For $m>0$,
$0 < n\leqslant m+1$ ($m,n\in \mathbb{Z} $) , and $0 < a < 1$ , prove that $2^{n}\cdot \left( a^{n}\cos ^{2m}\dfrac {\pi a} {2}+\left( 1-a\right) ^{n}\sin ^{2m}\dfrac {\pi a} {2}\right) \leqslant\cos ^{2m}\dfrac {\pi a} {2}+\sin ^{2m}\dfrac {\pi a} {2}. $
Inequality with even powers of trigonometric functions
2
$\begingroup$
analysis
trigonometry
inequality