I'm currently trying to find this improper integral: $ \int^{\infty}_{-\infty}\frac{1}{\sqrt{x^{2}+1}} dx $
I started off by splitting it into a proper integral, and then into the sum of two integrals: $ = \lim_{a\rightarrow\infty} \int^{a}_{-a}\frac{1}{\sqrt{x^{2}+1}}dx = \lim_{a\rightarrow\infty}(\int^{0}_{-a}\frac{1}{\sqrt{x^{2}+1}}dx + \int^{a}_{0}\frac{1}{\sqrt{x^{2}+1}}dx) $
To calculate the integrals I used the trig. substitution $ x=b\tan\theta $ with $ b=1 $, which would give the differential $ dx=sec^{2}\theta d\theta $. The new limits of integration would then be $ [-\frac{\pi}{2},0] $ and $ [0,\frac{\pi}{2}] $ because as $ x\rightarrow\pm\infty $, $ \theta\rightarrow\pm\frac{\pi}{2} $, so the integrals and limit can be rewritten as: $ = \lim_{a\rightarrow\pi/2}(\int^{0}_{-a}\frac{\sec^{2}\theta}{\sqrt{\tan^{2}\theta+1}}d\theta + \int^{a}_{0}\frac{\sec^{2}\theta}{\sqrt{\tan^{2}\theta+1}}d\theta) $
...which can then simplify to: $ = \lim_{a\rightarrow\pi/2}(\int^{0}_{-a}\frac{\sec^{2}\theta}{\sqrt{\sec^{2}\theta}}d\theta +\int^{a}_{0}\frac{\sec^{2}\theta}{\sqrt{\sec^{2}\theta}}d\theta) = \lim_{a\rightarrow\pi/2}(\int^{0}_{-a}\frac{\sec^{2}\theta}{|\sec\theta|}d\theta+\int^{a}_{0}\frac{\sec^{2}\theta}{|\sec\theta|}d\theta) $
The absolute values on the secants can be removed because on the interval $ [-\frac{\pi}{2},\frac{\pi}{2}] $, the secant function is positive. $ = \lim_{a\rightarrow\pi/2}(\int^{0}_{-a}\frac{\sec^{2}\theta}{\sec\theta}d\theta+\int^{a}_{0}\frac{\sec^{2}\theta}{\sec\theta}d\theta) = \lim_{a\rightarrow\pi/2}(\int^{0}_{-a}\sec\theta d\theta+\int^{a}_{0}\sec\theta d\theta) $
The antiderivative of $ \sec\theta = \ln|\sec\theta+\tan\theta|+C $, so the integrals become: $ = \lim_{a\rightarrow\pi/2}(\ln|\sec\theta+\tan\theta|\bigg|^{0}_{-a} + \ln|\sec\theta+\tan\theta|\bigg|^{a}_{0}) $ $ = \lim_{a\rightarrow\pi/2}((\ln|\sec(0)+\tan(0)|-\ln|\sec(-a)+\tan(-a)|)+(\ln|\sec(a)+tan(a)|-\ln|\sec(0)+tan(0)|)) $
Since $ \sec(0) = 1 $ and $ \tan(0) = 0 $, the value of $ \ln|\sec(0)+tan(0)| = \ln(1) = 0 $. The limit can be rewritten as: $ = \lim_{a\rightarrow\pi/2}((0-\ln|\sec(-a)+\tan(-a)|)+(\ln|\sec(a)+tan(a)|-0)) $ $ = \lim_{a\rightarrow\pi/2}(-\ln|\sec(-a)+\tan(-a)|+\ln|\sec(a)+tan(a)|) $
The tangent function has been shown to be odd, and the secant function even, so $ \sec(-a) = \sec(a) $ and $ \tan(-a) = -\tan(a) $. Therefore, applying and then commuting the addition, we have: $ = \lim_{a\rightarrow\pi/2}(\ln|\sec(a)+tan(a)|-\ln|\sec(a)-\tan(a)|) $
Subtraction of logarithms become division, so $ \ln|\sec(a)+tan(a)|-\ln|\sec(a)-\tan(a)| $ $ = \ln\left|\frac{\sec(a)+\tan(a)}{\sec(a)-\tan(a)}\right| $, which becomes: $ = \lim_{a\rightarrow\pi/2}\left(\ln\left|\frac{\sec(a)+\tan(a)}{\sec(a)-\tan(a)}\right|\right)$
Here's where I'm confused: can you take the natural log of the limit of the fraction (i.e., $ \ln\left|\lim_{a\rightarrow\pi/2}\left(\frac{\sec(a)+\tan(a)}{\sec(a)-\tan(a)}\right)\right| $ ), or does the limit not exist? And, if you can take the natural log of the limit, how would you go about evaluating the limit of the fraction? Since $ \sec(\frac{\pi}{2}) "=" \infty $ and $ \tan(\frac{\pi}{2}) "=" \infty $, would there be some form of L'Hôpital's Rule you'd have to use, since $ \frac{\infty}{\infty-\infty} $ is indeterminate?