7
$\begingroup$

I'm having trouble simplifying the following equation. I've tried grouping terms in different ways, but it's not looking any more joyful. Can someone please help with its resolution? Hopefully by midnight?? $ \omega - \ln Y=\ln\left(H p^2 a + \exp(ra)\right) - \ln N $

  • 0
    OH. Now I see (after looking at the answers)!2013-01-01

3 Answers 3

5

$ \omega - \ln Y=\ln\left(H p^2 a + \exp(ra)\right) - \ln N $ $ \omega =\ln\left(H p^2 a + \exp(ra)\right)+ \ln Y - \ln N $ $ \omega =\ln\left(H p^2 a + \exp(ra)\right)+ \ln (Y/N ) $ $ \omega =\ln\left({YH p^2 a + Y\exp(ra)\over N}\right) $ $ \omega =\ln\left({Ha p^2Y + Ye^{ar})\over N}\right) $ $e^{\omega}=\frac{Ha p^2Y + Ye^{ar}}{N}$ $0=Ha ppY-Ne^{\omega} + Ye^{ar}$

  • 0
    O.K. THats sounds better2013-01-01
3

Assuming everything there are numbers (or at least, everything commutes), may be you are wishing the community "$HappY Ne^\omega Ye^{ar}$".

  • 1
    $1=HappY(Ne^\omega)^{-1}Ye^{ar}$ to be more accurate.2013-01-01
1

Here, I solved for $a$ for you:

$ a = \frac{N r e^\omega-H p^2 Y \cdot \mathrm{W}\left(\frac{e^{\frac{e^\omega N r}{H p^2 Y}} r}{H p^2}\right)}{H p^2 r Y} $

Where $\mathrm{W}(x)$ is the Lambert-W function.

  • 0
    Technically correct.2013-01-01