I'm trying to find all $x$ for the inequality $\frac{2x - 13}{2x + 3} \lt \frac{15}{x}$. In order to do this, I want to factor one side so that I can find all values where $x$ determines the term to equal $0$.
$\frac{2x - 13}{2x + 3} \lt \frac{15}{x} \iff \frac{x(2x - 13) - 15(2x+3)}{x(2x + 3)} \lt 0$
$\iff \frac{2x^2 - 13x - 30x - 45}{2x(x + \frac{3}{2})} \lt 0 \iff \frac{x^2 - \frac{43}{2}x - \frac{45}{2}x}{x(x + \frac{3}{2})} \lt 0 $
$\iff \frac{x^2 - \frac{43}{2}x - \frac{45}{2}x}{x(x + \frac{3}{2})} \lt 0 \iff \frac{(x - \frac{43}{4})^2 - \frac{1939}{4}}{x(x+\frac{3}{2})} \lt 0$
I don't know how to get any further, and I'm starting to get too high values to handle.
The next step as I can see would be to find an $x$ that makes $(x - \frac{43}{4})^2 = \frac{1939}{4}$. This, alongside the obvious ones for $x$ and $x+\frac{3}{2}$ (creating division by $0$), would help me find the possible values for $x$.
But how do I get the last step? Or am I already dead wrong?