1
$\begingroup$

Help! I can't seem to prove that $\Bigl[\log(x+\sqrt{x^2 + 1})\Bigr]' = \frac{1}{\sqrt{x^2 + 1}}$ I keep getting some horrible answer namely $\frac{x + \sqrt{x^2 + 1}}{x\sqrt{x^2 + 1} + 1 + x^2}$ does this cancel down at all?

3 Answers 3

2

The other answers are quite what's necessary, but note that working tidely you get

$\frac{d}{{dx}}\log \left( {x + \sqrt {1 + {x^2}} } \right) = \frac{{\frac{d}{{dx}}\left( {x + \sqrt {1 + {x^2}} } \right)}}{{x + \sqrt {1 + {x^2}} }}=$

$\frac{{1 + \frac{x}{{\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }}$

Now, before doing anything else, take ${\sqrt {1 + {x^2}} }$ as a factor in the denominator. You get

$\frac{{1 + \frac{x}{{\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} = \frac{1}{{\sqrt {1 + {x^2}} }}\frac{{1 + \frac{x}{{\sqrt {1 + {x^2}} }}}}{{1 + \frac{x}{{\sqrt {1 + {x^2}} }}}} = \frac{1}{{\sqrt {1 + {x^2}} }}$

Sometimes it is useful not to "rush it" when solving problems or evaluating expressions.

  • 0
    @Jay That is my point on "not rushing things".2012-04-24
3

we have in your denominator $ x\sqrt{x^2 + 1} + (1 + x^2) = \bigl(x + \sqrt{x^2 + 1}\bigr)\cdot \sqrt{x^2 + 1}$ so by canceling $x + \sqrt{x^2 + 1}$ we get $\frac 1{\sqrt{x^2 + 1}}$ as wished.

3

$(x+\sqrt{x^2+1})\sqrt{x^2+1}=x\sqrt{x^2+1}+1+x^2$