1
$\begingroup$

Let $A_0 , B_0 , A_1, B_1 \geqslant 0 $ and let $0 \leqslant a,b <1 $. Then prove that $ A_0^a B_0^b + A_1 ^a B_1 ^b \leqslant (A_0 + A_1 )^a (B_0 + B_1 )^b$

  • 0
    except the case of $0^0$.2012-06-17

1 Answers 1

2

$A_0 = A_1 = B_0 = B_1 = x$ and $a+b < 1$. Then $A_0^a B_0^b + A_1^a B_1^b = 2x^{a+b}$ $(A_0 + A_1)^a (B_0 + B_1)^b = (2x)^{a+b}$ Since $a+b < 1$, we have $(A_0 + A_1)^a (B_0 + B_1)^b = (2x)^{a+b} < 2x^{a+b} = A_0^a B_0^b + A_1^a B_1^b$ contradicting your claim.