Are $\mathbb{Z}[x]/(x^N-1)$, $\mathbb{Z}_a[x]/(x^N-1)$, $\mathbb{Z}_p[x]/(x^N-1)$ UFDs, where $a$ is composite and $p$ is prime? $N$ may be prime or composite.
Unique factorization domain
2
$\begingroup$
abstract-algebra
-
3First you might want to thin$k$ about which of them are D's... – 2012-03-07
1 Answers
3
Hint $\rm\ \mathbb Z_m[x]/(x^n-1)\:$ domain $\rm\:\Rightarrow\: m\:$ prime (or $0$) in $\rm\mathbb Z,\:\ x^n-1\:$ prime in $\rm\:\mathbb Z_m[x]\:$ $\Rightarrow$ $\rm\: n=1\ (or\:\ 0).\:$