Some time ago I came across one of the integrals, which still goes over my mind:
$\int_{0}^{\infty}\frac{\ln \tan^2(bx)}{a^2+x^2}dx$ a and b are parameters.
I would be interested in possible solutions with complex analysis and without it as well.
Some time ago I came across one of the integrals, which still goes over my mind:
$\int_{0}^{\infty}\frac{\ln \tan^2(bx)}{a^2+x^2}dx$ a and b are parameters.
I would be interested in possible solutions with complex analysis and without it as well.
If one can prove that the given integral converges, it's not hard to compute its value. Let's assume from now that the integral does converge. Since $\tan^2(-bx)=\tan^2(bx)$ and $(-a)^2=a^2$, there is no loss of generality in assuming that $a,b>0$. Then $ I(a,b)=\int_0^\infty\frac{\ln\tan^2(bx)}{a^2+x^2}dx=2b\int_0^\infty\frac{\ln|\tan x|}{a^2b^2+x^2}dx=b\int_\mathbb{R}\frac{\ln|\tan x|}{a^2b^2+x^2}dx. $ Consider the function $ f: \mathbb{C} \to \mathbb{C},\ f(z)=b\frac{\ln|\tan z|}{a^2b^2+z^2}. $
Given $n \in \mathbb{N}$, with $0<1/n
The set of poles of $f$ that lie inside $\Delta_n$, is $P=\{iab, k\pi/2:\ |k|\le 2n\}$.
For every $k$ with $|k|\le 2n$, $z_k=k\pi/2$ is a pole of order 2 with $ \text{Res}(f,z_k)=\lim_{z \to 0}\frac{d}{dz}(z^2f(z+z_k))=0, $ and since $ \text{Res}(f,iab)=\frac{1}{2ia}\ln\tanh(ab), $ we have $ \int_{\Delta_n}f(z)dz=i2\pi\text{Res}(f,iab)=\frac{\pi}{a}\ln\tanh(ab). $ Hence $ \int_{L_n}f(z)dz=\frac{\pi}{a}\ln\tanh(ab)-J_n $ with $ J_n:=\frac{\pi}{a}\ln\tanh(ab)-in\pi\int_0^\pi e^{it}f((n+\frac{1}{8})\pi e^{it}-\frac{i}{n})dt. $ Notice that \begin{eqnarray} |J_n|&\le&(n+\frac{1}{8})\pi\int_0^\pi|f((n+\frac{1}{8})\pi e^{it}-\frac{i}{n})|dt\cr &\le& \frac{(n+\frac{1}{8})\pi}{((n+\frac{1}{8})\pi-\frac{1}{n})^2-a^2b^2}\int_0^\pi|\ln|\tan((n+\frac{1}{8})\pi e^{it}-\frac{i}{n})||dt\cr &=&\frac{(n+\frac{1}{8})\pi}{((n+\frac{1}{8})\pi-1/n)^2-a^2b^2}\int_0^\pi\left|\ln\left|\frac{\exp(i(2n+\frac{1}{4})\pi e^{it}+\frac{2}{n})-1}{\exp(i(2n+\frac{1}{4})\pi e^{it}+\frac{2}{n})+1}\right|\right|dt\cr &\le&\frac{(n+\frac{1}{8})\pi}{((n+\frac{1}{8})\pi-\frac{1}{n})^2-a^2b^2}A_n, \end{eqnarray} with $ A_n=\int_0^\pi |\ln|e^{i(2n+\frac{1}{4})\pi\cos t}e^{\frac{2}{n}-(2n+\frac{1}{4})\pi\sin t}-1|+|\ln|e^{i(2n+\frac{1}{4})\pi\cos t}e^{-(2n+\frac{1}{4})\pi\sin t+\frac{2}{n}}+1||dt. $ $A_n$ is clearly bounded, so we conclude that $J_n \to 0$ as $n \to \infty$, and $ I(a,b)=\lim_{n \to \infty}\int_{L_n}f(z)dz=\frac{\pi}{a}\ln\tanh(ab). $