6
$\begingroup$

Let $a,b,c \gt 0$. Prove that (Using Cauchy-Schwarz) : $\sqrt{\frac{2a}{b+c}}+\sqrt{\frac{2b}{c+a}}+\sqrt{\frac{2c}{a+b}} \leq 3$

I tried to use Cauchy-Schwarz in the following form $\sqrt{Ax}+\sqrt{By}+\sqrt{Cz}\leq \sqrt{(A+B+C)(x+y+z)}\tag{1}.$

I wrote $\sqrt{\frac{2a}{b+c}}+\sqrt{\frac{2b}{c+a}}+\sqrt{\frac{2c}{a+b}}=\frac{\sqrt{2a(c+a)(a+b)}+\sqrt{2b(b+c)(a+b)}+\sqrt{2c(b+c)(c+a)}}{\sqrt{(a+b)(b+c)(c+a)}}.$

and then I applied on $(1)$: \begin{eqnarray} A &=& 2a(c+a) &\mbox{and}& x=a+b;\\ B &=& 2b(a+b) &\mbox{and}& y=b+c;\\ C &=& 2c(b+c) &\mbox{and}& z=c+a , \end{eqnarray}

but I did not obtain anything. Thanks for your help. :)

  • 0
    Did you mean for a, b, c to be > 0 and also integers?2012-09-09

3 Answers 3

1

We will begin with an observation. Consider the function $f(a,b,c)=\sqrt{\frac{2a}{b+c}}+\sqrt{\frac{2b}{c+a}}+\sqrt{\frac{2c}{a+b}} .$ It has the property that $f(ta,tb,tc)=f(a,b,c).$ We may thus assume without loss of generality that $a+b+c=1$, by setting $t=\frac{1}{a+b+c}.$ Under this assumption, we may rewrite the function as $\sqrt{\frac{2a}{1-a}}+\sqrt{\frac{2b}{1-b}}+\sqrt{\frac{2c}{1-c}}$ If $a=1-\epsilon$ for $\epsilon>0$, $b+c=\epsilon$. Now note that in order for these square roots to be defined over the reals, then $0\leq a,b,c<1$, which means that $b,c<\epsilon$. Now for such an $\epsilon$, $\sqrt{\frac{2b}{1-b}}, \sqrt{\frac{2c}{1-c}}$ are both close to zero, and $\sqrt{\frac{2a}{1-a}}$ is large.

  • 0
    and an idea using Cauchy-Schwarz where can I find ?2012-09-09
3

Denote $S = \sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} + \sqrt{\frac{c}{a+b}}$

The Inequality doesn't hold. Clearly, taking $b=c=0.05, a=5$ implies $\sqrt{2}S>\sqrt{\frac{2a}{b+c}} = 10 > 3$ By this method, it is easily shown that no upper bound exists.

For a lower bound, note firstly that when $a = b, c \rightarrow 0$, $S \rightarrow 2$. We'll prove that $S \ge 2$ for non negative reals $a,b,c$.

We have, $\frac{a+b+c}{2a} = \frac 12 \left(\frac{b+c}{a} + 1 \right) \ge \sqrt{\frac{b+c}{a}} \\ \implies \sqrt{\frac{a}{b+c}} \ge \frac{2a}{a+b+c}$ Adding up the other two similar inequalities, we get the result.

  • 0
    @Iuli I'm pretty surprised to see you thinking that AM-GM is analysis.. Anyway, how about I say that $\left(\frac{b+c}{a} + 1 \right) \left(1 + \frac{b+c}{a} \right) \ge \left(2 \sqrt{\frac{b+c}{a}} \right)^2$ by Cauchy Schwarz, so all that I'm doing is applying Cauchy Schwarz here.. ;)2012-09-09
3

You got it wrong. It should be: $ \sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}} \leq 3 $

See my comment on Inequality. $\sqrt{\frac{11a}{5a+6b}}+\sqrt{\frac{11b}{5b+6c}}+\sqrt{\frac{11c}{5c+6a}} \leq 3$ for a proof.