For $u,v \in L^q(\Omega)$ with $q \ge p \ge 1$, how does one show that: $ \begin{aligned} \||u|^{p-1}u - |v|^{p-1}v\|_{L^{p/q}} & \le C\,\|(|u|^{p-1} + |v|^{p-1})\,|u-v|\,\|_{L^{p/q}}\\ & \le C\,(\|u\|^{p-1}_{L^q} + \|v\|^{p-1}_{L^q})\,\|u-v\|_{L^q} \end{aligned} $
Thanks.