1
$\begingroup$

I read from a text book that covariance is $E((X - EX)(Y - EY))$. The book then states that this expression is equivalent to $E(XY) - E(X)E(Y)$. Where did the latter expression come from?

1 Answers 1

4

$(X-EX)(Y-EY)=XY-(EY)X-(EX)Y+(EX)(EY)$, and expectation is linear, so

$\begin{align*} E\big((X-EX)(Y-EY)\big)&=E(XY)-(EY)EX-(EX)EY+(EX)(EY)\\ &=E(XY)-(EX)(EY)\;. \end{align*}$

If you get lost in all the expectations, let $\alpha=E(X)$ and $\beta=E(Y)$; then

$(X-\alpha)(Y-\beta)=XY-\beta X-\alpha Y+\alpha\beta\;,$ and

$\begin{align*} E\big((X-\alpha)(Y-\beta)\big)&=E(XY)-\beta E(X)-\alpha E(Y)+\alpha\beta\\ &=E(XY)-\beta\alpha-\alpha\beta+\alpha\beta\\ &=E(XY)-\alpha\beta\\ &=E(XY)-E(X)E(Y)\;. \end{align*}$

  • 0
    @David: You’re welcome.2012-11-07