0
$\begingroup$

If A is matrix m by n and B is matrix n by r

The rank of matrix AB ought to be minimum of rank(A) or rank(B) how may i prove this? Thanks

  • 0
    On the other side, $\text{rank}(AB) \ge \text{rank}(A) + \text{rank}(B) - n$.2012-09-07

1 Answers 1

0

No. The product of two rank $1$ matrices may have rank $0$. $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$