How to prove, for every $x>0$ $\dfrac{1}{\ln^2\left(1+\dfrac{1}{x}\right)} \dfrac{1}{(x+1)x}-1>0.$
The inequality \dfrac{1}{\ln^2\left(1+\dfrac{1}{x}\right)} \dfrac{1}{(x+1)x}-1>0
-
0@Peter It seems that I can't work out the problem with the use of the inequality above – 2012-02-18
2 Answers
Here are some hints or ideas.
Exploring a few equivalent algebraic reformulations, for $x>0$, $ \dfrac{1}{\ln^2\left(1+\dfrac1{x}\right)} \cdot \dfrac1{(x+1)x} - 1 > 0 $ $ \iff \ln^2\left(1+\dfrac1{x}\right) < \dfrac1{(x+1)x} = \dfrac1{x}-\dfrac1{x+1} $ $ \iff \ln\left(1+\dfrac1{x}\right) < \dfrac1{\sqrt{x(x+1)}} $ $ \iff \ln\left(1+u\right) < \dfrac{u}{\sqrt{u+1}} \quad \text{for} \quad u=\frac1x>0. $ The last of these is fairly easy to work with. Setting $ f(u)=\ln\left(1+u\right), \quad g(u)=\dfrac{u}{\sqrt{u+1}}=(1+u)^\frac12-(1+u)^{-\frac12} $ we see that $f(u),g(u)\geq 0$ for $u>0$, that $f(0)=g(0)=0$, that $f(u),g(u)\approx u$ for $u\approx0$, and that $ \lim_{u\rightarrow\infty}\frac{f(u)}{g(u)}=0 $ (using L'Hôpital's rule) so graphing the two functions should get us almost there. For this, we probably only need the first one or two derivatives, $ f'(u)=\left(1+u\right)^{-1}, \quad g(u) = \frac{ (1+u)^{-\frac12} - (1+u)^{-\frac32} }{2} = \frac12u(1+u)^{-\frac32} $ which at zero are $ f'(0)=g'(0)=1 \quad\text{and} $ $ f''(0)=-1,\quad g''(0)=-\frac12. $ This should be enough to produce a convincing graph something like below,
var('u') G = plot(log(1+u), (u,0,10),color='red') G+= text('f(u)', (3,1),color='red') G+= plot(u*(1+u)^(-1/2),(u,0,10),color='blue') G+= text('g(u)', (1,1),color='blue') G.show()
For the full Taylor series (which we probably don't want), we would need the $n^\text{th}$ derivatives $ f^{(n)}(u)=\frac{(-1)^{n-1}(n-1)!}{(1+u)^{n}} $ and $ g^{(n)}(u) =\frac12a_{n-1}(1+u)^{\frac12-n}-a_n(1+u)^{-\frac12-n} $ for $n>0$, where $ a_n =(-1)^n \left(\frac12\right) \left(\frac32\right) \cdots \left(\frac{2n-1}2\right) =(-1)^n \frac{(2n)!}{2^{2n}n!} =\left(n-\frac12\right)a_{n-1} $ so that $ g^{(n)}(u) =a_{n-1}\frac{\frac12(1+u)-\left(n-\frac12\right)}{(1+u)^{n+\frac12}} =a_{n-1}\frac{1+\frac{u}2-n}{(1+u)^{n+\frac12}}, $ but there is probably an easier way than using the full Taylor series.
Define the function: $f(x)=\frac{1}{ln^2(1+\frac{1}{x})}\frac{1}{x(1+x)}$ The reciprocal of this function must be less than $1$. Note that $\lim_{x=\infty}{f(x)^{-1}}=1$ and that $\lim_{x=0}{f(x)^{-1}}=0$ Because the derivative of the $f(x)^{-1}$ is never zero, this means that $1$ is an asymptote because there isn't a maximum between zero and $+\infty$