$\begin{align*}&\lim_{x\to0}\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt[3]{1+x}-\sqrt[3]{1-x}}=\\ &\lim_{x\to0}\left(\frac{(1+x)-(1-x)}{(1+x)-(1-x)}\cdot\frac{\sqrt[3]{(1+x)^2}+\sqrt[3]{(1+x)(1-x)}+\sqrt[3]{(1-x)^2}}{\sqrt{1+x}+\sqrt{1-x}}\right) \end{align*}$
My teacher was using this to calculate the value of the first limit as seen above.
I am not sure how he pull this huge rabbit out of the hat XD.
Also I am not sure why is it useful...