Plase take a look here.
If $ y = \Bigl( \dfrac{x^2+1}{x^2-1} \Bigr)^{1/4} $
\begin{eqnarray} y'&=& \dfrac{1}{4} \Bigl( \dfrac{x^2+1}{x^2-1} \Bigr)^{-3/4} \left \{ \dfrac{2x(x^2-1) - 2x(x^2+1) }{(x^2-1)^2} \right \}\\ &=& \Bigl( \dfrac{x^2+1}{x^2-1} \Bigr)^{-3/4} \dfrac{-x}{(x^2-1)^2}. \end{eqnarray} By the other hand, we have \begin{equation} \log y = \dfrac{1}{4} \left \{ \log (x^2+1) - \log (x^2-1) \right \} \end{equation} Then, \begin{eqnarray} \dfrac{dy}{dx} &=& y \dfrac{1}{4} \left \{ \dfrac{2x}{(x^2+1)} -\dfrac{ 2x}{(x^2-1)} \right \} \\ &=& \dfrac{1}{4} \dfrac{x^2+1}{x^2-1} \cdot 2x \dfrac{(x^2-1) - (x^2+1)}{(x^2+1)(x^2-1)} \\ &=& \dfrac{x^2+1}{x^2-1} \dfrac{-x}{(x^2+1)(x^2-1)} \\ &=& \dfrac{-x}{(x^2-1)^2}. \end{eqnarray} But this implies, \begin{equation} \dfrac{-x}{(x^2-1)^2} = \Bigl( \dfrac{x^2+1}{x^2-1} \Bigr)^{-3/4} \dfrac{-x}{(x^2-1)^2}. \end{equation} Where is the mistake?