I'am trying to solve $\frac{\mathrm{dy} }{\mathrm{d} x}= e^{2x+3y}$
I use the law of exponent to obtain $\frac{\mathrm{dy} }{\mathrm{d} x}= e^{2x}e^{3y}$
I send the $dx$ to the other side and integrate both sides after seperating the variables.$\int \frac{dy}{e^{3y}} = \int(e^{2x})dx$
I know the right hand side is equal to $\frac{e^{2x}}{2} + c$.How about the left hand side?