I'm trying to figure out how to solve this problem:
$\frac{d}{dt} \arcsin(\sqrt{2t})$
Wolfram Alpha gives me the following answer:
$ \frac{1}{\sqrt{2 - 4t}\sqrt{t}} $
Here is what I've gotten:
$y = \arcsin{\sqrt{2t}}$ If $u = (2t)^{1/2}$ then $u' = \frac{1}{2} 2 t^{-1/2}$ therefore:
$\frac{dy}{dt} = \frac{1}{\sqrt{1 - 2t}} \cdot \frac{1}{2 \sqrt{2t}}$
Any Help?