I made up some integrals to do for fun, and I had a real problem with this one. I've since found out that there's no solution in terms of elementary functions, but when I attempt to integrate it, I end up with infinite values. Could somebody point out where I go wrong?
So, I'm trying to determine: $ \int{\frac{e^x}{x}} \, dx $
Integrate by parts, where $u = 1/x$, and $v \, ' = e^x$. Then $u \, ' = - 1/x^2$, and $v=e^x$. So,
$\int{\frac{e^x}{x}} \, dx = \frac{e^x}{x} + \int{\frac{e^x}{x^2}} \, dx$
Integrate by parts again, $u = 1/x^2$, $v \, ' = e^x$, so that $u \, ' = -2/x^3$ and $v=e^x$. So,
$\int{\frac{e^x}{x}} \, dx = \frac{e^x}{x} + \frac{e^x}{x^2} + 2\int{\frac{e^x}{x^3}} \, dx$
Repeat this process ad infinitum to get,
$\int{\frac{e^x}{x}} \, dx = \frac{e^x}{x} + \frac{e^x}{x^2} + 2 \left( \frac{e^x}{x^3} + 3 \left( \frac{e^x}{x^4} + 4 \left( \frac{e^x}{x^5} + \, \cdots \right) \right) \right) $
Expanding this gives,
$\int{\frac{e^x}{x}} \, dx = \frac{e^x}{x} + \frac{e^x}{x^2} + \frac{2e^x}{x^3} + \frac{6 e^x}{x^4} + \frac{24 e^x}{x^5} + \cdots $
And factoring that gives,
$\int{\frac{e^x}{x}} \, dx = \frac{e^x}{x} \left( 1 + \frac{1}{x} + \frac{2}{x^2} + \frac{6}{x^3} + \frac{24}{x^4} + \cdots \right) $
Now, considering the series itself, the ratio between the $n^{th}$ term and the $(n-1)^{th}$ term = $\Large \frac{n}{x}$. Eventually, $n$ will be larger than $x$, so the ratio between successive terms will be positive, so (assuming $x$ is positive), the series diverges, meaning (and I'm sure everybody will cringe upon seeing notation used like this), that:
$\int{\frac{e^x}{x}} \, dx = \frac{e^x}{x} \left( \infty \right) = \infty $