5
$\begingroup$

Evaluate $\displaystyle \lim_{x \to 0} \left(\frac{1}{\ln(1+x)} + \frac{1}{\ln(1-x)}\right)$

I am having trouble starting this one. I couldn't see any log laws that I'm familiar with to rearrange the formula. I also tried combining the fractions and using L'Hospital's, but it only seemed to make things worse.

What direction should I take with this?

4 Answers 4

8

What's wrong with L'Hopital's?

\begin{align*} \lim_{x\to 0}\frac{1}{\ln(1+x)}+\frac{1}{\ln(1-x)} &= \lim_{x\to 0}\frac{\ln(1-x^2)}{\ln(1+x)\ln(1-x)}\\ &= \lim_{x\to 0}\frac{-2x/(1-x^2)}{\ln(1-x)/(1+x)-\ln(1+x)/(1-x)}\\ &= \lim_{x\to 0}\frac{-2x}{(1-x)\ln(1-x)-(1+x)\ln(1+x)}\\ &= \lim_{x\to 0}\frac{-2}{-1-\ln(1-x)-1-\ln(1+x)}\\ &= \frac{-2}{-2}\\ &= 1. \end{align*}

  • 2
    Nothing, apparently :S I gave up too quickly it seems.2012-04-16
6

Starting with Jim Conant's expression $\frac{\ln(1-x^2)}{\ln(1-x)\ln(1+x)}$ you could divide the numerator and the denominator by $x^2$, then use the fact that $\lim_{x\to0} \frac{\ln(1+x)}{x} = 1.$

3

One approach is to use Taylor series. After combining fractions, you get $\frac{\ln(1-x^2)}{\ln(1-x)\ln(1+x)}$ Plugging in the Taylor series you get $ \frac{-x^2-(1/2)x^4-\cdots}{(x-(1/2)x^2+\cdots)(-x-(1/2)x^2-\cdots)}=\frac{-1-(1/2)x^2+\cdots}{(1-(1/2)x+\cdots)(-1-(1/2)x+\cdots)} $ This limits to $-1/-1=1$.

3

Since $\log(1+x)=x-\frac{x^2}{2}+O(x^3)$, we have $\log(1-x)=-x-\frac{x^2}{2}+O(x^3)$. Therefore, $ \begin{align} \frac{1}{\log(1+x)}+\frac{1}{\log(1-x)} &=\frac{1}{x(1-\frac{x}{2}+O(x^2))}+\frac{1}{-x(1+\frac{x}{2}+O(x^2))}\\ &=\frac{1+\frac{x}{2}+O(x^2)}{x}-\frac{1-\frac{x}{2}+O(x^2)}{x}\tag{$\ast$}\\ &=\frac{x+O(x^2)}{x}\\ \end{align} $ where $(\ast)$ is because $\frac{1}{1+x}=1-x+O(x^2)$.

Therefore, $ \lim_{x\to0}\frac{1}{\log(1+x)}+\frac{1}{\log(1-x)}=1 $

  • 0
    You are welcome. +1 is for your different approach2012-04-16