I am assuming map means continuous function. Otherwise Michael Greinecker's answer gives a counterexample.
Existence:
Take any point $x_0 \in X$ and define inductively $x_{n+1} := T(x_n)$. Given $\epsilon>0$ and assuming $m>n>N$, we have $d(x_n,x_m) \leq \sum_{k=0}^{m-n-1} d(x_{n+k}, x_{n+k+1}) \leq \sum_{k=0}^\infty d(x_{N+k}, x_{N+k+1}) = \sum_{k=N}^\infty d(T^k(x_0),T^k(x_1)) \leq \epsilon$ for sufficiently large $N$. By completeness there exists $\bar{x}\in X$ with $\lim_{n\to\infty}x_n=\bar{x}$ and by continuity of $T$ we get $T(\bar{x}) = T(\lim_{n\to \infty} x_n) = \lim_{n\to \infty}T(x_n) = \lim_{n\to \infty} x_{n+1} = \bar{x}.$
Uniqueness:
Let $\bar{x}$ and $\tilde{x}$ be fixed points of $T$, then $\sum_{k=0}^\infty d(T^k(\bar{x}),T^k(\tilde{x})) = \sum_{k=0}^\infty d(\bar{x},\tilde{x}) < \infty$, so $d(\bar{x},\tilde{x})=0$, hence $\bar{x} = \tilde{x}$.