1
$\begingroup$

Let $K_N$ the Fejer's kernel on $\mathbb{T}$. Let $l$ be a positive integer. Let $Q$ the function defined by $ Q(t)=K_N(lt). $ In Hewitt/Ross "Abstract Harmonic Analysis 2" page 438, I can read that if $1 we have $ ||Q||_{L_p}=||K_N||_{L_p}. $ Why?

1 Answers 1

2

In general, if you have a function $f$ on $\mathbb{T}$ and an integer $k$, $ \int_{\mathbb{T}}f(t)\,\mathrm{d}t=\int_{\mathbb{T}}f(kt)\,\mathrm{d}t $ The integral on the right is just $k$ copies of the integral on the left compressed $k$ times (so each copy has $1/k$ times the integral on the left).

$\hspace{5mm}$ enter image description here enter image description here