7
$\begingroup$

I have a question about integral. Prove:

$\int_0^{\frac{\pi}{2}}t\left(\dfrac{\sin(nt)}{\sin(t)}\right)^4dt<\dfrac{\pi^2n^2}{4}$

I have tried several methods including $\sin(t)\geq\frac{2t}{\pi}$, but I can't work it out.

  • 0
    If this question is worth its salt at all then it must have some nice solution involving the Dirichlet Kernel and Fourier series.2012-03-15

4 Answers 4

2

On the interval $0 < t < {\pi \over 2n}$, use the estimate ${\sin(nt) \over \sin(t)} < n$, giving that $\int_0^{\pi \over 2n} t({\sin(nt) \over \sin(t)})^4 \,dt < \int_0^{\pi \over 2n}n^4 t\,dt$ $= n^4 {({\pi \over 2n})^2 \over 2} = {\pi^2 n^2 \over 8}$ On the interval ${\pi \over 2n} < t < {\pi \over 2}$, use the estimates $|\sin(nt)| \leq 1$ and $\sin(t) > {2t \over \pi}$, giving the estimate $\int_{\pi \over 2n}^{\pi \over 2} t({\sin(nt) \over \sin(t)})^4 \,dt < \int_{\pi \over 2n}^{\pi \over 2}t ({\pi \over 2t})^4\,dt$ $= {\pi^4 \over 16}\int_{\pi \over 2n}^{\pi \over 2} t^{-3}\,dt$ $< {\pi^4 \over 16}{1 \over 2}({\pi \over 2n})^{-2}$ $= {\pi^2 n^2 \over 8}$ Adding this to the first part of the integral, we get the upper bound of ${\pi^2 n^2 \over 4}$ as needed.


As for the proof that ${\displaystyle {\sin(nt) \over \sin(t)} < n}$ for ${\displaystyle 0 < t < {\pi \over 2n}}$, it's equivalent to ${\displaystyle {\sin(nt) \over nt} < {\sin(t) \over t}}$. This follows from the fact that ${\displaystyle {\sin(x) \over x}}$ is decreasing on ${\displaystyle (0,{\pi \over 2}]}$; the same fact gives that ${\displaystyle {\sin(t) \over t} < {\sin({\pi \over 2}) \over {\pi \over 2}} = {2 \over \pi}}$ for ${\displaystyle 0 < t < {\pi \over 2}}$, which we also used above.

  • 0
    @Gingerjin see the addition to my answer2012-03-17
6

Assume that $n\in \mathbb{N}$.

Then the ratio of sines is polynomial in cosines: $ \frac{\sin(n t)}{\sin(t)} = \cos((n-1) t) + \cos(t) \frac{\sin((n-1) t}{\sin(t)} = \ldots = \sum_{k=1}^n \cos((n-k) t) \cdot \cos^{k-1}(t) \leqslant n $

Since $\sin(t)$ is increasing on the interval $\left(0,\frac{\pi}{2}\right)$, and since $\frac{\sin(n t)}{\sin(t)} < n$ for $0, we have: $ \int_0^{\tfrac{\pi}{2}} t \cdot \left( \frac{\sin(n t)}{\sin(t)} \right)^4 \mathrm{d} t = \sum_{k=1}^n \int_{\tfrac{k-1}{n} \cdot \tfrac{\pi}{2}}^{\tfrac{k}{n} \cdot \tfrac{\pi}{2}} t \cdot \left( \frac{\sin(n t)}{\sin(t)} \right)^4 \mathrm{d} t < \\ \int_0^{\pi/(2n)} t n^4 \mathrm{d} t + \sum_{k=2}^n \int_{\tfrac{k-1}{n} \cdot \tfrac{\pi}{2}}^{\tfrac{k}{n} \cdot \tfrac{\pi}{2}} t \cdot \left( \frac{\sin(n t)}{\sin\left( \frac{k-1}{n} \cdot \tfrac{\pi}{2} \right)} \right)^4 \mathrm{d} t = \\ \frac{\pi^2 n^2}{8} + \sum_{k=2}^n \int_{\tfrac{k-1}{n} \cdot \tfrac{\pi}{2}}^{\tfrac{k}{n} \cdot \tfrac{\pi}{2}} t \cdot \left( \frac{\sin(n t)}{\sin\left( \frac{k-1}{n} \cdot \tfrac{\pi}{2} \right)} \right)^4 \mathrm{d} t $ The remaining bounding integral is not hard to compute: $ \int_{\tfrac{k-1}{n} \cdot \tfrac{\pi}{2}}^{\tfrac{k}{n} \cdot \tfrac{\pi}{2}} t \cdot \sin^4(n t) \mathrm{d} t \stackrel{t = \tfrac{(k-1)\pi}{2n} + \tfrac{u}{2}}{=} \int_0^{\tfrac{\pi}{2}} \frac{2u+ \pi(k-1)}{2n^2} \left( \frac{1+(-1)^k}{2} \cos^4 u + \frac{1-(-1)^k}{2} \sin^4 u \right) \mathrm{d} u = \frac{3 \pi^2 \cdot (2k-1) - 16 (-1)^k}{64 n^2} $ The upper bound then becomes: $ \frac{\pi^2 n^2}{8} + \sum_{k=2}^n \frac{3 \pi^2 \cdot (2k-1) - 16 (-1)^k}{64 n^2 \cdot \sin^4\left( \frac{k-1}{n} \cdot \tfrac{\pi}{2} \right)} $ It is easy to check numerically that this bound is more crude than the one you seek to establish.


