Given parametric curve: $x=t\cos(t)$, $y=t^2$, how can i rotate the curve about the origin by an angle $\theta=\pi/3$?
Rotating parametric curve
2
$\begingroup$
calculus
-
1Converting to polar coordinates seems natural. – 2012-11-27
1 Answers
4
In $x,y$ coordinates, counterclockwise rotation by $\theta$ takes $(x,y)$ to $(u,v) = (x \cos(\theta) - y \sin(\theta), x \sin(\theta) + y \cos(\theta))$.
Just plug in the parametric expressions for $x$ and $y$ and you have parametric expressions for $u$ and $v$.