1
$\begingroup$

Let $G$ be a group, $R$ a commutative ring with $1$ and $ u \in \text{N}_{\text{U}(RG)}(G) $ with the following properties:

  1. $ 1 \in \text{supp}(u) $
  2. $ \text{supp}(u) \subseteq \Delta(G) $
  3. $ \text{conj}(u) = \text{id}_{G/\Delta^+(G)} $
  4. $ \text{conj}(u) \in \text{Aut}(G) $ has finite order

How can I show that $ G \cap \langle u \rangle = \{1\} $ ?

$ \Delta(G) = $ FC-Center of G
$ \Delta^+(G) = $ Tosion elements of $ \Delta(G) $

  • 0
    Then, in (1), it'd perhaps be a good idea to write $\,1_G\in supp(u)\,$ , to distinguish the ring and group units.2012-12-14

0 Answers 0