2
$\begingroup$

let $V=\mathbb{R}^4$ and let $W=\langle\begin{bmatrix}1&1&0&0\end{bmatrix}^t,\begin{bmatrix}1&0&1&0\end{bmatrix}^t\rangle$. we need to find the subspaces $U$ & $T$ such that $ V=W\bigoplus U$ & $V=W \bigoplus T$ but $U\ne T$.

  • 0
    For example, can you find one space $U$ such that $V=W\oplus U$?2012-10-13

1 Answers 1

4

HINT: Look at a simpler problem first. Let $X=\{\langle x,0\rangle:x\in\Bbb R\}$, a subspace of $\Bbb R^2$. Can you find subspaces $V$ and $W$ of $\Bbb R^2$ such that $\Bbb R^2=X\oplus V=X\oplus W$, but $V\ne W$?