0
$\begingroup$

I need to find an infinitely differentiable function from $\mathbb{R}$ to $\mathbb{R}$ which is zero for all negative values and nonzero fo all positive values.

Thank you in advance

  • 0
    A standard example is $f(x)=e^{-1/x}$ if x>0 and $f(x)=0$ otherwise.2012-10-31

1 Answers 1

1

$f(x)=\left\{\begin{array}{rcl} 0 &\mbox{if} & x\leq 0 \\ \exp\left(-\frac{1}{x^2}\right)&\mbox{if}&x>0\end{array}\right.$ is a good candidate. For any $n\in\mathbb{N}$ we have: $\frac{d^n}{dx^n}\exp\left(-1/x^2\right) = p(1/x) \exp\left(-1/x^2\right)$ where $p$ is a polynomial, so: $\lim_{x\to 0^+} \frac{d^n}{dx^n}\exp\left(-1/x^2\right) = \lim_{z\to +\infty} p(z)\,e^{-z^2} = 0.$

  • 0
    @user43418: See http://en.wikipedia.org/wiki/Non-analytic_smooth_function2012-10-31