Let $C_G(x)$ be the centralizer of $x$, $G=D_{2p}$ with $2p$ elements the dihedral group and $C_p$ the cyclic group. I'm looking for an element $x\in G$, that does NOT hold the equation $C_G(x \bmod C_p ) = C_G(x) C_p $ Can anyone help me please?
centralizer of dihedral group
-
0Great, thank you very much! – 2012-04-19
1 Answers
Let $D_{2n} = \langle r,s\mid r^n = s^2 = 1,\ sr=r^{-1}s\rangle.$
We have, with $0\leq i,t\lt n$, $0\leq j,k \lt 2$, $(r^is^j)(r^ts^k) = \left\{\begin{array}{cc}r^{(i-t)\bmod n}s^{(j+k)\bmod 2}&\text{if }j=1\\ r^{(i+t)\bmod n}s^{(j+k)\bmod 2}&\text{if }j=0.\end{array}\right.$ So:
- If $j=k=0$, then $r^ir^t = r^tr^i$.
- If $j=0$, $k=1$, then $r^i(r^ts) = (r^ts)r^i$ if and only if $t-i\equiv t+i\pmod{n}$, if and only if $2i\equiv 0\pmod{n}$, if and only if $i=0$ or $n$ is even and $i=n/2$.
- If $k=1$, $j=0$, then $(r^is) r^t = r^t(r^is)$ if and only if $i-t\equiv i+t\pmod{n}$, if and only if $2t\equiv 0\pmod{n}$, if and only if $t=0$, or $n$ is even and $t=n/2$.
- If $j=k=1$, then $(r^is)(r^ts) = (r^ts)(r^is)$ if and only if $i-t\equiv t-i\pmod{n}$, if and only if $2t\equiv 2i\pmod{n}$, if and only if $i\equiv t\pmod{n/\gcd(n,2)}$.
So: since you are working with $n=p$ an odd prime, we have:
If $i\neq 0$, $C_G(r^i) = \langle r\rangle$. All these elements work: $C_G(r^i) = C_p$, $r^i\bmod C_p = C_p$, $C_{G/C_p}(r^i\bmod C_p) = C_{G/C_p}(C_p) = G/C_p$, but $C_G(r^i)C_p$ is the trivial element of $G/C_p$.
$C_G(s) = \langle s\rangle$. Here, $C_{G/C_p}(s\bmod C_p) = G/C_p$, but $C_G(s)C_p = \langle s\rangle C_p = G/C_p$ as well.
If $i\neq 0$, $C_g(r^is) = \langle r^is\rangle$. Here $C_{G/C_p}(r^is\bmod C_p)=G/C_p$, and $C_{G}(s)C_p = \langle r^is\rangle C_p = G/C_p$ as well.
So any nontrivial power of $r$ will work.