2
$\begingroup$

I can solve it analytically, but I need some school-like elementary-geometry solution for this.

Let w = width and h = height of the rectangle ABCD. For any point E inside rectangle, except its boundary, let $f(E)=|AE| \cdot |EC| + |BE| \cdot |ED|$, question is: how to find point E inside this rectangle, except the points on the sides of this rectangle such that f(E) will be minimum. And find this minimum.

  • 0
    Minimum $f(E)$ over all rectangle points. I think we should talk about global minimum2012-08-29

1 Answers 1

1

Answer is min $f(E)=w \cdot h.$

Solution:

enter image description here

$E$ any point inside $ABCD$

  1. $2(S_{AEB}+S_{DEC})=|AB|\cdot |EH| +|DC|\cdot |EI|=|AB|\cdot|AD|=S_{ABCD}.$

  2. $S_{ABCD}=2(S_{AEF}+S_{FEB}).$

  3. For any triangle we have $S_\Delta=\frac{1}{2}a\cdot b \cdot \text{sin} \alpha \leq \frac{1}{2}a b \Rightarrow 2 S_\Delta \leq a b$. Because of $|\text{sin} \alpha| \leq 1 $.

$ S_{ABCD}=2(S_{AEF}+S_{FEB}) \leq (|AE| \cdot |AF| + | BE| \cdot |BF|) $

$ S_{ABCD} \leq (|AE| \cdot |EC| + | BE| \cdot |ED|). $

And finally

$ \text{min} (|AE| \cdot |EC| + | BE| \cdot |ED|) = S_{ABCD} = w \cdot h. $

An example of such point E: two circles with radius $|\frac{AB}{2}|$.

enter image description here

For this point E : $|AE| \cdot |EC| + | BE| \cdot |ED|=w \cdot h$

  • 1
    Two right triangles $\Rightarrow 2(S_{DEC}+S_{AEB})=|AE|\cdot|EB|+|DE|\cdot|EC|$. As $AE=DE$ and $EB=EC$ we can write that $2(S_{DEC}+S_{AEB})=|AE|\cdot|EC|+|BE|\cdot|ED|=S_{ABCD}=w\cdot h$2012-08-29