6
$\begingroup$

Possible Duplicate:
Frullani proof integrals

Let $f:\left[ {0,\infty } \right] \to \mathbb R$ be a a continuous function such that $ \mathop {\lim }\limits_{x \to0+ } f\left( x \right) = L $Prove that $ \int\limits_0^{\infty} {\frac{{f\left( {ax} \right) - f\left( {bx} \right)}} {x}}dx $ converges and calculate the value.

It is known that $\int_a^\infty (f(x)/x)\,\mathrm{d}x$ converges for all a>0, but nothing of $\lim\limits_{x\to\infty}f(x)$ is told.

Also, what if $a>b$ or $a?

  • 0
    yes, an assumption, part of the assignment.2012-12-30

2 Answers 2

4

The trick to evaluate the thing is, under suitable hypotheses to assure convergence and also differentiability in $a$ and/or $b$, to differentiate with respect to the parameter $a$. Letting $F(a)$ denote the integral (for fixed $b$), this gives $F'(a)\;=\;\int_0^\infty xf'(ax)/x\,dx \;=\; \int_0^\infty f'(ax)\,dx \;=\; {1\over a}\cdot \int_0^\infty f'(x)\,dx \;=\; -f(0)\cdot {1\over a} $ Thus, $F(a)=C-f(0)\cdot \log a\;$, and the integral is of the form $C-f(0)\cdot (\log a-\log b)\;$. Since the integral is visibly $0$ when $a=b$, it is $-f(0)\cdot (\log a - \log b)$.

In fact, use of "Frullani" in the question surprises me, because if one knows such integrals by this name one has a way to look in Whittaker-Watson, etc.

Edit: A careful proof that the integral converges has to look at $\int_\epsilon^T {f(ax)-f(bx)\over x}\;dx$ and show that the limit exists as $\epsilon\rightarrow 0^+$ and $T\rightarrow +\infty$. Justification of differentiation with respect to a parameter is somewhat subtler (although obviously necessary), and the "approved details" depend in a volatile way on your context.

  • 0
    I searched in W&W and the computer does not find the name Frullani.2014-09-15
3

Let $a,b>0$, without loss of generality we assume $a. Let $0<\varepsilon. First we split up the integral:

$\int_{\varepsilon}^R \frac{f(ax)-f(bx)}{x} \, dx = \int_{\varepsilon}^R \frac{f(ax)}{x} \, dx- \int_{\varepsilon}^R \frac{f(bx)}{x} \, dx$ where $ \int_{\varepsilon}^R \frac{f(ax)}{x} \, dx \stackrel{z:=a \cdot x}{=} \int_{a \cdot \varepsilon}^{a \cdot R} \frac{f(z)}{\frac{z}{a}} \cdot \frac{1}{a} \, dz = \int_{a \cdot \varepsilon}^{a \cdot R} \frac{f(z)}{z} \, dz$ (similarily for the second integral), thus

$\int_{\varepsilon}^R \frac{f(ax)-f(bx)}{x} \, dx = \underbrace{\int_{a \varepsilon}^{b \varepsilon} \frac{f(z)}{z} \, dz}_{=:I_1} - \underbrace{\int_{a \cdot R}^{b \cdot R} \frac{f(z)}{z} \, dz}_{=:I_2}$

  1. We have $I_1 = \int_{a \varepsilon}^{b \varepsilon} \frac{f(z)}{z} \, dz \stackrel{y:= \frac{z}{\varepsilon}}{=} \int_a^b \frac{f(\varepsilon \cdot y)}{y} \, dy$ Since $a,b>0$ (thus $[a,b] \ni y \mapsto \frac{1}{y} \in L^1([a,b])$) and $f(\varepsilon \cdot y) \to L$ as $\varepsilon \to 0$ for all $y \in [a,b]$ we can apply dominated convergence and obtain $I_1 \to \int_a^b \frac{L}{y} \, dy = L \cdot (\log b-\log a) \qquad (\varepsilon \to 0)$
  2. We want to prove $I_2 \to 0$ as $R \to \infty$. Let $\delta>0$. Define $I_R := \int_a^R \frac{f(z)}{z} \, dz$ Since $\int_a^{\infty} \frac{f(z)}{z} \, dz$ converges by assumption, we know that $I_R$ is a cauchy-sequence, i.e. there exists $S_0$ such that for all $S,T \geq S_0$: $|I_S-I_T| \leq \delta \tag{1}$ Now choose $R_0>0$ such that $a \cdot R_0 \geq S_0$. Then we obtain from (1) for all $R \geq R_0$: $|I_2| = |I_{b \cdot R}-I_{a \cdot R}| \leq \delta$ i.e. $I_2 \to 0$ as $R \to \infty$.

Adding all up we obtain

$\int_0^\infty \frac{f(ax)-f(bx)}{x} \, dx = L \cdot (\log b- \log a) = f(0) \cdot (\log b-\log a)$