This comes from Artin Second Edition, page 219. Artin defined $G = \langle x,y\mid x^3, y^3, yxyxy\rangle$, and uses the Todd-Coxeter Algorithm to show that the subgroup $H = \langle y\rangle$ has index 1, and therefore $G = H$ is the cyclic group of order 3.
That being the case, $x$ cannot be either $y$ or $y^2$, for then the third relation would not be satisfied. So the relation $x=1$ must follow from the given relations. Is there another way of seeing this besides from the Todd-Coxeter algorithm?