Every lower semi-continuous functions attains an infimum/minimum on a compact set, do you know examples of lower semi-continuous functions which are unbounded and/or don't attain their maximum/supremum?
Lower semi-continuous function which is unbounded on compact set.
2
$\begingroup$
general-topology
analysis
functional-analysis
-
0maybe in the first line you mean infimum/minimum instead of infimum/maximum? – 2012-10-19
3 Answers
4
On the interval $[0,1]$, let $ f(t)=\begin{cases} 0&\mbox{ if } t=0\\ \\\ \frac1t&\mbox{ if }t>0\end{cases} $
4
Consider $ f(x)=\left\{\begin{array}{}\frac1x&\text{when }x>0\\[6pt]0&\text{when }x\le0\end{array}\right. $ on $[-1,1]$.
4
Just take $f\colon [0,1]\to\mathbb{R}$ given by $ f(x)=\begin{cases}1/x&x\in(0,1],\\0&x=0.\end{cases} $