$\def\A{{\bf A}} \def\B{{\bf B}} \def\C{{\bf C}} \def\R{{\bf R}} \def\D{{\bf D}} \def\f{\phi}$As others have mentioned, if the task is to find the coordinates of $B$ and $C$, this problem is underdetermined.
Let's first consider the triangle with point $A$ located at the origin and point $C$ lying along the positive $x$-axis. Then the coordinates of the points can be found with simple trigonometry, $\begin{eqnarray*} \A_0 &=& (0,0) \\ \B_0 &=& (c \cos A, c\sin A) \\ \C_0 &=& (b,0). \end{eqnarray*}$ The angle $A$, and the sides $b$ and $c$ have been given. This is an SAS triangle. The triangle can be solved by finding $a$ with the law of cosines and one of the other angles with the law of sines.
(Added: For completeness, $A = 72^\circ$, $b = 2.61r$, and $c=r$. The law of cosines gives $a = \sqrt{b^2+c^2-2bc\cos A} = 2.49r$. Then $\frac{\sin A}{a} = \frac{\sin B}{b}$ implies $B = 86^\circ$. Lastly, $A+B+C = 180^\circ$ implies $C = 22^\circ$.)
The collection of triangles you are interested in have vertices of the form $\begin{equation*} \D = \A + \R(\f)\D_0 \tag{1} \end{equation*}$ where $\A = (A_x,A_y)$ is the given location of $A$, and where $\R(\f)$ is a rotation matrix. The transformation (1) is a counterclockwise rotation by the angle $\f$, followed by a shift so the point $A$ has the given coordinates. In components, $\begin{eqnarray*} A_x &=& A_x \\ A_y &=& A_y \\ B_x &=& A_x + c\cos A\cos\f - c\sin A\sin\f \\ &=& A_x + c\cos(A+\f) \\ B_y &=& A_y + c\cos A\sin\f + c\sin A\cos\f \\ &=& A_y + c\sin(A+\f) \\ C_x &=& A_x + b\cos \f \\ C_y &=& A_y + b\sin \f. \end{eqnarray*}$
Below we plot the triangle before rotation and translation in black. (We set $r = 1$ in the figure.) The dotted triangle has been rotated counterclockwise by $\f = 30^\circ$, and then translated so the new location of point $A$ is $(2,1)$. For reference,
$\begin{eqnarray*} A_x &=& 2 \\ A_y &=& 1 \\ c &=& r = 1 \\ b &=& 2.61 \\ A &=& 72^\circ \\ \f &=& 30^\circ. \end{eqnarray*}$
