1
$\begingroup$

$\sum_{n=0}^{\infty} \frac{n^n}{3^{1+3n}}$

I have, by Cauchy Criterion

$\lim_{n \rightarrow \infty} \sqrt[n]{|a_n|}= \frac{1}{27} \lim_{n \rightarrow \infty} \frac{n}{3^{1/n}}= ?$

How a finish?

Cheers!

3 Answers 3

2

Note that the $n^{th}$ terms is $a_n = \dfrac13 \left(\dfrac{n}{27} \right)^n$.

For $n > 54$, we have that $a_n > \dfrac{2^n}3$.

Hence, what is $\lim_{n \to \infty} a_n$? What can you say about the series after finding what $\lim_{n \to \infty} a_n$ is?

  • 1
    @PeterTamaroff lol. One of those many days where my research work has taken back seat :-)2012-11-06
2

Maybe you can tidy things up first

$\sum\limits_{n = 0}^\infty {\frac{{{n^n}}}{{{3^{1 + 3n}}}}} = \frac{1}{3}\sum\limits_{n = 0}^\infty {\frac{{{n^n}}}{{{3^{3n}}}}} = \frac{1}{3}\sum\limits_{n = 0}^\infty {\frac{{{n^n}}}{{{27^n}}}} = \frac{1}{3}\sum\limits_{n = 0}^\infty {{{\left( {\frac{n}{27}} \right)}^n}} $

Cauchy then says $\lim \; a_n^{1/n}=\lim\; \frac n {27}\to\infty$

So the sequence isn't summable. Maybe we can shed some light on this.

The sequence of the form $a_n=\left(\frac{n}{\lambda}\right)^n$

has the particular problem that $a_n\not \to0$. Indeed, Whenever $n>2\lambda $,

$a_n=\left(\frac{n}{\lambda}\right)^n>2^n$

which means that $a_n\to \infty$.

0

If all is about convergence or divergence of the series, you can also use the D'Alembert criterion (ratio test): $ \lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = \lim_{n \rightarrow \infty} \frac{\frac{(n+1)^{n+1}}{3\cdot 3^{3(n+1)}}}{\frac{n^{n}}{3\cdot 3^{3n}}} = \lim_{n \rightarrow \infty} \frac{(n+1)^{n+1}\cdot 3\cdot 3^{3n}}{n^{n} \cdot 3\cdot 3^{3(n+1)}} = \lim_{n \rightarrow \infty} \frac{(n+1)}{3^3} \left(1+\frac{1}{n}\right)^{n}$ You should know that: $\lim_{n \rightarrow \infty} \left(1+\frac{1}{n}\right)^{n}=e,$ so: $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = \frac{e}{27}\lim_{n \rightarrow \infty}(n+1) = \infty. $

Thus, the series diverges.