How would I verify the following double angle identity. $ \sin(A+B)\sin(A-B)=\sin^2A-\sin^2B $ So far I have done this. $ (\sin A\cos B+\cos A\sin B)(\sin A\cos B-\cos A\sin B) $But I am not sure how to proceed.
Prove $ \sin(A+B)\sin(A-B)=\sin^2A-\sin^2B $
5 Answers
\begin{eqnarray} \sin(A+B)\sin(A-B) &=& (\sin A\cos B+\cos A\sin B)(\sin A\cos B-\cos A\sin B)\\\\ &=& \sin^2 A \cos^2 B -\sin^2 B \cos^2 A\\\\ &=& \sin^2 A \cos^2 B -\sin^2 B (1-\sin^2 A)\\\\ &=& \sin^2 A (\cos^2 B + \sin^2 B) - \sin^2 B\\\\ &=& \sin^2 A - \sin^2 B \end{eqnarray}
-
0$\sin^2 A \cos^2 B -\sin^2 B \cos^2 A=\sin^2 A(1- \sin^2 B) -\sin^2 B (1-\sin^2 A)=?$ – 2015-08-28
$ \begin{align*}\sin (A+B)\cdot\sin (A-B)&=\frac{\cos(2B)-\cos (2A)}{2}\\&=\frac{(1-2\sin^2B)-(1-2\sin^2A)}{2}\\&=\sin^2A-\sin^2B\end{align*}$
Here i have used $\sin x\cdot\sin y=\frac{\cos(x-y)-\cos(x+y)}{2}$
Hint: $(a+b)(a-b)=a^2-b^2$.
Then use $\sin^2\theta+\cos^2\theta=1$
-
0Oh I see thanks. – 2012-07-25
Use this formula:
$2 \sin(A+B)\sin(A-B)=\cos2B-\cos2A$
It will be like this:
$\dfrac12 \cdot (\cos2B-\cos2A)$ $=\dfrac {(1-2\sin^2B)-(1-2\sin^2A)}{2}$
It will give the answer if you simplify.
Your question involves the basic algebra identity which says, $(a + b)(a - b) = a^2 - b^2 $. For targeting your question, it is easy to assume $ a = \sin A\cos B $ and $b = \cos A \sin B$. The process becomes easy now.
$\begin{align}(a + b)(a - b)& =& a^2 - b^2\\ & = & (\sin A \cos B)^2 - (\cos A \sin B)^2\\ & = & \sin^2A\cos^2 B - \cos^2A\sin^2B \\ & = & \sin^2A(1 - \sin^2 B) - \cos^2 A\sin^2B \end{align} $Proceed.