Suppose $T$ is an everywhere defined linear map from a Hilbert space $\mathcal{H}$ to itself. Suppose $T$ is also symmetric so that $\langle Tx,y\rangle=\langle x,Ty\rangle$ for all $x,y\in\mathcal{H}$. Prove that $T$ is a bounded directly from the uniform boundedness principle and not the closed graph theorem.
This is problem III.13 in the Reed-Simon volume 1. Hints are welcome.