A change of variables from $\vec{r_1}$, $\vec{r_2}$ to $\vec{r}$, $\vec{R}$ is given by:
$ \vec{r} = \vec{r_1}-\vec{r_2}\text{ , }\vec{R}=c_1 \vec{r_1} + c_2 \vec{r_2} $
I'm supposed to find $\nabla_1$ expressed in terms of $\nabla_r$ and $\nabla_R$. The suggested solution starts out with
$ \vec{R}=(X, Y, Z)\text{ , } \vec{r} = (x, y, z) $
and then goes on to state that
$ (\nabla_1)_x = \frac{\partial}{\partial x_1} = \frac{\partial X}{\partial x_1} \frac{\partial}{\partial X} + \frac{\partial x}{\partial x_1} \frac{\partial}{\partial x} \text{ , } $
where does (the second equality of) this last expression come from?