5
$\begingroup$

This is exercise from Guidorizzi's book Cálculo (In Portuguese).

Show that $\lim_{n\rightarrow \infty}n \big[1-\frac{(n+1)^{n}}{en^{n}}\big]=\frac{1}{2}.$

All I managed to do is rewrite the equation as $n \big[1-\frac{(1+\frac{1}{n})^{n}}{e}\big]$.

What to do from now on?

  • 0
    Interesting. I've never seen this one before.2012-02-10

2 Answers 2

2

$\log\left(1 + \frac{1}{n}\right)^n = n \log \left(1+\frac{1}{n}\right) = n\left(\frac{1}{n}-\frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)\right)$ Thus $\left(1 + \frac{1}{n}\right)^n =e^{1 - \frac{1}{2n} + O\left(\frac{1}{n^2}\right)} $ Substituting, we need to find $\lim_{n \to \infty} n\left(1 - \frac{e^{1 - \frac{1}{2n} + O\left(\frac{1}{n^2}\right)}}{e}\right) = n\left(1-e^{\frac{-1}{2n} + O\left(\frac{1}{n^2}\right)}\right)$ Now using the expansion of $e^x$, you get $n\left(1-e^{\frac{-1}{2n} + O\left(\frac{1}{n^2}\right)}\right) = n\left(\frac{1}{2n} + O\left(\frac{1}{n^2}\right)\right)$ which tends to $\frac{1}{2}$ and $n \to \infty$.

3

Hint: $(1+\frac1n)^n=e^{n\log(1+\frac1n)}=e^{1-\frac1{2n}+O(\frac1{n^2})}$.