4
$\begingroup$

Using the parallelogram identity, I need to solve the following initial boundary value problem for a vibrating semi-infinite string with a nonhomogeneous boundary condition:

$ u_{tt} − u_{xx} = 0 , \ 0 < x < \infty, t > 0 $ $u(0,t) = h(t)$ $u(x,0) = f(x), \ u_{t}(x,0) = g(x)$ where $f, g, h ∈ C_2\{[0, ∞)\}$

I really have try to solve it, be I still dont know how to use the parallelogram identity. Thanks for your help.

Edit: The parallelogram identity is

$u(x_0 − a, t_0 − b) + u(x_0 + a, t_0 + b) = u(x_0 − b, t_0 − a) + u(x_0 + b, t_0 + a). $

1 Answers 1

0

I have no idea about "parallelogram identity" in PDE, I only know that this PDE problem with those types of I.C.s and B.C.s can be found the solution exactly in http://eqworld.ipmnet.ru/en/solutions/lpde/lpde201.pdf.

Case $1$: $\dfrac{f(t)+f(-t)}{2}+\dfrac{1}{2}\int_{-t}^t g(s)~ds=h(t)$

$u(x,t)=\dfrac{f(x+t)+f(x-t)}{2}+\dfrac{1}{2}\int_{x-t}^{x+t}g(s)~ds$

Case $2$: $\dfrac{f(t)+f(-t)}{2}+\dfrac{1}{2}\int_{-t}^t g(s)~ds\neq h(t)$

$u(x,t)=\begin{cases}\dfrac{f(x+t)+f(x-t)}{2}+\dfrac{1}{2}\int_{x-t}^{x+t}g(s)~ds&\text{when}~x>t\\\dfrac{f(x+t)-f(t-x)}{2}+\dfrac{1}{2}\int_{t-x}^{x+t}g(s)~ds+h(t-x)&\text{when}~x