Let $S= \{(x_1,\ldots, x_n)\in \mathbb{R}^n$; $|x_1|^p+\ldots+|x_n|^p=1\}$, where $p>1$ is real(and fixed), consider a fixed $y\in\mathbb{R}^n$ and $T:\mathbb{R}^n\rightarrow\mathbb{R}$ such that $T(x) = x\cdot y$, where $x\cdot y = x_1y_1+\ldots+x_ny_n$.
I'm having a hard time to find $\max_{x\in S}\ T(x)$.
I already noticed a few things but its still really difficult to do something useful.
1) $\forall (x_1\ldots, x_n)\in S, |x_1|^p+\ldots+|x_n|^p\leq |x_1|+\ldots+|x_n|$;
2) Taking the norm $\Vert(x_1,\dots, x_n)\Vert=(|x_1|^p+\ldots+|x_n|^p)^{\frac{1}{p}}$ and the ball $B(0,1)$, with center $0\in\mathbb{R}^n$ and radius $1$, we have $S=\partial B$;
3) $\forall i=1\ldots n, T(e_i) = y_i$.
Also, I'm trying to avoid Holder's inequality.