Two Integer Partition Problems
Let $P(n,k,m)$ be the number of partitions of $n$ into $k$ parts with all parts $\leq m$.
So $P(10,3,4) = 2$, i.e., (4,4,2); (4,3,3).
I need help proving the following:
$P(2n,3,n-1) = P(2n-3,3, n-2)$
$P(4n+3, 3, 2n+1) = P(4n,3,2n-1) + n + 1$.