I was wondering if there is a continuous function such that $f(f(x)) = xf(x)$ for every positive number $x$.
How to find the function $f$ given $f(f(x)) = xf(x)$?
-
0At the invertible places, the equation also reads $f(x)=x\cdot f^{-1}(x)\ $. – 2012-09-30
3 Answers
Sure. $ f(x) = x^{\frac{1 + \sqrt 5}{2}} $
-
0In fact your solution is my solution that take $C_2(t)=0$ and thus should be not enough general. – 2012-10-01
This is not yet a full answer for the proof, but possibly it is a good step to one. I also think that the problem is not more than a standard exercise in some textbook, but since there is not yet a more qualified answer here, I'll do some naive try so far...
To save notation, let#s write the h'th iterate $\underset{h \text{ times }}{\underbrace {f(...f(f(x)))}}$ as $x_h$ and its p'th power as $x_h^p$ where we understand, that the superscript gets evalauted after the subscript.
Then we can state the sequence:
$ x = x_{-2} \cdot x_{-1} \\ x = x_{-4} \cdot x_{-3}^2 \cdot x_{-2} \\ x = x_{-6} \cdot x_{-5}^3 \cdot x_{-4}^3 \cdot x_{-3} \\ x = x_{-8} \cdot x_{-7}^4 \cdot x_{-6}^6 \cdot x_{-5}^4\cdot x_{-4} \\ \cdots $ We observe, that the exponents are the binomial coefficients if powers of 2 $(=(1+1))$ are expanded. Now the idea is, to hope, that we can introduce a limit and that we can assume, that in the limit the difference between the iterates become insignificant below some epsilon, such that we can write $ x = \lim (x_{-2h})^{2^h} $ If we assume, that $x_{-2h}
In fact this belongs to a functional equation of the form http://eqworld.ipmnet.ru/en/solutions/fe/fe2315.pdf.
Let $\begin{cases}x=u(t)\\f=u(t+1)\end{cases}$ ,
Then $u(t+2)=u(t)u(t+1)$
Let $u(t)=e^{v(t)}$ ,
Then $e^{v(t+2)}=e^{v(t)}e^{v(t+1)}$
$e^{v(t+2)}=e^{v(t)+v(t+1)}$
$v(t+2)=v(t)+v(t+1)+2n\pi i$ , $\forall n\in\mathbb{Z}$
$v(t+2)-v(t+1)-v(t)=2n\pi i$ , $\forall n\in\mathbb{Z}$
Let $v(t)=v_c(t)+A$ ,
Then $v_c(t+2)+A-(v_c(t+1)+A)-(v_c(t)+A)=2n\pi i$
$v_c(t+2)-v_c(t+1)-v_c(t)-A=2n\pi i$
$\therefore A=-2n\pi i$
For $v_c(t+2)-v_c(t+1)-v_c(t)=0$ ,
$v_c(t)=C_1(t)\left(\dfrac{1+\sqrt{5}}{2}\right)^t+C_2(t)\left(\dfrac{1-\sqrt{5}}{2}\right)^t$ , where $C_1(t)$ and $C_2(t)$ are arbitrary periodic functions with unit period
$\therefore v(t)=C_1(t)\left(\dfrac{1+\sqrt{5}}{2}\right)^t+C_2(t)\left(\dfrac{1-\sqrt{5}}{2}\right)^t-2n\pi i$ , $\forall n\in\mathbb{Z}$ , where $C_1(t)$ and $C_2(t)$ are arbitrary periodic functions with unit period
Hence $u(t)=e^{C_1(t)\left(\frac{1+\sqrt{5}}{2}\right)^t+C_2(t)\left(\frac{1-\sqrt{5}}{2}\right)^t-2n\pi i}$ , $\forall n\in\mathbb{Z}$ , where $C_1(t)$ and $C_2(t)$ are arbitrary periodic functions with unit period
$u(t)=e^{C_1(t)\left(\frac{1+\sqrt{5}}{2}\right)^t}e^{C_2(t)\left(\frac{1-\sqrt{5}}{2}\right)^t}$ , where $C_1(t)$ and $C_2(t)$ are arbitrary periodic functions with unit period
$\therefore\begin{cases}x=e^{C_1(t)\left(\frac{1+\sqrt{5}}{2}\right)^t}e^{C_2(t)\left(\frac{1-\sqrt{5}}{2}\right)^t}\\f=e^{C_1(t)\left(\frac{1+\sqrt{5}}{2}\right)^{t+1}}e^{C_2(t)\left(\frac{1-\sqrt{5}}{2}\right)^{t+1}}\end{cases}$ , where $C_1(t)$ and $C_2(t)$ are arbitrary periodic functions with unit period
-
0@Geokal: It means the functional equation holds for every element of the image of $f$. If $f(x)$ is allowed to be negative, but also allow $f(f(x)) \neq x f(x)$ for negative $x$, things become trickier. – 2012-10-01