$f:\mathbb{R}\rightarrow \mathbb{R}$ is function such that $\forall\epsilon>0$, the set $\{x:|f(x)|>\epsilon\}$ is finite. We need to show $\{x:f(x)=0\}$ is uncountable. Could any one give me hints?
Thank you
$f:\mathbb{R}\rightarrow \mathbb{R}$ is function such that $\forall\epsilon>0$, the set $\{x:|f(x)|>\epsilon\}$ is finite. We need to show $\{x:f(x)=0\}$ is uncountable. Could any one give me hints?
Thank you
HINT: For each $n\in\Bbb Z^+$ let $A_n=\left\{x\in\Bbb R:|f(x)|>\frac1n\right\}$. Show that
$\{x\in\Bbb R:f(x)\ne 0\}=\bigcup_{n\in\Bbb Z^+}A_n\;,$
so that $\{x\in\Bbb R:f(x)\ne 0\}$ is a countable set.
$\left\{x:f(x)=0\right\}\\=\cap_{n=1}^\infty\left\{x:|f(x)|\leq\frac{1}{n}\right\}\\=\cap_{n=1}^\infty\left(\mathbb R- \left\{x:|f(x)|>\frac{1}{n}\right\}\right)\\=\mathbb R-\cup_{n=1}^\infty \left\{x:|f(x)|>\frac{1}{n}\right\},\text{an uncountable set.}$