Evaluate $ \int\int_D e^{y^2} dA $ where D is the triangular region with vertices (0,0), (0,1) and (2,1)
My attempts:
$ \int^{2}_0 \int^{1}_\frac{x}{2} e^{y^2} dy dx $ or $ \int^{0}_1\int^{2y}_2 e^{y^2} dx dy $
but I couldn't evaluate the integral so I think I must've done something wrong when finding the region D.