Let $V$ be a complex linear space of dimension $n$. Let $T \in End(V)$ such that $T$ is diagonalisable. Prove that each $T$-invariant subspace $W$ of $V$ has a complementary $T$-invariant subspace $W'$ such that $V= W \oplus W'$.
Note: Let $\{e_1,...e_n\}$ be the set of eigenvectors together with eigenspaces $V_{\lambda_1},...V_{\lambda_n}$ of $T$. It's sufficient to show that every $T$-invariant subspace $W$ must be a direct sum of eigenspaces, then it'll be trivial to find $W'$ (just take the rest eigenspaces not in the direct sum and glue them to $W$).. But how to prove $W$ is a direct sum of eigenspaces?