$\begin{align} x_1 &= 20000+0.5x_2+0.1x_3 \\ x_2 &= 40000+0.2x_1+0.6x_3 \\ x_3 &= 20000+0.1x_1+0.25x_2 \end{align} $ I want to write the system as $Ax=b$, what will then $A$, $b$ and $x$ be? I suppose $x$ should be $[x_1, x_2, x_3]$ but then I must solve for all of the variables?
Update
Did I formulate the system correctly as $Ax=b$? $A=\begin{pmatrix} -1 & 0.5 & 0.1 \\ 0.2 & -1 & 0.6 \\ 0.1 & 0.25 & 1 \end{pmatrix} $ $ b=\begin{pmatrix} -20000 \\-40000 \\-20000 \end{pmatrix} $ and $ x=\begin{pmatrix} x1 \\ x2 \\x3 \end{pmatrix} $
Update 2
I think I got it right, did it this way in matlab:
>> A=[-1 0.5 0.1;0.2 -1 0.6;0.1 0.25 -1] A = -1.0000 0.5000 0.1000 0.2000 -1.0000 0.6000 0.1000 0.2500 -1.0000 >> b=[-20000 -40000 -20000]' b = -20000 -40000 -20000 >> x=A\b x = 1.0e+004 * 6.5248 8.1135 4.6809 >>