2
$\begingroup$

Let $f_A: \mathrm{Mat}_2(\mathbb R)\rightarrow \mathrm{Mat}_2(\mathbb R)$ be such that $f_A(X)=AX$ be an endomorphism of vector spaces. Clearly if $A$ is invertible, then $f_A$ is invertible and ${(f_A)}^{-1}=f_{A^{-1}}$. How can I prove the following statement?

$f_A\;\textrm{invertible} \Rightarrow A\;\textrm{invertible}$

  • 0
    thanks... it was so simple!2012-06-04

1 Answers 1

1

Suppose $\,A\,$ is not invertible, then$\exists\,\, \mathbf{0}\neq \mathbf{b}:=\begin{pmatrix}b_1\\b_2\end{pmatrix}\in\mathbb{R}^2\,\,s.t.\,\,A\mathbf{x}=\mathbf{b}$has no solution, so if $\,B\in\operatorname{Mat}_2(\mathbb{R})\,$ is any element with first column equal to $\,\mathbf{b}\,$ , then

$\,\,AX\neq B\,\,\,\forall\,X\in\operatorname{Mat}_2(\mathbb{R})$ , which contradicts $f_A$ is invertible and thus onto...