Find the exact value of the following definite integral:
$\int ^\frac{\pi}{2}_{0} \sin\left(2x+\frac{\pi}{4}\right)\:dx=\left[-\frac{1}{2}(2x+\frac{\pi}{4})\right]^\frac{\pi}{2}_{0}$ $=-\frac{1}{2}\left(2\frac{\pi}{2}+\frac{\pi}{4}\right)+\frac{1}{2}\left(2\cdot 0+\frac{\pi}{4}\right)$ $=-\frac{1}{2}\left(\pi+\frac{\pi}{4}\right)+\frac{1}{2}\left(\frac{\pi}{4}\right)=-\frac{\pi}{2}$
but the right answer is:
$\int_{0}^{\frac{\pi}{2}}{\sin{\left(2x+\frac{\pi}{4}\right)\:dx}}=\frac{\sqrt{2}}{2}$
Help me out! thanks!