2
$\begingroup$

$X=(-\infty,\infty)$, $\mathcal{F}_n$ is the $\sigma$-field generated by $[0,1),[1,2),...,[n-1,n)$. Prove $\mathcal{F}_n\subset \mathcal{F}_{n+1}$ and $\cup_{n=1}^\infty\mathcal{F}_n$ is not a $\sigma$-field.

My solution:

$\mathcal{F}_{n+1}=\mathcal{F}_{n}\cup[n,n+1)\Rightarrow \mathcal{F}_n\subset \mathcal{F}_{n+1}$.

Proof by contradiction. If $\cup_{n=1}^\infty\mathcal{F}_n=[0,\infty)$ is a $\sigma$-field, then $\emptyset\in\cup_{n=1}^\infty\mathcal{F}_n \Rightarrow X=(-\infty,\infty)\subset\cup_{n=1}^\infty\mathcal{F}_n=[0,\infty)$, which is a contradiction. So, $\cup_{n=1}^\infty\mathcal{F}_n$ is not a $\sigma$-field.

I wonder if my proof is right or not. Thanks in advance.

The above is wrong. Let me try again.

$\mathcal{F}_{n}=\sigma([0,1),...,[n-1,n)),\mathcal{F}_{n+1}=\sigma([0,1),...,[n-1,n),[n,n+1))$.

Proof by contradiction. If $\mathcal{F}_n\supset \mathcal{F}_{n+1}\Rightarrow \mathcal{F}_n\supset \mathcal{F}_{n+1}\supset\{[0,1),...,[n-1,n),[n,n+1)\}\supset\{[0,1),...,[n-1,n)\}\Rightarrow \mathcal{F}_{n}$ is not the smallest $\sigma$-field containing $\{[0,1),...,[n-1,n)\}$, which is a contradiction.

Proof by contradiction. If $\cup_{n=1}^\infty\mathcal{F}_n$ is a $\sigma$-field, then $\cup_{n=1}^\infty\mathcal{F}_n=\cup_{n=1}^\infty\sigma([0,1),...,[n-1,n))\supset\cup_{n=1}^\infty\{[0,1),...,[n-1,n)\}=[0,\infty)$, i.e., $\cup_{n=1}^\infty\mathcal{F}_n$ is the smallest $\sigma$-field containing $[0,\infty)$. Since $\cup_{n=1}^\infty\mathcal{F}_n$ is a $\sigma$-field, $\emptyset\in\cup_{n=1}^\infty\mathcal{F}_n \Rightarrow X\in\cup_{n=1}^\infty\mathcal{F}_n\Rightarrow X=(-\infty,\infty)$ is also the smallest $\sigma$-field containing $[0,\infty)$, which is not true. So, $\cup_{n=1}^\infty\mathcal{F}_n$ is not a $\sigma$-field.

  • 0
    In my above comment I should correct that $F_{n}$ contains it's element's complement and also $\emptyset$ and $\mathbb{R}$ , but not $(-n,n)$, I'm sorry, but look below proofs. and be careful about using nomads and symbols, $(-\infty,\infty)$ is not $\sigma$-field itself , a $\sigma$-field is a subset of powerset of something with some conditions!2012-12-08

1 Answers 1

4

I'm sorry for my previous mistake and thank Mr. Arthur for his clever notation. Because every $F_{n}$ is a $\sigma$-field so $\forall n\in\mathbb{N}\; :\;\emptyset,\mathbb{R}\in F_{n}$ so it is brightly that $\emptyset,\mathbb{R}\in F:=\cup_{n=1}^{\infty}F_{n}$. First condition is firmed.

Let $A\in F=\cup_{n=1}^{\infty}F_{n}$ so there is one of elements of the union like $F_{m}$ for a number $m\in\mathbb{N}$ such that $A\in F_{m}$, as $F_{m}$ is a $\sigma$-field so $A^{c}\in F_{m}$ and thus $A^{c}\in F=\cup_{n=1}^{\infty}F_{n}$. Hence second condition is correct too.

The main problem is in the Third condition. If $\{A_{i}\}_{i=1}^{m}\subset F=\cup_{n=1}^{\infty}F_{n}$ for a natural number $m$, then it means $\forall i\in\{1,2,...,m\}\; :\; \exists n_{i}\in\mathbb{N}\; such\; that\; A_{i}\in F_{n_{i}}$ and as $\forall n\in\mathbb{N}\; :\; F_{n}\subset F_{n+1}$ so we can conclude $\forall i\in\{1,2,...,m\}\; :\; A_{i}\in F_{max\{n_{1},n_{2},...,n_{m}\}}$, let $n_{0}:=max\{n_{1},n_{2},...,n_{m}\}$, because $F_{n_{0}}$ is a $\sigma$-field so $\cup_{i=1}^{m}A_{i}\in F_{n_{0}}$ and thus $\cup_{i=1}^{m}A_{i}\in F=\cup_{n=1}^{\infty}F_{n}$. So $F$ is a field but it is not a $\sigma$-field because if $\{A_{i}\}_{i=1}^{\infty}\subset F=\cup_{n=1}^{\infty}F_{n}$ we can not do same work, as here there is not any guaranty that there will be one contains all $A_{i}$.

Get every $A_{i}$ as $[0,i)$, it will be in $F_{i}$ because $[0,i)=\cup_{k=1}^{i-1}[k-1,k)$ and we know that $[0,1),[1,2),...,[i,i-1)$ are in $F_{i}$. now $\cup_{i=1}^{\infty}A_{i}=\cup_{i=1}^{\infty}[0,i)=[0,\infty)$ but $[0,\infty)$ is not belong to any $F_{n}$, so it is not in $F=\cup_{n=1}^{\infty}F_{n}$ that don't let $F$ be a $\sigma$-field.

Now why $[0,\infty)$ does not belong to any $F_{n}$? Because let $n$ be constant natural number, then every subset of $\mathbb{R}$ that is in $F_{n}$ should contains $(-\infty,0)\cup[n,\infty)$ or be contained in $[0,n)$.

  • 1
    @AmirHoseinSadeghiManesh: +1 for the attempt.2012-12-15