2
$\begingroup$

Could someone help me through this problem?

Let C be an arc of the circle $|z|=R$, with $R>1$ of angle $\frac{\pi}{3}$.

Show that $\left|\displaystyle\int_{C} \frac{1}{z^{3}+1}\, dz\right|\leq \dfrac{\pi}{3}\left(\dfrac{R}{R^{3}-1}\right)$

and deduce $\lim\limits_{R \to{+}\infty}{\displaystyle\int_{C} \frac{1}{z^{3}+1}\, dz}$

1 Answers 1

2

Hint: For any contour $\Gamma$ one has that

$\left|\int_\Gamma f(z)\;dz\right|\leqslant \|f\|_\infty|\Gamma|$

Where $|\Gamma|$ is the arc-length of $\gamma$.

  • 1
    As$a$supplement to this hint, for any complex $a$ and $b$ one has $|a - b| \geq ||a| - |b||$. So in particular, if |z| = R > 1, putting $a = z^3$ and $b = -1$ one deduces that $|z^3 + 1| \geq R^3 - 1$.2012-04-26