1
$\begingroup$

I've known that when $p>q\geq1$,then $L^p \subset L^q$,but when $q\in (0,p)$,I don't know how to prove that. When $\int_{[0,1]}|f|^pdx<\infty$,q\in (0,p),how can we get $\int_{[0,1]}|f|^qdx<\infty$ ?

Appreciate with help!

  • 0
    $\int_{[0,1]}|f|^{q}dx\leq \left(\int_{[0,1]}1^{\frac{p}{p-q}}dx\right)^{\frac{p-q}{q}}\left(\int_{[0,1]}|f|^{q\frac{p}{q}}dx\right)^{\frac{q}{p}}=\left(\int_{[0,1]}|f|^{p}dx\right)^{\frac{q}{p}}$ correct?2012-11-16

1 Answers 1

2

Hint: apply Jensen's inequality with $\phi(t):=t^{\frac pq}$.

  • 0
    http://en.wikipedia.org/wiki/Jensen's_inequality I wonder how does it work?2012-11-16