2
$\begingroup$

Find the minimum value of the quantity where $a , b , c$ are real positive numbers.

$\left(\frac{a^2 + 3a + 1}{a}\right) \left(\frac{b^2 +3b + 1}{b}\right)\left(\frac{c^2 + 3c + 1}{c}\right) $

I think the to get the answer we need to use

$A.M.\ge G.M.$

How i can achieve this?

1 Answers 1

2

You can use the fact that $x + \frac{1}{x} \ge 2$, which can be proved using $\text{AM} \ge \text{GM}$, or just completing the square.

  • 1
    @vikiiii: You are welcome.2012-03-06