1
$\begingroup$

Here is another inequality I am trying to prove:

Let $a,b,c$ be positive numbers. Prove that:

$1) \frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\geqslant (a+b+c)$ $2) \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geqslant \frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}+\frac{1}{\sqrt{ab}}$

In the book's hint, it uses the inequality: $a^{2}+b^{2}+c^{2}\geq ab+bc+ca$ (which is easy to prove), then it follows that : $b^{2}c^{2}+a^{2}c^{2}+a^{2}b^{2}\geqslant abc(a+b+c)$ which is equivalent to proving our claim. I need to know how the second inequality follows from the first one. Also, any suggestions for proving the second claim?

  • 0
    @Generic Human: Thanks for the hint. It worked out. Nice trick!2012-07-02

3 Answers 3

1

$a^2+b^2+c^2\geq ab+ac+bc$ apply $a\rightarrow bc, b\rightarrow ca, c\rightarrow ab$ we have $a^2b^2+b^2c^2+c^2a^2\geqslant a^2bc+b^2ca+c^2ab=abc(a+b+c)$

  • 0
    Yes. That's what i mean2016-11-25
2

Apply your first inequality to $a=\frac 1 x, b=\frac 1 y, c=\frac1z$ and clear fractions.

  • 0
    You're right. Thanks for pointing out this2012-07-02
2

$\frac {bc}{a}+\frac{ca}{b}+\frac{ab}{c}=\frac{1}{2}(\frac{ca}{b}+\frac{ab}{c})+\frac{1}{2}(\frac{ab}{c}+\frac{bc}{a})+\frac{1}{2}(\frac{bc}{a}+\frac{ca}{b}\geq\sqrt\frac{ca}{b}\sqrt\frac{ab}{c}+\sqrt\frac{ab}{c}\sqrt\frac{bc}{a}+\sqrt\frac{bc}{a}\sqrt\frac{ca}{b}=a+b+c$