1
$\begingroup$

Suppose $f\in L^p$, $f=f \chi_E+f\chi_{\tilde E}$ where $E=\{x:|f|> 1\}$ and $E$ has finite measure. Find an inequality for $\|f\|_p$ in terms of $\|f \chi_E\|_r$ and $\|f \chi_{\tilde E}\|_s$ where $r\le p$ and $s\ge p$. Assume the Lebesgue measure on $\mathbb R$ and ${\tilde E}=\mathbb R \setminus E$.

Since $E$ has finite measure, by Jensen's inequality, $\|f\chi_E\|_r \le k \|f\|_p$ for all $r\le p$ and $k=m(E)^{{1 \over r} - {1 \over p}}$. Since $|f\chi_{\tilde E}|\le 1$ and $s \ge p$, $\int |f\chi_{\tilde E}|^s \le \int |f|^p$ for all $s \ge p$. From this I don't see how to relate $\|f \chi_{\tilde E}\|_s$ and $\|f\|_p$.

  • 0
    @DavideGiraudo I think any kind of inequality will do as long as it involves $\|f \chi_E \|_r$, $\|f \chi_{\tilde E}\|_s$ and $\|f\|_p$.2012-04-10

1 Answers 1

2

We have, if $r\leq p$ and $|f(x)|\geq 1$, that $|f(x)|^p=\exp(p\log |f(x)|)\geq \exp(r\log |f(x)|)=|f(x)|^r,$ and as $p\leq s$, if $|f(x)<1$, then $|f(x)|^p=\exp(p\log |f(x)|)\geq |f(x)|^s.$ So we got the following inequalities: $|f|^p\chi_E\geq |f|^r\chi_E$ and $|f|^p\chi_{E^c}\geq |f|^s\chi_{E^c}$. This gives $\lVert f\rVert_p^p\geq \lVert f\chi_E\rVert_r^r+\lVert f\chi_{E^c}\rVert_s^s.$