Let $L$ be a finite dimensional Lie algebra. We view the Lie bracket as a linear map on the exterior square: $\pi:L \bigwedge L \rightarrow L$
Define $\bigwedge L := \langle a \wedge b \big| [a,b]=0\rangle$
Why is in general $\bigwedge L \neq \ker(\pi)$ ?
If $(x_i)$ is a basis of $L$ then $L \bigwedge L$ has a basis $x_i \wedge x_j$ where $i \neq j$, so can't we just write $a \wedge b = \sum_{i \neq j} \lambda_{ij} (x_i \wedge x_j)$ and $[a,b] = \sum_{i \neq j} \lambda_{ij}[x_i,x_j] = \pi(a \wedge b)$ thus it would follow that $\langle a \wedge b \big| [a,b]=0\rangle = \ker \pi$
What am I missing?