Find all differentiable functions $f \colon (0,\infty) \to \mathbb R$ for which there is a positive real number $k$ such that: $ f(x) \cdot f'(k/x) = x, \qquad\text{for all }x > 0. $
Finding all differentiable functions with a certain property
1
$\begingroup$
calculus
1 Answers
4
In equation $ f(x)f'\left(\frac{k}{x}\right)=x $ we make change of variables $k/x\to x$ then for all $x>0$ we get $ f\left(\frac{k}{x}\right)f'(x)=\frac{k}{x} $ Hence $ \left(f(x)f\left(\frac{k}{x}\right)\right)'=f'(x)f\left(\frac{k}{x}\right)+f(x)f'\left(\frac{k}{x}\right)\frac{-k}{x^2}=\frac{k}{x}+x\frac{-k}{x^2}=0 $ The rest is clear.
-
0@JohnChang You made two mistakes. The first: you must arrive at $f'(k/x)/f(k/x) = x/C$. The second: even if there were not the first misatke the step from $f'(k/x)/f(k/x) = C/x$ to $\ln(f(k/x)) = Clnx + D$ is incorrect. You need to make change $k/x\to x$ in $f'(k/x)/f(k/x) = C/x$. – 2012-11-13