3
$\begingroup$

SORRY, I made a typo. it should be $D \not= 0$,not $D>0$.

It is a bit like Vandermonde determinant $D=$ $\begin{vmatrix} 1 & 2 & 3&\cdots &2008&2009 & 2010 & 2011\\ 2^2 & 3^2 &4^2& \cdots&2009^2&2010^2 & 2011^2 &2012^2 \\ 3^3 & 4^3 &5^3&\cdots &2010^3&2011^3&2012^3 &2012^3 \\ \cdots &\cdots &\cdots &\cdots&\cdots&\cdots &\cdots &\cdots\\ k^k&(k+1)^k&\cdots&2011^k&2012^k&\cdots&2012^k&2012^k\\ \cdots &\cdots &\cdots &\cdots &\cdots &\cdots\\ 2010^{2010}&2011^{2010}&2012^{2010}&\cdots&2012^{2010}&2012^{2010}&2012^{2010}&2012^{2010}\\ 2011^{2011} &2012^{2011} &2012^{2011}&\cdots &2012^{2011} &2012^{2011} &2012^{2011}&2012^{2011} \end{vmatrix}$

Is the above determinant $D\not= 0$?

the exam is only need to show $D \not= 0$,maybe figure out $D$ is impossible. and I edit it, maybe more clearly.

thanks for comments and answer.

FIRST PAGE OF EXAM:

enter image description here

  • 0
    OK,it is a graduate entrance exam of Peking university in 2012. but there is no official version. and there is a link to its original which is recalled by candidate:http://www.math.org.cn/forum.php?mod=viewthread&tid=23291&extra=&page=1. you can find it from the PDF file. :)2012-11-23

2 Answers 2

4

I am posting this as an answer since it is too long for a comment. In general, note that $A_{n+1} = \begin{bmatrix} A_n & u_n\\ v_n & (2n+3)^{n+2}\end{bmatrix}$ where $u_n = \begin{bmatrix}(n+2)\\(n+3)^2\\ (n+4)^3\\ \vdots \\ (2n+2)^{n+1} \end{bmatrix}$ $v_n = \begin{bmatrix} (n+2)^{n+2} & (n+3)^{n+2} & (n+3)^{n+2} & \cdots & (2n+1)^{n+2} & (2n+2)^{n+2}\end{bmatrix}$ and $A_0 = \begin{bmatrix} 1 \end{bmatrix}$. I computed the value of determinant for $A_k$ for $k=0$ to $k=5$ using MATLAB and below are the values.

$\det(A_0) = 1; \det(A_1) = 1; \det(A_2) = 4; \det(A_3) = 72; \det(A_4) = 6912; \det(A_5) = 4147200$ $\det(A_6) = 17915904000;$

Feeding this sequence in OEIS gave that a possible sequence is $\det(A_{n-1}) = (n-1)! \times \prod_{k=1}^{n-2} (n-k)!$ where $n \in \mathbb{Z}^+$. Once we have this, we can hope for a proof by induction.

  • 0
    maybe it <0. I used maxima to computer a similar determinant D_4=\begin{pmatrix}1 & 2 & 3 & 4\cr 2^2 & 3^2 & 4^2 & 5^2\cr 3^3 & 4^3 & 5^3 & 6^3\cr 4^4 & 5^4 & 6^4 & 6^4\end{pmatrix}<0, and when $n=2011$,$D_{2011}$ may <0. thank you2012-11-23
0

For the record, the first 20 items in the obvious sequence, computed using

f[n_] := Det[Table[If[i + j - 1 > n, n + 1, i + j - 1]^i, {i, 1, n}, {j, 1, n}]] 

in Mathematica, are

\begin{gather}\small 1 \\\small 1 \\\small -57 \\\small -49099 \\\small 820631141 \\\small 327729323411785 \\\small -3722810907570484463905 \\\small -1395732893854465247614690459535 \\\small 19654898955250800722122617078850379547649 \\\small 11654863933592492659392873622726534581699247698016601 \\\scriptsize -322373512908450688046702815032229983463944019597828165058661862873 \\\scriptsize -456322749650163764951140063242869266114020813743510155958815030863103530198278707 \\\scriptsize 359763590088436766228887856876796313253226027493473716114855323607493415839311215 63741918002361805 \\\scriptsize 170784854835456576916145215980211059998029046033398578352565914083160320685101869 469195969039220374230020741584750601 \\\scriptsize -52473397006405670917113840563365195251372913721092487498198489291680306518569632 237546150574105804810447098763276030563961357045407349377 \\\scriptsize -11161338095346579407742610541224509857161891767489700245561198039424133307461760 19001249905947908531883035800858849726377707025535086543207728368627630155179671 \\\tiny 175043317755348307253812637289721345473677623476953037216431178436787653927346563 419897174832441679689898012101336598764499805173923767791098038693711420817887509 1111661312135016606441 \\ \end{gather}

  • 0
    thank you. Will Jagy. I had modi$f$ied a typo. now I can ensure there is no translate error.2012-11-24