From Wikipedia
In particular, topological vector spaces are uniform spaces and one can thus talk about completeness, uniform convergence and uniform continuity. (This implies that every Hausdorff topological vector space is completely regular.[2]) The vector space operations of addition and scalar multiplication are actually uniformly continuous. Because of this, every topological vector space can be completed and is thus a dense linear subspace of a complete topological vector space.
- I was wondering generally what some conditions are for a uniform space to be completed? I couldn't find relevant information on Wikipedia and likes.
- Similar question for a metric space?
- Because of what, can every topological vector space be completed?
Thanks and regards!