We say that a sequence of functions $f_{n}:A\to \mathbb{R}$ converges to a function $f:A\to\mathbb{R}$ in measure, if for every $\varepsilon>0$ we have \begin{equation*} \lim_{n\to\infty}\mu(\{x\in A:|f_{n}(x)-f(x)|>\varepsilon\})=0. \end{equation*} So the statement says that if $\mu(A)<\infty$ then a.e. convergence implies convergence in measure as defined above.
Edit: I didn't look in every detail the proof that you gave, but here's a simple way to see it by using Fatou's reverse Lemma for measurable sets, which requires the finiteness of $\mu(A)$ since its proof uses convergence of measure for decreasing sequence of sets. Note that \begin{align*} \{x\in A:\lim_{n\to\infty}f_{n}(x)=f(x)\} &=\{x\in A:\forall n\in\mathbb{N}\exists m\in\mathbb{N}\,\,s.t.\,\,\forall i\geq m\,\,|f_{i}(x)-f(x)|\leq \frac{1}{n}\}\\ &=\bigcap_{n=1}^{\infty}\bigcup_{m=1}^{\infty}\bigcap_{i\geq m}\{x\in A:|f_{i}(x)-f(x)|\leq \frac{1}{n}\}. \end{align*} So if $f_{n}\to f$ a.e. then the complement of the above set has measure zero, whence by de-morgan's law \begin{align*} 0 &=\mu\Big(\bigcup_{n=1}^{\infty}\bigcap_{m=1}^{\infty}\bigcup_{i\geq m}\{x\in A:|f_{i}(x)-f(x)|> \frac{1}{n}\}\Big) \overset{\forall n\in\mathbb{N}}{\geq}\mu\Big(\bigcap_{m=1}^{\infty}\bigcup_{i\geq m}\{x\in A:|f_{i}(x)-f(x)|> \frac{1}{n}\}\Big) \\ &=\mu\Big(\limsup_{i\to\infty}\{x\in A:|f_{i}(x)-f(x)|> \frac{1}{n}\}\Big)\overset{Fatou}{\geq} \limsup_{i\to\infty}\,\mu(\{x\in A:|f_{i}(x)-f(x)|> \frac{1}{n}\}) \\ &\geq \liminf_{i\to\infty}\,\mu(\{x\in A:|f_{i}(x)-f(x)|> \frac{1}{n}\})\geq 0. \end{align*} So there in fact holds an equality everywhere, and in particular \begin{equation*} \lim_{i\to\infty}\mu(\{x\in A:|f_{i}(x)-f(x)|>\frac{1}{n}\})=0 \end{equation*} for all $n\in\mathbb{N}$, from which it follows that $f_{n}\to f$ in measure.