Hints
(i) Prove that functions $ f_n(t)=\begin{cases} 0&t\in\left(0,\frac{1}{2} -\frac{1}{2n}\right)\\ \frac{1}{2}+n\left(t-\frac{1}{2}\right) &t\in\left[\frac{1}{2}-\frac{1}{2n},\frac{1}{2}+\frac{1}{2n}\right]\\ 1 &t\in\left(\frac{1}{2}+\frac{1}{2n},1\right) \end{cases} $ forms non-convergent Cauchy sequence.
(iv) Consider "peak" functions $ g_n(t)=\begin{cases} 4^{n+1}\left(t-\frac{1}{2^{n+1}}\right)&t\in\left[\frac{1}{2^{n+1}},\frac{3}{2^{n+1}}\right]\\ -4^{n+1}\left(t-\frac{1}{2^{n}}\right) &t\in\left[\frac{3}{2^{n+2}},\frac{1}{2^n}\right]\\ 0 &t\in[0,1]\setminus\left[\frac{1}{2^{n+1}},\frac{1}{2^{n}}\right] \end{cases} $ Show that $d(g_m,g_m)\geq 1$ for $m\neq n$. Conclude that $\{g_n:n\in\mathbb{N}\}$ have no convergent subsequence.
(ii) Show that balls $B(g_n, 1/4)$ are contained in $B(0,1)$. Show that there is no finite $1/4$-net to cover this balls, and the consequence there is no finite $1/4$-net for $B(0,1)$.
(iii) Consider the following open cover $\{B(g_n,1/4):n\in\mathbb{N}\}\cup\left\{B(0,1)\setminus\bigcup\limits_{n=1}^{\infty}\overline{B(g_n,1/8)}\right\} $ of $\overline{B(0,1)}$. Show there is no finite subcover.
P.S.
There are much more short ways to answer your questions but they are indirect.