Note that if $u=re^{i\theta}$ is a complex number, then $u^n = (re^{i\theta})^n = r^n(e^{i\theta})^n = r^n e^{in\theta}.$ So if $\theta=0$, then $u^n = r^n$. (This is sometimes known as DeMoivre's Forumla)
In particular, if $s = re^{i\theta}$ and $\theta=0$, then $s^n = r^n$.
Added. If $\sigma=0$, then $s$ is purely imaginary, $r=|j|$ and $\theta=\pi/2$ if $j\gt0$ and $\theta=-\pi/2$ if $\lt 0$. If $n$ is a multiple of $4$, then $s^n = r^n$; if $n=4k+2$, then $s^n=-r^n$; if $n=4k+1$, then $s^n=\mathrm{sgn}(j)ir^n$, and if $n=4k+3$ then $s^n=-\mathrm{sgn}(j)ir^n$.