4
$\begingroup$

I am interested in solving logarithmic expressions but I cannot do this.

what does this expression simplify to?

$n^{\log \log n/\log n}$

2 Answers 2

19

Assuming $n \neq 1$, and let

$y = n^{\log \log n/\log n}$

$ \log y = \frac{\log \log n}{\log n} \log n = \log \log n$

$ \Rightarrow y = \log n$

(Spelling correction done)

9

Note that $n = e^{\log n}$, so $n^x = e^{x\log n}$.

Then $n^{\log\log n / \log n} = e^{(\log\log n / \log n)\cdot\log n} = e^{\log\log n}$.

$e^{\log \log n} = \log n$.