all. I am trying integrate this equation(gamma density). $\int\limits_0^\infty \frac{1}{\sqrt{\left| x-1 \right|}}\exp \left( -\left| 1-x \right| \right) \;dx$
What I have done is split it into 2 cases, but stuck on integrating with square root.
$f(x)= \begin{cases} \int\limits_{0}^{1}{\frac{1}{\sqrt{1-x}}\exp \left( -(1-x) \right)}\;dx & x<1 \\ \int\limits_{1}^{\infty }{\frac{1}{\sqrt{x-1}}\exp \left( -(x-1) \right)}\;dx & x>1 \\ \end{cases}$
How do I integrate each one? Thanks!