Let's define $\displaystyle\ F(b):= \int_{-\infty}^\infty \frac{e^{-it}}{|t|^{1/2+ib}}\,dt\ = 2\int_0^\infty \frac{\cos(t)}{t^{1/2+ib}}\,dt$
Since $\displaystyle \int_0^\infty \frac{\cos(t)}{t^z}\,dt= \sin\left(\frac{\pi z}2\right)\Gamma(1-z)\ \ $ (for $\Re(z) \in (0,1)$)
(you may indeed find this integral in tables of Mellin transforms or in tables of Fourier cosine transform : Gradshteyn and Ryzhik (17.34.6) for example)
This seems to be a result of Euler who provided the integral (Whittaker and Watson 'A course of Modern Analysis' page 260 example 12, see too the Hankel integral of Gamma §12.22) : $\displaystyle \int_0^{\infty}\frac {\cos(ux)}{x^z}\,dx=\frac {\pi}{2 \Gamma(z)} u^{z-1}\sec\left(\frac {\pi z}2\right)\ $
This corresponds to the previous result using $\frac {\pi}{\Gamma(z)}=\Gamma(1-z)\sin(\pi z)\ $ and $\ \sin(\pi z)=2\sin\bigl(\frac{\pi}2 z\bigr)\cos\bigl(\frac{\pi}2 z\bigr)$.
so that $F(b)$ becomes : $F(b)= 2\,\sin\left(\frac {\pi}2\left(\frac 12 +ib\right)\right)\Gamma\left(\frac 12 - ib\right)$
A change of variable of $t\to ut$ and a division by $|a|^{1/2+ib}$ should give your solution.