1
$\begingroup$

Given the functions $f(x)= \delta (x-a)$ $g(x)= \frac{1}{a} \delta \left(x- \frac{1}{a}\right)$ for a real constant $a\gt0$, is there a relationship between $f$ and $g$?

I believe that $ g\left(\frac{1}{x}\right)=af(x) $, but I'm not $100\%$ sure. I have used the properties of $\delta (f(x))$ with $f(x)= \frac{1}{x}-\frac{1}{a}$, which has the only root $x=a$, but I do not know what else to do in order to prove it.

  • 0
    $ \delta (-a)=0= \delta (\infty-a) $ and $ f(a)= \infty = g(1/a) $2012-08-27

1 Answers 1

5

$ g\left(\frac1x\right)=\frac1a\delta\left(\frac1x-\frac1a\right)=\frac1a\delta(x-a)\left|\left[\frac{\mathrm d}{\mathrm dx}\left(\frac1x-\frac1a\right)\right]_{x=a}\right|^{-1}=a\delta(x-a)=af(x)\;. $

  • 0
    Interesting, thanks, +1...2012-08-27