1
$\begingroup$

Let x be real valued random variable taking values on $a_1,\ldots, a_n$. Let $\Pr(x=a_i)=p_i$. Let $f$ be real valued function defined on $a_1, \ldots, a_n$

It is known that $ E(f(x))=\sum_{i=1}^nf(a_i)p_i. $

Would be the same formula true for $E(|f(x)|)$, i. e. $ E(|f(x)|)=\sum_{i=1}^n|f(a_i)|p_i? $

Thank you.

  • 1
    Yes. As $|f|$ is "a real valued function, defined on ..." .. just apply your formula to $|f|$.2012-07-10

1 Answers 1

1

Let $ g(x) := |f(x)| $ be defined on $ a_1, \dots, a_n $. The composition of two real valued functions is a real valued function.

Now computing $E(g(x))$...