Does
$\int_{-\infty}^\infty \text{e}^{\ a\ (x+b)^2}\ \text dx=\int_{-\infty}^\infty \text{e}^{\ a\ x^2}\ \text dx\ \ \ \ \ ?$
hold, even if the imaginary part of $b$ is nonzero?
What I really want to understand is what the phrase "By analogy with the previous integrals" means in that link. There, the expression $\frac{J}{a}$ is complex but they seem to imply the integral can be solved like above anyway.
The reusult tells us that the integral is really independend of $J$, which is assumed to be real here. I wonder if we can also generalize this integral to include complex $J$. In case that the shift above is possible, this should work out.
But even if the idea is here to perform that substitution, how to get rid of the complex $a$ to obtain the result. If everything is purely real or imaginary, then this solves the rest of the problem.