3
$\begingroup$

It's been quite a while since I last dealed with DE's. I'd appreciate if you could help me with the official, or usual, classification of the next DE's and/or if there are some definite methods to solve them. Hints will also be welcome:

$(1)\;\;\;\;\;\;\;\;y'=\frac{(y+2x-1)^2}{(4y+8x-6)(2y+4x-1)}\cdot\frac{1}{\sin\left(\frac{4y+8x-3}{y+2x-1}\right)}-2$

$(2)\;\;\;\;\;\;\;\;y'x+y\left(\ln^2x+\ln^2y-2\ln x\ln y\right)=0\;\;,\;x,y>0$

I'm guessing here one could write

$\ln^2x+\ln^2y-2\ln x\ln y=\left(\ln x-\ln y\right)^2=\ln^2\frac{x}{y}$

Thanks.

  • 1
    I am fond of ODEs. Nice Don. I didn't know you posted a question in this area. +2013-03-11

1 Answers 1

3

That guess is a good one. Further hint: $y'$ depends only on $y/x$.

  • 1
    Thanks, I see your point: $y'=-\frac{y}{x}\,\log^2\frac{y}{x}$ Putting now $z=\frac{y}{x}\Longrightarrow \frac{dy}{dx}=z+x\frac{dz}{dx}$ so the eq. becomes $z+x\frac{dz}{dx}=-z\log^2z\Longrightarrow-\frac{dz}{z(\log^2z+1)}=\frac{dx}{x}\Longrightarrow$ $-\arctan\log z=\log x+C\Longrightarrow\log z=\tan(-\log z)=\tan\log x+C'$ I wonder whether this is enough...2012-11-29