How to show that for $n\geqslant 2$ $\frac{n}{2} < 1+\frac{1}{2} + \frac{1}{3}+ \ldots +\frac{1}{2^n-1}
\frac{n}{2} < 1+\frac{1}{2} + \frac{1}{3}+ \ldots +\frac{1}{2^n-1}
1
$\begingroup$
sequences-and-series
summation
-
0So, the sum in the center is to be interpreted $ \sum_{1 \le k \le 2^{n}-1}\frac{1}{k}, $ where $n\ge 2$? – 2012-12-29
2 Answers
1
You can group the sum as follows: $\sum_{k=1}^{2^n}{\frac{1}{k}}> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8}+ \frac{1}{8}+ \frac{1}{8}\right)...$ So that: $\sum_{k=1}^{2^n-1}{\frac{1}{k}} > 1 + \frac{n}{2}-\frac{1}{2^n}>\frac{n}{2}$ If instead you group them by the lower power of two you easily get the other limit.
1
HINT: $\frac12<2^n\left(\frac1{2^{n+1}-1}\right)<\sum_{k=2^n}^{2^{n+1}-1}\frac1k<2^n\left(\frac1{2^n}\right)=1$