1
$\begingroup$

How can we compute the sum $ \sin(f_1) + \sin(f_2) $ I know it is $ 2\sin\left(\frac{f_2 + f_1}{2}\right) \cos\left(\frac{f_2 - f_1}{2}\right) $ but how can it be derived with elementary trigonometric identites?

3 Answers 3

2

The sine angle addition rule reads:

$\sin(u\pm v)=\sin(u)\cos(v)\pm\sin(v)\cos(u)$

You can prove your identity by rewriting $f_1=\frac{f_2+f_1}{2}-\frac{f_2-f_1}{2}$ and similarily for $f_2$ and applying the sine addition formula twice.

1

$f_1= \frac{f_1+f_2}{2}+\frac{f_1-f_2}{2}$ $f_2= \frac{f_1+f_2}{2}-\frac{f_1-f_2}{2}$

0

$\sin(f_1) + \sin(f_2)=\sin \cfrac {2f_1}{2}+ \sin\cfrac {2f_2}{2}$