How can you show that the complete elliptic integral of first kind $ \displaystyle K(m)=\int_0^\frac{\pi}{2}\frac{\mathrm du}{\sqrt{1-m^2\sin^2 u}}$ that is the same as a series $K(m)=\frac{\pi}{2} \left(1+\left(\frac{1}{2}\right)^{2}m^2 +\left(\frac{1\cdot 3}{2\cdot 4}\right)^{2}m^4 +...+ \left(\frac{(2n-1)!!}{2n!!} \right )^2m^{2n} + ... \right)$
increases in m?
Thanks