I came across the following problem in my self-study:
If $f_n, f$ are integrable and $f_n \rightarrow f$ a.e. on $E$, then $\int_E |f_n - f| \rightarrow 0$ iff $\int_E |f_n| \rightarrow \int_E |f|$.
I am trying to prove (1) and the book I am using suggests that it follows from the Generalized Lebesgue Dominated Convergence Theorem:
Let $\{f_n\}_{n=1}^\infty$ be a sequence of measurable functions on $E$ that converge pointwise a.e. on $E$ to $f$. Suppose there is a sequence $\{g_n\}$ of integrable functions on $E$ that converge pointwise a.e. on $E$ to $g$ such that $|f_n| \leq g_n$ for all $n \in \mathbb{N}$. If $\lim\limits_{n \rightarrow \infty}$ $\int_E$ $g_n$ = $\int_E$ $g$, then $\lim\limits_{n \rightarrow \infty}$ $\int_E$ $f_n$ = $\int_E$ $f$.
I suspect that I need the right inequalities to help satisfy the hypothesis of the GLDCT, but I am not certain about what these inequalities should be.