Let $F:\mathbb{R}\times \mathbb{R} \rightarrow \mathbb{R}.$ Is $\inf_{x,y} F(x,y)$ always equal to $\inf_{x} \inf_{y} F(x,y)$?
Minima of a function
1
$\begingroup$
calculus
optimization
-
0It is obvious that $inf_{x,y} F(x,y) \leq \inf_{x} \inf{y} F(x,y).$ – 2012-12-25
1 Answers
3
Yes.
$F(x,y) \geq \inf_y F(x,y) \geq \inf_x \inf_y F(x,y)$, for all $x,y$. Hence $\inf_{x,y} F(x,y) \geq \inf_x \inf_y F(x,y)$.
Similarly, $F(x,y) \geq \inf_{x,y} F(x,y)$, hence $\inf_y F(x,y) \geq \inf_{x,y} F(x,y)$, and hence $\inf_x \inf_y F(x,y) \geq \inf_{x,y} F(x,y)$.
So they are equal...