Possible Duplicate:
Prove that $\int_0^x f^3 \le \left(\int_0^x f\right)^2$
Assume $f(x)$ is derivable in[0,1],and when $x\in$(0,1), $0
Prove
$(\int_0^1f(x))^2>\int_0^1f^3(x)$
Possible Duplicate:
Prove that $\int_0^x f^3 \le \left(\int_0^x f\right)^2$
Assume $f(x)$ is derivable in[0,1],and when $x\in$(0,1), $0
Prove
$(\int_0^1f(x))^2>\int_0^1f^3(x)$