1
$\begingroup$

I need to show two auxiliary trigonometric identities:

1) $\sec^2x = \tan ^2x + 1 (\cos x \neq 0)$

2) $\csc^2x = \cot^2x +1 (\sin x \neq 0)$

How could I do it?


[Original Portuguese]

Identidades Trigonométricas Auxiliares Sendo preciso mostrar a demonstração das duas fórmulas das IDENTIDADES TRIGONOMÉTRICAS AUXILIARES:

1) sec²x = tg²x + 1 (cos x ≠ 0)

2) cossec²x = cotg²x = 1 (sen x ≠ 0)

Como seria possível fazê-lo???

  • 0
    @Ana It is OK to post in Portuguese.2012-09-11

1 Answers 1

1

Starting from $\sin^2 x + \cos^2 x = 1$, you get, dividing by $\cos^2 x$ (if this is $\ne 0$) \[ \frac{\sin^2x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} = \frac 1{\cos^2 x} \] which gives \[ \tan^2 x + 1 = \mathrm{sec}^2 x \] Dividing the first identity by $\sin^2 x$ we get \[ \frac{\sin^2x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} = \frac 1{\sin^2 x} \] which gives \[ 1 + \cot^2 x = \mathrm{csc}^2 x \]

  • 0
    Oh my God, thanks!!! Really really really really thank you!! I was not finding it in any brazilian website, you've helped a lot. FOREVER GRATIFIED!!! I'm so happy for this. Sorry for bother you...Haha2012-09-11