1
$\begingroup$

So I have \begin{align*} x - 2y + z & = 0 \\ -2x + 4y - 2z & = 0 \\ x - 2y + z & = 0 \end{align*}

I know I need to find two eigenvectors for the eigenspace with eigenvalue 2 as I know the matrix is diagonalizable and I've already found the eigenvector for the eigenspace with eigenvalue 8...

I can't seem to solve this. Please help!

  • 0
    Yeah, I guess you meant(1,-2,1) in the first part of the WA command? Yeah, I get it when y = 0, z = -x and that's a solution? And if z=0, x=2y and if x=0, z = 2y?2012-12-02

1 Answers 1

2

$ \begin{align*} x - 2y + z & = 0 \\ -2x + 4y - 2z & = 0 \\ x - 2y + z & = 0 \end{align*} $

$ \implies \begin{align*} x - 2y + z & = 0 \\ 0 & = 0 \\ 0 & = 0. \end{align*}$

So you have two free variables. Assuming $y=t, z=s,\, t,s\in \mathbb{R} $, then the solution is given by

$ \begin{bmatrix} x \\ y\\ z\end{bmatrix} = \begin{bmatrix} 2t-s \\ t\\ s\end{bmatrix} = \begin{bmatrix} 2t \\ t\\ 0\end{bmatrix} + \begin{bmatrix} -s \\ 0\\ s\end{bmatrix} = t\begin{bmatrix} 2 \\ 1\\ 0\end{bmatrix} + s\begin{bmatrix} -1 \\ 0\\ 1\end{bmatrix}.$

Can you see the two eigenvectors now?