4
$\begingroup$

By using the method of undetermined coeficiens, find the particular solution $y_p$ for this inhomogenous differential equation. $y''+y= \sin x + x\cos x$

I have find the roots which are $\pm i$.

and the complementary function $y_c= (C_1 \cos x + C_2\sin x)$

The answer given is : $(x/4)[x\sin x-\cos x]$

  • 0
    Did you try to use the method? On another subject: since there are no constants in the answer, you should be given initial values.2012-11-23

3 Answers 3

2

By setting $C_1=C_1(x)$ and $C_2=C_2(x)$, you have $y=C_1(x)\cos x+C_2(x)\sin x$. Substitute this into the equation. You will have a system of equations on the derivatives of $C_1,C_2$. You should assume that the sum of all terms containing $C_1''(x)$ and $C_2''(x)$ is zero. Now find $C_1(x)$ and $C_2(x)$. I.e: $\begin{array}{l} y=C_1(x)\cos x+C_2(x)\sin x\\ y'=-C_1(x)\sin x+C_2(x)\cos x+C_1'(x)\cos x+C_2'(x)\sin x\\ \begin{align*}y''=&-C_1(x)\cos x-C_2(x)\sin x-C_1'(x)\sin x+C_2'(x)\cos x\\&-C_1'(x)\sin x+C_2'(x)\cos x+C_1''(x)\cos x+C_2''(x)\sin x\end{align*}\\ \end{array}$ $\begin{align*} \sin x+x\cos x &=y''+y=C_1(x)\cos x+C_2(x)\sin x-C_1(x)\cos x-C_2(x)\sin x\\&-C_1'(x)\sin x+C_2'(x)\cos x-C_1'(x)\sin x+C_2'(x)\cos x+C_1''(x)\cos x+C_2''(x)\sin x \end{align*}$ $\left\{\begin{array}{l} 2C_2'(x)\cos x-2C_1'(x)\sin x=\sin x+x\cos x\\ C_1''(x)\cos x+C_2''(x)\sin x=0 \end{array}\right.$ $C_2'(x)=\frac12\left(\tan x+x+C_1'(x)\tan x\right)$ $C_2''(x)=\frac12\left(\frac{1}{1+x^2}+1+C_1'(x)\frac{1}{1+x^2}+C_1''(x)\tan x\right)$ $0=C_1''(x)\cos x+\frac12\left(\frac{\sin x}{1+x^2}+\sin x+C_1'(x)\frac{\sin x}{1+x^2}+C_1''(x)\cos x\right)$ $C_1''(x)+C_1'(x)\frac13\frac{\tan x}{1+x^2}+\frac13\frac{\tan x}{1+x^2}+\frac13\tan x=0$ Now find $C_1(x)$ and $C_2(x)$.

1

Beside to Dennis's approach, you can use the annihilator's method as well http://www.utdallas.edu/dept/abp/PDF_Files/DE_Folder/Annihilator_Method.pdf. According to this way you will have: $(D^2+1)^3y=0$ so we can guess $y(x)=y_p(x)+y_c(x)\\=A\cos(x)+B\sin(x)+Ex\cos(x)+Fx\sin(x)+Gx^2\cos(x)+Hx^2\sin(x)$ Now pick up the $y_c(c)$ from the solution . You will have $y_P(x)$.

  • 0
    $\ddot\smile\quad +1 \quad $2013-04-07
1

Consider the differential equation $ \left(\frac{\mathrm{d}}{\mathrm{d}x}+a\right)y=f(x)\tag{1} $ This can be solved using an integrating factor. Suppose $ g'(x)=ag(x)\tag{2} $ then $ \frac{\mathrm{d}}{\mathrm{d}x}(g(x)y)=g(x)y'+ag(x)y=g(x)f(x)\tag{3} $ Equation $(3)$ is simply $(1)$ multiplied by $g(x)$. Note that $(2)$ is the same as $ \frac{\mathrm{d}}{\mathrm{d}x}\log(g(x))=a\tag{4} $ which is satisfied by $ g(x)=e^{ax}\tag{5} $ plugging $(5)$ back into $(3)$ yields $ \frac{\mathrm{d}}{\mathrm{d}x}\left(e^{ax}y\right)=e^{ax}f(x)\tag{6} $ which becomes $ y=e^{-ax}\int e^{ax}f(x)\,\mathrm{d}x\tag{7} $


$y''+y=\sin(x)+x\cos(x)$ is simply $ \left(\frac{\mathrm{d}}{\mathrm{d}x}+i\right)\left(\frac{\mathrm{d}}{\mathrm{d}x}-i\right)y=\sin(x)+x\cos(x)\tag{8} $ Using $(7)$ once with $a=i$ gives $ \begin{align} \left(\frac{\mathrm{d}}{\mathrm{d}x}-i\right)y &=e^{-ix}\int e^{ix}(\sin(x)+x\cos(x))\,\mathrm{d}x\\ &=e^{-ix}\left(\frac{x^2}4+\frac{ix}2+c_1\right)-e^{ix}\left(\frac{ix}4+\frac18\right)\tag{9} \end{align} $ Using $(7)$ again with $a=-i$ gives $ \begin{align} y &=e^{ix}\int e^{-ix}\left(e^{-ix}\left(\frac{x^2}4+\frac{ix}2+c_1\right)-e^{ix}\left(\frac{ix}4+\frac18\right)\right)\,\mathrm{d}x\\ &=e^{-ix}\left(\frac{ix^2}8-\frac x8\right)-e^{ix}\left(\frac{ix^2}8+\frac x8\right)+c_1^\prime e^{-ix}+c_2^\prime e^{ix}\\ &=\frac{x^2}4\sin(x)-\frac x4\cos(x)+c_1^{\prime\prime}\cos(x)+c_2^{\prime\prime}\sin(x)\tag{10} \end{align} $