4
$\begingroup$

I wish to prove that if $T:\mathbb{R}^{n}\to\mathbb{R}^{n}$ is defined by $T(v)=Av$ (where $A\in M_{n}(\mathbb{R})$) is an isometry then $A$ is an orthogonal matrix.

I am familiar with many equivalent definition for $A\in M_{n}(\mathbb{R})$ to be orthogonal, and it doesn't matter to me which one to show. What I tried to do is the following: $||x-y||=||Ax-Ay||\implies\langle x-y,x-y\rangle=\langle Ax-Ay,Ax-Ay\rangle\implies\langle x-y,x-y\rangle=\langle x-y,A^{t}A(x-y)\rangle$,

from here I thought that I will be able to deduce $A^{t}A=I$ and complete the proof, but I was unable to do so.

How can I complete the proof, or prove this in another fashion ? Help is appreciated!

  • 0
    So you now that $\langle z, A^tAz \rangle = \langle z,z\rangle$ for every $z$. Try to let $z = x \pm y$ and expand ...2012-07-12

2 Answers 2

7

For every $x, y \in \mathbb{R}^n$ we have $ \langle Ax,Ay\rangle=\frac{1}{4}\left[|A(x+y)|^2-|A(x-y)|^2\right]=\frac{1}{4}\left[|x+y|^2-|x-y|^2\right]=\langle x,y\rangle. $ Hence, for every $x,y \in \mathbb{R}^n$ we have $ \langle A^TAx,y\rangle=\langle x,y\rangle, $ i.e. $A^TA=I_n$.

4

We know that $\,\langle\, x,y\,\rangle =0\,\,\,\forall\,y\Longleftrightarrow x=0\,$ , so $\forall x,y\,\,:\,\langle\,x,y\,\rangle=\langle\,Ax,Ay\,\rangle=\langle\,x,A^tAy\,\rangle\Longrightarrow \langle\,x,(A^tA-I)y\,\rangle=0$

$\Longrightarrow (A^tA-I)y=0\,\,\,\,\forall y\,\,\Longrightarrow A^tA-I=0\Longrightarrow A^tA=I$

  • 4
    @Belgi , it's the same: $||x-y||=||Ax-Ay||\Longleftrightarrow \langle x-y,x-y\rangle=\langle Ax-Ay,Ax-Ay\rangle$ Now just use linearity of inner product2012-07-12