0
$\begingroup$

After drawing a diagram of this statement, I believe it to be false. However, I'm having trouble approaching how to disprove this. Do I try to prove the negation? Or what else can I do?

  • 0
    There are two ways I'd suggest. One is given by @Babak below, namely show that $(A\cup B)'\subseteq A'\cap B'$ and that $A'\cap B'\subseteq (A\cup B)'$. Another is to use Venn diagrams. Depending on your comfort, you might find one easier than the other.2012-09-25

2 Answers 2

5

$x\in (A'\cap B')\to x\in A'$ and $x\in B'$. If $x\in A'$ then $x\notin A$ and if $x\in B'$ then $x\notin B$. In both cases, $x\notin A\cup B$. This means that $x\in (A\cup B)'$. The other direction is analogous. You can do it.

  • 0
    Good answer anyway2013-03-22
3

$x\in(A\cup B)'$ $\Rightarrow$ $(x\notin A\text{ and } x\notin B)$ $\Rightarrow$ $(x\in A'\text{ and } x\in B')$ $\Rightarrow$ $x\in A'\cap B'$ $\Rightarrow (A\cup B)'\subseteq A'\cap B'$

$x\in A'\cap B'$ $\Rightarrow$ $(x\in A'\text{ and } x\in B')$ $\Rightarrow$ $(x\notin A\text{ and }x\notin B)$ $\Rightarrow$ $x\in(A\cup B)'$ $\Rightarrow A'\cap B'\subseteq (A\cup B)'$

And

$(A\cup B)'\subseteq A'\cap B'$ and $A'\cap B'\subseteq (A\cup B)'$ $\Leftrightarrow$ $(A \cup B)' = A' \cap B'$