So, we need find digits $a,b,c$ such that $a+b+c=abc$
Clearly, $abc \ne 0$, if $a=0,b+c=0\implies b=c=0$
So, $\frac{a+b}{ab-1}=c$ which is integer.
(1)If $ a=3m+1,b=3n+1$ or $a=3m-1,b=3n-1$
$3\mid (ab-1)$, but $3 ∤ (a+b)\implies (ab-1) ∤(a+b)$
(2)If $ a=3m\le 9,b=3n\le 9\implies 1\le m,n\le 3$
$ \frac{a+b}{ab-1}=\frac{3(m+n)}{9mn-1}$
$\implies (9mn-1)\mid (m+n)$ as $(9mn-1,3)=1$
But $(m+n)\le 3+3=6$
$\implies (9mn-1)\le 6$ which is clearly impossible as $m,n \ge 1$.
(3)If $ a=3m+1\le 9 ,b=3n-1\le 9\implies 0\le m\le 2, 1\le n\le 3 $,
$ \frac{a+b}{ab-1}=\frac{3(m+n)}{(3m+1)(3n-1)-1}$
$\implies (3m+1)(3n-1)-1\mid (m+n)$ as $((3m+1)(3n-1)-1,3)=(3(3mn-m+n)-2,3)=1$
$ (3m+1)(3n-1)-1\le 5\implies (3m+1)(3n-1) \le 6\implies m\le1$ and $n\le 2$
If $m=1\implies 3m+1=4\implies 3n-1\le 1\implies n<1$, but $1\le n\le 3 $
If $m=0$, $\frac{3(m+n)}{(3m+1)(3n-1)-1} \ becomes \frac{3n}{3n-2}$
$\implies (3n-2)\mid 3n\implies (3n-2)\mid n$ as $(3n-2,3)=1$
So, $3n-2\le n\implies n\le 1$ ,but $1\le n\le 3$ so, $n=1$
So, $a=1,b=2\implies c=\frac{a+b}{ab-1}=3$
As $a+b+c=abc$ is symmetric $a=3,b=1$ and $a=3,b=2$ will also be solutions corresponding to cases (4) $a=3m,b=3n+1$ and (5) $a=3m,b=3n-1$ respectively.
So, the only solution is $1,2,3$.
Clearly, $321$ is the largest and $123$ is the smallest.