I know that $f(x) = o(g(x))$ for $x \to \infty $ if (and only if) $\lim_{x \to \infty}\frac{f(x)}{g(x)}=0$ Which means than $f(x)$ has a order of growth less than that of $g(x)$.
1) I'm still confused if $x \to 0$. Because in this case $x^5 = o(x^2)$
2) Can someone list me the properties of little-o? For now, I know the following:
$f(x)*o(g(x) = o(f(x)*g(x))$
$o(f(x)) \pm o(f(x)) = o(f(x))$
Thank you!