Can you make these 2 fractions into 1?
$2\sqrt{9-2x} - \dfrac{2x}{\sqrt{9-2x}}$
I thought you could make them into $ \dfrac{-2x+18}{\sqrt{9-2x}}$
Can you make these 2 fractions into 1?
$2\sqrt{9-2x} - \dfrac{2x}{\sqrt{9-2x}}$
I thought you could make them into $ \dfrac{-2x+18}{\sqrt{9-2x}}$
You're almost correct.
\begin{align} 2\sqrt{9-2x} - \frac{2x}{\sqrt{9-2x}} &= 2\sqrt{9-2x} \times \frac{\sqrt{9-2x}}{\sqrt{9-2x}} - \frac{2x}{\sqrt{9-2x}}\\ &= \frac{2(\sqrt{9-2x})^2}{\sqrt{9-2x}} - \frac{2x}{\sqrt{9-2x}}\\ &= \frac{2(9-2x)}{\sqrt{9-2x}} - \frac{2x}{\sqrt{9-2x}}\\ &= \frac{2(9-2x) - 2x}{\sqrt{9-2x}}\\ &= \frac{18 - 4x - 2x}{\sqrt{9-2x}}\\ &= \frac{18-6x}{\sqrt{9-2x}} \end{align}