2
$\begingroup$

Would the Smith Normal Form of the following matrix over $\mathbb Q[x]$

\begin{pmatrix}   (x+a)(x+b) & 0 & 0 &0 \\  0 & (x+c)(x+d) & 0 & 0 \\   0  &0 & x^3(x+a) & 0  \\   0 & 0 & 0& x^2(x+b)  \end{pmatrix}

 simply be

\begin{pmatrix}   f(x) & 0 & 0 &0 \\  0 & f(x) & 0 & 0 \\   0  &0 & f(x) & 0  \\   0 & 0 & 0& f(x)  \end{pmatrix}

where $f(x)= x^3(x+a)(x+b)(x+c)(x+d)$?

I am not sure because that would make the question quite trivial.

  • 0
    Typically Gaussian elimination is used for finding SNF [Wikipedia page on SNF](http://en.wikipedia.org/wiki/Smith_normal_form) is a good pointer.2012-03-15

1 Answers 1

2

No.

Let $s_k$ denote the $k$th entry on the diagonal of Smith form (i.e., the $k$th invariant factor). Then $s_k = \frac{d_k}{d_{k-1}},$ where $d_k = \gcd$ of all $k \times k$ minors of the original matrix (aka $k$th determinantal divisor). I'm assuming $a,b,c,d$ are distinct here. So the Smith form is: $ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\\ 0 & 0 & x^2(x+a)(x+b) & 0\\ 0 & 0 & 0 & x^3(x+a)(x+b)(x+c)(x+d) \end{pmatrix} $

  • 0
    Note above, $d_0 = 1.$2012-03-15