1
$\begingroup$

$ f(x) = \begin{cases} \frac{1-\cos(5x)}{x^2} & x > 0 \\ \\ \frac{e^x + 2x -2}{x} & x < 0 \end{cases} $

Find the limits for $x\rightarrow 0^-$ and for $x\rightarrow 0^+$.

Thanks in advance for any help!

  • 0
    Do you know what it means $x\rightarrow 0^-$ and $x\rightarrow 0^{+}$?2012-12-22

1 Answers 1

1

Hints: $\lim_{x\to 0^+}\frac{1-\cos 5x}{x^2}=\lim_{u\to 0^+}\frac{1-\cos u}{(\frac u 5)^2}$ while $\lim_{x\to 0^-}\frac{e^x+2x-2}{x}$ is not indeterminate.