2
$\begingroup$

I need to find $\lim_{n \to \infty}$ $(1 + \frac{3}{n^2})^{n^2}$ and I've been given the following:

$\lim_{n \to \infty}$ $n^{1/n}$ = 1, $\lim_{n \to \infty}$ $a^{1/n}$ = 1 and $\lim_{n \to \infty}$ $(1 + \frac{1}{n})^{n}$ = e.

My first thoughts were to use the 3rd limit so $(1 + \frac{3}{n^2})^{n^2}$ <= 3e$^{n}$ and then using the squeeze theorem to show as n tends to infinity the sequence is null, but I think I'm missing something out.

  • 0
    @Gingerjin so ${e^(n^{2})/3} $ and as n tends to infinity e = 1?2012-04-13

1 Answers 1

1

Hint: $ \Bigl(1+\textstyle{3\over n^2}\Bigr)^{n^2}=\Bigl(\Bigl(1+{1\over n^3/3}\Bigr)^{n^2/3}\Bigr)^3 $ Note that $n^2/3\rightarrow\infty$ as $n\rightarrow\infty$.


You might also need to show that, for $x$ a real variable $\tag{1} \lim_{x\rightarrow\infty} (1+\textstyle{1\over x})^x =e. $ One way to show this is the following: for $x>1$, $\textstyle \bigl( 1+{1\over x}\bigr)^x \le \bigl(1+{1\over \lfloor x\rfloor} \bigr)^{\lceil x\rceil}= \bigl(1+{1\over \lfloor x\rfloor} \bigr)^{\lfloor x\rfloor +1}= \bigl(1+{1\over \lfloor x\rfloor} \bigr)^{\lfloor x\rfloor } \bigl(1+{1\over \lfloor x\rfloor} \bigr)^{1} $ and $\textstyle \bigl( 1+{1\over x}\bigr)^x \ge \bigl(1+{1\over \lceil x\rceil} \bigr)^{\lfloor x\rfloor} =\bigl(1+{1\over \lceil x\rceil} \bigr)^{\lceil x\rceil -1} =\bigl(1+{1\over \lceil x\rceil} \bigr)^{\lceil x\rceil } \bigl(1+{1\over \lceil x\rceil} \bigr)^{-1}. $ Apply the Squeeze Theorem to show that $(1)$ holds.

  • 0
    @franky Yes, indeed.2012-04-13