3
$\begingroup$

I'm trying to calculate the upper bound of the binomial coefficient:

\begin{equation} \sum\limits_{j=0}^{k} {n\choose j}<\left( \frac{ne}{k} \right)^k \end{equation}

Using binomial theorem and for $x\ge0$:

\begin{equation} \sum\limits_{j=0}^{k} {n\choose j}{x^j}\le(1+x)^n \end{equation}

dividing both sides by $x^k$,we obtain:

$ \sum\limits_{j=0}^{k} {n\choose j}{\frac{1}{x^{k-j}}}\le\frac{(1+x)^n}{x^k} $

For x<1 the term $\frac{(1+x)^n}{x^k}$

obtain his minimum value at point $x=\frac{k}{n-k}$

I don't understand why... Could you please help. I thank you in advance.

1 Answers 1

1

Consider $f(x) = \frac{(1+x)^n}{x^k}$ and apply your favorite calculus-based test for local extrema.