1
$\begingroup$

How to evaluate $\displaystyle\int_{-1}^{1}\int_{-\sqrt{1-y^2}}^{0}\frac{dxdy}{1+x^2+y^2}$

This is my steps :

$\displaystyle\begin{align*}\int_{-1}^{1}\int_{-\sqrt{1-y^2}}^{0}\frac{dxdy}{1+x^2+y^2}&=\frac{1}{2}\int_{0}^{2\pi}\int_{-1}^{0}\frac{r}{1+r^2}drd\theta\end{align*}$

Is that right?

  • 0
    To understand the polar domain, draw a picture of the (x,y) domain of integration.2012-11-08

2 Answers 2

3

Notice that the domain is the half of the circle $x^2+y^2=1$ to the left of the y-axis and do a transformation to polar coordinates

$\int_{-1}^1 \int_{-\sqrt{1-y^2}}^0 \frac{dxdy}{1+x^2+y^2}= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \int_0^1 \frac{rdrd\theta}{1 + r^2}= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} d\theta \int_0^1 \frac{rdr}{1+r^2}= \pi \int_0^1 \frac{rdr}{1+r^2} $

From trig substitution $ \pi \frac{1}{2} \ln(r^2+1)|_0^1=\frac{\pi}{2}\ln2 $

  • 0
    since x goes from $-\sqrt{1-y^2}$ to zero we know the domain is contained in the left half of the circle $x^2+y^2 = 1$. Since y goes from -1 to 1 we know it is the entire left half.2012-11-08
0

Hint: change to polar coordinates.

  • 0
    Draw a picture.2012-11-08