How to prove that $\,\,\mathbb{C}\cong \mathbb{R}[x]/(x^2+1)$ with $(x^2+1)=\{(x^2+1)f : f\in\mathbb{R}[x]\}$
A exercise on ismorphisms of rings of polynomials and complex numbers
0
$\begingroup$
abstract-algebra
-
0The function is $\varphi:\mathbb{R}[x]\rightarrow \mathbb{C},\,\,\, \varphi(a_0 +a_1 x+a_2 x^2+a_3 x^3+...)=a_0+a_1 i$?? – 2012-10-31
1 Answers
1
Let $\psi\colon \mathbb{R}[x] \rightarrow \mathbb{C}$ be the map defined by $\psi(f(x)) = f(i)$. Clearly $\psi$ is a $\mathbb{R}$-homomorphism of $\mathbb{R}$-algebras. Suppose $\psi(f(x)) = 0$. By the division formula, there exists $g(x), h(x) \in \mathbb{R}[x]$ such that
$f(x) = (x^2 + 1)g(x) + h(x)$, where deg $h(x) < 2$.
Since $f(i) = 0$ and $i^2 + 1 = 0$, $h(i) = 0$. Suppose $h(x) = ax + b$. Then $ai + b = 0$. Hence $a = b = 0$. Hence $f(x) = (x^2 + 1)g(x)$. Hence Ker $\psi = (x^2 + 1)$. Therefore $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$.