3
$\begingroup$

How to solve this differential equation:

$x\frac{dy}{dx} = y + x\frac{e^x}{e^y}?$

I tried to rearrange the equation to the form $f\left(\frac{y}{x}\right)$ but I couldn't thus I couldn't use $v = \frac{y}{x}$ to solve it.

  • 0
    The substitution $u = e^y$ leads to $\frac{du}{dx} = \frac{dy}{dx}e^y = \frac yx e^y + e^x = \frac ux \log u + e^x.$ May be this could lead somewhere.2012-10-07

2 Answers 2

2

$x\dfrac{dy}{dx}=y+x\dfrac{e^x}{e^y}$

$x\dfrac{dy}{dx}=y+xe^{x-y}$

Let $u=y-x$ ,

Then $y=u+x$

$\dfrac{dy}{dx}=\dfrac{du}{dx}+1$

$\therefore x\left(\dfrac{du}{dx}+1\right)=u+x+xe^{-u}$

$x\dfrac{du}{dx}+x=u+x+xe^{-u}$

$x\dfrac{du}{dx}=xe^{-u}+u$

$(xe^{-u}+u)\dfrac{dx}{du}=x$

Let $v=x+ue^u$ ,

Then $x=v-ue^u$

$\dfrac{dx}{du}=\dfrac{dv}{du}-(u+1)e^u$

$\therefore e^{-u}v\left(\dfrac{dv}{du}-(u+1)e^u\right)=v-ue^u$

$e^{-u}v\dfrac{dv}{du}-(u+1)v=v-ue^u$

$e^{-u}v\dfrac{dv}{du}=(u+2)v-ue^u$

$v\dfrac{dv}{du}=(u+2)e^uv-ue^{2u}$

This belongs to an Abel equation of the second kind.

Let $t=(u+1)e^u$ ,

Then $u=W(et)-1$

$\dfrac{dv}{du}=\dfrac{dv}{dt}\dfrac{dt}{du}=(u+2)e^u\dfrac{dv}{dt}$

$\therefore(u+2)e^uv\dfrac{dv}{dt}=(u+2)e^uv-ue^{2u}$

$v\dfrac{dv}{dt}=v-\dfrac{ue^u}{u+2}$

$v\dfrac{dv}{dt}-v=-\dfrac{t(W(et)-1)}{W(et)(W(et)+1)}$

This belongs to an Abel equation of the second kind in the canonical form.

Please follow the method in https://arxiv.org/ftp/arxiv/papers/1503/1503.05929.pdf

1

Rewrite this equation in the form:

\begin{equation} M(x,y)dx + N(x,y)dy = (xe^x+ye^y)dx-xe^ydy = 0 \end{equation}

Both $\frac{\partial M}{\partial y} = e^y(1+y)$ and $\frac{\partial N}{\partial x}=-e^y$ are depend on $y$ only. In this case some multiplier $\mu(x,y)$ can be simply found so that

\begin{equation} \dfrac{\partial (\mu M)}{\partial y} = 0,\quad \dfrac{\partial (\mu N)}{\partial x}=0 \end{equation}

and you get exact differential equation in form $du(x,y)=0$.

For $\mu$ depending only on $y$ we have $d\ln\mu=\dfrac{dy}{M}\left(\dfrac{\partial N}{\partial x}-\dfrac{\partial M}{\partial y}\right)$. In our case:

\begin{equation} \mu(y) = \exp\left(-\int\dfrac{e^y(y+2)}{xe^x+ye^y}dy\right) \end{equation} Solution of our DE is: \begin{equation} \int \mu M dx + \int \mu N dy = C \end{equation}

I do not substitute $\mu$ in the last equation because $\mu$ as I see cannot be expressed in elementary functions and complete solution will be cumbersome.