1
$\begingroup$

I am trying to come up with different examples of the property that

$\limsup_{n\to\infty} (s_n + t_n) \leq \limsup_{n\to \infty} s_n+\limsup_{n\to \infty} t_n$

So I thought of

$s_n = \left \{-3,1,-1,1,-1,1,-1,...\right \}$ and $t_n = \left \{0,-1,1,-1,1,-1,1,...\right \}$

So $(s_n + t_n) = \left \{-3,0,0,0,0,0,... \right \}$ and $\limsup_{n\to\infty} (s_n + t_n)= 0$ and $\limsup_{n\to\infty} s_n = 1$ and $\limsup_{n\to\infty} t_n = 1$

Is this correct?

  • 0
    @GerryMyerson, yes. Oh shoot I made a typo2012-10-08

1 Answers 1

3

Yes. This is an example showing that the inequality can be strict.