Let $p_1$ and $p_2$ two primes numbers $\equiv 1\pmod 4$. If we note by $\varepsilon_m$ the fundamental unit of real quadratic field $\mathbb{Q}(\sqrt m)$, then how can be solved in $\mathbb{Q}(\sqrt{2},\sqrt{p_1p_2})$ the following equation: \begin{equation*} \varepsilon_{2}\varepsilon_{p_1p_2}\varepsilon_{2p_1p_2}=X^2 \end{equation*}
root of a unit in a real biquadratic field
3
$\begingroup$
number-theory
roots-of-unity
-
1MO thread, with an answer: http://mathoverflow.net/questions/92051/root-of-a-unit-in-a-real-biquadratic-field – 2012-03-24