1
$\begingroup$

I need to prove that $\frac{1}{x-3} \to 1$ as $x \to 4$

So I did $\left | \frac{1}{x-3} - 1 \right | = \left | \frac{4 - x}{x-3} \right | = \left | \frac{x-4}{x-3} \right | = \frac{|x-4|}{|x-3|} < K|x-4|$. So I need to pick $| x - 4| < \delta = \frac{\epsilon}{K}$

Now the problem is that I can't bound my $\frac{1}{|x-3|}$

2 Answers 2

1

Let $\epsilon>0$. Suppose $|x-4|<1/2$. Then $-1/2 which implies that $1/2. Hence, $|x-3|\ge x-3>1/2$, that is, if $x\ne 3$ then $\frac{1}{|x-3|}<2$. Define $\delta=\min\left\{\frac{1}{2},\frac{\epsilon}{2}\right\}$. Let $0<|x-4|<\delta$. Then certainly $x\ne 3$. Hence,

$\left| \frac{1}{x-3}-1\right|=\left| \frac{x-4}{x-3}\right|<|x-4|\cdot 2 < \frac{\epsilon}{2}\cdot 2=\epsilon$.

The result follows.

  • 0
    Can I do this instead? |x - 4| < 1/2 \implies 1/2 < x - 3 < 3/2 \implies 2 > \frac{1}{x-3} > 3/2 and take K = 2?2012-12-07
2

You can choose $x$ near 4: $|x-4|<1/2$ then $|x-3|>1/2$.