1
$\begingroup$

How to prove?

Let $a_{ij} \in C^{0, \alpha}(B_1 \cap \mathbb{R}^{n}_{+}), b_{ij} \in C^{0,\alpha}(B_1 \cap \mathbb{R}^{n}_{-})$ elliptic matrices and $ A_{ij}(x) = a_{ij}(x)\chi_{\{ x_n \ge 0 \}} + b_{ij}(x) \chi_{\{x_n \le 0\}}.$ Show that if $ \mathbb{div}(A_{ij }(x)\nabla u) = 0 \quad \mbox{in} \quad B_1 $ then $u \in \mathrm{Lip}(B_{1/2})$.

Thank you.

  • 0
    Oh, now there is an edit adding "How to prove?" at the beginning and "Thank you" at the end. Nope, not any better than it was. Voting to close.2014-08-12

0 Answers 0