1
$\begingroup$

Let $\mathcal{H}$ be a Hilbert space and let $\mathcal{K}$ be a Hilbert space with an orthonormal basis $\{ e_i \}_{i \in I}$. Let $A$ be bounded linear operator from $\mathcal{H} \otimes \mathcal{K}$ to $\mathcal{H} \otimes \mathcal{K}$. How to show that $\| A \|^2 \leq \sum_{i,j} \|(I_{\mathcal{H}} \otimes \left< e_i \right| ) A (I_{\mathcal{H}} \otimes \left| e_j \right>)\|^2,$

where $\left< \cdot \right|$ and $\left| \cdot \right>$ are Dirac "bra" and "ket"?

Is it true that if $A$ is a bounded linear operator on a Hilbert space $\mathcal{H}$ then $\|A\| = \sup_{N}\|P_{N}A\|?$ The operator $P$ is a projection onto $N \subseteq \mathcal{H}$ and the supremum is taken over all finite-dimensional subspaces of $\mathcal{H}$.

Thank you for the help.

  • 0
    Above $x \in \mathcal{H}$ of course. Further we get $$\|A_{\mathcal{H}}x\|^2 \sum_{i \geq 1} \sum_{j \geq 1} |\left |^2= \|A_{\mathcal{H}}\|^2 \sum_{i \geq 1} \| A_{\mathcal{K}}e_j\|^2 $$ so by continuity of $A$ and triangle inequality if we start from the left hand side i.e. $\|Ah\|^2, h = x \otimes y$, $y = \sum_{i \geq 0} \lambda_ie_i$ we got the inequality. Can we use some density arguments of the simple tensors in this case to justify the above reasoning?2012-11-29

1 Answers 1

1

This is answer only to the second (simpler) part of your question.

Let $N\subset H$ be closed subspace, then $\Vert P_N\Vert\leq 1$ and $\Vert P_N A\Vert\leq \Vert P_N\Vert\Vert A\Vert=\Vert A\Vert$. Since $N$ is arbitrary we have $ \sup\limits_{N\subset H}\Vert P_N A\Vert\leq\Vert A\Vert\tag{1} $ Fix $\varepsilon>0$, then there exist $x\in H$ wth $\Vert x\Vert=1$, such that $\Vert Ax\Vert>\Vert A\Vert-\varepsilon$. Consider closed one-dimensional subspace $N_1=\mathrm{span}\{Ax\}$, then $ \sup\limits_{N\subset H}\Vert P_N A\Vert\geq\Vert P_{N_1} A\Vert=\Vert P_{N_1} A\Vert\Vert x\Vert\geq\Vert P_{N_1} Ax\Vert=\Vert Ax\Vert>\Vert A\Vert-\varepsilon $ Since $\varepsilon>0$ is arbitrary we have $ \sup\limits_{N\subset H}\Vert P_N A\Vert\geq\Vert A\Vert\tag{2} $ From $(1)$ and $(2)$ we get the desired equality.