0
$\begingroup$

The partial sum $s_n=\frac{1}{4}(3^n\sin\frac{a}{3^n}-\sin\ a)$

$=>S=\lim_{n\to\infty} s_n=\frac{1}{4}\lim_{n\to\infty}\left[a\frac{\sin\frac{a}{3^n}}{\frac{a}{3^n}}-\sin \ a\right]\ \ (*)$

My question is about how that change occurred in (*). How it went from $3^n\sin\frac{a}{3^n}$ to $a\frac{\sin\frac{a}{3^n}}{\frac{a}{3^n}}$. (I know how to evaluate that limit)

1 Answers 1

2

Just sneaking in a multiplicative factor of $1$ and a bit of algebra: $ \eqalign{ 3^n\sin\frac{a}{3^n} &=3^n\cdot{a\over a}\cdot\sin\frac{a}{3^n} \cr &={a\over a/3^n}\sin\frac{a}{3^n}\cr &=a\frac{\sin\frac{a}{3^n}}{\frac{a}{3^n}}.}$


Incidentally, the motivation here was to use the fact that $\lim\limits_{x\rightarrow0}{\sin x\over x}=1$. The above was done to take advantage of this. We'd almost have it by writing $3^n\sin\frac{a}{3^n} ={ \sin\frac{a}{3^n}\over 1/3^n}$; but not quite, hence multiplying by $a/a$...

  • 0
    you're a genius (always). Thanks a lot2012-01-09