2
$\begingroup$

Let $T(n;\mathbb{R}) \subset M(n;\mathbb{R})$ denote the set of all matrices whose trace is zero. Write down a basis for $T(2;\mathbb{R})$. What is the quotient space $M(n;\mathbb{R})/T(n;\mathbb{R})$ isomorphic to?

Answer of the first part is $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & -0 \end{pmatrix}$ but i am not sure about second part. My guess is it is $\mathbb{R}-\{0\}$.

  • 0
    Ah yes, sorry, I did not see the $2$ in $T(2;R)$. All right.2012-09-16

1 Answers 1

2

$2^{nd}$ question:

Consider the homomorphism $\tau$: $M(n,\mathbb{R})\to \mathbb{R}$, $A\mapsto tr(A)$.

The kernel is $T(n,\mathbb{R}$) and $im(\tau)=\mathbb{R}$. Then use the first isomorphism theorem (so $M(n,\mathbb{R})/T(n,\mathbb{R})\cong \mathbb{R} $).

  • 0
    Yes you are right. They are linearly independant, and $\dim(T(2;R))=3$ (because $1=\dim M/T=\dim M-\dim T$ and $\dim M=4$)2012-09-16