I think $\lim_{R\rightarrow\infty} \int_0^R e^{x^2 - R^2}dx = 0$ but I cannot show it. It is easy to see that for any $\epsilon > 0$ we have $\lim_{R\rightarrow\infty} \int_0^{R-\epsilon} e^{x^2 - R^2}dx = 0$ but then I cannot justify interchanging limits in $\lim_{R\rightarrow\infty} \int_0^R e^{x^2 - R^2}dx = \lim_{R\rightarrow\infty}\lim_{\epsilon \rightarrow 0} \int_0^{R-\epsilon} e^{x^2 - R^2}dx = \lim_{\epsilon \rightarrow 0}\lim_{R\rightarrow\infty} \int_0^{R-\epsilon} e^{x^2 - R^2}dx = 0$ Any idea?
$\lim_{R\rightarrow\infty} \int_0^R e^{x^2 - R^2}dx$
2
$\begingroup$
calculus
real-analysis
2 Answers
4
Note that $\int_0^Re^{x^2-R^2}dx=\int_0^{R-\epsilon}e^{x^2-R^2}dx+\int_{R-\epsilon}^Re^{x^2-R^2}dx\le \int_0^{R-\epsilon}e^{x^2-R^2}dx+\epsilon.$
11
There is another way: L'Hospital's Rule Can be applied here. Note that
$\lim_{R\rightarrow \infty} \int_0^R e^{x^2-R^2}dx = \lim_{R\rightarrow \infty} \frac{\int_0^R e^{x^2}dx}{e^{R^2}}$
Note that both numerator and denominator are differentiable and both tend to infinity. By L'Hospital's rule, you get $\lim_{R\rightarrow \infty} \int_0^R e^{x^2-R^2}dx = \lim_{R\rightarrow \infty} \frac{e^{R^2}}{2Re^{R^2}} = \lim_{R\rightarrow \infty} \frac{1}{2R} = 0$
-
0This is quite nice too. Thanks – 2012-12-07