1
$\begingroup$

I've made proof by induction over $n$ for triangle inequality : $\left \| x+y \right \|_{e}\leq \left \| x \right \|_{e}+\left \| y \right \|_{e}$ ,where $\left \| x \right \|_{e}=\sqrt{\sum_{i=1}^{n}x_{i}^{2}}$ for $x\in \mathbb{R}^{n}$. Is that proof also valid for triangle inequality for $\left \| x \right \|=\sqrt{\sum_{i=1}^{\infty}x_{i}^{2}}$ where $x\in \ell^2, \ell^2=\left\{{x\in\mathbb{R}^{\infty}}:\left \|x\right\|^{2}<\infty\right\}$ ? Maybe I should write down that proof, but I don't believe that induction proof could be also valid in case of infinite spaces.

$\left \| x+y \right \|_{e}\leq \left \| x \right \|_{e}+\left \| y \right \|_{e}$

$\sum_{i=1}^{n}(x_{i}+y_{i})^{2}\leq \sum_{i=1}^{n}(x_{i})^{2}+\sum_{i=1}^{n}(y_{i})^{2}+2\sqrt{\sum_{i=1}^{n}(x_{i})^{2}\sum_{i=1}^{n}(y_{i})^{2}}$

$\sum_{i=1}^{n}x_{i}y_{i}\leq \sqrt{\sum_{i=1}^{n}(x_{i})^{2}\sum_{i=1}^{n}(y_{i})^{2}}$

this is true when the true is that :

$\sum_{i=1}^{n}\left |x_{i}y_{i}\right |\leq \sqrt{\sum_{i=1}^{n}(x_{i})^{2}\sum_{i=1}^{n}(y_{i})^{2}}$

above inequality is true for $n=1$ and we assume that it's true for $n$.

For $n+1$ we get : $\sum_{i=1}^{n}\left |x_{i}y_{i}\right |+\left |x_{n+1}y_{n+1}\right |\leq \sqrt{\sum_{i=1}^{n}(x_{i})^{2}\sum_{i=1}^{n}(y_{i})^{2}+x_{n+1}^{2}\sum_{i=1}^{n}(y_{i})^{2}+y_{n+1}^{2}\sum_{i=1}^{n}(x_{i})^{2}+x_{n+1}^{2}y_{n+1}^{2}}$

using induction assumption we get :

$\sum_{i=1}^{n}\left |x_{i}y_{i}\right |+\left |x_{n+1}y_{n+1}\right |\leq \sqrt{\sum_{i=1}^{n}(x_{i})^{2}\sum_{i=1}^{n}(y_{i})^{2}}+\left |x_{n+1}y_{n+1}\right |\leq \sqrt{\sum_{i=1}^{n}(x_{i})^{2}\sum_{i=1}^{n}(y_{i})^{2}+x_{n+1}^{2}\sum_{i=1}^{n}(y_{i})^{2}+y_{n+1}^{2}\sum_{i=1}^{n}(x_{i})^{2}+x_{n+1}^{2}y_{n+1}^{2}}$

now we take cube of both sides and annihilate what we can, in result we get that 0=<(...+...)^2 so inequality is hold.

So is this proof valide for infite spaces ?

  • 0
    You need to do a la$s$t inequality saying that the geometric average is lesser than or equal to the Arithmetic average.2012-05-07

1 Answers 1

0

Well you result is true for all $n$ natural so the inequality must hold for the limits! That is what you want.

$\sqrt{\sum_{i=1}^{n}(x_i+y_i)^2}\leq \sqrt{\sum_{i=1}^{n}x_i^2} +\sqrt{\sum_{i=1}^{n}y_i^2}$

All the sequence here are increasing so taking the limits when $n \to \infty$ we get the result desired.

  • 0
    you look again on my proof ?2012-05-07