Given a modified regression equation:
$\hat Y = \exp(\beta_0 + \sum\beta_ix_i + \varepsilon)*F$
where:
$\hat Y = 11353$
$\beta_0 = 8.693021$
$\sum\beta_ix_i = 5.95487177696$
$F = 0.21829$
what is:
$\varepsilon =$
Given a modified regression equation:
$\hat Y = \exp(\beta_0 + \sum\beta_ix_i + \varepsilon)*F$
where:
$\hat Y = 11353$
$\beta_0 = 8.693021$
$\sum\beta_ix_i = 5.95487177696$
$F = 0.21829$
what is:
$\varepsilon =$
$ \hat Y = \exp(\beta_0 + \sum\beta_ix_i + \varepsilon)*F \\ \hat Y / F = \exp(\beta_0 + \sum\beta_ix_i + \varepsilon) \\ \ln (\hat Y / F) = \beta_0 + \sum\beta_ix_i + \varepsilon \\ \ln (\hat Y / F) - \beta_0 - \sum\beta_ix_i = \varepsilon $