6
$\begingroup$

Suppose that $\displaystyle\sum_{n=1}^{\infty}\ a_n$ is absolutely convergent. How can we prove that $\displaystyle\sum_{n=1}^{\infty}\ a_n^2$ is convergent?

2 Answers 2

10

$\lim_{n \to \infty} \frac{a^2_n}{|a_n|} = \lim_{n \to \infty} |a_n| = 0,$ since $\sum |a_n|$ converges. By the limit comparison test, $\sum a^2_n$ converges.

  • 0
    @Alex: See, for example, [here](http://www.mathscoop.com/calculus/infinite-sequences-and-series/limit-comparison-test.php).2012-12-10
9

Hints:

1) Convergence of an infinite sum implies its terms tend to $0$.

2) If $ |a_n| \le 1$, then $ a_n^2\le |a_n|$.

3) Recall the Comparision Test for infinite sums.

  • 1
    @Neophyte Eventually, |a_n|<1. This so since the terms of a convergent series must tend to zero.2016-06-24