how to analyse safe petri net for attainability? (i need algorithm)
I have an oriented multigraph $\mathbb{G}$.
$A$ - adjacency matrix.
$m$ - the count of input elements.
$n$ - the count of vertices in $\mathbb{G}$
let numerate input elements $b_i,\; i\in\{1..m\}$ and vertexes $v_j,\; j\in\{1..n\}$
limitation $m \leq n$ (safe petri net)
let make marker, which connect input element $b_i$ and vertex $v_j$, where it stand and define it like this: $(b_i,v_j)$
first state of petri net is $M_0$: $\{(b_i,v^0_j),i\in\{1..m\},\;j\in\{k_1..k_m\},\; k_i \in \{1..n\},\; k_i\not = k_j\}$
last state of petri net is $M_1$: $\{(b_i,v^1_j),i\in\{1..m\},\;j\in\{p_1..p_m\},\; p_i\in\{1..n\},\; p_i \not = p_j\}$