Find if the series converges or diverges, $a_n=\sum_{n=1}^\infty\frac{1}{1+\ln (n)}$. Comparing it with another series $b_n=\frac{1}{\ln(n)}$. Dividing both the series and taking limits, we get $\lim_{n\to\infty}\frac{\ln(n)}{1+\ln(n)}$. Since it is the $\infty/\infty$ form, applying H'opitals rule, we get, $\lim_{n\to\infty}\frac{1/n}{1/n}=1$. Now, $\lim_{n\to\infty}\frac{1}{ln(n)}=0, \Rightarrow b_n$ converges $\Rightarrow a_n$ converges. But the answer is, Comparing it with $\frac{1}{n}$(divergent harmonic series) we get,$\lim_{n\to\infty}\frac{n}{1+\ln(n)}=\lim_{n\to\infty}\frac{1}{1/n}=\lim_{n\to\infty}n=\infty \Rightarrow a_n $ diverges, what is wrong with my comparison?
Find if the series converges or diverges
1
$\begingroup$
calculus
sequences-and-series
-
0Proof that $\sum_2^\infty$ $1\over\log_bn$ diverges: \log_bn < n(at least for n > some value) so $1\over\log_bn $>$1\over{n}$ and $\sum$$1\over{n}$ is divergent so $\sum$$1\over\log_bn$ is divergent – 2013-04-26
1 Answers
3
Your mistake is when you say that: $\lim_{x \to \infty} b_n = 0$ implies that $\sum b_n$ is convergent. That doesn't hold in general.
Note further that $n > \ln(n)$ so $\frac{1}{n} < \frac{1}{\ln(n)}$. So by comparison $\sum \frac{1}{\ln(n)}$ is divergent.
So as mentioned in the comment above, your comparison is fine, the conclusion is just that the series is divergent.