There seems to be some discrepancy between my answer and the solution's. Can somebody please tell me what I have done wrong? Thanks!
$\begin{align} \left(A \lor B\right) \land \left(B \lor C\right) \land \left(\lnot A \lor C \right) & = \left(A+B \right)\left(B + C\right)\left( !A+C \right) \\ & = (A+B)(B!A+BC+C!A+CC) \\ & = (A+B)(B!A+BC+!AC+C) \\ &=(A+B)(B!A+C) \\ &=AB!A+AC+BB!A+BC\\ &=F+AC+B!A+BC \\ &=(A \land C) \lor (B \land \lnot A) \lor (B \land C) \text{ My answer}\\ \\ & \text{But solution says:} \\ &(A\land C)\lor(B \land \lnot A) \end{align} $