Could someone give me an example of two convergent series $\sum_{n=0}^\infty a_n$ and $\sum_{n=0}^\infty b_n$ such that $\sum_{n=0}^\infty a_nb_n$ diverges?
Example of two convergent series whose product is not convergent.
9
$\begingroup$
calculus
sequences-and-series
1 Answers
17
$a_n = b_n = \dfrac{(-1)^n}{\sqrt{n+1}}$ where $n \in \{0,1,2,\ldots\}$
-
1@GottfriedHelms: [see this](http://math.stackexchange.com/questions/133400/what-are-the-rules-for-convergence-for-2-series-that-are-added-subtracted-multip) – 2016-11-21