Suppose we are given a $C^1$ function $f(t):\mathbb{R} \rightarrow \mathbb{C}$ with $f(0) = 1$, $\|f(t)\| = 1$ and $\|f'(t)\| = 1$. I have already proven that $\langle f(t), f'(t)\rangle = 0$ for all $t$. Now I have to show that either $f'(t) = if(t)$ or $f'(t) = -i f(t)$. How do I go about showing this?
(I am terribly sorry for the horrible title, I could not think of a good one).