1
$\begingroup$

Let $F:A \to B$ map subsets of $\mathbb{R}^n$ with inverse $F^{-1}$.

Let $d(\cdot) = \text{det} \mathbf{D}F(\cdot)$ with $\mathbf{D}$ denoting the total derivative matrix.

Am I correct that $d \circ F^{-1} = \text{det} \mathbf{D}F(F^{-1}) = \text{det} \mathbf{D}\text{(Id)} = 1$.

I am not entirely sure of the what the definition of $d$ really means so I better ask this question. Thanks.

  • 0
    For each $a\in A$, $\det(\mathbf{D}F(a))$ is the determinant of the matrix $\mathbf{D}F(a)$. For me it does not make sense to evaluate $\mathbf{D}F(F^{-1})$.2012-12-23

1 Answers 1

2

No. The function $d\circ F^{-1}$ is $\mathbf DF\circ F^{-1}$, not $\mathbf D(F\circ F^{-1})$.

  • 0
    Thanks. Do you know any way to simplify $d \circ F^{-1}$.2012-12-23