Given two matricies A and B of equal dimensions what notation should be used to express elementwise addition, subtraction, multiplication, and so on?
Notation for elementwise matrix binary operations?
2 Answers
Addition (+) and subtraction (-) are already elementwise by definitions, and the elementwise multiplication of two matrices is the Hadamard product, denoted by $\circ$.
$\textbf A=\textbf A_{n\times n}=\begin{pmatrix}a_{1,1}&\dots&a_{1\times n}\\\vdots&\ddots&\vdots\\a_{n\times1}&\dots&a_{n\times n}\end{pmatrix},\qquad\textbf B=\textbf B_{n\times n}=\begin{pmatrix}b_{1,1}&\dots&b_{1\times n}\\\vdots&\ddots&\vdots\\b_{n\times1}&\dots&b_{n\times n}\end{pmatrix}$
Element-wise addation $\textbf A +\textbf B=\begin{pmatrix}a_{1,1}+b_{1,1}&\dots&a_{1\times n}+b_{1\times n}\\\vdots&\ddots&\vdots\\a_{n\times1}+b_{n\times1}&\dots&a_{n\times n}+b_{n\times n}\end{pmatrix}$
Element-wise subtraction $\textbf A -\textbf B=\begin{pmatrix}a_{1,1}-b_{1,1}&\dots&a_{1\times n}-b_{1\times n}\\\vdots&\ddots&\vdots\\a_{n\times1}-b_{n\times1}&\dots&a_{n\times n}-b_{n\times n}\end{pmatrix}$
Element-wise multiplication $\textbf A \circ\textbf B=\begin{pmatrix}a_{1,1}\times b_{1,1}&\dots&a_{1\times n}\times b_{1\times n}\\\vdots&\ddots&\vdots\\a_{n\times1}\times b_{n\times1}&\dots&a_{n\times n}\times b_{n\times n}\end{pmatrix}$
-
1The notation $(A+B)_{ij} := a_{ij}+b_{ij}$ seems to be way more common, at least from my experience. – 2012-11-09