1
$\begingroup$

I am trying to evaluate integral:

$\int \frac{x^2\log(x)}{x+1}dx$

But I have some problems with it. If I use Wolfram Alpha like this I get a result, but I need evaluate it by hand. Which method should I use?

If we represent it as:

$\int(x^2\log(x)\cdot d(\ln(x))dx$

then it is unclear what to dot here, even we can represent as power, take $x^2$ in power of $\log(x)$, not hint yet. Please help me to evaluate it.

1 Answers 1

7

We have \begin{align*} \int\frac{x^2\log x}{x+1}dx&=\int x\log x\frac{x+1-1}{x+1}dx\\ &=\int x\log x-\int \frac{x+1-1}{x+1}\log xdx\\ &=\frac{x^2}2\log x-\int\frac{x^2}2\frac 1xdx-\int \log x+\int\frac{\log x}{x+1}dx\\ &=\frac{x^2}2\log x-\frac{x^2}4-x\log x+x+\log x\log(x+1)-\int\frac{\log(x+1)}xdx\\ &=\frac x4(4-x)+\log x\left(\frac{x^2}2-x+\log(x+1)\right)-\int\frac{\log(x+1)}xdx\\ &=\frac x4(4-x)+\log x\left(\frac{x^2}2-x+\log(x+1)\right)-\sum_{k=1}^{+\infty}\int \frac{(-1)^{k+1}x^k}{kx}dx\\ &=\frac x4(4-x)+\log x\left(\frac{x^2}2-x+\log(x+1)\right)+\sum_{k=1}^{+\infty}(-1)^k \frac{x^k}{k^2}\\ &=\frac x4(4-x)+\log x\left(\frac{x^2}2-x+\log(x+1)\right)+\operatorname{Li}_2(-x), \end{align*} which is the result given by Wolfram Alpha.

  • 1
    @KannappanSampath You are right, it's a typo that I will correct readily.2012-01-21