3
$\begingroup$

This is part of a problem of showing that there exist a sequence of simple functions, $s_n$ that converges to a measurable function $g$.

For a fixed integer $n$, define $ s_n(x) = \begin{cases} \frac{k}{2^n}, & \mbox{if } \frac{k}{2^n}\leq g(x) \lt \frac{k+1}{2^n}~,k=0,1,2,\ldots n2^n-1 \\ n, & \mbox{if } g(x)\geq n \end{cases} $

I want to show that $s_1\leq s_2\leq s_3\leq \ldots $

Attempt:

On the interval $g(x) \geq n$, $s_{n+1} \geq n$. So on this interval, $s_{n+1} \geq s_n$.

If $g(x) < n$ , then $\frac{k}{2^n}\leq g(x) \lt \frac{k+1}{2^n},k=0,1,2,\ldots n2^n-1 $. I need some help with this part.

Thanks.

1 Answers 1

4

Suppose $g(x). Then $s_n(x)={k\over 2^n} $ for some $0\le k\le n2^n-1$ and $\tag{1}{k\over 2^n}\le g(x)<{k+1 \over 2^n}.$ Now, for the next "level of sets" for $s_{n+1}$, we have $\textstyle\bigl[\,{k\over 2^n},{k+1 \over 2^n} \,\bigr) =\bigl[\,{2k\over 2^{n+1}},{2k+1 \over 2^{n+1}}\,\bigr ) \cup\bigl[\,{2k+1\over 2^{n+1}},{2k+2 \over 2^{n+1}} \bigr).$

We know from $(1)$ that $g(x)$ is in either the set $\bigl[\,{2k\over 2^{n+1}},{2k+1 \over 2^{n+1}}\,\bigr )$ or in the set
$\bigl[\,{2k+1\over 2^{n+1}},{2k+2 \over 2^{n+1}}\,\bigr )$; so $s_{n+1}(x)$ either takes the value ${2k\over 2^{n+1}}={k\over 2^n}$ or the value ${2k+1\over 2^{n+1}}>{k\over 2^n}$.

Thus $s_{n+1}(x)\ge s_n(x)$ whenever $g(x).

  • 0
    @kuku Yes, exactly. The author uses the so-called dyadic intervals. The "next stage" of intervals is obtained by splitting each interval in the previous stage in half (plus he adds more intervals "at the top").2012-02-27