12
$\begingroup$

I want to show that $ \int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx = \frac{\sin a}{\cos a + \cosh b} \, , \quad -\pi < a < \pi . $

I tried integrating $f \displaystyle (z) = e^{ibz} \, \frac{\sinh az}{\sinh \pi z} $ around an indented rectangular contour with vertices at $\pm R, \pm R+ i$.

I ended up with the equation $ (1+ e^{-b} \cos a) \int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx - e^{-b}\sin a \int_{-\infty}^{\infty} \frac{\cosh ax}{\sinh \pi x} \, \sin bx \ dx = e^{-b} \sin a . $

But I don't see how to extract the value of the integral from this equation.

Did I integrate the wrong function?

  • 0
    $(-1)^n e^{-n\pi\omega}\sin(\pi \kappa n)$ is the imaginary part of $\exp(-n\pi \omega + i \pi \kappa n + i\pi n) = e^{-n\pi (\omega +i (\kappa + 1))}$, which is a geometric series.2012-03-24

2 Answers 2

7

I have a simple way to calculate your old question. Note $ \frac{\sinh(ax)}{\sinh(\pi x)} \cos(bx) = \frac{\sinh(ax)}{\sinh(\pi x)}\cosh(ibx)=\frac{\sinh((a+bi)x)+\sinh((a-bi)x)}{\sinh(\pi x)} $ and $ \int_0^\infty\frac{\sinh(ax)}{\sinh(bx)}dx=\frac{\pi}{2b}\tan\frac{a\pi}{2b}. $ So \begin{eqnarray} I&=&\int_0^\infty\frac{\sinh(ax)}{\sinh(\pi x)} \cos(bx)dx\\ &=&\int_0^\infty\frac{\sinh((a+bi)x)+\sin((a-bi)x)}{\sinh(\pi x)}dx\\ &=&\frac{1}{2}\tan\frac{a+bi}{2}+\frac{1}{2}\tan\frac{a-bi}{2}\\ &=&\frac{\sin a}{\cos a + \cosh b}. \end{eqnarray}

8

I indeed integrated the wrong function.

Integrating $ \displaystyle f(z) = \frac{e^{(a+ib)z}}{\sinh \pi z}$ around the same contour, we get

$ \begin{align} \text{PV} \int_{-\infty}^{\infty} f(x) \, dx + e^{-b}e^{ia} \ \text{PV}\int_{-\infty}^{\infty} f(x) \ dx &= \pi i \, \text{Res}[f(z),0] + \pi i \ \text{Res}[f(z),i]\\ &= i \, \left(1-e^{-b}e^{ia} \right) . \end{align} $

Therefore,

$ \text{PV} \int_{-\infty}^{\infty} f(x) \ dx = i \, \frac{1-e^{-b} e^{ia}}{1+e^{-b}e^{ia}} = \frac{\sin a}{\cos a + \cosh b} + i \, \frac{\sinh b}{\cos a + \cosh b} .$

But notice that $ \begin{align} \text{PV} \int_{-\infty}^{\infty} f(x) \, dx &= \text{PV} \int_{-\infty}^{\infty} \frac{\cosh ax}{\sinh \pi x} \, \cos bx \, dx + i \int_{-\infty}^{\infty} \frac{\cosh ax}{\sinh \pi x} \, \sin bx \, dx + \int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx \\ &+ i \int_{-\infty}^{\infty} \frac{\sinh ax}{ \sinh \pi x} \, \sin bx \, dx \\ &= 0 + i \int_{-\infty}^{\infty} \frac{\cosh ax}{\sinh \pi x} \, \sin bx \, dx + \int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx + 0 \\ &= \int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx + i \int_{-\infty}^{\infty} \frac{\cosh ax}{\sinh \pi x} \, \sin bx \, dx . \end{align}$

Equating the real parts on both sides of the equation, we get $ \int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \,\cos bx \, dx= \frac{\sin a}{\cos a + \cosh b}.$

And equating the imaginary parts on both sides of the equation, we get $ \int_{-\infty}^{\infty} \frac{\cosh ax}{\sinh \pi x} \, \sin bx \, dx = \frac{\sinh b}{\cos a + \cosh b}.$