2
$\begingroup$

Let $e_{x} = \int_{0}^{\infty} p_{x}(t) \ dt$ where $p_{x}(t)$ is the probability that a person aged $x$ will survive at least $t$ more years. Why is $e_{x} \leq e_{x+1}+1$?

We know that $e_{x} \geq e_{x+1}$ since the expected future lifetime of a younger person is greater than that of an older person. So maybe we can show that $e_{x}-e_{x+1} \leq 1$ or $\int_{0}^{\infty} p_{x}(t) - p_{x+1}(t) \ dt \leq 1$

Edit. We know that for a discrete random variable, $\mathbb{E}(Y|X) = \int_{\Omega} Y(\omega) \mathbb{P}(dw|X=x)$

$= \frac{\int_{X=x} Y(\omega)\mathbb{P}(dw)}{\mathbb{P}(X=x)}$

$= \frac{\mathbb{E}(Y \mathbb{1}_{(X=x)})}{\mathbb{P}(X=x)}$

What does $w$ above represent?

  • 0
    @did: I don't get what you mean by your comments. "5 hours"? 5 hours till what? "You see"?2012-07-27

3 Answers 3

1

Let $n_x(d)$ be the expected number of people alive of age $x$ on date $d$. Then, independent of $d$, $ n_{x+t}(d+t)=n_x(d)p_x(t)\tag{1} $ Using $(1)$ with $x,d,t+1$, yields $ p_x(t+1)=\frac{n_{x+t+1}(d+t+1)}{n_x(d)}\tag{2} $ Using $(1)$ with $x+1,d+1,t$, yields $ p_{x+1}(t)=\frac{n_{x+t+1}(d+t+1)}{n_{x+1}(d+1)}\tag{3} $ Using $(1)$ with $x,d,t=1$, yields $ n_{x+1}(d+1)=n_x(d)p_x(1)\tag{4} $ Combining $(2)$, $(3)$, and $(4)$ gives $ p_x(t+1)=p_x(1)p_{x+1}(t)\le p_{x+1}(t)\tag{5} $ Therefore, we get $ \begin{align} e_x &=\int_0^1 p_x(t)\,\mathrm{d}t+\int_0^\infty p_x(t+1)\,\mathrm{d}t\\ &\le1+\int_0^\infty p_{x+1}(t)\,\mathrm{d}t\\ &=1+e_{x+1}\tag{6} \end{align} $

3

As the notation almost suggests, $e_x=\int_0^\infty p_x(t)\,dt$ is the expected additional life at age $x$.

For in general, if $W$ is a non-negative random variable defined on $[0,\infty)$, with cumulative distribution function $F_W(w)$, then $E(W)=\int_0^\infty (1-F_W(w))\,dw.$

If everybody who is age $x$ automatically survives to age $x+1$, then $e_x=e_{x+1}+1$. But perhaps not every person age $x$ makes it to $x+1$. Informally, any who die force $e_x$ below $e_{x+1}+1$.

If you want to calculate formally, let $d$ be the probability of dying by age $x+1$ given one has made it to $x$. (So $d=1-p_x(1)$.)

Then with probability $d$ one's additional life will be $\le 1$, so has expectation $\le 1$. And with probability $(1-d)$ one's additional life has expectation $e_{x+1}+1$. Thus $e_x \le (d)(1) +(1-d)(e_{x+1}+1).$ Expand. The right-hand side is $(1-d)e_{x+1} +1$, which is $\le e_{x+1}+1$.

  • 0
    @thomas: I wanted to use the informal large sample interpretation for the intuitive version of the argument. The formal computation is the one that calculates expectation by summing over the two conditions died, did not.2012-07-25
2

The result to be proved is a particular case of the following fact:

The function $x\mapsto e_x+x$ is nondecreasing.

To show this, introduce the (random) lifetime $L$ and note that $p_x(t)=\mathrm P(L\geqslant x+t\mid L\geqslant x)$, hence $ e_x=\mathrm E\left(\int_0^{\infty}\mathbf 1_{L\geqslant x+t}\,\mathrm dt\,\Big|\, L\geqslant x\right)=\mathrm E(L-x\mid L\geqslant x)=\mathrm E(L\mid L\geqslant x)-x. $ Fix some $0\leqslant x\leqslant y$. Then, $ (e_x+x)-(e_y+y)=\frac{\mathrm E(L:L\geqslant x)}{\mathrm P(L\geqslant x)}-\frac{\mathrm E(L:L\geqslant y)}{\mathrm P(L\geqslant y)}, $ which has the sign of $ v(x,y)=\mathrm E(L:L\geqslant x)\cdot\mathrm P(L\geqslant y)-\mathrm E(L:L\geqslant y)\cdot\mathrm P(L\geqslant x). $ Adding and substracting $\mathrm E(L:L\geqslant y)\cdot\mathrm P(L\geqslant y)$ yields $ v(x,y)=\mathrm E(L:y\geqslant L\geqslant x)\cdot\mathrm P(L\geqslant y)-\mathrm E(L:L\geqslant y)\cdot\mathrm P(y\geqslant L\geqslant x). $ Hence $v(x,y)$ has the sign of $ u(x,y)=\mathrm E(L\mid y\geqslant L\geqslant x)-\mathrm E(L\mid L\geqslant y). $ The first term on the RHS is $\leqslant y$ and the second term on the RHS is $\geqslant y$, hence $u(x,y)\leqslant0$. QED.

Edit: For every random variable $X$ and disjoint events $A$ and $B$ with positive probabilities, $ \mathrm E(X\mid A\cup B)-\mathrm E(X\mid B)=\left(\mathrm E(X\mid A)-\mathrm E(X\mid B)\right)\cdot\frac{\mathrm P(A)}{\mathrm P(A\cup B)}. $ Hence, $\mathrm E(X\mid A\cup B)\geqslant\mathrm E(X\mid B)$ if and only if $\mathrm E(X\mid A)\geqslant\mathrm E(X\mid B)$.

  • 1
    Since the Edit is unrelated to the original question, you should not include it in this question and, if interested, you should ask it as another question. (Furthermore, its content is dubious, for example, what is $x$? and, is $w=\omega$?)2012-07-25