Wilson's theorem states that a natural number $n>1$ is a prime number if and only if
$ (n-1)! \equiv -1 \pmod {n} $
Can we prove it using Fermat's Little theorem? If yes, then how?
Wilson's theorem states that a natural number $n>1$ is a prime number if and only if
$ (n-1)! \equiv -1 \pmod {n} $
Can we prove it using Fermat's Little theorem? If yes, then how?
Hint: Consider $(x-1)(x-2)...(x-(p-1))$.