$x \in \mathbb{R}^{n}$ is a convex combination $C$ if there $p=p(x)\in \mathbb{N}$, $\lbrace \lambda_i\rbrace_{i=1}^{p} \subseteq [0,1]$ y $\lbrace x_i\rbrace_{i=1}^{p} \subseteq C$ such that $ x=\sum_{i=1}^{p}\lambda_ix_i \ , \ \ \sum_{i=1}^{p}\lambda_i=1$
For a triangle in $\mathbb{R}^{2}$, with vertices a, b, c. if x is a convex combination of {a,b,c} then $\lambda_1=\dfrac{\Vert x-a\Vert}{\Vert x-a\Vert +\Vert x-b\Vert +\Vert x-c\Vert }$? and so similarly for $\lambda_2,\lambda_3$??