10
$\begingroup$

I came across this question in a calculus book.

Is it possible to prove that an ordered field must be infinite? Also - does this mean that there is only one such field?

Thanks

  • 0
    Spivak's book? ${}$2012-06-10

3 Answers 3

22

Recall that in an ordered field we have:

  1. $0<1$;
  2. $a.

Suppose that $F$ is an ordered field of characteristic $p$, then we have in $F$ that $\underbrace{1+\ldots+1}_{p\text{ times}} = 0$

Therefore: $0<1<1+1<\ldots<\underbrace{1+\ldots+1}_{p\text{ times}} = 0$

Contradiction! Therefore the characteristic of $F$ is $0$ and therefore it is infinite, since it contains a copy of $\mathbb Q$.


Few fun facts on the characteristic of a field:

Definition: The characteristic of a field $F$ is the least number $n$ such that $\underbrace{1+\ldots+1}_{n\text{ times}}=0$ if it exists, and $0$ otherwise.

Exercises:

  1. If a field has a positive characteristic $n$ then $n$ is a prime number.
  2. If $F$ is a finite field then its characteristic is non-zero (Hint: the function $x\mapsto x+1$ is injective, start with $0$ and iterate it $|F|$ many times and you necessarily got $0$ again.)
  3. If $F$ is finite and $p$ is its characteristic then $p$ divides $|F|$.
  • 0
    @jmi4: By induction show it contains a copy of $\mathbb N$, therefore a copy of $\mathbb Z$ (additive inverses) and thus a copy of $\mathbb Q$.2012-08-12
5

An ordered field must be infinite. Notice that each field has a subset of numbers that behave like the natural numbers, with $0<1<1+1<1+1+1\dots$

However, not every ordered field is isomorphic to all other ordered fields. Notice that both the rational numbers and real numbers are ordered fields.

3

Hint $\ $ Linearly ordered groups are torsion-free: $\rm\: 0\ne n\in \mathbb N,$ $\rm\:g>0 \:\Rightarrow\: n\cdot g = g +\cdots + g > 0,\:$ since positives are closed under addition. Conversely, a torsion-free commutative group can be linearly ordered (Levi 1942).

  • 0
    Even more: a lattice ordered (nor necessarily commutative) $g$roup is always torsion $f$ree.2012-07-29