5
$\begingroup$

Some days ago I answered a question that asked to find

$\mathop {\lim }\limits_{x \to 0} {x^\alpha }\int\limits_x^1 {\frac{{f\left( t \right)}}{{{t^{\alpha + 1}}}}dt} $

given that $f$ is continuous in $[0,1]$

I proceeded as follows:

$\eqalign{ & t = x\cdot u \cr & dt = x\cdot du \cr} $

So this is produces:

$\mathop {\lim }\limits_{x \to 0} \int\limits_1^{\frac{1}{x}} {\frac{{f\left( {xu} \right)}}{{{u^{\alpha + 1}}}}du} $

I then thought: "Well, if $f$ is continuous in the closed interval, then it is also uniformly continuous, so I can assume

$\mathop {\lim }\limits_{x \to 0} \int\limits_1^{\frac{1}{x}} {\frac{{f\left( {xu} \right)}}{{{u^{\alpha + 1}}}}du} = f\left( 0 \right)\int\limits_1^\infty {\frac{{du}}{{{u^{\alpha + 1}}}}} = \frac{1}{\alpha }f\left( 0 \right)$

This turned out to be true. However, I wasn't very comfortable with such "move". So now I'm thinking, one can put

$\mathop {\lim }\limits_{x \to 0} \int\limits_1^{\frac{1}{x}} {\frac{{f\left( {xu} \right) - f\left( 0 \right)}}{{{u^{\alpha + 1}}}}du} + \mathop {\lim }\limits_{x \to 0} \int\limits_1^{\frac{1}{x}} {\frac{{f\left( 0 \right)}}{{{u^{\alpha + 1}}}}du} $

And then

$\left| {\int\limits_1^{\frac{1}{x}} {\frac{{f\left( {xu} \right) - f\left( 0 \right)}}{{{u^{\alpha + 1}}}}du} } \right| < \int\limits_1^{\frac{1}{x}} {\frac{{\left| {f\left( {xu} \right) - f\left( 0 \right)} \right|}}{{{u^{\alpha + 1}}}}du} < \epsilon \frac{{1 - {x^\alpha }}}{\alpha }$

However, this is still insufficient since I need to adress the behaviour of the upper limit too. Can someone show me how to adress both behaviours simultaneously?


Would this work?

Let $P$ be the statement that $\mathop {\lim }\limits_{x \to 0} \int\limits_1^{\frac{1}{x}} {\frac{{f\left( {xu} \right)}}{{{u^{\alpha + 1}}}}du} = \frac{{f\left( 0 \right)}}{\alpha }$

Then $P$ is true if and only if

$ \forall \epsilon > 0\exists \delta > 0$

Such that if $\left| x \right| < \delta $ then $ \left| {\int\limits_1^{\frac{1}{x}} {\frac{{f\left( {xu} \right)}}{{{u^{\alpha + 1}}}}du} - \frac{{f\left( 0 \right)}}{\alpha }} \right| < \epsilon $

But then

$\left| {\int\limits_1^{\frac{1}{x}} {\frac{{f\left( {xu} \right) - f\left( 0 \right)}}{{{u^{\alpha + 1}}}}du} + \int\limits_1^{\frac{1}{x}} {\frac{{f\left( 0 \right)}}{{{u^{\alpha + 1}}}}du - \frac{{f\left( 0 \right)}}{\alpha }} } \right| < $

$\left| {\int\limits_1^{\frac{1}{\delta }} {\frac{{f\left( {xu} \right) - f\left( 0 \right)}}{{{u^{\alpha + 1}}}}du} + \int\limits_1^{\frac{1}{\delta }} {\frac{{f\left( 0 \right)}}{{{u^{\alpha + 1}}}}du - \frac{{f\left( 0 \right)}}{\alpha }} } \right| \leqslant $

$\varepsilon \frac{{1 - {\delta ^\alpha }}}{\alpha } + f\left( 0 \right)\frac{{1 - {\delta ^\alpha }}}{\alpha } - \frac{{f\left( 0 \right)}}{\alpha } < $

And since

$\frac{{1 - {\delta ^\alpha }}}{\alpha } < \frac{1}{\alpha }$ $\epsilon \frac{{1 - {\delta ^\alpha }}}{\alpha } + f\left( 0 \right)\frac{{1 - {\delta ^\alpha }}}{\alpha } - \frac{{f\left( 0 \right)}}{\alpha } < \frac{\epsilon }{\alpha } < \epsilon $

  • 0
    I'm unfamiliar with Lebesgue's thoerem, or any measure theory topic although I do understand its motivations and some ideas, such as the distance function and the metric it induces in the set. But I'm very far away from that still (I'm reading this [book](http://www.amazon.com/Introduction-Topology-Third-Dover-Mathematics/dp/0486663523))2012-02-10

1 Answers 1

3

You can finish the proof cleanly if you split the integral in your last line to integrate separately over $[0,1/\sqrt x]$ and $[1/\sqrt x,1/x]$. For $x$ small enough, $|f(xu)-f(0)|<\epsilon\alpha/2$ for $0 since $xu\le\sqrt{x}$, and always $|f(xu)-f(0)|\le 2M$ where $M=\max_{0\le u\le 1}|f(u)|$. Then $ \left(\int_1^{1/\sqrt{x}}+\int_{1/\sqrt{x}}^{1/x} \right) \frac{|f(xu)-f(0)|}{u^{\alpha+1}}du \le \frac{\epsilon\alpha}2 \frac{1-x^{\alpha/2}}\alpha + 2M \frac{x^{\alpha/2}-x^\alpha}\alpha < \frac{\epsilon}2+ 2M\frac{x^{\alpha/2}}\alpha. $ Now if $x$ is small enough, $2Mx^{\alpha/2}<\epsilon\alpha/2$ and the whole integral is less than $\epsilon$. So indeed it vanishes in the limit $x\to0$ if $\alpha>0$.

  • 0
    I don't understand your remark. "argument you give is that it is not justifies to say that..." In my view, since $u$ varies from $1$ to $\dfrac{1}{x}$ then $f(xu)$ is at most $f(1)$ and at least $f(x)$, so it has upper bound $f(1)$ and tends to $f(0)$ as $x\to 0$.2012-02-20