Suppose $X$ follows a Poisson distribution with mean $\lambda$ and $Y$ follows an exponential distribution with mean $\displaystyle\frac{1}{\mu}$. How can I find distribution of $Z=XY$?
finding distribution $Z=XY$ in question
-
0@Sasha Done. Thank You for letting me know. – 2012-04-26
2 Answers
Assuming $X$ and $Y$ are independent, the CDF for $z \ge 0$ is $ F(z) = P(X Y \le z) = e^{-\lambda} + \sum_{x=1}^\infty e^{-\lambda} \frac{\lambda^x}{x!} (1 - e^{-\mu z/x}) = 1 - \sum_{x=1}^\infty \frac{\lambda^x}{x!} e^{-\lambda-\mu z/x}$
The sum is very unlikely to be expressible in closed form.
Consider $ F_Z(z) = \mathbb{P}(Z \leqslant z) = \mathbb{P}(X Y \leqslant z) \stackrel{\color\maroon{\text{conditional tower}}}{=} \mathbb{E}\left( \mathbb{P}(X Y \leqslant z |X) \right) = \mathrm{e}^{-\lambda} \mathbf{1}_{z \geqslant 0} + \sum_{x=1}^\infty \frac{\mathrm{e}^{-\lambda}}{x!} F_Y\left( \frac{z}{x} \right) $
Notice that $F_Z(z)$ has a jump discontinuity at the origin: $ F_Z(0+) - F_Z(0-) = \mathrm{e}^{-\lambda} $ meaning that $Z$ is not an absolutely continuous random variable. You can see this rather well of the cumulative function histogram of the simulated product: