Let $i:T^{2}\rightarrow S^{1}\times S^{2}$ be an embedding map and $i_{*}:\pi(T^{2})\rightarrow\pi(S^{1}\times S^{2})$ be the homomorphism induced by $i$. If $i(T^{2})$ is separable in $S^{1}\times S^{2}$ and $\operatorname{Im}{ i_{*}}=0$, how can I prove that $S^{1}\times S^{2}-i(T^{2})\cong K^{c}\cup S^{1}\times D^{2}\sharp S^{1}\times D^{2}$ or $S^{1}\times S^{2}-i(T^{2})\cong S^{1}\times D^{2}\cup S^{1}\times D^{2}\sharp K^{c}$ Here $S^{1}\times D^{2}$ is an open torus and $K^{c}$ is a knot complement in $S^{3}$. Someone can me recommendation some book or article about these type of identification.
Embedding of $T^{2}$ in $S^{1}\times S^{2}$.
2
$\begingroup$
algebraic-topology
differential-topology
knot-theory
-
0Did you try Dehn surgery? – 2012-09-04