1
$\begingroup$

By equating the sine-cosine and exponential Fourier series for the function $f$:

$f(x) = \sum_{n = 0}^\infty f_n \cdot e^{inx} = a_0 + \sum_{n=1}^{\infty} (a_n\cos(nx) + b_n\sin(nx))$

and using Euler's formula, how can we find the explicit relation between the coefficients $f_n$ and the $a_n$, $b_n$?

2 Answers 2

5

Note first that we have in the complex fourier series also negaitve $n$, that is $ f(x) = \sum_{n=-\infty}^\infty f_n \exp(inx) $ Now, by Euler $\exp(inx) = \cos(nx) + i\sin(nx)$. Now $\cos$ is even and $\sin$ is odd, so we have for $n\in \mathbb N$: \begin{align*} f_n\exp(inx) + f_{-n}\exp(-inx) &= f_n\cos(nx) + f_{-n}\cos(-nx) + i\bigl(f_n\sin(nx) + f_{-n}\sin(-nx)\bigr)\\ &= (f_n + f_{-n})\cos(nx) + i(f_n - f_{-n})\sin(nx) \end{align*} So we have $ f(x) = f_0 + \sum_{n=1}^\infty \bigl((f_n+f_{-n})\cos(nx) + i(f_n-f_{-n})\sin(nx)\bigr) $ Equating coefficients yields \begin{align*} a_0 &= f_0\\ a_n &= f_n + f_{-n} \qquad n \ge 1\\ b_n &= i\bigl(f_n - f_{-n}\bigr) \end{align*}

1

We have the following trigonometric identities: $ \cos(nx) = \frac{e^{inx} + e^{-inx}}{2}, \quad \sin(nx) = \frac{e^{inx} - e^{inx}}{2i}$ From this, it follows that $ a_0 = f_0, \, a_n = f_n + f_{-n}, \, b_n = i(f_n - f_{-n})$

EDIT: I have noticed that your formula in your question is wrong. In the exponential Fourier series, you must sum $n$ over all integers, not just non-negative.

  • 0
    Sorry, I had a silly mistake, which I fixed.2012-11-17