Just as the title say, consider the integral: $I=\int_0^{+\infty} \frac{\sin^2 x}{x^2} \,\mathrm{d} x=\frac{1}{2}\int_{-\infty}^{+\infty} \frac{\sin^2 x}{x^2} \,\mathrm{d} x,$ how to apply the residue theorem to get the answer?
How the calculate $\int_0^{+\infty} \frac{\sin^2 x}{x^2} \,\mathrm{d} x$?
-
0From this https://math.stackexchange.com/questions/5248/evaluating-the-integral-int-0-infty-frac-sin-x-x-dx-frac-pi-2 We know that , $\frac{\pi}{2} =\int_0^\infty\frac{\sin x}{x} dx = \int_0^\infty\frac{\sin 2u}{2u} d(2u) =\int_0^\infty\frac{\sin 2u}{u} du\\ = \underbrace{\left[\frac{\sin^2 u}{u}\right]_0^\infty}_{=0} +\int_0^\infty\frac{\sin^2u}{u^2} du =\color{blue}{\int_0^\infty\frac{\sin^2u}{u^2} du} $ Given that, $\sin2x = 2\sin x\cos x=(\sin^2x)'$ and $\lim_{x\to 0}\frac{sin^2 x}{x^2} = 1$ – 2017-11-27
2 Answers
Hint:
$ \begin{align} \int_0^\infty\frac{\sin^2(x)}{x^2}\,\mathrm{d}x &=\frac12\int_{-\infty}^\infty\frac{\sin^2(x)}{x^2}\,\mathrm{d}x\\ &=-\frac18\int_{-i-\infty}^{-i+\infty}\frac{e^{2ix}+e^{-2ix}-2}{x^2}\,\mathrm{d}x\\ &=-\frac18\left(\int_{\gamma_+}\frac{e^{2ix}-1}{x^2}\,\mathrm{d}x +\int_{\gamma_-}\frac{e^{-2ix}-1}{x^2}\,\mathrm{d}x\right)\tag{1} \end{align} $ where $\gamma_+$ goes from $-i-R$ to $-i+R$ then circles back counterclockwise on $-i+Re^{i\theta}$ for $\theta\in[0,\pi]$ as $R\to\infty$, and where $\gamma_-$ goes from $-i-R$ to $-i+R$ then circles back clockwise on $-i+Re^{-i\theta}$ for $\theta\in[0,\pi]$ as $R\to\infty$.
Each of the integrals in $(1)$ can easily be handled with the residue theorem.
$\int_{0}^{\infty}\frac{(\sin x)^2}{x^2}dx=-\int_{0}^{\infty}(\sin x)^2{d\frac{1}{x}}=-\frac{(\sin x)^2}{x}\Bigg|^{\infty}_{0}+\int_{0}^{\infty}\frac{(2\sin x\cos x)}{x}dx=\int_{0}^{\infty}\frac{(\sin2x)}{2x}d2x=\ldots$
-
0OK, I saw it in the older post:http://math.stackexchange.com/questions/5248/solving-the-integral-int-0-infty-frac-sinxx-dx-frac-pi2/8350#8350 – 2012-12-17