I would like to give a new proof, I hope a little bit "more readable".
I refer to Elliott Mendelson, Introduction to Mathematical Logic (4th ed - 1997).
The 11-axioms OP's axiom sytem is like the 10-axioms system $\mathsf L_4$ discussed in Mendelson [page 46], derived from Kleene [1952 - Introduction to Metamathematics] with a "variant" in Ax5, and Ax9 and Ax11 in place of the Kleene's 10th axiom : $\vdash (B \rightarrow C) \rightarrow ((B \rightarrow \lnot C) \rightarrow \lnot C)$.
Ax1 and Ax2 are also used in Mendelson [as (A1) and (A2)].
Lemma 0 : $\vdash A \rightarrow A$ [Self-Imp - see Mendelson : Lemma 1.8, page 36]
(1) $\vdash [A \rightarrow ((B \rightarrow A) \rightarrow A)] \rightarrow [(A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A)]$ --- Ax2
(2) $\vdash A \rightarrow ((B \rightarrow A) \rightarrow A)$ --- Ax1
(3) $\vdash (A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A)$ --- from (1) and (2) by modus ponens
(4) $\vdash A \rightarrow (B \rightarrow A)$ --- Ax1
(5) $\vdash A \rightarrow A$ --- from (3) and (4) by modus ponens.
With Ax1, Ax2 and Lemma 0, we may prove the Deduction Theorem [see Mendelson : Prop 1.9, page 37].
Lemma 1 : $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$ [Syllogism - see Mendelson : Coroll 1.10a, page 38]
(1) $A \rightarrow B$ --- assumed
(2) $B \rightarrow C$ --- assumed
(3) $\vdash (B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C))$ --- Ax1
(4) $A \rightarrow (B \rightarrow C)$ --- from (2) and (3) by modus ponens
(5) $\vdash [A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]$ --- Ax2
(6) $(A \rightarrow B) \rightarrow (A \rightarrow C)$ --- from (4) and (5) by modus ponens
(7) $A \rightarrow C$ --- from (1) and (6) by modus ponens.
Lemma 2 : $\vdash (\lnot A \rightarrow \lnot B) \rightarrow (B \rightarrow A)$ [Transposition]
(1) $\vdash (\lnot A \rightarrow \lnot B) \rightarrow (\lnot \lnot B \rightarrow \lnot \lnot A)$ --- Ax11
(2) $\lnot A \rightarrow \lnot B$ --- assumed
(3) $\lnot \lnot B \rightarrow \lnot \lnot A$ --- from (1) and (2) by modus ponens
(4) $\vdash B \rightarrow \lnot \lnot B$ --- Ax9
(5) $B \rightarrow \lnot \lnot A$ --- from (3) and (4) by Syll
(6) $\vdash \lnot \lnot A \rightarrow A$ --- Ax10
(7) $B \rightarrow A$ --- from (5) and (6) by Syll
(8) $\vdash (\lnot A \rightarrow \lnot B) \rightarrow (B \rightarrow A)$ --- by Deduction Theorem, discharging (2).
Lemma 3 : $\vdash \lnot A \rightarrow (A \rightarrow B)$
(1) $\vdash \lnot A \rightarrow (\lnot B \rightarrow \lnot A)$ --- Ax1
(2) $\vdash (\lnot B \rightarrow \lnot A) \rightarrow (A \rightarrow B)$ --- Lemma 2
(3) $\vdash \lnot A \rightarrow (A \rightarrow B)$ --- from (1) and (2) by Syll.
Lemma 4 : $\vdash (\lnot A \rightarrow A) \rightarrow (B \rightarrow A)$
(1) $\vdash \lnot A \rightarrow (A \rightarrow \lnot B)$ --- Lemma 3
(2) $\vdash [\lnot A \rightarrow (A \rightarrow \lnot B)] \rightarrow [(\lnot A \rightarrow A) \rightarrow (\lnot A \rightarrow \lnot B)]$ --- Ax2
(3) $\vdash (\lnot A \rightarrow A) \rightarrow (\lnot A \rightarrow \lnot B)$ --- from (1) and (2) by modus ponens
(4) $\vdash (\lnot A \rightarrow \lnot B) \rightarrow (B \rightarrow A)$ --- Lemma 2
(5) $\vdash (\lnot A \rightarrow A) \rightarrow (B \rightarrow A)$ --- from (3) and (4) by Syll.
Lemma 5 : $\vdash (\lnot A \rightarrow A) \rightarrow A$
(1) $\vdash (\lnot A \rightarrow A) \rightarrow ((\lnot A \rightarrow A) \rightarrow A)$ --- Lemma 4
(2) $\vdash [(\lnot A \rightarrow A) \rightarrow ((\lnot A \rightarrow A) \rightarrow A)] \rightarrow [ ((\lnot A \rightarrow A) \rightarrow (\lnot A \rightarrow A)) \rightarrow ((\lnot A \rightarrow A) \rightarrow A) ]$ --- Ax2
(3) $\vdash ((\lnot A \rightarrow A) \rightarrow (\lnot A \rightarrow A)) \rightarrow ((\lnot A \rightarrow A) \rightarrow A)$ --- from (1) and (2) by modus ponens
(4) $\vdash (\lnot A \rightarrow A) \rightarrow (\lnot A \rightarrow A)$ --- Lemma 0
(5) $\vdash (\lnot A \rightarrow A) \rightarrow A$ --- from (3) and (4) by modus ponens.
Lemma 6 : $A \rightarrow B, \lnot A \rightarrow B \vdash B$
(1) $A \rightarrow B$ --- assumed
(2) $\vdash (A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ --- Ax11
(3) $\lnot B \rightarrow \lnot A$ --- from (1) and (2) by modus ponens
(4) $\lnot A \rightarrow B$ --- assumed
(5) $\lnot B \rightarrow B$ --- from (3) and (4) by Syll
(6) $\vdash (\lnot B \rightarrow B) \rightarrow B$ --- Lemma 5
(7) $B$ --- from (5) and (6) by modus ponens.
Finally, we have our main result :
Theorem [Excluded Middle] : $\vdash A \lor \lnot A$
(1) $\vdash A \rightarrow (A \lor \lnot A)$ --- Ax6
(2) $\vdash \lnot A \rightarrow (A \lor \lnot A)$ --- Ax7
(3) $\vdash A \lor \lnot A$ --- from (1) and (2) by Lemma 6.
Notes
(A) We have used the Deduction Theorem only in the proof of Lemma 2; with a little additional effort we may avoid it at all.
(B) We have used only Ax1, Ax2, Ax6, Ax7, Ax9, Ax10, Ax11.