Here is an animation I made that might help. The left is a plot of $(\cos(t),\sin(t),\sin(5t))$ and the right is a plot of $\sin(5t)$.

For the case of $(\cos(t),\sin(t),\ln(t))$, here is the corresponding animation:

As a sanity check, note that in each animation, you can see that the point on the circle makes its first full revolution as $t=2\pi\approx 6.28$.
Mathematica code for my (and anyone else's) future reference:
size = 1.5 slices = 150 Slice[t_,z_] := {Show[ParametricPlot3D[{Cos[2 Pi*s], Sin[2 Pi*s], z}, {s, 0, 1}, PlotRange -> {{-size, size}, {-size, size}, {-size, size}}], Graphics3D[{PointSize[Large], Point[{Cos[t], Sin[t], z}]}]], Show[Plot[Sin[5 s], {s, 0, 2 Pi}, Ticks -> {{0, 2 Pi/5, 4 Pi/5, 6 Pi/5, 8 Pi/5, 2 Pi}}], Graphics[{PointSize[Large], Point[{t, Sin[5 t]}]}]]} NewSlice[t_,z_] := {Show[ParametricPlot3D[{Cos[2 Pi*s], Sin[2 Pi*s], z}, {s, 0, 1}, PlotRange -> {{-size, size}, {-size, size}, {-2, 2}}], Graphics3D[{PointSize[Large], Point[{Cos[t], Sin[t], z}]}]], Show[Plot[Log[s], {s, 0.5, 8}, PlotRange -> {{0, 8}, {-1, 2}}, AspectRatio -> 1/2], Graphics[{PointSize[Large], Point[{t, Log[t]}]}]]} Export["sin.gif", Table[Slice[2 Pi*t/slices, Sin[5*2 Pi*t/slices]], {t, 0,slices}], "DisplayDurations" -> 0.15] Export["ln.gif",Table[NewSlice[t, Log[t]], {t, 0.5, 7.5, 7/slices}], "DisplayDurations" -> 0.15]