I want to break this equation into several matrices multiplied it would be useful to use DFT matrices $\tilde{H}_{\nu,k}=\frac{1}{N}\sum_{n=0}^{N-1}\sum_{l=0}^{L-1}h_{n,l}e^{-j\frac{2\pi kl}{N}}e^{j\frac{2\pi n}{N}(k-\nu+\epsilon_k)}$ $\epsilon_k=k\eta+\epsilon_\eta$
Break it down into matrices
0
$\begingroup$
linear-algebra
1 Answers
1