7
$\begingroup$

I want to somehow classify the distributional solutions of the equation $ f \ast f = \delta $ where $\delta = \delta _0$ is the Dirac delta distribution. Clearly, by Fourier transformation, we have $ \widehat{f}^2 = 1, $ but I'm wondering whether it is possible to obtain a more explicit solution?

  • 5
    Obviously $\delta *\delta=\delta$.2012-12-03

1 Answers 1

6

Let $A\subset\mathbb{R}$ be a measurable set. Define $ f_A=\mathcal{F}^{-1}\bigl(\chi_A-\chi_{\mathbb{R}\setminus A}\bigl), $ where $\mathcal{F}$ denotes the Fourier transform and $\chi_B$ is the characteristic fnction of the set $B$. Then $ f_A\ast f_A=\delta. $ Some explicit examples are:

  • $A=\mathbb{R}$, $f_A=\delta$.
  • $A=\emptyset$, $f_A=-\delta$.
  • $A=[0,\infty)$, $f_A=\dfrac{i}{\pi}\operatorname{Principal Value}\dfrac1x$.
  • 2
    From $(\hat f)^2=1$ it follows that $f(x)=\pm1$ for almost every $x\in\mathbb{R}$. Let $A^\pm=\{x:f(x)=\pm1\}$. Then $\mathbb{R}\setminus(A^+\cup A^-)$ is of measure zero.2012-12-04