3
$\begingroup$

Please help me proof $\log_b a\cdot\log_c b\cdot\log_a c=1$, where $a,b,c$ positive number different for 1.

5 Answers 5

-3

Before we prove the given identity proof this idenity

$\log_b a\log_c b=\log_c a$

Proof: Implement the formula $\log_a b=\frac{\log_x b}{\log_x a}$

$\frac{\log a}{\log b}\cdot\frac{\log b}{\log c}=\frac{\log a}{\log c}=\log_c a$

Now proof the given identity.

$\log_b a\cdot\log_c b\cdot\log_a c=1$

$\log_c a\cdot\log_a c=1$

$\frac{1}{\log_a c}\cdot\log_a c=1$

$1=1$

  • 0
    Here's how the last bit should have been written: $\log_b a\cdot\log_c b\cdot\log_a c$ $=\log_c a\cdot\log_a c$ $=\dfrac{1}{\log_a c}\cdot\log_a c = 1$.2012-09-27
9

Change all to the natural logarithm $\log\,$:

$\log_ba\cdot\log_cb\cdot\log_ac=\frac{\log a}{\log b}\frac{\log b}{\log c}\frac{\log c}{\log a}$

and voila.

  • 1
    ... or to a logarithm of arbitrary base as long as it's the same one everywhere.2012-09-27
3

${\bf Hint}\quad\begin{array}{cccccc} &\rm x^{\,I} &\rm C\quad\\ & \ \nearrow & \\ \rm A\!\!\!\! & & \downarrow \rm x^{\,J} \\ & \nwarrow & \\ &\rm x^K &\rm B\quad\ \ \end{array}\rm\ \Rightarrow\ \ IJK\, =\, 1$

  • 1
    That's an interesting way to put it.2012-10-04
2

By definition $\log_a b = \frac{\log b}{\log a}$.

  • 0
    Good point. I forget to think of it that way.2012-09-27
1

Let $\log_b a=x\implies b^x=a,$

$ \log_c b=y\implies c^y=b$ and

$\log_a c=z\implies a^z=c$

Now, $a^z=c\implies (b^x)^z=c\implies ((c^y)^z)^x=c\implies c^{xyz}=c\implies xyz=1$ assuming $c\neq 0,1$

Thus, $xyz=1\implies \log_b a\cdot\log_c b\cdot \log_a c=1$

  • 0
    See my answer for a more graphic viewpoint.2012-10-04