Let $y$ be given by $y=\int_x^\infty \frac{dx'}{(1+x'^2)^\alpha}$ where $\alpha>1$. Is it possible to express the following as a series: $x(1+x^2)^{\alpha-1}=\sum a_n\left(\frac{1}{y}\right)^n$
Power series over integral change of variables
1
$\begingroup$
power-series