HINT $\ $ Since $\sqrt{2},\sqrt{5},\sqrt{10}\not\in\mathbb Q,\:$ it is an immediate consequence of this
LEMMA $\rm\ \ [K(\sqrt{a},\sqrt{b}) : K] = 4\ $ if $\rm\ \sqrt{a},\ \sqrt{b},\ \sqrt{a\:b}\ $ all are not in $\rm\:K\:$ and $\rm\: 2 \ne 0\:$ in $\rm\:K\:.$
Proof $\ \ $ Let $\rm\ L = K(\sqrt{b})\:.\:$ Then $\rm\: [L:K] = 2\:$ via $\rm\:\sqrt{b} \not\in K\:,\:$ therefore it is sufficient to prove $\rm\: [L(\sqrt{a}):L] = 2\:.\:$ But this fails only if $\rm\:\sqrt{a} \in L = K(\sqrt{b})\ $ and then $\rm\ \sqrt{a}\ =\ r + s\ \sqrt{b}\ $ for $\rm\ r,s\in K\:.\:$ That's impossible: squaring yields $\rm(1):\ \ a\ =\ r^2 + b\ s^2 + 2\:r\:s\ \sqrt{b}\:,\: $ contra hypotheses as follows:
$\rm\quad\quad\quad\quad\quad\quad\quad\quad rs \ne 0\ \ \Rightarrow\ \ \sqrt{b}\ \in\ K\ \ $ by solving $(1)$ for $\rm\sqrt{b}\:,\:$ using $\rm\:2 \ne 0$
$\rm\quad\quad\quad\quad\quad\quad\quad\quad\ s = 0\ \ \Rightarrow\ \ \ \sqrt{a}\ \in\ K\ \ $ via $\rm\ \sqrt{a}\ =\ r \in K$
$\rm\quad\quad\quad\quad\quad\quad\quad\quad\ r = 0\ \ \Rightarrow\ \ \sqrt{a\:b}\in K\ \ $ via $\rm\ \sqrt{a}\ =\ s\ \sqrt{b}\:,\: \ $times $\rm\:\sqrt{b}\quad\quad$ QED
Using the above as the inductive step one easily proves the following result of Besicovic.
THEOREM $\ $ Let $\rm\:Q\:$ be a field with $2 \ne 0\:,\:$ and $\rm\ L = Q(S)\ $ be an extension of $\rm\:Q\:$ generated by $\rm\: n\:$ square roots $\rm\ S = \{ \sqrt{a}, \sqrt{b},\ldots \}$ of elts $\rm\ a,\:b,\:\ldots \in Q\:.\:$ If every nonempty subset of $\rm\:S\:$ has product not in $\rm\:Q\:$ then each successive adjunction $\rm\ Q(\sqrt{a}),\ Q(\sqrt{a},\:\sqrt{b}),\:\ldots$ doubles the degree over $\rm\:Q\:,\:$ so, in total, $\rm\: [L:Q] \ =\ 2^n\:.\:$ Hence the $\rm\:2^n\:$ subproducts of the product of $\rm\:S\:$ form a basis of $\rm\:L\:$ over $\rm\:Q\:.$