1
$\begingroup$

Assume $A\in M_n(\mathbb{R})$ and $\det(A)\not=0$, is there existing two orthogonal matrix $O_1$,$O_2$ that satisfy $O_1AO_2=\begin{pmatrix}\lambda_1 & & & \cr & \lambda_2 & & \cr & & \dots & \cr & & & \lambda_n\end{pmatrix}$ where $\lambda_i>0$

how to prove?

  • 1
    See [SVD](http://en.wikipedia.org/wiki/Singular_value_decomposition)2012-11-16

1 Answers 1

1

This is a special case of the Singular Value Decomposition.