Another way (with usage of complex analysis) which I want to add here is the following:

Let $\Gamma$ be the closed curve in the sketch above. Then the integral $\int_{\Gamma}^{} \! \frac{e^{iz}}{z} \, dz$ is zero. (Cauchy integral theorem).
We now compute the several integrals separately:
1)$ \lim_{R \to \infty} \left| \int_{\Gamma_R}^{} \! \frac{e^{iz}}{z} \, dz \right| \leq \lim_{R \to \infty}\int_0^{\pi} \! \frac{1}{e^{Rsin(t)}} \, dt =\int_0^{\pi} \! 0 \, dt =0$
2) $\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}}^{} \! \frac{e^{iz}}{z} \, dz =-i\lim_{\epsilon \to 0}\int_{-\pi}^0 \! e^{i\epsilon cos(t)+\epsilon sin(t)} \, dt =-i\int_{\pi}^0 \! 1 \, dt=-\pi i$
Hence:
$0=\int_{\Gamma}^{} \! \frac{e^{iz}}{z} \, dz=\int_{-R}^{-\epsilon} \! \frac{e^{iz}}{z} \, dz+\int_{\gamma_{\epsilon}}^{} \! \frac{e^{iz}}{z} \, dz+\int_{\epsilon}^{R} \! \frac{e^{iz}}{z} \, dz+\int_{\Gamma_R}^{} \! \frac{e^{iz}}{z} \, dz$
It follows that : $\int_{-R}^{-\epsilon} \! \frac{e^{iz}}{z} \, dz+\int_{\epsilon}^{R} \! \frac{e^{iz}}{z} \, dz=\pi i$
By taking the limits $R \rightarrow \infty$ and $\epsilon \rightarrow 0$, we obtain:
$\int_{-\infty}^{\infty} \! \frac{sin(x)}{x} \, dx =Im \int_{-\infty}^{\infty} \! \frac{e^{iz}}{z} \, dz =Im(i\pi)=\pi$
Note: $sin(x)$ and $x$ are odd functions, hence $\frac{sin(x)}{x}$ is even. So $\int_{0}^{\infty} \! \frac{sin(x)}{x} \, dx= \frac{\pi}{2}$