1
$\begingroup$

Am I right that conjugacy classes of group $A_n$ can be obtained from conjugacy classes of $S_n$ (which are in correspondence with Young diagrams). If class $C(h)=\{\sigma h {\sigma}^{-1}|\sigma\in S_n\}$ contains independent cycles of only odd length and length of all cycles are different then $C(h)$ in $A_n$ split to two classes $C_1(h)=\{\sigma h {\sigma}^{-1}|\sigma\in A_n\}$ $C_2(h)=\{\sigma \tau h {\tau}^{-1} {\sigma}^{-1}|\sigma\in A_n\}.$ I only interested in the answer.

Thanks a lot!

  • 4
    [This gives you the answer, and it is yes.](http://groupprops.subwiki.org/wiki/Splitting_criterion_for_conjugacy_classes_in_the_alternating_group)2012-04-18

0 Answers 0