4
$\begingroup$

Can anyone help me with this problem?

Prove that if $K$ is a compact subset of a Banach space $X$, then the closed convex hull of $K$ (that is, the closure of the set of all elements of the form $\lambda_1 x_1+ \dots + \lambda_n x_n$, where $n \geq 1, x_i \in K, \lambda_i \geq 0, \sum_i \lambda_i = 1$) is compact.

Any help appreciated!

  • 0
    @user360777 Check out [this answer](http://math.stackexchange.com/a/2017145).2017-03-17

1 Answers 1

4

Since $X$ is complete it is enough to show that $\mathrm{hull}(K)$ is completely bounded.

The proof of this fact you can find in theorem 3.24 in Rudin's Functional analysis. This proof follows the same steps proposed by Harald Hanche-Olsen.