First, note that $\dfrac{\cos(A + B)}{\cos A - \cos B} \neq -\cot \left( \dfrac{A-B}{2} \right) \cot \left(\dfrac{A+B}{2} \right)$
In particular, if we use something like $A = \pi/6, B = 2\pi/6$, then the left is $0$ as $\cos(\pi/2) = 0$ and the right side is a product of two nonzero things.
I suspect instead that you would like to prove:
$\dfrac{\cos A + \cos B}{\cos A - \cos B} = -\cot \left( \dfrac{A-B}{2} \right) \cot \left(\dfrac{A+B}{2} \right)$
HINTS
And this looks to me like an exercise in the sum-to-product and product-to-sum trigonometric identities (wiki reference). In fact, if you just apply these identities to the top and the bottom, you'll get the result.