0
$\begingroup$

How are the eigenvalues of $A^H$ related to the eigenvalues of $A$?

Here $A^H$ is the conjugate transpose of $A$

  • 0
    Nope it's just my display name. No worries I will contact the mods.2012-05-02

2 Answers 2

4

Hint: For a matrix $X$, the determinant $det(X^H)=\overline{det(X)}$ where the overline indicates complex conjugation.

Examine $det((I\lambda-A)^H)$

0

Lets say $\lambda_1$ is an eigenvalue of $A$ and $\lambda_2$ is an eigenvalue of $A^H$. We have: $ Ax = \lambda_1 x $ $ A^Hy = \lambda_2 y $ Doing conjugate transpose on both sides of above equation and since $(A^H)^H = A$, we get: $ y^HA = \bar\lambda_2 y^H $ Multiplying by $x$ to the right on both sides: $ y^HAx = \bar\lambda_2 y^Hx $ Now using $Ax = \lambda_1 x$ : $ y^H \lambda_1 x = \bar\lambda_2 y^Hx $ $ \lambda_1 y^Hx = \bar\lambda_2 y^Hx $ This gives us: $ \lambda_1 = \bar \lambda_2 $ or $\lambda_2 = \bar \lambda_1$ i.e the eigenvalues of conjugate transpose of a matrix are conjugates of the eigenvalues of the original matrix.