Let $U$ be an open set in $\mathbb{R}^{n}$ and $f :U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a given function. We say that $f$ is differentiable at $x_{0}\in U$ if the partial derivatives of $f$ existi at $x_{0}$ and if $\displaystyle \lim_{x \rightarrow x_{0}} \frac{\|f(x)-f(x_{0})-T(x-x_{0})\|}{\|x-x_{0}\|}=0$ where $T=Df(x_{0})$ is the $ m \times n$ matrix with elements $\displaystyle \frac{\partial f_{i}}{\partial x_{j}}$ evaluated at $x_{0}$ and the $T(x-x_{0})$ means the product of $T$ with $x-x_{0}$ (regarded as a column matrix). We call $T$ the derivative of $f$ at $x_{0}$.
Now I consider a particular case($m=n=2$) $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$
Following the definition I obtain :
$\displaystyle f(a,b)-f(a_{0}, b_{0})- \begin{pmatrix}\frac{\partial f_{1}}{\partial a} & \frac{\partial f_{1}}{\partial b}\\ \frac{\partial f_{2}}{\partial a} & \frac{\partial f_{2}}{\partial b} \end{pmatrix} \begin{pmatrix}a-a_{0} \\ b-b_{0} \end{pmatrix} = f(a,b)-f(a_{0},b_{0})- \begin{pmatrix}\frac{\partial f_{1}}{\partial a} \cdot(a-a_{0})+\frac{\partial f_{1}}{\partial b}\cdot(b-b_{0})\\ \frac{\partial f_{2}}{\partial a}\cdot(a-a_{0})+\frac{\partial f_{2}}{\partial b}\cdot(b-b_{0}) \end{pmatrix}$ where $f(a,b)=(f_{1}(a,b),f_{2}(a,b))$.
My question is : How can I compute this limit because the last element is a matrix and first two aren't. And why $f(x)-f(x_{0})-T(x-x_{0})$ I have to put into $\| \|$ ? I have an idea why I have to put into norm but I'm not sure and can you give an concrete example how I compute the limit - for example $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2, f(a,b)=(a^2+b^2, a^2+b^2)$ when $ (a,b) \rightarrow (1,1)$.
Thanks :)