0
$\begingroup$

How can i specify in the otherwise condition of the following equation

\begin{cases}\ U & \text{if $A_{U_{Max}} = A_{U_{Min}} =$ Null},\\ \ \frac{A_{U_{Max}} - A_{U_{Min}}}{U\sqrt{2}} & \text{otherwise} \end{cases}

that if denominator is 0 then make it equal to 1 ?

  • 3
    Or $U\sqrt2+[U\sqrt2=0]$, with an [Iverson bracket](http://en.wikipedia.org/wiki/Iverson_bracket).2012-04-17

1 Answers 1

1

Replacing the denominator with $ U\sqrt{2}+[U=0]$ (as suggested by Brian M. Scott) may be the shortest solution. However, keep in mind that the readers will have to mentally process the formula it by splitting into sub-cases anyway. So, consider refactoring the statement, e.g., Let $F=U$ if $A_{U_{Max}} = A_{U_{Min}} = 0$, and otherwise
$F = \begin{cases} \frac{A_{U_{Max}} - A_{U_{Min}}}{U\sqrt{2}}, & \quad U\ne 0 \\ \ A_{U_{Max}} - A_{U_{Min}}, & \quad U = 0 \end{cases}$