Statement: Let $ h(n,x): \mathbb{R} \times \mathbb{R^m} \rightarrow \mathbb{R}^m $ be a continuous function and $|h(n,x)| = o(|x|^2)$ near $x = 0,$ where $|h|$ and $|x|$ are the same norm in $ \mathbb{R^m}$.
Can somebody explain what does $|h(n,x)| = o(|x|^2)$ mean?