5
$\begingroup$

$f(x)=\sum\limits_{k = 2 }^ \infty e^{-kx} \ln(k) $

$\int\limits_0^{\infty}\int\limits_x^{\infty}\, f(\gamma)\, d\gamma dx=\sum\limits_{k = 2 }^ \infty \frac{1}{k^2} \ln(k) $

$\int\limits_0^{\infty}\int\limits_x^{\infty} f(\gamma)\, d\gamma dx=\sum\limits_{k=2}^ \infty\ln(k^{\frac{1}{k^2}})=\ln(\prod\limits_{k=2}^{\infty}k^{\frac{1}{k^2}}) $

$\prod\limits_{k=2}^{ \infty }k^{\frac{1}{k^2}}=\prod\limits_{k=2}^{ \infty } \sqrt[k^2]{k}=e^{\int\limits_0^{\infty}\int\limits_x^{\infty} f(\gamma) \,d\gamma dx}$

$f(x)=\sum\limits_{k = 2 }^ \infty e^{-kx} \ln(k) $

$f(x)=\sum\limits_{k = 1 }^ \infty e^{-(k+1)x} \ln(k+1) $

$f(x)=e^{-x}\sum\limits_{k = 1 }^ \infty e^{-kx} \ln(k+1) $

$f(x)=e^{-x}\sum\limits_{n = 1 }^ \infty \frac{(-1)^{n+1}}{n} \sum\limits_{k = 1 }^ \infty k^n e^{-kx}$

We know that

$\sum\limits_{k = 1 }^ \infty e^{-kx}= \frac{1}{e^{x}-1} $

$\sum\limits_{k = 1 }^ \infty k^n e^{-kx}= (-1)^n\frac{d^n}{dx^n}(\frac{1}{e^{x}-1}) $

$f(x)=e^{-x}\sum\limits_{n = 1 }^ \infty \frac{(-1)^{n+1}}{n} \sum\limits_{k = 1 }^ \infty k^n e^{-kx} = e^{-x}\sum\limits_{n = 1 }^ \infty \frac{(-1)^{n+1}}{n} (-1)^n\frac{d^n}{dx^n}(\frac{1}{e^{x}-1})$

$f(x)=-e^{-x}\sum\limits_{n = 1 }^ \infty \frac{1}{n} \frac{d^n}{dx^n}(\frac{1}{e^x-1})$

$\int\limits_0^{\infty}\int\limits_x^{\infty} f(\gamma) \,d\gamma dx= -\int\limits_0^{\infty}\int\limits_x^{\infty} e^{-\gamma}\sum\limits_{n = 1 }^ \infty \frac{1}{n} \frac{d^n}{d\gamma^n}(\frac{1}{e^{\gamma}-1})\, d\gamma dx$

I have lost my way after that.

Is it possible to find a closed form in my way? or I need to follow a different way. I need your mathematical sense. Thanks a lot for answers and advice.

  • 0
    @WillieWong that works for the products , but not for the integrals2013-01-11

2 Answers 2

7

Yes $\boxed{\displaystyle e^{-\zeta'(2)}}$ I think.

To prove it start with : $\zeta(2-x)=\sum_{k=1}^\infty \frac {k^x}{k^2}$

and compute the derivative!

The trick is that the derivation will create a $\ln(k)$ term at the numerator. At the end take the limit as $x\to 0$.

  • 2
    For completeness: $\zeta'(2)=(\gamma+\log\,2\pi-12\log\,A)\zeta(2)$ where $A$ is the Glaisher-Kinkelin constant, though I believe $A=\exp\left(\frac1{12}-\zeta^\prime(-1)\right)$ is the more traditional definition.2012-07-25
2

Your infinite product equals to : $e^{-{\zeta}'(2)}$.