2
$\begingroup$

$\lim_{n\rightarrow\infty}\sqrt[3]{n^3+n^2}-\sqrt[3]{n^3+1}\rightarrow\frac{1}{3}$

I tried to say we can erase the $1$ from the equation, as it's a constant. But I don't know how to do the rest without running into this mistake: $\lim_{n\rightarrow\infty}\sqrt[3]{n^3+n^2}-n=\frac{\sqrt[3]{\frac{n^3}{n^3}+\frac{n^2}{n^3}}-\frac{n}{n}}{\frac{1}{n}}=\frac{1-1}{0}$

  • 4
    Try writing $\sqrt[3]{n^3+n^2} = n\sqrt[3]{1+1/n}$ then using the power series for $\sqrt[3]{1+x}$.2012-11-14

3 Answers 3

1

You should use that $a^3-b^3=(a-b)(a^2+ab+b^2)$. Take $a=\sqrt[3]{n^3+n^2}$, $b=\sqrt[3]{n^3+1}$ and then multiply your expression by $(a^2+ab+b^2)/(a^2+ab+b^2)$. Then use the trick you are trying to use.

  • 1
    You could (and maybe you should) replace *You should* by *You could*. Consider for example the analogous quantity $\sqrt[\pi]{n^\pi+n^{\pi-1}}-\sqrt[\pi]{n^\pi+1}$, then your approach fails while others yield immediately the limit $1/\pi$.2012-11-14
1

$\displaystyle \lim_{n \rightarrow \infty} \left( \sqrt[3]{n^3 + n^2} - \sqrt[3]{n^3 + 1} \right) = \lim_{n \rightarrow \infty} \left\{ n \left[ \left( 1 + \frac 1n \right)^{\frac 13} - \left( 1 + \frac 1{n^3} \right)^{\frac 13} \right] \right\} = \\ \displaystyle \lim_{n \rightarrow \infty} \left[ n \left( 1 + \frac 1{3n} - 1 - \frac 1{3n^3} \right) \right] = \lim_{n \rightarrow \infty} \left( \frac 13 - \frac 1{3n^2} \right) = \frac 13$

  • 1
    $\displaystyle \lim_{x \rightarrow \infty} \left( 1 + \frac 1n \right)^{\frac 13} = \lim_{x \rightarrow \infty} \left( 1 + \frac 1{3n} + O\left( \frac 1{n^2} \right) \right) = \\ \displaystyle \lim_{x \rightarrow \infty} \left( 1 + \frac 1{3n} \right) + \lim_{x \rightarrow \infty} \left[ O \left( \frac 1{n^2} \right) \right] = \lim_{x \rightarrow \infty} \left( 1 + \frac 1{3n} \right)$2012-11-14
0

My answer here (Evaluation of $\lim\limits_{n\to\infty} (\sqrt{n^2 + n} - \sqrt[3]{n^3 + n^2}) $) shows that $\sqrt[a]{n^a+n^{a-c}} =n+\dfrac{1}{an^{c-1}}+O(n^{-(2c-1)}) $.

If $a=3, c=1$, $\sqrt[3]{n^3+n^{2}} =n+\dfrac{1}{3}+O(n^{-1}) $.

If $a=3, c=3$, $\sqrt[3]{n^3+1} =n+\dfrac{1}{3n^2}+O(n^{-5}) =n+O(n^{-2}) $.

Their difference is, therefore, $\frac1{3}+O(n^{-1}) \to \frac13 $.