1
$\begingroup$

If I have functions $f,g,h > 0$ and $f\le g+h$ then:

$\frac f{f+1}\le \frac g{g+1}+\frac h{h+1}, x \in R$

I have been trying to find out whether it's true or not but I haven't succeeded.

  • 0
    The real number case Nils mentions is really the whole problem.2012-06-06

1 Answers 1

4

As Yimin says, the function $p(x)=\frac{x}{x+1}=1-\frac1{x+1}$ is increasing for $x > 0$ (it's a flip and shift of the double hyperbola $y=\frac1x$, with resulting asymptotes $x=-1$ and $y=1$). Therefore, $0 < f \le g+h \implies$ $ \frac{f}{f+1} = p\Bigl(f\left(x\right)\Bigr) \le p\Bigl(g\left(x\right)+h\left(x\right)\Bigr) = \frac{g+h}{g+h+1} = \frac{g}{g+h+1} + \frac{h}{g+h+1} < \frac{g}{g+1} + \frac{h}{h+1} \,. $