Here are some thoughts on the conjecture that may lead one to suspect that it is true. This is not a proof that it is true.
We want to know whether
$ \left\lfloor \log_{10} n! \right\rfloor = \left\lfloor \log_{10} \lfloor f(n) \rfloor \right\rfloor$
is true for all n > 1.
We note that this would NOT be true if the interval $I_n = ( \log_{10} n!,\log_{10} \lfloor f(n) \rfloor)$ contains an integer but is true otherwise.
So let's look at the length of $I_n.$
From the Stirling series we have
$\frac{1}{\log_{e}10} \left( \frac{1}{12n} - \frac{1}{360n^3} \right) < \log_{10} n! - \log_{10} f(n) < \frac{1}{\log_{e}10} \frac{1}{12n}.$
And so taking the integer part of $f(n)$ we have
$\frac{1}{\log_{e}10} \left( \frac{1}{12n} - \frac{1}{360n^3} \right) < \log_{10} n! - \log_{10} \lfloor f(n) \rfloor < \frac{1}{\log_{e}10} \left( \frac{1}{12n} + \frac{1}{ \lfloor f(n) \rfloor } \right),$
where to achieve the RHS we note that
$ \log_{10} f(n) - \log_{10} \lfloor f(n) \rfloor < \frac{1}{ \lfloor f(n) \rfloor \log_e 10 }.$
Hence $\text{Length}(I_n) < \frac{1}{\log_{e}10} \left( \frac{1}{360n^3} + \frac{1}{ \lfloor f(n) \rfloor } \right).$
We can verify that the conjecture holds for $n=2,3,\ldots,10,$ so summing up the remaining lengths of the $I_n$ we have
$\sum_{n=11}^\infty \text{Length}(I_n) < \frac{1}{360 \log_e 10} \left( \sum_{n=11}^\infty \frac{1}{n^3} + \sum_{n=11}^\infty \frac{1}{ \lfloor f(n) \rfloor } \right).$
Now $ \lfloor f(n) \rfloor \ge (n-1)! $ and so, doing some calculations (replacing the $ \lfloor f(n) \rfloor $ on the RHS by $ (n-1)! $ , we have
$\sum_{n=11}^\infty \text{Length}(I_n) < \frac{1}{360 \log_e 10} \left( 0.00452492 + 0.00000030 \right) < 5.5 \times 10^{-6}.$
Hence the probability that an integer falls in any of the intervals is very small.