Given $P(A)$, $P(B)$, and $P(B\mid A^c)$, how do you find $P(B\mid A)$?
I need this to find $P(A\mid B)$ using Bayes' Theorem: $ P(A\mid B)=\frac{P(A)P(B\mid A)}{P(A)P(B\mid A)+P(A^c)P(B\mid A^c)} $ and $P(B\mid A)$ is the only one I can't seem to find the value for.