7
$\begingroup$

$\int_0^\infty x/(1+x^2\sin^2x) \mathrm dx$

I'd be very happy if someone could help me out and tell me, whether the given integral converges or not (and why?). Thanks a lot.

  • 0
    [This tech$n$ique](http://math.stackexcha$n$ge.com/questions/107427/convergence$-$of-int-0-infty-fracdx1-x-alpha-sin-x2/107445#107445) would work here, too.2012-06-01

5 Answers 5

8

Hint: The integral diverges, there is trouble when $x$ is large. For detail, use the fact that if $x \ge 1$, then $1+x^2\sin^2 x \le 2x^2$ and therefore $\frac{x}{1+x^2\sin^2 x} \ge \frac{1}{2x}.$

  • 0
    sorry can i ask how did you get this $1+x^2\sin^2 x \le 2x^2$?2017-08-23
7

Welcome to math.stackexchange! The divergence of this integral is easily seen by André Nicolas' method. We might be interested in something more quantitative: How quickly does this integral diverge? One method is to exploit the periodicity of $\sin(x).$ Let us study the asymptotic behavior of $F(n)=\int^{n\pi}_0 \frac{x}{1+x^2 \sin^2 x} dx.$

Let us break the integral into pieces of length $\pi$ like this:

$ \int^{n\pi}_0 \frac{x}{1+x^2 \sin^2 x} dx = \sum_{k=1}^n \int^{k\pi}_{(k-1)\pi} \frac{x}{1+x^2 \sin^2 x } dx .$

Now let $u= x-(k-1)\pi:$

$ = \sum_{k=1}^{n} \int^{\pi}_0 \frac{u + (k-1)\pi}{1+(u+(k-1)\pi)^2 \sin^2 u} du .$

Now all that remains is to carefully estimate the size of this integral. Using $ 0 \leq u \leq \pi$ and $\displaystyle \int^{\pi}_0 \frac{1}{1+\alpha \sin^2 t} dt = \frac{ \pi}{\sqrt{1+\alpha}}$ we find that

$ \frac{(k-1)\pi^2}{\sqrt{1+k^2\pi^2}} \leq \int^{\pi}_0 \frac{u + (k-1)\pi}{1+(u+(k-1)\pi)^2 \sin^2 u} du \leq \frac{k \pi^2}{\sqrt{ 1+(k-1)^2 \pi^2} }. $ Thus we can see $F(n) \approx n\pi.$

  • 0
    @Théophile Precisely! Your intuitive idea of the average value of a function is correct. In fact, the "average" value of $f$ over $[a,b]$ is often defined by $ 1/(b-a) \int^b_a f(x) dx.$ So even though the function frequently spikes up ( at $x=k\pi$, $f(x) = k\pi$), the spikes only last for a very short time, and most of the time the values are between$0$and 2. Plotting the graph would illustrate this nicely.2012-06-02
2

The answer for the convergence/divergence may be easily obtained by using the following trivial inequality:

$\int_{0}^{\infty} \frac{x}{1+x^{2}\sin^{2}{x}} \geq \int_{0}^{\infty} \frac{x}{1+x^{2}}= \bigl(\frac{1}{2}\log(x^2+1)\bigr)_{0}^{\infty} \to \infty\ $

The proof is complete.

1

Since $-1 \leq \sin{x} \leq 1$, you have $\sin^{2}{x} \leq 1$, and from this you can conclude that

\begin{align*} 1+x^{2}\sin^{2}{x} &\leq 1+2x^{2} \\\ \Longrightarrow \frac{1}{1+x^{2}\sin^{2}{x}} &\geq \frac{1}{1+2x^{2}} \\\ \Longrightarrow \frac{x}{1+x^{2}\sin^{2}{x}}&\geq \frac{x}{1+2x^{2}} \\\ \Longrightarrow \int_{0}^{\infty} \frac{x}{1+x^{2}\sin^{2}{x}} \ dx &\geq \int_{0}^{\infty} \frac{x}{1+2x^{2}} \ dx \end{align*}

Now \begin{align*} \int_{0}^{\infty} \frac{x}{1+2x^{2}} \ dx &= \frac{1}{4} \cdot \int_{0}^{\infty} \frac{4x}{1+2x^{2}} \ dx \\\ &= \frac{1}{4} \bigl(\log{x}\bigr)_{1}^{\infty} \to \infty \end{align*}

0

Hint

$\lim_{n \to \infty} \frac{n\pi}{1+ n^2 \pi^2 \sin^2(n \pi)} = \infty$

  • 1
    A function may very well have unbounded sub-sequences and be integrable.2012-06-01