Let $\{f_n\}_{n\in \mathbb{N}}$ be a sequence of measurable functions on a measure space and $f$ measurable. Assume the measure space $X$ has finite measure. If $f_n$ converges to $f$ in $L^{\infty}$-norm , then $f_n$ converges to $f$ in $L^{1}$-norm.
This is my approach:
We know $||f_n-f||_{\infty} \to 0 $ and by definition $||f_n-f||_{\infty} =\inf\{M\geq 0: |f_n-f|\leq M \}.$ Then \begin{align} ||f_n-f||_1\ &=\int |f_n-f| dm\ &\leq \int|f_n|dm+\int|f|dm\ \end{align}
I don't know how to proceed after that, any help would be appreciated.