How do I evaluate the following definite integral$ \int_0^\infty e^{- \left ( x - \frac a x \right )^2} dx $
how to evaluate $ \int_0^\infty e^{- \left ( x - \frac a x \right )^2} dx $
9
$\begingroup$
improper-integrals
-
0Nice question (+1) – 2012-08-29
2 Answers
10
I will assume that $a > 0$. Let $y = \frac{a}{x}$. Then
$I := \int_{0}^{\infty}e^{-\left(x-\frac{a}{x}\right)^2}\;dx = \int_{0}^{\infty}\frac{a}{y^2} \, e^{-\left(y-\frac{a}{y}\right)^2}\;dy.$
Thus we have
$2I = \int_{0}^{\infty}\left(1 + \frac{a}{x^2}\right) e^{-\left(x-\frac{a}{x}\right)^2}\;dx. $
Now by the substitution $t = x - \frac{a}{x}$,
$2I = \int_{-\infty}^{\infty} e^{-t^2} \; dt = \sqrt{\pi}.$
Therefore $I = \frac{\sqrt{\pi}}{2}$.
(You can see that this generalizes to any integrable even function on $\Bbb{R}$)