Let $k$ be a field, n a positive integer.
Vakil's notes, 17.4.B: Show that all the automorphisms of the projective scheme $P_k^n$ correspond to $(n+1)\times(n+1)$ invertible matrices over k, modulo scalars.
His hint is to show that $f^\star \mathcal{O}(1) \cong \mathcal{O}(1).$ (f is the automorphism. I don't if $\mathcal{O}(1)$ is the conventional notation; if it's unclear, it's an invertible sheaf over $P_k^n$) I can show what he wants assuming this, but can someone help me find a clean way to show this?