Show that the sequence of functions $\left\{ x^n \right\}$ converges uniformly on $[0,k],k<1$, but non-uniformly on $[0,1]$.
For $x\in[0,1)$ $\lim_{n\to \infty}f_n(x)=\lim_{n\to \infty}x^n=0$ and for $x=1$ $\lim_{n\to \infty}f_n(x)=1.$
Therefore, the limit function is $f(x)=\cases{ 0 &$\quad 0\leq x <1$\\ 1 &$\quad x=1$}$ Let $\epsilon >0$ be arbitrary. Then, for each $x\in (0,1)$ $|f_n(x)-f(x)|<\epsilon\implies x^n<\epsilon \implies n\ln x<\ln\epsilon \implies n>\frac{\ln\epsilon}{\ln x}$
For $x=0,1$ $|f_n(x)-f(x)|=0<\epsilon,\quad\forall n\geq1 $ Choose a natural number $N(\epsilon,x)=\left[\frac{\ln\epsilon}{\ln x}\right]+1$ Here $[\cdot]$ is the box function.
Note that $N(\epsilon,x)\to +\infty$ as $x\to 1^-$. So, $N(\epsilon,x)$ is not bounded on $[0,1]$.
Hence, the convergence of $\left\{ x^n \right\}$ is not uniform on $[0,1]$.
I faced problems in showing uniform convergence of $\left\{ x^n \right\}$ on $[0,k]$, $k<1$.