This is a qual problem from Princeton's website and I'm wondering if there's an easy way to solve it:
For which $p$ is $3$ a cube root in $\mathbb{Q}_p$?
The case $p=3$ for which $X^3-3$ is not separable modulo $p$ can easily be ruled out by checking that $3$ is not a cube modulo $9$. Is there an approach to this that does not use cubic reciprocity? If not, then I'd appreciate it if someone would show how it's done using cubic reciprocity. I haven't seen good concrete examples of it anywhere.
EDIT: I should have been more explicit here. What I really meant to ask was how would one find all the primes $p\neq 3$ s.t. $x^3\equiv 3\,(\textrm{mod }p)$ has a solution? I know how to work with the quadratic case using quadratic reciprocity, but I'm not sure what should be done in the cubic case.