2
$\begingroup$

I have this integral $\int\frac{dz}{\sqrt{(z^{2}-\rho^{2})(\lambda^{2} - z^{2})}}$ and parameters obey the following conditions

$z= \exp[k\varphi],$ $\lambda^{2} = \frac{b + \sqrt{b^{2} - 4ac}}{-2a} > 0,$ $\rho^{2} = \frac{b- \sqrt{b^{2} - 4ac}}{-2a} > 0,$ $ \rho^{2} < \lambda^{2}$, $\rho \leq z \leq \lambda$, $a <0$, $c<0$, $b>0$.

I have tried to evaluate the integral using the elliptic integral of the first kind, the obtained result is complex.

Is there a way to find an analytical (real-value) solution to the integral?

1 Answers 1

2

You can in fact bring it to the elliptic integral of the first kind (without complex numbers) $F(\phi,k)=\int_0^{\sin\phi} \frac{dt}{\sqrt{(1-t^2)(1-k^2 t^2)}}.\qquad(1)$

Starting with ($0<\rho< z<\lambda$) $I=\int\frac{dz}{\sqrt{(z^{2}-\rho^{2})(\lambda^{2} - z^{2})}}$ You proceed via a Möbius transformation $z = \sqrt{\lambda \rho}(x - 1)/(x + 1)$. The integral then reads $I=\int \frac{2 \sqrt{\lambda \rho} \,dx}{\sqrt{(A_- -A_+ x^2)(A_+-A_-x^2)}}$ where $A_+=(\lambda+\sqrt{\lambda \rho})(\rho+\sqrt{\lambda \rho})$ and $A_- =(\lambda-\sqrt{\lambda \rho})(\sqrt{\lambda \rho}-\rho)$.

Making the substitution $x=t \sqrt{A_-/A_+}$ brings the integral finally in the desired form: $I=\int\frac{2\sqrt{\lambda\rho}\, dt}{A_+\sqrt{(1-t^2)(1-k^2 t^2)} }$ with $k=A_-/A_+<1$.

Using the definition (1), we obtain $I=\frac{2\sqrt{\lambda \rho}}{A_+}F(\arcsin t,k)$ with $t=\sqrt{\frac{A_+}{A_-}}\frac{z-\sqrt{\lambda\rho}}{z+\sqrt{\lambda\rho}}$

More information can be found here.

  • 0
    @Anastasia: Any appropriate Möbius substitution should do the job. IIRC Byrd and Friedman ta$k$e the route given by Fabian, but they mention that your route is also suitable.2012-02-08