3
$\begingroup$

I came across the following exercise in Stochastic Calculus:

Let $B=(B_t)_{t\geq0}$ be a standard Brownian motion. Let also $M$ be the following process:

$M_t=B^4_t-6t(B^2_t-\dfrac{t}{3})$ for $t\geq0$

Prove that $M=(M_t)_{t\geq0}$ is a martingale and if we set $\sigma=inf\{t\geq0 : |B_t|=\sqrt{3}\}$, compute $\mathbb{E}[M_{\sigma}]$ and $\mathbb{E}[\sigma^2]$.

It was easy to prove the martingale part. Can we use the Optional Sampling Theorem for $\sigma$ and if so, how can we calculate $\mathbb{E}[\sigma^2]$?

  • 0
    Are you sure that $\frac{t}{3}$ (in the definiton of $M_t$) is correct? I think it should be $\frac{t}{2}$...2012-11-20

1 Answers 1

0

Let $\tau := \inf\{t \geq 0; B_t \in (-a,b)^c\}$ where $a,b>0$. Using Wald's identities one can show that $\mathbb{E}\tau = a \cdot b$. Moreover $\mathbb{E}\tau^n<\infty$ for all $n \geq 1$ (Proof (Exercise 5.16(a))). Choose $a=b=\sqrt{3}$, then $\tau=\sigma$. Thus $\sigma \in L^2$, $\sigma \in L^1$, $\mathbb{E}\sigma = \sqrt{3} \cdot \sqrt{3}=3$. We obtain

$M_{\sigma}(w) = 3^2 - 6\sigma(w) \cdot \left(3-\frac{\sigma(w)}{2} \right) \\ \Rightarrow \mathbb{E}M_\sigma = 9 - 18 \underbrace{\mathbb{E}\sigma}_{\sqrt{3} \cdot \sqrt{3}} + 3 \mathbb{E}(\sigma^2) = 9-18 \cdot 3 +3\mathbb{E}(\sigma^2)$

On the other hand

$\mathbb{E}(M_{t \wedge \sigma}) = \mathbb{E}M_0 = 0$

by optinal sampling theorem (applied to the stopping time $\sigma \wedge t$). Since

$|M_{t \wedge \sigma}| \leq 3^2 + 6\sigma \cdot \left(3+\frac{\sigma}{2}\right) \in L^1$

we have (by dominated convergence) $\mathbb{E}M_\sigma = 0$. This implies

$\mathbb{E}\sigma^2 =\frac{45}{3}=15$

  • 0
    Btw: Accepting answers is a simple way of thanking the strangers who are helping you out. You can accept an answer by ticking the check-mark next to the one you found most helpful.2012-11-25