1
$\begingroup$

Suppose $A_1$, $A_2$, $A_3$ and $B_1$, $B_2$, and $B_3$ are two short exact sequences of abelian groups.

I am looking for two such short sequences where $A_1$ and $B_1$ is isomorphic and $A_2$ and $B_2$ are isomorphic but $A_3$ and $B_3$ are not.

(Similarly I would like examples in which two of the other pairs are isomorphic but the third pair are not, etc)

2 Answers 2

3

Here are some finite examples:

$\begin{array}{c} 0 \to& C_2\times C_2 &\to& C_2\times C_2\times C_4 &\to& C_4 &\to 0 \\ 0 \to& C_2\times C_2 &\to& C_2\times C_2 \times C_4 &\to& C_2\times C_2 &\to 0 \\ 0 \to& C_4 &\to& C_2\times C_2 \times C_4 &\to& C_2 \times C_2 &\to 0 \\ 0 \to& C_4 &\to& C_2\times C_8 &\to& C_2 \times C_2 &\to 0 \end{array}$

3

For the first pair take $0 \longrightarrow \mathbb{Z} \stackrel{2}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z} / 2\mathbb{Z} \longrightarrow 0$ and $0 \longrightarrow \mathbb{Z} \stackrel{3}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z} / 3\mathbb{Z} \longrightarrow 0.$

For sequences with non-isomorphic first pairs you can use an infinite direct sum of $\mathbb{Z}$'s and include one or two copies of $\mathbb{Z}$. The quotient will be the infinite direct sum again so the second and third pairs are isomorphic but the first pair will be non-isomorphic.

Finally for non isomorphic central pairs take $0 \longrightarrow \mathbb{Z} / 2\mathbb{Z} \longrightarrow \mathbb{Z} / 2\mathbb{Z} \times \mathbb{Z} / 2\mathbb{Z} \longrightarrow \mathbb{Z} / 2\mathbb{Z} \longrightarrow 0$ and $0 \longrightarrow \mathbb{Z} / 2\mathbb{Z} \stackrel{2}{\longrightarrow} \mathbb{Z} / 4\mathbb{Z} \longrightarrow \mathbb{Z} / 2\mathbb{Z} \longrightarrow 0.$