I want to derive a Gronwall-type inequality from the inequality below. Here all the functions are nonnegative, continuous and if you need some assumptions you may use that. $ f^2(t) \leqslant g^2(t) + \int_0^t (f(s) +c) f(s) ds \;\;\;\; (t \in [0,T]) $ So please help!
A Gronwall-type inequality
2
$\begingroup$
inequality
pde
1 Answers
2
If $c >0$ then by the Young's inequality, $ \begin{eqnarray*} f^2 (t) &\leqslant& g^2 (t) + \int_0^t (f^2 (s) + \frac{c^2 + f^2 (s)}{2} ) ds \\ & \leqslant & g^2 (t) + \frac{c^2}{2}T + \int_0^t \frac{3}{2} f^2 (s) ds \end{eqnarray*}$ So you can apply the Gronwall's inequality now.