Let $X$ be a random variable distributed uniformly over the interval $[0,2]$ and let $Y$ be a random variable distributed exponentially with parameter $1$. Describe a probability space in which $P(X+Y>2)\geq0.5$
Construct a probability space in which $X$ is $U(0,2)$, $Y$ is $Exp(1)$ and P(X+Y>2)\geq0.5
1 Answers
Assume that $X$ is uniformly distributed on $(0,2)$ and define $Y$ as a function of $X$ as follows:
- If $X\lt1$, then $\mathrm e^{-Y}=\frac12X+\frac12$.
- If $X\gt1$, then $\mathrm e^{-Y}=\frac12X-\frac12$.
Thus, $\mathrm e^{-Y}$ is uniform on $(\frac12,1)$ in the first case and uniform on $(0,\frac12)$ in the second case. Since $X$ is uniform on $(0,2)$, the two cases are equiprobable, hence $\mathrm e^{-Y}$ is (globally) uniform on $(0,1)$ or, equivalently, $Y$ is exponentially distributed with parameter $1$. Now, it happens that $ [X+Y\gt2]=[X\gt1]=[X+Y\gt2+\log2], $ hence there exist some random variables $X$ and $Y$ with the desired distributions such that $\mathbb P(X+Y\geqslant2+\log2)=\frac12$, with $2+\log2=2.69^+$.
To show the claimed property, assume that $X\gt1$, then $X+Y=u(Y)$ with $\mathrm e^{-Y}$ in $(0,\frac12)$ and $u:y\mapsto2\mathrm e^{-y}+1+y$. In particular, $Y\gt\log2$ and the function $u$ is increasing on the interval $(\log2,+\infty)$ hence $u(Y)\gt u(\log2)=2+\log2$ on $[X\gt1]$.
This shows that $[X\gt1]\subseteq[X+Y\gt2+\log2]$, which is enough for our purpose (even though the claimed identity $[X\gt1]=[X+Y\gt2+\log2]$ holds).
Edit: Here is a variant of this construction. Let $a$ in $(0,\frac12)$. Assume once again that $X$ is uniformly distributed on $(0,2)$ and define $Y$ as a function of $X$ as follows:
- If $X\lt 2a$, then $\mathrm e^{-Y}=\frac12X+1-a$.
- If $X\gt 2a$, then $\mathrm e^{-Y}=\frac12X-a$.
If $X\gt 2a$, then $X+Y=u_a(Y)$ with $\mathrm e^{-Y}$ in $(0,1-a)$ and $u_a:y\mapsto2\mathrm e^{-y}+2a+y$. In particular, $Y\gt y_a$ with $y_a=-\log(1-a)$ and the function $u_a$ is decreasing on the interval $(y_a,\log2)$ and increasing on the interval $(\log2,+\infty)$, with $u_a(\log2)=1+\log2+2a$. Thus, $u_a(Y)\gt 1+\log2+2a$ on $[X\gt2a]$, and $ \mathbb P(X+Y\gt 1+\log2+2a)\geqslant 1-a. $ Thus, every $a$ in $(\frac12(1-\log2),\frac12)$ achieves $\mathbb P(X+Y\geqslant x)\geqslant p$ for some $x\gt2$ and $p\gt0.5$ (our first example being the case $a=\frac12$, for which $x=2+\log2=2.69^+$ and $p=0.5$). For example, $a=\frac12-\frac14\log2$ yields numerically $ \mathbb P(X+Y\gt\tfrac73)\gt\mathbb P(X+Y\gt2.34)\gt0.67\gt\tfrac23. $
-
0@did sure, I just phrased it that way because the question asked to exhibit a sample space :) – 2012-10-30