1
$\begingroup$

$f,g$ are holomorphic in $D(0,1)$. $P_1,P_2,...,P_k$ are roots of $f$ in $D(0,1)$. their orders are $n_1,...,n_k$. Compute $\frac{1}{2\pi i}\oint_\gamma\frac{f'(z)}{f(z)}\cdot g(z)dz.$

Using residue theorem I have $ \frac{1}{2\pi i}\oint_\gamma\frac{f'(z)}{f(z)}\cdot g(z)dz=\sum_{j=1}^k\frac{1}{(n_j-1)!}\left(\frac{\partial}{\partial z}\right)^{n_j-1}\left[(z-P_j)^{n_j}\frac{f'(z)}{f(z)}g(z)\right]_{z=P_j}. $

But someone says $ \frac{1}{2\pi i}\oint_\gamma\frac{f'(z)}{f(z)}\cdot g(z)dz=\sum_{j=1}^kn_jg(P_j). $ I don't know how to get it. Any hint is appreciated.

  • 1
    Can I suggest you to give an _on topic_ title to the question?2012-11-30

1 Answers 1

2

You should use the argument principle: $\frac{1}{2\pi i}\oint_\gamma\frac{f'(z)}{f(z)}\cdot g(z)dz=\sum_{\mbox{zeroes of } f}n(\gamma,a)g(a)-\sum_{\mbox{poles of } f}n(\gamma,b)g(b)=\sum_{j=1}^kn_jg(P_j)$

  • 0
    Thank you very much, @Dennis. Your answer and link are very helpful.2012-11-30