2
$\begingroup$

I am having trouble with a question really need help please.

$ \int {\sqrt{x^2 + 81} \over 2} \,dx $

I thought about taking the square root off and turning the question into $\frac 12 \int (x^2 +81)^{1/2}\, dx$ but then wondered if I could use the quotient rule.

  • 1
    Unfortunately, there is no such thing as a "quotient rule" for integration. What other techniques do you know? If this is HW for a course, what section are you currently studying? There is a particular technical method that works, based on the fact that "$x^2 + a^2$" shows up inside a radical.2012-03-07

5 Answers 5

10

Hint: Put $x = 9 \tan{t}$, then $x^{2}+81 = 81(\tan^{2}(t)+1) = 81 \cdot \sec^{2}(t)$.

4

$ \int \sqrt{x^2+81} dx $

Integration by parts formula

\int u(x)v^{'}(x) dx = u(x)v(x) - \int v(x)u^{'}(x) dx

Therefore assume that v^{'}(x) = 1 in this case

Denote the integral

$ I = \int \sqrt{x^2+81} dx$

$ \begin{align*} I &= x \sqrt{x^2+81} - \int \frac{x^2}{\sqrt{x^2+81}} dx\\ &= x \sqrt{x^2+81} - \int \frac{x^2+81-81}{\sqrt{x^2+81}} dx\\ &= x \sqrt{x^2+81} - I + 81 \int \frac{1}{\sqrt{x^2+81}} dx \end{align*} $

Therefore

$ 2I = x \sqrt{x^2+81} +81 \int \frac{1}{\sqrt{x^2+81}} dx$

the rest you should do it yourself.

I was told that we are not supposed to give complete solution for homework questions.

IMPROVED EXPLANATION: (BY REQUEST)

$u(x) = \sqrt{x^2+81}$ and

$v(x) = x$, therefore v^{'}(x) = 1

u^{'}(x) = \frac{1}{2}\left(x^2+81\right)^{-\frac{1}{2}} \times 2x = \frac{x}{\sqrt{x^2+81}}

\begin{align*} \int \sqrt{x^2+81} dx &= \int u(x) v^{'}(x) \\ &= u(x)v(x) - \int u^{'}(x) v(x) dx\\ &= x \sqrt{x^2+81} - \int \frac{x^2+81-81}{\sqrt{x^2+81}} dx\\ &= x \sqrt{x^2+81} - \int \sqrt{x^2+81} \hspace{3pt} dx + \int \frac{81}{\sqrt{x^2+81}} dx\\ \end{align*}

  • 0
    Check http://www.wolframalpha.com/input/?i=integrate+sqrt%28x%5E2%2B81%292012-03-07
3

Added. Euler substitution

  • The Euler substitution $\begin{equation*} \sqrt{x^{2}+81}=t-x\Leftrightarrow x=\frac{1}{2}\frac{t^{2}-81}{t}, dx=\frac{1}{2}\frac{t^{2}+81}{t^{2}}\;\mathrm{d}t \end{equation*}$ reduces the given integral to an integral of a rational function in $t$ $\begin{eqnarray*} \frac{1}{2}\int \sqrt{x^{2}+81}dx &=&\frac{1}{2}\int \left( t-\frac{1}{2}\frac{t^{2}-81}{t}\right) \cdot \frac{1}{2}\frac{t^{2}+81}{t^{2}}dt \\ &=&\frac{1}{2}\int \frac{6561+162t^{2}+t^{4}}{4t^{3}}dt=\frac{1}{16}t^{2}-\frac{6561}{ 16t^{2}}+\frac{81}{4}\ln t. \end{eqnarray*}$

Added 2. Hyperbolic substitution

  • The hyperbolic substitution $\begin{equation*} x=9\sinh t\Leftrightarrow t=\operatorname{arcsinh}\frac{x}{9},dx=9\cosh tdt,\end{equation*}$ gives $\begin{eqnarray*} \frac{1}{2}\int \sqrt{x^{2}+81}dx &=&\frac{1}{2}\int 9\sqrt{81\sinh ^{2}t+81} \cosh t\,dt \\ &=&\frac{81}{2}\int \cosh ^{2}t\,dt \\ &=&\frac{81}{2}\int \left( \frac{e^{2t}}{4}+\frac{1}{2}+\frac{e^{-2t}}{4} \right) \,dt \\ &=&\frac{81}{2}\left( \frac{1}{8}e^{2t}+\frac{1}{2}t-\frac{1}{8} e^{-2t}\right). \end{eqnarray*}$ Since $t=\operatorname{arcsinh}\frac{x}{9}=\ln \left( \frac{x}{9}+\frac{1}{9}\sqrt{x^{2}+81}\right) $, we obtain $\begin{eqnarray*} \frac{1}{2}\int \sqrt{x^{2}+81}dx&=&\frac{81}{2}\left( \frac{1}{8}e^{2\operatorname{arcsinh}\frac{x}{9}}+\frac{1}{2}\operatorname{arcsinh}\frac{x}{9}-\frac{1}{8}e^{-2\operatorname{arcsinh}\frac{x}{9}}\right) \\ &=&\frac{81}{16}\left( \frac{1}{9}x+\frac{1}{9}\sqrt{x^{2}+81}\right) ^{2}+ \frac{81}{4}\ln \left( \frac{1}{9}x+\frac{1}{9}\sqrt{x^{2}+81}\right) \\ &&-\frac{81}{16}\left( \frac{1}{9}x+\frac{1}{9}\sqrt{x^{2}+81}\right) ^{-2} \\ &=&\frac{81}{4}\ln \left( \frac{1}{9}x+\frac{1}{9}\sqrt{x^{2}+81}\right) +\frac{1}{4}x\sqrt{x^{2}+81}+\text{Constant}. \end{eqnarray*}$

