Given the definition of cos function through the exponential function, how can we prove rigorously that for real values of $z$ $\cos(z)=\operatorname{Re}(\exp(iz))$?
Proving $\cos (z)$ is real for real values of $z$
0
$\begingroup$
complex-analysis
-
1Prove first that $\mathrm{Re}(z) = (z + \overline{z})/2$ for any complex number $z$. – 2012-11-15
1 Answers
3
Notice that $\overline{e^z} =e^{\overline{z}}$. Hence for $z\in \mathbb{R}$, $\text{cos}(z) = \frac{e^{iz}+e^{-iz}}{2} = \frac{e^{iz}+e^{\overline{iz}}}{2} = \frac{e^{iz}+\overline{e^{iz}}}{2} = \text{Re}(e^{iz})$