Suppose $Y_1,\ldots,Y_n$ are a random sample of normal distribution $\mathcal{N}(\mu,1)$. If $\overline{Y^2}=\displaystyle\frac{1}{n}\sum_{i=1}^n Y_i^2$, how can I find $E\Bigl(\overline{Y^2}\Bigm|\overline{Y\vphantom{Y^2}}\Bigr)$ by Basu's theorem?
Finding $E\Bigl(\overline{Y^2}\Bigm|\overline{Y\vphantom{Y^2}}\Bigr)$ by Basu's theorem?
3
$\begingroup$
probability
statistics
-
0*Hmmm...* http://math.stackexchange.com/q/190844/7003 – 2012-09-08
1 Answers
3
By Basu's theorem $\frac{1}{n-1}\sum_{i=1}^n (Y_i- \bar{Y})^2$ is independent of $\bar{Y}$. Hence $ \mathbb{E} \left(\frac{1}{n-1}\sum_{i=1}^n (Y_i- \bar{Y})^2 \mid \bar{Y} \right) = \mathbb{E} \left(\frac{1}{n-1}\sum_{i=1}^n (Y_i- \bar{Y})^2 \right)$ Develop both sides. You expression will appear on the left-hand side.
-
1@cardinal : serious overkill is too soft to describe this ;) – 2012-09-08