I would like to solve $\lim_{n\rightarrow \infty}\frac{an}{\log n}\left(1-\left(1-\frac{1}{an}\right)^{\log n}\right)$ to prove that $1-\left(1-\frac{1}{an}\right)^{\log n}$ is asymptotically equivalent to $\frac{\log n}{an}$. In fact Wolfram Alpha tells me that the limit is $1$, but I didn't manage to obtain it by pencil and paper.
Find $\lim_{n\rightarrow \infty}\frac{an}{\log n}\left(1-\left(1-\frac{1}{an}\right)^{\log n}\right)$
0
$\begingroup$
calculus
-
0You might try to emulate [this](http://math.stackexchange.com/a/208886/6179). – 2012-10-08
1 Answers
3
Use Taylor expansions liberally (when it makes sense to): $\left(1-\frac{1}{an}\right)^{\log n}=\exp\left[\log n\cdot\log\left(1-\frac{1}{an}\right)\right]\approx\exp\left[-\frac{\log n}{an}\right]\approx1-\frac{\log n}{an}$