2
$\begingroup$

I would like to show that $ \sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{n^2-m^2}}\rightarrow_{m\rightarrow \infty}\frac{\pi}{2}$

Using integrals:

$ m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}} \leq \sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{n^2-m^2}} \leq m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}}+\frac{m}{(m+1)\sqrt{2m+1}}$

$ m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}} = \frac{\pi}{2}-\arctan \left(1+\frac{1}{m} \right)=\frac{\pi}{4}+o(1)$

The result I get is:

$ \sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{n^2-m^2}}\rightarrow_{m\rightarrow \infty}\frac{\pi}{4}$

Where did I go wrong?

  • 2
    The integral is arcsec. You seem to have used $\arctan$.2012-06-16

2 Answers 2

7

The initial inequality appears to be set up correctly so the problem may lie with your evaluation of that integral. The result comes much quicker via Riemann Sums:

$\sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{n^2-m^2}}= \frac{1}{m} \sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{(n/m)^2-1}} \to \int^{\infty}_1 \frac{1}{x\sqrt{x^2-1} } dx = \sec^{-1} x \bigg|^{\infty}_1= \frac{\pi}{2}.$

  • 0
    Thank you very much Ragib Zaman!2012-06-16
1

Use this and think about

$ m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}} \leq \sum_{n=m+1}^{\infty} \frac{m}{n\sqrt{n^2-m^2}} \leq m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}}+\frac{m}{(m+1)\sqrt{2m+1}}$

$ m\int_{m+1}^{\infty} \frac{\mathrm dx}{x \sqrt{x^2-m^2}} = \frac{\pi}{2}-\arctan \left(1+\frac{1}{m} \right)=\frac{\pi}{4}+o(1)$