You have, $ \sum_{i=1}^n {1\over 4i^2-1} = \sum_{i=1}^n\frac{1}{{(2i + 1)(2i - 1)}} $ $ = \sum_{i=1}^n \left(\frac{1}{{2(2i - 1)}} - \frac{1}{{2(2i + 1)}}\right) = \frac{1}{2}\left(\sum_{1\leq i\leq n} \frac{1}{{(2i - 1)}} - \sum_{1\leq i\leq n}\frac{1}{{(2i + 1)}}\right) $ $ =\frac{1}{2}\left( \frac{1}{1}+\sum_{2\leq i\leq n} \frac{1}{{(2i - 1)}} - \sum_{1\leq i\leq n-1}\frac{1}{{(2i + 1)}}- \frac{1}{2n+1}\right). $ By translation of index i=k+1, you have, $ =\frac{1}{2}\left( \frac{1}{1}+\sum_{2\leq k+1\leq n} \frac{1}{{(2[k+1] - 1)}} - \sum_{1\leq i\leq n-1}\frac{1}{{(2i + 1)}}- \frac{1}{2n+1}\right). $ Remember that $2\leq k+1\leq n$ if, only if, $2-1\leq k\leq n-1$. Then $ =\frac{1}{2}\left( \frac{1}{1}+\sum_{1\leq k\leq n-1} \frac{1}{{(2k+1)}} - \sum_{1\leq i\leq n-1}\frac{1}{{(2i + 1)}}- \frac{1}{2n+1}\right) $ $ =\frac{1}{2}-\frac{1}{4n+2}. $