2
$\begingroup$

Possible Duplicate:
Solving the integral $\int_{0}^{\infty} \frac{\sin{x}}{x} \ dx = \frac{\pi}{2}$?

Using the identity $\lim_{a\to\infty} \int_0^a e^{-xt}\, dt = \frac{1}{x}, x\gt 0,$ can I get a hint to show that $\lim_{b\to\infty} \int_0^b \frac{\sin x}{x} \,dx= \frac{\pi}{2}.$

3 Answers 3

4

Hint: $\begin{align} \lim_{b\to \infty}\int_{0}^{b}\frac{\sin x}{x}dx &= \lim_{a,b\to \infty}\int_{0}^{b}\int_{0}^{a}e^{-xt}dt\sin x dx\\& = \lim_{a,b\to \infty}\int_{0}^{b}dt\int_{0}^{a}e^{-xt}\frac{e^{ix}-e^{-ix}}{2i} dx \\&=\lim_{a,b\to \infty}\int_{0}^{b}dt\int_{0}^{a}\frac{e^{-(t-i)x}-e^{-(i+t)x}}{2i} dx\end{align}$.

  • 0
    you are right...What was I thinking? Thank you.2012-03-22
2

Too long for a comment

  1. Laplace transform: $\mathcal{L}\left[ \frac{f(x)}{x} \right] = \int_{0}^{\infty} \frac{f(x)}{x} e^{-yx}\, dx = \int_{y}^{\infty} \mathcal{L}\left[f(x)\right]\, ds $

  2. Identity: $ y = 0 \implies e^{-yx} = 1$

  3. Laplace transform: $ \mathcal{L}\left[\sin(x)\right] = \frac{1}{1+s^2}$

  4. Integration: $ \int \frac{1}{1+s^2}\, ds = \tan^{-1}(s)$

  5. Trig $ \tan^{-1}(\infty) = \frac{\pi}{2}$

  • 0
    Use $\displaystyle \int\limits_s^\infty e^{-mt}dm =\frac{e^{-st}}{t}$2012-03-22
2

The usual procedure is as follows:

$\mathcal L \left\{ \frac {\sin t} {t}\right\}(s)=\int\limits_0^\infty e^{-st}\frac {\sin t} {t}dt $

We have that for any $f(t)$ such that the transform exists

$\mathcal L \left\{ \frac {f(t)} {t}\right\}(s)=\int\limits_0^\infty f(t)\frac {e^{-st}} {t}dt $

But

$\frac {e^{-st}} {t}=\int\limits_s^\infty e^{-mt}dm$

Under appropriate conditions we can exchange the order of the integrands and put

$\mathcal L \left\{ \frac {f(t)} {t}\right\}(s)=\int\limits_s^\infty \int\limits_0^\infty f(t) e^{-mt}dm dt $

This means

$\mathcal L \left\{ \frac {f(t)} {t}\right\}(s)=\int\limits_s^\infty F(t) dt $

where $F$ is the transform of $f$. Using this with $\sin t$ gives

$\mathcal L \left\{ \frac {\sin t} {t}\right\}(s)=\int\limits_s^\infty \frac{1}{1+t^2} dt = \frac{\pi}{2}-\tan^{-1}s $

$\int\limits_0^\infty e^{-st} \frac{\sin t}{t} dt=\int\limits_s^\infty \frac{1}{1+t^2} dt = \frac{\pi}{2}-\tan^{-1}s $

Taking $s \to 0$

$\lim\limits_{s \to 0} \int\limits_0^\infty e^{-st} \frac{\sin t}{t}dt=\frac{\pi}{2} $

For the last step, you need to prove that

$\lim\limits_{s \to 0} \int\limits_0^\infty e^{-st} \frac{\sin t}{t}dt=\int\limits_0^\infty \frac{\sin t}{t}dt $

I know you can use the dominated convergence theorem (which is not in my personal stash), and maybe some other theorems, but I'm unable to prove it, though I know it is legitimate (the exponential usually makes things work.)