2
$\begingroup$

Let $P_1=(a,y_a),P_2=(b,y_b), y\in C^1 (a,b), y_a>0,y_b>0$

And the area integral: $\int^b_a y(x) \sqrt{1+y'(x)}dx$

From the Euler differential-equation we obtain:

$y'=1/\alpha \sqrt{y^2-\alpha^2}, \quad \alpha\in \mathbb R_0$

Now the Author Book (Hans Sagan,Introduction to the calculus of Variations) concludes "Separation of Variables and substitution of $y=\alpha \cosh(t)$ yield

$\alpha t+\beta =x$ and hence,

$y=\alpha \left(\cosh\left(\frac{(x-\beta)}{\alpha}\right)\right)$

I can't reproduce this results, maybe you can see where i do go wrong:

$y'=1/\alpha \sqrt{y^2-\alpha^2}, \quad \alpha\in \mathbb R_0$

I do separate the variables:

$\int \frac{dy}{\sqrt{y^2-1}}=\int dx$

$\Longleftrightarrow \operatorname{arccosh}(y/\alpha)+\beta=x$, $\beta\in \mathbb R$ now theres obviously an $\alpha$ missing

but lets just go on and substitute like he does:" $y=\alpha \cosh(t)$"

$\Longleftrightarrow \mbox{arccosh}(\alpha \cosh(t/\alpha )\alpha)+\beta=\mbox{arccosh}(t)+\beta=x$

$\Longleftrightarrow t=\cosh(x-\beta)$ Which is wrong.

Also shouldn't he calculate the solution with the help of the limits a,b of the integral? I guess he just uses $\alpha$ and $\beta$ , because thats more convient for him in this case.

1 Answers 1

2

Tiny mistakes. First of all, separation of variables should read $ \alpha \int \frac{dy}{\sqrt{y^2-\alpha^2}} = \int dx $ Taking $y = \alpha \cosh (t)$, then $dy = \alpha \sinh (t) \, dt$ and the integral becomes $ \alpha\int \frac{dy}{\sqrt{y^2-\alpha^2}} = \alpha \int dt = \alpha t + \beta = \alpha \,\mbox{arccosh} \big(\frac{y}{\alpha}\big) + \beta, $ hence $ \alpha\,\mbox{arccosh}\big(\frac{y}{\alpha}\big) + \beta = x \Longleftrightarrow \mbox{arccosh}\big(\frac{y}{\alpha}\big) = \frac{x-\beta}{\alpha} $ Finally $ y = \alpha \cosh\left(\frac{x-\beta}{\alpha}\right). $

About the limits, I guess you are right. It might be more convenient to do it this way.