2
$\begingroup$

$\begin{cases} \frac{dy}{dx} + 3y = 8, \\ y(0) = 0. \end{cases}$

So, I have been getting an answer of $3$ by integrating and getting $\ln(8-3y) = x$ and solving. But my book says the answer must be expressed as a function of $x$. I do not know what to do.

  • 0
    This problem will admit separation of variables.2012-10-04

4 Answers 4

2

You have $y'(x)+3y(x)=8\Rightarrow \mathbb{e}^{3x}y'(x)+3\mathbb{e}^{3x}y(x)=8\mathbb{e}^{3x}\Rightarrow \mathbb{e}^{3x}y'(x)+\left(\mathbb{e}^{3x}\right)'y(x)=8\mathbb{e}^{3x}\Rightarrow$

$\left(\mathbb{e}^{3x}y(x)\right)'=8\mathbb{e}^{3x}\Rightarrow {\Large\int}\left(\mathbb{e}^{3x}y(x)\right)'\;\mathbb{d}x={\Large\int}8\mathbb{e}^{3x}\;\mathbb{d}x\Rightarrow \mathbb{e}^{3x}y(x)=\frac{8}{3}\left(\mathbb{e}^{3x}\right)+c\Rightarrow $ *for $c\in\mathbb{R}$

$y(x)=\frac{8}{3}+\frac{c}{\mathbb{e}^{3x}}$, now since $y(0)=0\Rightarrow c=-\frac{8}{3}$ and $y(x)=\frac{8}{3}-\frac{8}{3\mathbb{e}^{3x}}$.

1

Multiply both sides of the differential equation by $e^{3x}$. This will give you $e^{3x}\dfrac{dy}{dx}+3 e^{3x}y=8e^{x}$, which is $ \dfrac{d}{dx}(ye^{3x})=8e^{3x} $ Integrate both sides with respect to x (don't forget to add a constant).

  • 0
    The method I described is a very common strategy to deal with this kind of problem. You can read more about it here: http://en.wikipedia.org/wiki/Integrating_factor2012-10-04
1

$ \int\frac{y'}{8-3y}dx=\int 1 dx\\ -\frac13\ln(8-3y)=x+c\\ 8-3y=e^{-3(x+c)}\\ y=-\frac13(e^{-3(x+c)}-8), $ and with $y(0)=0$ you'll get $0=-\frac13(e^{-3c}-8)$, which gives $c=-\frac13\ln8$.

1

Write this as $dy/dx+3(y-8/3)$ and then integrate $dy/(y-8/3)+3dx=0$ to get $\ln(y-8/3)+3x=c$ so $y-3/8=Ke^{-3x}$; $y(0)=0$ so $K=-3/8$ and $y=3/8-3/8e^{-3x}$