(a) $\operatorname{Int}\overline A=\emptyset$ $\Leftrightarrow$
(b) There is no non-empty open set $U\subseteq\overline A$. $\Leftrightarrow$
(c) If $U$ is a non-empty open set then $U\setminus\overline A\ne\emptyset$. $\Leftrightarrow$
(d) If $U$ is a non-empty open set then there exists a non-empty open open set $V$ such that $V\subseteq U\setminus\overline A$. $\Leftrightarrow$
(e) If $U$ is a non-empty open set then there exists a non-empty open open set $V$ such that $V\subseteq U\setminus A$.
Equivalence of the last two conditions follows from $\operatorname{Int} (U\setminus A)=U\setminus\overline{A}$.
The inclusion $\operatorname{Int} (U\setminus A)\supseteq U\setminus\overline{A}$ is clear, since $U\setminus\overline{A}$ is an open set and $U\setminus\overline{A}\subseteq U\setminus A$.
On the other hand, if $V\subseteq U\setminus A$ is an open set, then $V\cap A=\emptyset$. This implies $V\cap\overline A=\emptyset$. We have shown that $V\subseteq U\setminus \overline A$ holds for every open subset $V$ of $U\setminus A$. This means that $\operatorname{Int} (U\setminus A)\subseteq U\setminus\overline{A}$.
You can also find similar proof in the book Elements of Metric Spaces by M.N. Mukherjee p.89. (I found this book simply by typing "let A be nowhere dense" into google, I do not know how good this book is. However, proof of this result seems fine.)