$3780=2^2\cdot3^3\cdot5\cdot7$
Any number that is not co-prime with $3780$ must be divisible by at lease one of $2,3,5,7$
Let us denote $t(n)=$ number of numbers$\le 6042$ divisible by $n$
$t(2)=\left\lfloor\frac{6042}2\right\rfloor=3021$
$t(3)=\left\lfloor\frac{6042}3\right\rfloor=2014$
$t(5)=\left\lfloor\frac{6042}5\right\rfloor=1208$
$t(7)=\left\lfloor\frac{6042}7\right\rfloor=863$
$t(6)=\left\lfloor\frac{6042}6\right\rfloor=1007$
Similarly, $t(30)=\left\lfloor\frac{6042}{30}\right\rfloor=201$
and $t(2\cdot 3\cdot 5\cdot 7)=\left\lfloor\frac{6042}{210}\right\rfloor=28$
The number of number not co-prime with $3780$
=$N=\sum t(i)-\sum t(i\cdot j)+\sum t(i\cdot j \cdot k)-t(i\cdot j\cdot k \cdot l)$ where $i,j,k,l \in (2,3,5,7)$ and no two are equal.
The number of number coprime with $3780$ is $6042-N$
Reference: Venn Diagram for 4 Sets