @BrianM.Scott2012-11-14

1 Answers 1

2

The negation of $P \Rightarrow Q$ is $\neg(P \Rightarrow Q) \equiv (P \wedge \neg Q)$ and the negation of "for all" is $\neg (\forall x)(P(x)) \equiv (\exists x)(\neg P(x)).$ Similarly, $\neg (\exists x)(P(x)) \equiv (\forall x)(\neg P(x))$ so your answer is correct.