2
$\begingroup$

For $r=1$, how to calculate the following integral numerically.

$\frac{8}{\sqrt{3}r^2}\int_{x=0}^{\frac{r}{2}}\int_{y=0}^{\sqrt{3}(\frac{r}{2}-x)}\prod_{i=0}^2\left(1-\frac{2}{\pi} \cos^{-1} (\frac{d_i}{2r}) + \frac{d_i}{2\pi^2 r}\sqrt{4r^2-d_i^2}\right)I_{(0,2r)}(d_i),$ where $d_i$ are the distance between the point $B$ and $A_i$ for $i=0,1,2$ and the coordinates of $B$ and $A_i$'s are $(x,y),~(0,\frac{\sqrt{3}r}{2}),~ (0,-\frac{\sqrt{3}r}{2}),~(0,\frac{3\sqrt{3}r}{2})$ respectively.

$I_{(0,2r)}(d_i)$ is 1 if $d_i \leq 2r$ else $0$.

  • 0
    I can solve the problem. No, it is not from molecular physics.2012-05-24

0 Answers 0