2
$\begingroup$

$ [(\vec{a}+\vec{b})\times(\vec{b}+\vec{c})]\cdot(\vec{c}+\vec{a})=2\vec{c}\cdot(\vec{b}\times\vec{a})$

I'm supposed to prove that this is true for all vectors $a,b,c$, but I keep getting $4(\vec{a}\times \vec{b})\cdot \vec{c}=0$, which is obviously not true.

Seems to me like there is a mistake in the problem, that it should be $\vec{a}\times\vec{b}$ instead of $\vec{b}\times\vec{a}$. Or I'm doing it wrong?

I'm using facts that $\vec{a}\times\vec{a}=0$ and $[\vec{a},\vec{b},\vec{c}]=[\vec{c},\vec{b},\vec{a}]=-[\vec{b},\vec{a},\vec{c}]$.

1 Answers 1

2

That's what I got too: using the fact that $\vec{b}\times \vec{b}=\vec{0}$ and $(\vec{b}\times \vec{c})\cdot\vec{c}=0$ we can expand the left hand side as follows: $[(\vec{a}+\vec{b})\times(\vec{b}+\vec{c})]\cdot(\vec{c}+\vec{a})$ $=[\vec{a}\times\vec{b}+\vec{a}\times\vec{c}+\vec{b}\times \vec{c}]\cdot(\vec{c}+\vec{a})$ $=[\vec{a}\times\vec{b}+\vec{a}\times\vec{c}+\vec{b}\times \vec{c}]\cdot(\vec{c}+\vec{a})$ $=(\vec{a}\times \vec{b})\cdot\vec{c}+(\vec{b}\times \vec{c})\cdot\vec{a}$ $=2\vec{c}\cdot(\vec{a}\times\vec{b})$ where the last equality follows from $(\vec{b}\times \vec{c})\cdot\vec{a}=\vec{a}\cdot(\vec{b}\times \vec{c})=(\vec{a}\times \vec{b})\cdot\vec{c}.$

  • 0
    I guess it's mistake in the book then. Thanks.2012-02-07