2
$\begingroup$

So I need to find: $\mathbb{E}(\frac{1}{1+N})$ where N is a binomial random variable with paramaters n,p.

I know that when $ Y = g(N)$ $\mathbb{E}(Y) = \sum_{\infty} g(x)p(x)$

where p(x) is the frequency function of N.

So am I on the right track when I right $\mathbb{E}(\frac{1}{1+N}) = \sum_{k=0}^n (\frac{1}{1+k}){n \choose k}p^k(1-p)^{n-k}$

If so how do I proceed from here?

Thanks for any help.

1 Answers 1

2

We have $\frac 1{k+1}\binom nk=\frac{n!}{(k+1)\cdot k!\cdot (n-k)!}=\frac{n!}{(k+1)!\cdot ((n+1)-(k+1))!}=\frac 1{n+1}\binom{n+1}{k+1},$ and using this in the expression of $E\frac 1{1+N}$, we get $E\frac 1{1+N}=\sum_{k=0}^n\frac 1{n+1}\binom{n+1}{k+1}p^k(1-p)^{n-k}=\frac 1{n+1}\sum_{j=1}^{n+1}\binom{n+1}jp^{j-1}(1-p)^{n-j+1}.$ Now we can conclude using binomial theorem: this gives $ E\frac 1{1+N}=\frac 1{n+1}\frac 1p\left(1-(1-p)^{n+1}\right).$

  • 0
    Maybe a factor $\frac 1p$ is missing, but you got the idea.2012-10-06