How can I evaluate this definite integral
$ \int_0^\infty \frac{\operatorname{Ai}^2(z+a_n)}{z^2}dz $ where $a_n$ are the zeroes of the Airy function.
How can I evaluate this definite integral
$ \int_0^\infty \frac{\operatorname{Ai}^2(z+a_n)}{z^2}dz $ where $a_n$ are the zeroes of the Airy function.