There is a general method for integrating a function of the form $P(x)/\sqrt{ax^{2}+bx+c}$ I have already posted here.

If $P(x)$ is a polynomial of degree $n\geq 2$, we can find a polynomial $Q(x) $ of degree $n-1$ and a constant $C$ such that$^1$

$\int \frac{P(x)}{\sqrt{ax^{2}+bx+c}}\;\mathrm{d}x=Q(x)\sqrt{ax^{2}+bx+c}+\int \frac{C}{\sqrt{ax^{2}+bx+c}}\;\mathrm{d}x.$

The given integral is $1/2$ of $ \begin{equation*} I(x):=\int \sqrt{x^{2}+81}dx=\int \frac{x^{2}+81}{\sqrt{x^{2}+81}}\mathrm{d}x=Q(x) \sqrt{x^{2}+81}+\int \frac{C}{\sqrt{x^{2}+81}}\mathrm{d}x, \end{equation*}$ with $Q(x)=Ax+B$. To find the constants $A$ and $B$ differentiate both sides $\begin{eqnarray*} \frac{x^{2}+81}{\sqrt{x^{2}+81}} &=&A\sqrt{x^{2}+81}+\frac{2x\cdot \left( Ax+B\right) }{2\sqrt{x^{2}+81}}+\frac{C}{\sqrt{x^{2}+81}} \\ &=&\frac{2Ax^{2}+Bx+81A+C}{\sqrt{x^{2}+81}} \end{eqnarray*}$ and equate the coefficients in the numerators $\begin{eqnarray*} 2A &=&1\Leftrightarrow A=\frac{1}{2} \\ B &=&0 \\ 81A+C &=&81\Leftrightarrow C=\frac{81}{2}. \end{eqnarray*}$ Consequently $ \begin{equation*} I(x)=\frac{1}{2}x\sqrt{x^{2}+81}+\frac{81}{2}\int \frac{1}{\sqrt{x^{2}+81}}\mathrm{d}x.\end{equation*}$ Note: This result is essentially the same as Kirthi Raman's. The integral on the right can be easily evaluated using the substitution $x=9u$, because then becomes a direct integral $\begin{eqnarray*} \int \frac{1}{\sqrt{x^{2}+81}}dx &=&\int \frac{1}{\sqrt{u^{2}+1}}\mathrm{d}u \\ &=&\operatorname{arcsinh} u=\operatorname{arcsinh}\frac{x}{9}+\text{Constant}. \end{eqnarray*}$

To write it in terms of the natural logarithmic use the identity $\begin{equation*} \operatorname{arcsinh}u=\ln \left( u+\sqrt{u^{2}+1}\right) \end{equation*}.$

$^1$ Described in Cálculo Integral em $\mathbb{R}$ by M. Olga Baptista.

2

The simplest method I see here is to replace x by something else. We know that $a^2+x^2 = x^2+81 = 9^2+x^2$ therefore we can put $x = 9\tan(\theta)$ and get

$dx = 9\sec^2\theta d\theta$

Therefore $1/2 \int \sqrt{9^2+9^2\tan^2(\theta)} 9\sec^2 \theta d\theta =$

$27/2 \int \sqrt{1+\tan^2(\theta)} \sec^2 \theta d\theta =$

$27/2 \int \sec^3 \theta d\theta $

  • 0
    I am just new here, but I wonder how people vote here because this elaborates first answer (by Chandrasekhar), but that got 11 votes and this has 0 (I am voting this one)- Weird voting system2012-03-17
1

There exists a simple formula for the integrals of the type $\int{\sqrt{x^2 + a^2}} dx$ i.e. $\int{\sqrt{x^2 + a^2}} dx=\space\frac{x}{2}\sqrt{x^2 + a^2}+\frac{a^2}{2}\arctan{\frac{x}{a}}+ C$ You can prove this by putting $x= a\tan\theta$, differantiating both sides to get $dx=a \ \sec^2\theta \space d\theta$, and evaluating the simple integral that follows. Using this formula, your problem is given by $\int {\sqrt{x^2 + 81} \over 2} \,dx= \int \sqrt{x^2 + 9^2} \,dx=\frac{x}{2}\sqrt{x^2 + 9^2}+\frac{81}{2} \arctan{\frac{x}{9}+C}$ Hope this helps.