How can I show that this equation is true for all $x \in \mathbb{R}$? $\sin^6x + \cos^6x = 1 - 3\sin^2x \ \cos^2x$
How to show this equation is true?
0
$\begingroup$
trigonometry
2 Answers
2
Hint: $\cos^2\varphi+\sin^2\varphi=1$.
Full proof
$ \begin{align*} \sin^2x+\cos^2x=1 &\Leftrightarrow (\sin^2x+\cos^2x)^3=1^3=1\\ &\Leftrightarrow \sin^6 +3\cdot \sin^4x\cdot \cos^4x+3\cdot \sin^2x \cdot \cos^4x+\cos^6x =1\\ &\Leftrightarrow \sin^6x+\cos^6x=1-(3\cdot \sin^4x\cdot \cos^4x+3\cdot \sin^2x \cdot \cos^4x)\\ &\Leftrightarrow \sin^6x+\cos^6x=1-3\cdot \sin^2x\cdot \cos^2x(\sin^2x+\cos^2x) \\ &\Leftrightarrow \sin^6x + \cos^6x = 1 - 3\cdot \sin^2x \cdot \cos^2x \end{align*} $
-
0I added full proof since you seem to be having trouble. – 2012-02-12
2
$\begin{align*}\sin^6x + \cos^6x&= (\sin^2x)^3 + (\cos^2x)^3\\&=(\sin^2x + \cos^2x)(\sin^4x -\sin^2x \cdot \cos^2x +\cos^4x) \\&=(\sin^2x+\cos^2x)^2-3 \cdot \sin^2x \cdot \cos^2x\\&=1-3 \cdot \sin^2x \cdot \cos^2x\end{align*}$
-
0I am unsure if you don't know this $\TeX$ construct. Please go through the edit. – 2012-02-12