Possible Duplicate:
How to prove that $\lim\limits_{n \to \infty} \frac{k^n}{n!} = 0$
As the topics, how to prove $\lim\limits_{n\rightarrow \infty} \dfrac{a^n}{n!}=0$
$\forall a \in \mathbb{R^+}$
Possible Duplicate:
How to prove that $\lim\limits_{n \to \infty} \frac{k^n}{n!} = 0$
As the topics, how to prove $\lim\limits_{n\rightarrow \infty} \dfrac{a^n}{n!}=0$
$\forall a \in \mathbb{R^+}$
I don't know if you're allowed to use this but you could argue as follows:
$ \lim_{N \to \infty} \sum_{n=0}^N \frac{a^n}{n!} = e^a < \infty$
hence $\frac{a^n}{n!} \to 0$.
If $n>2|a|$, then every time you increment $n$ by $1$, you're making the value of the fraction less than half what it was. If you cut something down to less than half its previous size at each step, then its size approaches $0$.
Let's suppose $a$ is... I don't know, $5$ for a moment. And let's look at the sequence.
$\dfrac{5}{1}, \dfrac{5^2}{2\cdot 1}, \dfrac{5^3}{3\cdot 2}, \dfrac{5^4}{4 \cdot 3 \cdot 2}, \dfrac{(5) \cdot 5^4}{(5) \cdot 4 \cdot 3 \cdot 2}, \dfrac{(5^2) \cdot 5^4}{(6 \cdot 5) \cdot 4!}, \dfrac{(5^3) \cdot 5^4}{(7 \cdot 6 \cdot 5) 4!}, \ldots$
So in particular, after $n = 5$, we have a constant multiplied by something bounded by $\left(\frac{5}{6}\right)^n$, and thus it goes to 0.
Hint: for large $n$, use stirling approximation for factorial.
Hint : You can show that : $c_n = \frac{a^n}{n!}$ and compute : $\frac{c_{n-1}}{c_n} = \frac{n}{a} \rightarrow \infty$ and conclude.
$n! > (n/2)^{n/2}$ so $a^n/n! < a^n/(n/2)^{n/2} = (a^2)^{n/2}/(n/2)^{n/2} = (2a^2/n)^{n/2} < (1/2)^{n/2}$ for $n > 4a^2$.
Let $k$ be an integer so that $k>a$. You can take for example $k= \lfloor a \rfloor +1$.
Let $C=\frac{a^k}{k!}$, which is a constant.
Claim: for $n \geq k+1$ we have
$0 \leq \frac{a^n}{n!} \leq \frac{aC}{n} $
The left inequality is clear, while the RHS is
$\frac{a^n}{n!} = \frac{a^k}{k!}\frac{a}{k+1}\frac{a}{k+1}...\frac{a}{n} \leq C \cdot 1 \cdot 1 ... \cdot 1 \cdot \frac{a}{n} \,.$
Now Squeeze and you are done. Or if you know how to deal with $\epsilon$, pick an $N_\epsilon > \frac{aC}{\epsilon}$