2
$\begingroup$

$\lim\limits_{x \to \infty} \frac{\sqrt{x^2 + 4}}{x+4}$

I have tried multiplying by $\frac{1}{\sqrt{x^2+4}}$ and it's reciprocal, but I cannot seem to find the solution. L'Hospital's doesn't seem to work either, as I keep getting rational square roots.

  • 0
    In a case like this, you should always do a thought-experiment to see what value the formula takes when $x$ is big, like a million. Then at least you see that the limit will certainly be $1$.2012-07-04

6 Answers 6

6

Hint $\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} + 4} }}{{x + 4}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\dfrac{{\sqrt {{x^2} + 4} }}{x}}}{{\dfrac{{x + 4}}{x}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {\dfrac{{{x^2} + 4}}{{{x^2}}}} }}{{1 + \dfrac{4}{x}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + \dfrac{4}{{{x^2}}}} }}{{1 + \dfrac{4}{x}}}$

  • 1
    @JonathanDewein Note that for large $x$, $\sqrt{x^2+4}$ is almost $x$, in the sense the $+4$ will not be of importance, so that $\sqrt{x^2}=x $ (for positive $x$). So for large values of $x$, $\sqrt{x^2+4}$ is like a "degree $1$ polynomial". In general, we can solve a limit at infinity of the quotient of two polynomials of the same degree by dividing both numerator and denominator by the $x^n$ where $n$ is the degree of the polynomials. The above reasoning motivates dividing by $x^1=x$, which solves the problem.2012-06-28
4

${\sqrt{x^2+4}\over x+4}={x\over x+4}\sqrt{1+(4/x^2)}$ Can you take it from there?

4

Another way to look at it is to make use of the following inequality. $x \leq \sqrt{x^2+4} \leq x+2, \,\, \forall x \in \mathbb{R}^+$ Hence, we have that $\dfrac{x}{x+4} \leq \dfrac{\sqrt{x^2+4}}{x+4} \leq \dfrac{x+2}{x+4}$ Now apply the squeeze/sandwich theorem to get $\lim_{x \to \infty}\dfrac{\sqrt{x^2+4}}{x+4} = 1$

0

$\lim\limits_{x \to \infty} \frac{\sqrt{x^2 + 4}}{x+4}$=$\lim\limits_{x \to \infty} \frac{\sqrt{x^2(1 + \frac{4}{x^2})}}{x+4}$=$\lim\limits_{x \to \infty} \frac{x\sqrt{1 + \frac{4}{x^2}}}{x+4}$.

When $ x\longrightarrow\propto $ $\Rightarrow$ $\frac{4}{x^2}\longrightarrow$ 0 .

The above integral then takes the form:

$\lim\limits_{x \to \infty} \frac{x}{x+4}$=$\lim\limits_{x \to \infty} \frac{x}{x(1+\frac{4}{x})}$.=$\lim\limits_{x \to \infty} \frac{1}{1+\frac{4}{x}}$.

When $ x\longrightarrow\propto $ $\Rightarrow$ $\frac{4}{x}\longrightarrow$ 0 .

Now the above integral then takes the form:

$\lim\limits_{x \to \infty} \frac{1}{1+\frac{4}{x}}$=$\lim\limits_{x \to \infty} \frac{1}{1+0}$=1.

$\lim\limits_{x \to \infty} \frac{\sqrt{x^2 + 4}}{x+4}$=1

0

HINT:

$\left(\frac{\sqrt{x^2\:+\:4}}{x+4}\right)=\left(\frac{\left|x\right|\sqrt{1\:+\:\frac{4}{x^2}}}{x+4}\right)$ So $\lim _{x\to +\infty }\left(\frac{\left|x\right|\sqrt{1\:+\:\frac{4}{x^2}}}{x+4}\right) = 1$ $\lim _{x\to -\infty }\left(\frac{\left|x\right|\sqrt{1\:+\:\frac{4}{x^2}}}{x+4}\right) = -1$

0

Hint:

In the numerator, the dominant term of the polynomial is $x^2$, of which you take the square root. In the denominator, the dominant term is $x$. Then the function behaves like $|x|/x$ at infinity.


Or

$\lim_{x\to\infty}\frac{\sqrt{x^2+4}}{x+4}=\lim_{x\to\infty}\frac{\sqrt{(x-4)^2+4}}x=\lim_{x\to\infty}\sqrt{1-\frac{8}{x}+\frac{20}{x^2}}.$