What is the trick, to prove $\| u\|_{L^2(\Gamma)} \leq k \frac{1}{r}\| u\|_{L^2(\Omega)} + r \| \nabla u\|_{L^2(\Omega)} $ ? $\Gamma$ is one side of $\Omega:= [0,r] \times [0,r] $. I tried partial differentiation, but it doesnt work.
Some kind of trace inequality
-
0For all $u \in H^1(\Omega)$. – 2012-12-03
1 Answers
Let $r=1$ for simplicity; the general case follows by rescaling. Also, $\Gamma=[0,1]\times \{0\}$. We may assume $u$ is continuous, by the usual density argument. Let $v(x,y)=u(x,0)$; the goal is to bound the $L^2$ norm of $v$ on the square $Q=[0,1]\times [0,1]$. To this end, if suffices to estimate $\|u-v\|_{L^2(Q)}$ by $\|\nabla u\|_{L^2(Q)}$. Well, for each $x\in [0,1]$ we have $ \sup_{y\in[0,1]}|u(x,y)-v(x,y)| \le \int_0^1 |\nabla u(x,y)|\,dy \tag1$ Square both sides and use Cauchy-Schwarz: $ \sup_{y\in[0,1]}|u(x,y)-v(x,y)|^2 \le \int_0^1 |\nabla u(x,y)|^2\,dy \tag2$ The supremum on the left majorizes the corresponding integral: $ \int_0^1 |u(x,y)-v(x,y)|^2 \,dy \le \int_0^1 |\nabla u(x,y)|^2\,dy \tag3$ Finally integrate in $x$ to get $\|u-v\|_{L^2(Q)}\le \|\nabla u\|_{L^2(Q)}$.