3
$\begingroup$

If $A, B$ are positive definite matrices of order $n$, what is the smallest constant $c$ such that $\det(A^2+B^2)\le c\det(A+B)^2$?

  • 0
    @RahulNarain: When AB=BA, we may take $c=1$. I guess, generally, c>1.2012-06-01

1 Answers 1

1

There is no such $c$. Consider the $2 \times 2$ positive definite matrices (for $t \ne 0$) $ A = \pmatrix{1 & 0\cr 0 & t^2\cr}, \ B = \pmatrix{1 & t\cr t & 2 t^2\cr}$ Then $\dfrac{\det(A^2 + B^2)}{\det(A+B)^2} = {\dfrac {1+7\,{t}^{2}+{t}^{4}}{25 {t}^{2}}} \to \infty \ \text{as}\ t \to 0$

  • 0
    Yes $\det(A+B) = 5 t^2$, but $\det(A^2+B^2)$ also has a factor of $t^2$.2012-06-02