The question is, as you observed, about whether the two polynomials are irreducible or not. If both of them factor, then the two rings are isomorphic, both isomorphic to a direct product of two copies of $\mathbb{F}_p$. This is seen as follows. The ring $\mathbb{F}_p[x]/\langle q(x)\rangle$ is isomorphic to $\mathbb{F}_p$, when $q(x)$ is linear. If $x^2-2$ (resp. $x^2-3$) factors, then the two factors $q_1(x)$ and $q_2(x)$ are both linear and coprime (assume $p>3$), so the claim follows from the Chinese remainder theorem: $ \mathbb{F}_p[x]/\langle q_1(x)q_2(x)\rangle\simeq\mathbb{F}_p[x]/\langle q_1(x)\rangle\oplus\mathbb{F}_p[x]/\langle q_2(x)\rangle. $ If both polynomials are irreducible, then both rings are isomorphic to the field $\mathbb{F}_{p^2}.$ If one polynomial factors, but the other one does not, then $R_1$ and $R_2$ are not isomoprhic, because the other has zero divisors but the other has not.
The way to test factorizability in this case is by the theory of quadratic residues. $R_1$ is a field, iff $2$ is not a quadratic residue modulo $p$. Similarly $R_2$ is a field, iff $3$ is not a quadratic residue modulo $p$. As you hopefully remember, $2$ is a special case, and we simply use the result that $2$ is a quadratic residue, iff $p\equiv \pm 1\pmod{8}$. With $3$ we need to use the law of quadratic reciprocity once. The law states that (using the Legendre symbol) $ \left(\frac3p\right)=(-1)^{\frac{p-1}2}\left(\frac{p}3\right). $ The prime $p$ is a quadratic residue modulo $3$, iff $p\equiv1\pmod3$, so we can conclude that $3$ is a quadratic residue modulo $p$, iff $p\equiv (-1)^{\frac{p-1}2}\pmod3$. This translates to (unless I made a mistake) the result that $3$ is a quadratic residue modulo $p>3$, iff $p$ is congruent to either $\pm1\pmod{12}$.
Therefore with $p=5$ we see that both $2$ and $3$ are quadratic non-residues modulo $5$ (it would be easier to check this by applying the definition), so both $R_1$ and $R_2$ are fields of $25$ elements and thus isomorphic.
You asked about a simpler way of showing that the two fields of order $p^2$ are isomorphic. This also follows from the theory of quadratic residues. We get two fields, when both $2$ and $3$ are quadratic non-residues. But the ratio of two non-squares in a finite field is a square. This means that there exists an integer $m$, $0 such that $ 2\equiv 3m^2\pmod{p}. $ Therefore, for the purposes of extending the field $\mathbb{F}_p$ $ \sqrt{2}=\pm m\sqrt{3}. $ Using this observation it is easy to see that in this case $ \mathbb{F}_p[\sqrt2]=\mathbb{F}_p[\sqrt3]. $
A final note. From the above we see that (for primes $p>3$) the isomorphism type of $R_1$ depends on the residue class of $p$ modulo $8$, and the isomorphism type of $R_2$ depends on the residue class of $p$ modulo $12$. Therefore the answer to the question whether $R_1\simeq R_2$ or not can be given in terms of residue classes of $p$ modulo $24$. I leave that to you, though :-)