1
$\begingroup$

Im solving initial value problem $ \frac {dy}{dx} + xy = xy^2; y(0)=3$ After applying Bernoulli's equation method i obtained $ \frac {dv}{dx} -xv = -x$ So, $ p(x) = -x, q(x) = -x $ For finding integrating factor $u(x)=e^ {-\int xdx}=e^ {-\frac {x^2}{2}}$ $ y= \frac {\int u(x)q(x)dx+C}{u(x)}={\int u(x)q(x)dx}$ So, $-\int xe^ {-\frac {x^2}{2}}dx $ Please help further or guide me if i did something wrong.

  • 0
    Thanks i didn't notice that :)2012-11-23

3 Answers 3

1

This seems fine. the only point is $v=\frac1y$, so $y=\frac1v$ and $u(x)v(x)-1\cdot\frac13=u(x)v(x)-u(0)v(0)=\int_0^x (u(t)v(t))'=\int_0^x u(t)q(t)dt=-\int_0^x te^{-\frac{t^2}{2}}dt$ So $v(x)=e^{\frac{x^2}{2}}\left(\frac13-\int_0^x te^{-\frac{t^2}{2}}dt\right),\hspace{10pt} y(x)=\frac{1}{v(x)}$

  • 1
    Since $v=\frac1y$, we have $v(0)=\frac13$ and I used it at the very beginning of the first line.2012-11-23
0

Why don't you try separation of variables? This leads to a closed form solution that exists for all $x < \sqrt{2 \log \frac{3}{2}}$.

  • 0
    there is an error in the original post, see my comments.2012-11-23
0

$ \mbox{Set}\ {\rm y}\left(x\right) \equiv {\rm f}\left(x^{2}\right)\equiv{\rm F}\left(x\right) $

$ \mbox{You get}\quad {\rm F}'\left(x\right) ={{\rm F}^{2}\left(x\right) - {\rm F}\left(x\right)\over 2} $