4
$\begingroup$

Q. Prove

$\frac{(5^{x-1}+5^{x+1})^2}{25^{x-1}+25^{x+1}}=\frac{338}{313}$

My try: expand and got:

$\frac{5^{2x-2}+2(5^{x^2-1})+5^{2x+2}}{5^{2x-2}+5^{2x+2}}$

Now what? I find my pre-calculus skills esp with Indices, Logarithms & Trigo lacking ... need to know how to apply the formulas more

  • 0
    @MartinSleziak, ah I am always confused about the +-*/ stuff ...2012-01-25

3 Answers 3

1

To find $x$ from

$\displaystyle\frac{5^{2x-2}+2(5^{2x})+5^{2x+2}}{5^{2x-2}+5^{2x+2}}=\frac{338}{313}$

i.e.

$\displaystyle 1+\frac{2\times 5^{2x}}{5^{2x-2}+5^{2x+2}}=1+\frac{25}{313}$

i.e.

$\displaystyle\frac{2\times 5^{2x}}{5^{2x-2}+5^{2x+2}}=\frac{25}{313}$

i.e. $\displaystyle\frac{2}{5^{-2}+5^2}=\frac{25}{313}$, an identity. So the above equation is valid for all $x\epsilon \mathbb{R}$.

5

Factor as: $\frac{(5^{x-1}+5^{x+1})^2}{25^{x-1}+25^{x+1}}=\frac{(5^{x-1})^2(1+5^2)^2}{(5^{x-1})^2(1+25^2)}$

Then simplify.

  • 2
    everything i squared in the numerator. remember that $(ab+ac)^2=a^2(b+c)^2$.2012-01-25
4

Let $u=5^x$. Then $u^2=25^x$ and $ \frac{(5^{x-1}+5^{x+1})^2}{25^{x-1}+25^{x+1}}=\frac{(u/5+5u)^2}{u^2/25+25u^2}=\frac{u^2(1/5+5)^2}{u^2(1/25+25)}=\frac{(1/5+5)^2}{(1/25+25)}=\frac{338}{313} $

  • 0
    @jiewmeng, the denominator in the last line but one should be $u+5^4u$.2012-01-25