Does the following series converge or diverge?
$\sum_{n=1}^\infty\frac{4^n+n}{n!}$
Does the following series converge or diverge?
$\sum_{n=1}^\infty\frac{4^n+n}{n!}$
$\sum_{n=1}^{\infty} \dfrac{4^n + n}{n!} = \sum_{n=1}^{\infty} \dfrac{4^n}{n!} + \sum_{n=1}^{\infty} \dfrac{n}{n!} = \exp(4)-1 + \sum_{n=1}^{\infty} \dfrac1{(n-1)!} = \exp(4)-1 + \exp(1)$