0
$\begingroup$

Using the following Seifert surface of the cinquefoil knot

enter image description here

I get the following Seifert matrix (of linking numbers): $ S = \begin{pmatrix}- 1 &1 &0 &0 \\ 0 &-1 &1& 0 \\ 0& 0 &-1& 1\\ 0 &0 &0& -1\end{pmatrix}$

I compute the matrix of the corresponding bilinear form $ I = S^T - S = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

and a corresponding symplectic basis $e_1 = \begin{pmatrix}0 \\0 \\0 \\1 \end{pmatrix}$ $f_1 = \begin{pmatrix} 0 \\1 \\1 \\0\end{pmatrix}$

$f_2 = \begin{pmatrix}1 \\0 \\0 \\0\end{pmatrix}$ $e_2 = \begin{pmatrix}1 \\1 \\1 \\1\end{pmatrix}$

And I get $\mathrm{Arf}(K) = e_1^T S e_1 f_1^T S f_1 + e_2^T S e_2 f_2^T S f_2 = 2 \equiv_2 0 \neq 1$

Where is my mistake? Thanks for your help.

  • 0
    It's knot a symplectic basis :,(2012-09-10

1 Answers 1

0

For the matrices $I$ and $S$ the following is a symplectic basis

$ e_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$

$ f_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$

$e_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ $f_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$

yielding

$ \mathrm{Arf}(K) = e_1^T S e_1 f_1^T S f_1 + e_2^T S e_2 f_2^T S f_2 = 9 \equiv_2 1$ as it should.