2
$\begingroup$

Suppose that $N$ is a homogeneous Poisson process with rate $\lambda$. For 0 \le s \le t < \infty, how can we find $\mathbb E[N_s\cdot N_t]$?

  • 1
    [48 questions asked](http://math.stackexchange.com/q/123014/6179) and still no clue about the formatting of mathematics on the site?2012-04-13

1 Answers 1

4

If $(N_t)_{t\geq 0}$ is a Poisson process with parameter $\lambda$, then $E[N_t-N_s]=\lambda(t-s)$ for $0\leq s\leq t$. Then if $0\leq s\leq t$ $ E[N_t N_s]=E[E[N_t N_s\mid \mathcal{F_s}]]=E[N_s E[N_t\mid\mathcal{F_s}]]. $ Now let's calculate the conditonal expectation using that $N_t-N_s$ is independent of $\mathcal{F}_s$: $ E[N_t\mid\mathcal{F_s}] = E[N_t-N_s+N_s\mid\mathcal{F_s}]=E[N_t-N_s]+N_s=\lambda(t-s)+N_s. $ Then $ E[N_tN_s]=E[N_s(\lambda(t-s)+N_s)]=E[N_s^2+N_s\lambda(t-s)]=E[N_s^2]+\lambda(t-s)E[N_s]\\ =\lambda s+(\lambda s)^2+\lambda(t-s)\lambda s=\lambda^2 t s+\lambda s. $