1
$\begingroup$

Let $X_{1},X_{2},...,X_{n}$, for $n=2,3,...,$ be independent and identically distributed random variables with common distribution function. $F_{X}$ . Find a formula for the joint distribution $F_{Y,Z}$ for

$Y=\max\{X_{1}, X_{2},...,X_{n}\} \quad \text{and} \quad Z=\min\{X_{1},X_{2},...,X_{n}\}$

in terms of $F_{X}$.

  • 1
    Please $i$mprove the title!2012-05-01

1 Answers 1

3

We have $\begin{align*} F_{Y, Z}(y, z) &= \mathbb{P}(Y \leq y \ \text{and} \ Z \leq z)\\ &= \mathbb{P}(Y \leq y) - \mathbb{P}(Y \leq y \ \text{and} \ Z > z)\\ &= \mathbb{P}(\forall i, \ X_i \leq y) - \mathbb{P}(\forall i, \ z < X_i \leq y)\\ &\stackrel{(1)}{=} \mathbb{P}(X \leq y)^{n} - \mathbb{P}(z < X \leq y)^{n}\\ &\stackrel{(2)}{=} F_X(y)^{n} - (F_X(y) - F_X(z))^{n}, \end{align*}$ where we have used independence assumption at (1), and identical distribution assumption at (2).