1
$\begingroup$

Let $\mathbb{C}\mathbb{P}^1$ be the projective space. Let $a_1, \ldots, a_n \in \mathbb{C}$. What is the fundamental group $\pi_1(\mathbb{CP}^1\backslash \{a_1, \ldots, a_n\})$?

  • 2
    To add to Joe's comment: once you remove a point from $S^2$, you get something homeomorphic to the plane via the stereographic projection.2012-03-06

1 Answers 1

5

Expanding on the comments, since $\mathbb CP^1$ is homeomorphic to $S^2$, we find $\pi_1(\mathbb CP^1\setminus\{a_1\})\cong0$ since $\mathbb CP^1\setminus\{a_1\}\cong S^2\setminus\{a_1\}\cong \mathbb R^2$ which is contractible.

If we remove $n>1$ points, then this is the same as removing $n-1$ points from $\mathbb R^2$, so we find for $n>1$ that $\mathbb CP^1\setminus\{a_1,\ldots,a_n\}\simeq\bigvee_{i=1}^{n-1} S^1$, and so $\pi_1(\mathbb CP^1\setminus\{a_1,\ldots,a_n\})\cong \mathbb Z*\cdots*\mathbb Z$ (n-1 copies).