7
$\begingroup$

Prove the following inequality

$\zeta (4)\le 1.1$

I saw on the site some proofs for $\zeta(4)$ that use Fourier or Euler's way for computing its precise value, and that's fine and I can use it. Still, I wonder if there is a simpler way around for proving
this inequality. Thanks!

3 Answers 3

8

$\zeta(4) < \sum_{n=1}^{6} \frac{1}{n^{4}} + \int_{6}^{\infty} \frac{dx}{x^4} < 1.1$

  • 0
    @ Henry: I just checked that and you're perfectly right! (+1) Thank you. The second version looks better.2012-09-23
5

$ \begin{eqnarray} \zeta(4)&<&\sum_{n=1}^{9}\frac{1}{n^4} +\left(\sum_{n=10}^{\infty}\frac{1}{n^2}\right)^2 \\ &=& \sum_{n=1}^{9}\frac{1}{n^4} + \left(\frac{\pi^2}{6}-\sum_{n=1}^{9}\frac{1}{n^2}\right)^2 \\ &=& 1.0929965... \end{eqnarray} $

  • 0
    it seems a bit harder :-) (+1)2012-09-23
4

One has ${1\over (n-{1\over2})^3}-{1\over (n+{1\over2})^3}={3n^2+{1\over4}\over (n^2-{1\over4})^3}>{3\over n^4}\ .$ Therefore one obtains the telescopic sum $\eqalign{\sum_{n=1}^\infty{1\over n^4}&=1+\sum_{n=2}^\infty{1\over n^4}< 1+{1\over3}\sum_{n=2}^\infty\Bigl({1\over (n-{1\over2})^3}-{1\over (n+{1\over2})^3}\Bigr)\cr &=1+{1\over3}{1\over(2-{1\over2})^3}=1+{8\over81}<1.1\ .\cr}$

  • 0
    thank you for your solution.2012-09-23