I want to find the Laplace transform of $t \cos(t)$ by the definition $\int e^{-st} t \cos(2t)dt$ The solution manual just say try the $u = t, dv = e^{-st} \cos(2t)$ I use the integration by parts, but still cannot delete any function. Where is the problem?
Laplace transform of $t \cos(t)$ by definition
2 Answers
First note that it is sufficient to find $I(s) = \int e^{-st} \cos(2t) dt$ since $I'(s) = \int - t e^{-st} \cos(2t) dt$ which gives us the desired integral we are looking for. Now note that $I(s) = \int e^{-st} \cos(2t) dt = -\dfrac1s \int \cos(2t) d\left( e^{-st} \right)$ Hence, $\int \cos(2t) d\left( e^{-st} \right) = \cos(2t) e^{-st} - \int e^{-st} d\left( \cos(2t) \right) = \cos(2t) e^{-st} + 2 \int e^{-st} \sin(2t) dt$ Now $\int e^{-st} \sin(2t) dt = -\dfrac1s \int \sin(2t) d \left( e^{-st}\right)$ $\int \sin(2t) d \left( e^{-st}\right) = \sin(2t) e^{-st} - \int e^{-st} d(\sin(2t)) = \sin(2t) e^{-st} - 2 \int e^{-st} \cos(2t) dt$ Hence, putting all this together, we get that $I(s) = - \dfrac1s \left(\cos(2t) e^{-st}- \dfrac2s \left(\sin(2t) e^{-st} - 2 I(s) \right) \right)$ This gives us $s^2 I(s) = -\left(s \cos(2t) e^{-st} - 2\sin(2t)e^{-st} + 4 I(s) \right)$ Hence, we get that $\left(s^2 + 4\right) I(s) = \left(2 \sin(2t) - s \cos(2t) \right) e^{-st}$ This gives us that $I(s) = \dfrac{2 \sin(2t) - s \cos(2t)}{s^2 + 4} e^{-st} + c$ Now $J(s) = \int_0^{\infty} e^{-st} \cos(2t) dt = \dfrac{s}{s^2+4}$ The Laplace transform is given by $L(t\cos(2t)) = \int t e^{-st} \cos(2t) dt = - J'(s) = \dfrac{s^2-4}{\left(s^2+4 \right)^2}$
-
0@Liang-YuPan No problem :). Good to know that it was helpful. – 2012-12-16
Hint:
Integrate $e^{-st}\cos{2t}$ by parts twice.