On a finite dimensional vector space, the answer is yes (because surjective linear map must be an isomorphism). Does this extend to infinite dimensional vector space? In other words, for any linear surjection $T:V\rightarrow V$, AC guarantees the existence of right inverse $R:V\rightarrow V$. Must $R$ be linear?
How about $T:V\rightarrow W$ linear surjection in general?