Does anyone know what $ 1_\omega v $ means where $v \in L^2((0,T) \times \Omega )$ and $\omega \subset \subset \Omega$?
It should be an indicator function of $(t,x)$, but not sure how to interpret it...
Does anyone know what $ 1_\omega v $ means where $v \in L^2((0,T) \times \Omega )$ and $\omega \subset \subset \Omega$?
It should be an indicator function of $(t,x)$, but not sure how to interpret it...
The product of $v$ for the characteristic function of $(0,T)\times\omega$?
Probably $1_{\omega}:(0,T)\times\Omega\to\mathbb{R}$ is the function defined by $1_{\omega}(t,x)=\{1,\textrm{ for }x\in\omega, 0,\textrm{ for }x\in\Omega\setminus\omega\}.$