My text says, regarding combinatorial probability, "The number of outcomes associated with any problem involving the rolling of n six-sided dice is $6^n$."
I know that in combinatorial probability $P(A)=m/n$ where $m$ is the number of ways $A$ can happen and $n$ is the number of ways to perform the operation in question. But since we must be consistent in numerator and denominator with respect to order, wouldn't the number in the denominator depend on the whether the example I am in respects order? I.e, in any problem involving rolling $n$ dice, would I expect $P=X/6^n$ regardless of context?