Let $L(n,k)\!\in\!\mathbb{N}_0$ be the Lah numbers. We know that they satisfy $L(n,k)=L(n\!-\!1,k\!-\!1)+(n\!+\!k\!-\!1)L(n\!-\!1,k)$ for all $n,k\!\in\!\mathbb{Z}$. How can I prove $\sum_nL(n,k)\frac{x^n}{n!}=\frac{1}{k!}\Big(\frac{x}{1-x}\Big)^k$ without using the explicit formula $L(n,k)\!=\!\frac{n!}{k!}\binom{n-1}{k-1}$?
Attempt 1: $\text{LHS}=\sum_nL(n\!-\!1,k\!-\!1)\frac{x^n}{n!}+\sum_n(n\!+\!k\!-\!1)L(n\!-\!1,k)\frac{x^n}{n!}\overset{i.h.}{=}?$
Attempt 2: $\text{RHS}\overset{i.h.}{=}$ $\frac{1}{k}\frac{x}{1-x}\sum_nL(n,k\!-\!1)\frac{x^n}{n!}=$ $\frac{1}{k}\frac{x}{1-x}\sum_nL(n\!-\!1,k\!-\!1)\frac{x^{n-1}}{(n-1)!}=$
$\frac{1}{k(1-x)}\sum_nn\big(L(n,k)-(n\!+\!k\!-\!1)L(n\!-\!1,k)\big)\frac{x^n}{n!}=?$