Added Notice the series expansion around $t=0$: $ \left(\frac{\sin(n t)}{\sin(t)} \right)^4 = n^4 \left( 1 - \frac{2}{3} (n^2-1) t^2 + \mathcal{o}(t^2) \right) $ This suggests looking for a bound in the form $\exp(-(n^2-1) t^2 \alpha)$. Suppose we fix a small enough $\alpha$, such that $ \forall_{0 < t < \tfrac{\pi}{2}} \left(\frac{\sin(n t)}{\sin(t)} \right)^4 \leqslant \exp(-(n^2-1) t^2 \alpha) $ Then $ \int_0^{\pi/2} t \cdot \left(\frac{\sin(n t)}{\sin(t)} \right)^4 \mathrm{d} t < \int_0^{\pi/2} t \exp(-(n^2-1) t^2 \alpha) \mathrm{d} t = n^4 \frac{1 - \exp(-\alpha (n^2-1) \pi^2/4)}{\alpha (n^2-1)} = \frac{ \pi^2 n^2}{8} \cdot \exp\left(-\frac{\pi^2 \alpha}{8} (n^2-1)\right) \cdot n^2 \operatorname{sinch}\left(\frac{\pi^2 \alpha}{8} (n^2-1)\right) $ where $\operatorname{sinch}(x) = \frac{\sinh(x)}{x}$ and is an increasing function of $x$, therefore: $ \frac{ \pi^2 n^2}{8} \cdot \exp\left(-\frac{\pi^2 \alpha}{8} (n^2-1)\right) \cdot n^2 \operatorname{sinch}\left(\frac{\pi^2 \alpha}{8} (n^2-1)\right) < \frac{ \pi^2 n^2}{8} \cdot \exp\left(-\frac{\pi^2 \alpha}{8} (n^2-1)\right) \cdot n^2 \operatorname{sinch}\left(\frac{\pi^2 \alpha}{8} n^2 \right) < \frac{ \pi^2 n^2}{8} \cdot \exp\left(\frac{\pi^2 \alpha}{8}\right) $

  • 0
    @Gingerjin I have updated the answer. I think the second approach is much better.2012-03-15
5

Hint: prove that $\dfrac{\sin n t}{\sin t}\le n$ for $0.

  • 0
    @Gingerjin For the interval 0 it is already done by Sasha. Hint for the rest: use the estimate for $\sin t$ from your question.2012-03-15
3

Write $ \frac{\sin(n\,t)}{\sin t}=\frac{\sin(n\,t)}{t}\cdot\frac{t}{\sin t}. $ From $\sin t\le t$ it follows that $ \frac{|\sin(n\,t)|}{t}\le\min(n,t^{-1}),\quad t>0.\tag1 $ From convexity, it follows that $ \Bigl(\frac{t}{\sin t}\Bigr)^4\le1+\Bigl(\Bigl(\frac{\pi}{2}\Bigr)^3-\frac{2}{\pi}\Bigr)t,\quad0\le t\le\frac{\pi}{2}.\tag2 $ From (1) and (2) we get that $\begin{align*} \int_0^{\frac{\pi}{2}}t\Bigl(\dfrac{\sin(nt)}{\sin t}\Bigr)^4dt&\le\int_0^{\frac{\pi}{2}}t\bigl(\min(n,t^{-1})\bigr)^4\Bigl(1+\Bigl(\Bigl(\frac{\pi}{2}\Bigr)^3-\frac{2}{\pi}\Bigr)t\Bigr)dt\\ &=n^4\int_0^{\frac1n}t\,\Bigl(1+\Bigl(\Bigl(\frac{\pi}{2}\Bigr)^3-\frac{2}{\pi}\Bigr)t\Bigr)dt+\int_{\frac1n}^{\frac\pi2}t^{-3}\Bigl(1+\Bigl(\Bigl(\frac{\pi}{2}\Bigr)^3-\frac{2}{\pi}\Bigr)t\Bigr)dt\\ &=n^2+\frac{(\pi ^4-16) n}{6 \pi }-\frac{\pi ^4-8}{4 \pi ^2}\\ &<\frac{\pi^2}{4}\,n^2 \end{align*}$ if $n>2$. The cases $n=1$ and $n=2$ can be checked by direct computation.


Note

A better estimate can be obtained using the inequality $ \frac{\sin t}{t}\le\min\Bigl(\frac{\pi}{2},1+(1-\frac{2}{\pi})t,\frac{6}{6-t^2}\Bigr). $

enter image description here

  • 0
    Direct integration. I did it with Mathematica, but it is not too difficult to do it by hand, breaking the integral in two: $\int_0^{1/n}+\int_{1/n}^{\pi/2}$.2012-03-16