suppose $(X_1,X_2)\sim\mathcal{N}(0,0,1,1,\rho)$. find distribution $\mathbb{Y}=(X_1^2-2\rho X_1X_2+X_2^2)$
A problem of bivariate normal distribution
-2
$\begingroup$
probability-distributions
1 Answers
2
HINT: Note that $Y = (X_1 - \rho X_2)^2 + (1-\rho^2) X_2^2$. Find the joint distribution of $(X_1 - \rho X_2, \sqrt{1-\rho^2} X_2)$.