0
$\begingroup$

Say $(X_i)$ is a sequence of $n$ $i.i.d$ Bernoulli random variables, each with parameter $p_i$. Define the following for all real $a_i>0$, $ S_{n} =\frac{1}{n} \sum _{i=1}^{n}a_iX_i $ EDIT: In the special case of $a_i=1$, we may use probability generating functions to arrive at the probability mass function of $S_n$,

$P_{S_{n} } (k)=\frac{1}{(nk)!} \frac{d^{(nk)} }{dx}\prod_{i=1}^{n} \left(1-p_i+p_i\cdot x \right) \; \left|\; x=0\right.$

for $k=0,1/n,2/n,...,1$. Is there any other way to get an expression for the probability mass function of $S_n$ that will be defined for all real $a_i>0$?

  • 0
    You provided a good lead, thanks, but maybe someone could provide the solution.2012-08-02

1 Answers 1

1

Hint: Use the fact that, for every integer valued random variable $S$ and every integer $x$, $ \mathrm P(S=x)=\int_0^{1}\mathrm E(\mathrm e^{2\pi\mathrm itS})\cdot\mathrm e^{-2\pi\mathrm itx}\,\mathrm dt, $ and the fact that, in the present case, $ \mathrm E(\mathrm e^{2\pi\mathrm itS_n})=\prod_{k=1}^n(1-p_k+p_k\mathrm e^{2\pi\mathrm ita_k/n}). $ Edit: The second identity above is a consequence of the definition of $\mathrm E(\mathrm e^{2\pi\mathrm itS_n})$ and of the joint distribution of the random variables $(X_k)_{1\leqslant k\leqslant n}$.

The first identity is an application of the general principle that integrating a discrete sum of complex exponentials against the conjugate of a complex exponential extracts the coefficient of the corresponding exponential from the sum. Namely, for every integers $x$ and $y$, $ \int_0^{1}\mathrm e^{2\pi\mathrm ity}\cdot\mathrm e^{-2\pi\mathrm itx}\,\mathrm dt=[x=y], $ hence, for every distinct integers $x_k$ and every coefficients $p_k$, $ p_\ell=\int_0^{1}\left(\sum_kp_k\mathrm e^{2\pi\mathrm itx_k}\right)\cdot\mathrm e^{-2\pi\mathrm itx_\ell}\,\mathrm dt. $ Applying this to the integer valued random variable $S$ such that $p_k=\mathrm P(S=x_k)$ yields the first formula above.

When $S$ is not integer valued, use the fact that, for every real numbers $x$ and $y$, $ \lim_{N\to\infty}\int_0^1\mathrm e^{N\mathrm ity}\cdot\mathrm e^{-N\mathrm itx}\,\mathrm dt=[x=y], $ hence, for every discrete random variable $S$, $ \mathrm P(S=x)=\lim_{N\to\infty}\int_0^1\mathrm E(\mathrm e^{N\mathrm itS})\cdot\mathrm e^{-N\mathrm itx}\,\mathrm dt. $

  • 0
    OK... $ $ $ $ $ $2012-08-09