1
$\begingroup$

For instance, how would I solve: $3^x + x = 85$ ?

  • 0
    Or perhaps you meant $b^x+x=c$?2012-11-05

3 Answers 3

1

You can solve this using the product log function, its a special function, so if your not used to using them, you might just want a numeric answer. But your special case has the simple solution 4. Here is a link, http://mathworld.wolfram.com/LambertW-Function.html.

0

If we consider $x\ge 0,3^x\le 85,x\le 4$

If $x<4,3^x<81\implies 3^x+x<85$

So $x$ can be $4$ which actually satisfies the given equation.

If $x<0,3^x<1\implies -3^x>-1\implies x=85+(-3^x)>84$ which is impossible as $x<0$

0

$a b^x + x = c$

$a b^x = c-x$

$ b^x = \frac{c-x}{a}$

$ e^{x\ln{b}} = \frac{c-x}{a}$

$ 1= \frac{c-x}{a} e^{-x\ln{b}}$

$ e^{c\ln{b}}= \frac{c-x}{a} e^{-x\ln{b}} e^{c\ln{b}}$

$ ae^{c\ln{b}}= (c-x) e^{(c-x)\ln{b}}$ $ \ln{b}.a.e^{c\ln{b}}= \ln{b}(c-x) e^{(c-x)\ln{b}}$ $ b^c\ln{b}.a= \ln{b}(c-x) e^{(c-x)\ln{b}}$

$u=\ln{b}(c-x)$

$ ue^u= b^c\ln{b}.a$

$ u= W(b^c\ln{b}.a)$ where $W(x)$ is Lambert W function

$u=\ln{b}(c-x)=W(b^c\ln{b}.a)$

$x=c-\frac{W(a b^c\ln{b})}{\ln{b}}$

It is general solution of $a b^x + x = c$

For your example:

$3^x + x = 85$

$x=85-\frac{W(3^{85}\ln{85})}{\ln{85}}$