1
$\begingroup$

Let $k_4=Spec(k[x_1, x_2, x_3,x_4])$ and $\mathcal{I}$ is the ideal sheaf defined by $(x_1-x_2,x_3-x_4)$. Then

$ Bl_{\mathcal{I}}(k^4) = Proj (\oplus_{i\geq 0} I^i t^i) $ where $I=(x_1-x_2,x_3-x_4)$.

Then considering $Bl_{\mathcal{I}}(k^4)/S_2$ where $S_2$ is the symmetric group on $2$ letters, how do we write or see $ Bl_{\mathcal{I}}(k^4)/S_2 $ as $Proj$? The $S_2$ action on $Bl_{\mathcal{I}}(k^4)$ is by interchanging $(x_1,x_3)\in k^2$ with $(x_2, x_4)\in k^2$?

$ $

0 Answers 0