I have a math problem in front of me, and after struggling three days with it, I cannot find the solution. I need to find the roots of this polynomial equation: $x^3+x^2+1=0$.
Anyone have a solution to this?
Any help is appreciated..
I have a math problem in front of me, and after struggling three days with it, I cannot find the solution. I need to find the roots of this polynomial equation: $x^3+x^2+1=0$.
Anyone have a solution to this?
Any help is appreciated..
Solved the equation using Tartaglia's method $ x^3 + x^2 + 1$ Make then substitution $ x = t + h $ $ t^3 + 3t^2h+3th^2 + h^3 + t^2 +2th+h^2 + 1 = 0$ $ t^3 + t^2(3h+1)+t(3h^2+2h) + (h^3 + h^2 + 1) = 0$
In order to eliminate the second degree term we add a condition $ h = -\frac{1}{3}$
$ t^3 -\frac{1}{3}t + \frac{29}{27} $
We make $t = u+v$
$ u^3 + 3u^2 v + 3uv^2 + v^3 -\frac{1}{3}u - \frac{1}{3}v + \frac{29}{27}=0$ $ u^3 + v^3 + \frac{29}{27} + 3u^2 v -\frac{1}{3}u + 3uv^2 - \frac{1}{3}v =0$ $ u^3 + v^3 + \frac{29}{27} + u\left(3u v -\frac{1}{3}\right) + v\left(3uv - \frac{1}{3}\right) =0$ $ u^3 + v^3 + \frac{29}{27} + (u+v)\left(3u v -\frac{1}{3}\right) =0$
We make a system of equation $u^3 + v^3 + \frac{29}{27} = 0; (u+v)\left(3u v -\frac{1}{3}\right) =0$
For (2) we have: $ u \ne v $ because does not satisfy (1), then $u = \frac{1}{9v} \rightarrow u^3 = \frac{1}{729v^3}$
For (1) we have: $u^3 + v^3 + \frac{29}{27} = 0$ $\frac{1}{729v^3} + v^3 + \frac{29}{27} = 0$ $\left(v^3\right)^2 + \frac{29v^3}{27} + \frac{1}{729} = 0$
Using general quadratic formula:
$ v^3 = \frac{-\frac{29}{27} \pm \sqrt{\left(\frac{29}{27} \right)^2 - 4\frac{1}{729} }}{2}$ $ v^3 = -\frac{29}{54} \pm \frac{1}{2}\sqrt\frac{31}{27} $
We hope $u^3$ to be the conjugate of $v^3$ because they are interchangeable. (Try solving $v^3$ to prove it).
So, $u+v= \sqrt[3]{-\frac{29}{54} + \frac{1}{2}\sqrt\frac{31}{27}} + \sqrt[3]{-\frac{29}{54} - \frac{1}{2}\sqrt\frac{31}{27}}$
So, we can now have the value of $x$: $ x = t + h = u + v + h = \sqrt[3]{-\frac{29}{54} + \frac{1}{2}\sqrt\frac{31}{27}} + \sqrt[3]{-\frac{29}{54} - \frac{1}{2}\sqrt\frac{31}{27}} - \frac{1}{3}$
$ x \approx -1.46557 $
Good luck finding the exact complex solutions ._.