Solve the SDE: $dX(t) = udt + \sigma X(t)dB(t)$
Provided Question
The SDE is $dX(t) = udt + \sigma X(t)dB(t)$. Find $X(t)$, where $X(t)$ is some stochastic process and $B(t)$ is a Wiener process. Both $u$ and $\sigma$ are constants.
Hint: Multiply both sides by the "integrating factor" $e^{-\sigma B(t) + \frac12 \sigma^2 t}$.
Current Progress
Multiplying both sides by the appropriate integrating factor:
$ \exp{\big( -\sigma B(t) + \frac12 \sigma^2t\big)}dX(t) = \exp{\big(-\sigma B(t)+\frac12\sigma^2t\big)}(udt + \sigma X(t)dB(t)) $
Then set $f(t,x,b):=\exp{\big( -\sigma B(t) + \frac12 \sigma^2t\big)}X(t)$ and apply Ito's formula. Some of the required results before actually applying Ito's formula:
$ \frac{df}{dt} = \frac12\sigma^2 X(t)e^{-\sigma B(t) + \frac12 \sigma^2t} \\ \frac{df}{dx} = e^{-\sigma B(t) + \frac12 \sigma^2t} \\ \frac{df}{db} = -\sigma X(t)e^{-\sigma B(t) + \frac12 \sigma^2t} \\ \frac{d^2f}{dx^2} = 0 \\ \frac{d^2f}{db^2} = \sigma^2 X(t) e^{-\sigma B(t) + \frac12 \sigma^2t} \\ \frac{d^2f}{dxdb} = -\sigma e^{-\sigma B(t) + \frac12 \sigma^2t} $
Given this, we need to know the following derivatives of the quadratic variations and co-variations:
$ d\langle B\rangle_t = dt \\ d\langle X,B\rangle_t = ??? $
My Request
Please instruct me on what $d\langle X,B\rangle_t$ is equal to so that I may progress further with this problem.