1
$\begingroup$

The advection-diffusion equation I am working with has the form $ \frac{\partial c}{\partial t} = \nabla\cdot (D\nabla c) - \nabla\cdot (vc) + R , $ where \begin{aligned} c &= \text {concentration} \\ t &= \text{time} \\ D &= \text{Diffusivity} \\ \nabla &=\text {Gradient} \\ \nabla\cdot &= \text{Divergence} \\ R &= \text{Source of quantity } c \\ \end{aligned} I am unsure of what to do with the del operators. Could you help me set up the equation for Integration?

1 Answers 1

2

Assuming everything is a function of spatial coordinates $x,y,z$ and time $t$, $\eqalign{\nabla \cdot (D \nabla c) &= \dfrac{\partial}{\partial x} \left(D \dfrac{\partial c}{\partial x}\right) + \dfrac{\partial}{\partial y} \left(D \dfrac{\partial c}{\partial y}\right) + \dfrac{\partial}{\partial z} \left(D \dfrac{\partial c}{\partial z}\right)\cr &= D \left( \dfrac{\partial^2 c}{\partial x^2} +\dfrac{\partial^2 c}{\partial y^2} + \dfrac{\partial^2 c}{\partial z^2} \right) + \dfrac{\partial D}{\partial x} \dfrac{\partial c}{\partial x} + \dfrac{\partial D}{\partial y} \dfrac{\partial c}{\partial y} + \dfrac{\partial D}{\partial z} \dfrac{\partial c}{\partial z} }$ and similarly if $v = (v_1, v_2, v_3)$ $\nabla . (c v) = \dfrac{\partial}{\partial x} (c v_1) + \dfrac{\partial}{\partial y}(c v_2) + \dfrac{\partial}{\partial z}(c v_3)$