2
$\begingroup$

Hi i just have some question regarding this problem , I cannot find a counter example and neither a proof:

Let $X$ be a Banach space of infinite dimension, and $S,T\in B(X)$ (the set of bounded linear operator from $X$ to $X$) is it true that:

if $ST$ is compact then $S$ or $T$ is compact?

Thanks for your help.

  • 0
    There exist Banach spaces where the answer is yes. http://gowers.wordpress.com/2009/02/07/a-remarkable-recent-result-in-banach-space-theory/2012-11-28

1 Answers 1

6

No. Let $X=\ell^2(\mathbb N)$. Define operators $S,T$ by $ Se_k=\begin{cases}e_k,&\text{ if }k\in2\mathbb N\\ 0,&\text{ if }k\not\in2\mathbb N \end{cases} $ (where $e_1,e_2,\ldots$ is the canonical basis) and $T=I-S$. In matrix form, $ S=\begin{bmatrix}1\\&0\\& & 1\\ & & & 0 \\ & & & & & \ddots\end{bmatrix},\ \ \ T=\begin{bmatrix}0\\&1\\& & 0\\ & & & 1 \\ & & & & & \ddots\end{bmatrix} $ Then $ST=0$, but neither is compact (both are projections with infinite-dimensional range).

  • 0
    Good point!${\ }$2012-11-28