1
$\begingroup$

$\tan\left(\frac{\pi}{2} -x\right) - \cot\left(\frac{3\pi}{2} -x\right) + \tan(2\pi-x) - \cot(\pi-x) = \frac{4-2\sec^{2}x}{\tan{x}}$

L.S.

$= \cot{x} - \tan{x} - \tan{x} + \cot{x}$

$= 2\cot{x} - 2\tan{x}$

$= 2\left(\frac{\cos{x}}{\sin{x}} - \frac{\sin{x}}{\cos{x}}\right)$

$= 2\left(\frac{\cos^{2}x - \sin^{2}x}{\sin{x}\cos{x}}\right)$

$= 2\left(\frac{1-2\sin^{2}x}{\sin{x}\cos{x}}\right)$

$= \frac{4 - 2\sin^{2}x}{\sin{x}\cos{x}}$

  • Not sure where to go from here.
  • 0
    You may want to look here (http://meta.math.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference) on how to typeset your questions so that it is easier for people to read.2012-11-08

1 Answers 1

1

You have simplified your initial expression to $2 \cot(x) - 2 \tan(x)$. Make use of the following trigonometric identities: $\cot(x) = \dfrac1{\tan(x)}$ $\sec^2(x) - \tan^2(x) = 1$ and simplify to get what you want.

Move your mouse over the gray area below for a complete solution.

$2 \cot(x) - 2 \tan(x) = 2 \left( \dfrac1{\tan(x)} - \tan(x)\right) = 2 \left( \dfrac{1 - \tan^2(x)}{\tan(x)}\right)$ Making use of this identity we have that $\tan^2(x) = \sec^2(x) - 1$. Plug this in your numerator and you that $2 \cot(x) - 2 \tan(x) = 2 \left( \dfrac{1 - \sec^2(x) + 1}{\tan(x)}\right) = \dfrac{4 - 2 \sec^2(x)}{\tan(x)}$

  • 1
    Yes I was able to solve it very easily with the knowledge of sec^2x -tan^2x = 1 . Thank You.2012-11-08