Maybe not rigorous, but the idea is correct.
$ X_n\xrightarrow{a.s}X\Leftrightarrow P(\lim_{n\rightarrow\infty}\lvert |X_n-X\rvert |>\epsilon)=0$
$\lvert|X_n-X\rvert|+\lvert|X_{n+1}-X\rvert|\geq\lvert|X_n-X-X_{n+1}+X\rvert|=\lvert|X_n-X_{n+1}\rvert|$$\Rightarrow\lim_{n\rightarrow\infty}\lvert|X_n-X\rvert|+\lim_{n\rightarrow\infty}\lvert|X_{n+1}-X\rvert|\geq\lim_{n\rightarrow\infty}\lvert|X_n-X_{n+1}\rvert|$$\Rightarrow 0=P(\lim_{n\rightarrow\infty}\lvert|X_n-X\rvert|>\epsilon/2)+P(\lim_{n\rightarrow\infty}\lvert|X_{n+1}-X\rvert|>\epsilon/2)\geq P(\lim_{n\rightarrow\infty}\lvert|X_n-X\rvert|>\epsilon/2\lor\lim_{n\rightarrow\infty}\lvert|X_{n+1}-X\rvert|>\epsilon/2)$$=P(\lim_{n\rightarrow\infty}\lvert|X_n-X\rvert|+\lim_{n\rightarrow\infty}\lvert|X_{n+1}-X\rvert|>\epsilon)$$\geq P(\lim_{n\rightarrow\infty}\lvert|X_n-X_{n+1}\rvert|>\epsilon)\geq0$
Since $X_n$s are independent, $X_n$ converges to a constant almost surely.