Let $f\colon\mathbb{R}\to\mathbb{R}$ be a differentiable function. $x\in\mathbb{R}$ is a fixed point of $f$ if $f(x)=x$. Show that if $f'(t)\neq 1\;\forall\;t\in\mathbb{R}$, then $f$ has at most one fixed point.
My biggest problem with this is that it doesn't seem to be true. For example, consider $f(x)=x^2$. Then certainly $f(0)=0$ and $f(1)=1 \Rightarrow 0$ and $1$ are fixed points. But $f'(x)=2x\neq 1 \;\forall\;x\in\mathbb{R}$. Is there some sort of formulation that makes this statement correct? Am I missing something obvious? This is a problem from an old exam, so I'm assuming that maybe there's some sort of typo or missing condition.