Compute the following limit:
$\lim_{n\to\infty}\frac{{\left(1^1 \cdot 2^2 \cdot3^3\cdots n^n\right)}^\frac{1}{n^2}}{\sqrt{n}} $
I'm interested in almost any approaching way for this limit. Thanks.
Compute the following limit:
$\lim_{n\to\infty}\frac{{\left(1^1 \cdot 2^2 \cdot3^3\cdots n^n\right)}^\frac{1}{n^2}}{\sqrt{n}} $
I'm interested in almost any approaching way for this limit. Thanks.
Let's begin $ \lim\limits_{n\to\infty}\frac{\left(\prod\limits_{k=1}^n k^k\right)^{\frac{1}{n^2}}}{\sqrt{n}}= \lim\limits_{n\to\infty}\exp\left(\frac{1}{n^2}\sum\limits_{k=1}^n k\log k - \frac{1}{2}\log n\right)= $ $ \lim\limits_{n\to\infty}\exp\left(\frac{1}{n^2}\sum\limits_{k=1}^n k\log\left(\frac{k}{n}\right)+\frac{1}{n^2}\sum\limits_{k=1}^n k\log n - \frac{1}{2}\log n\right)= $ $ \lim\limits_{n\to\infty}\exp\left(\sum\limits_{k=1}^n \frac{k}{n}\log\left(\frac{k}{n}\right)\frac{1}{n}+\frac{1}{2}\log n\left(\frac{n^2+n}{n^2}-1\right)\right)= $ $ \exp\left(\lim\limits_{n\to\infty}\sum\limits_{k=1}^n \frac{k}{n}\log\left(\frac{k}{n}\right)\frac{1}{n}+\frac{1}{2}\lim\limits_{n\to\infty}\frac{\log n}{n}\right)= $ $ \exp\left(\int\limits_{0}^1 x\log x dx\right)=\exp\left(-1/4\right) $ And now we are done!
$ \frac1{n^2}\sum_{k=1}^nk\log(k)-\frac12\log(n)=\frac1{n}\sum_{k=1}^n\frac{k}n\log\left(\frac{k}n\right)+\frac12\frac{\log(n)}n=\int_0^1x\log(x)\mathrm dx+o(1) $