43
$\begingroup$

$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$

This was a Calc 2 problem for extra credit (we have done hyperbolic trig functions too, if that helps) and I didn't get it (don't think anyone did) -- how would you go about it?

  • 4
    @J.M: It seems like it might not be elliptic after all. See my answer...2010-12-28

4 Answers 4

61

It might not be elliptic after all... (unless I have made some mistake)

$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$

Let $\displaystyle u = x -\frac{1}{x}$.

Then $\displaystyle du = (1 + \frac{1}{x^2})dx$.

Now $\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}} = -\frac{x^2(1 + 1/x^2)}{x(x-1/x)\sqrt{x^2(x^2 + 1/x^2)}} = -\frac{1 + 1/x^2}{(x-1/x)\sqrt{(x - 1/x)^2 + 2}}$

Thus

$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$

$= -\int \ \frac{\mathrm{du}}{u \sqrt{u^2 + 2}}$

  • 0
    @J.M.: it's $\frac{1}{\sqrt{2}} \ln ( \frac{-2 x+\sqrt{2 x^4+2}}{x^2-1})$. (I got it by asking [Axiom](http://axiom-wiki.newsynthesis.org/FrontPage))2011-12-03
19

Somewhat inspired by Moron's wonderful answer, I decided to see if a trigonometric solution would do the job.

Making the substitution $x=\cot\left(\frac{\theta}{2}\right)$, $\mathrm dx=\frac{\mathrm d\theta}{\cos\;\theta-1}$, we have

$\int \frac{\mathrm d\theta}{\cos\;\theta(1-\cos\;\theta)\sqrt{1+\cot^4\frac{\theta}{2}}}$

$=\int \frac{\mathrm d\theta}{\cos\;\theta(1-\cos\;\theta)\sqrt{1+\left(\frac{1+\cos\;\theta}{1-\cos\;\theta}\right)^2}}$

$=\frac1{\sqrt{2}}\int \frac{\mathrm d\theta}{\cos\;\theta\sqrt{1+\cos^2\theta}}$

which integrates to

$\frac1{\sqrt{2}}\tanh^{-1}\frac{\sin\;\theta}{\sqrt{1+\cos^2\theta}}$

Undoing the substitution, we get

$\frac1{\sqrt{2}}\tanh^{-1}\left(x\sqrt{\frac{2}{x^4+1}}\right)$

and it is easy to verify that the derivative of this last expression gives the original integrand.

9

Moron's and J.M.'s solutions are nice. Hopefully this solution is simpler.

Without loss of generality we may assume that $1\gt x\gt 0$. Put $x:=\sqrt{y}$, $1\gt y\gt 0$. Then we obtain $ \int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx=\int{\frac{1+y}{2(1-y)\sqrt{1+y^2}\sqrt{y}}}\mathrm dy. $ Introduce the new variable $ t:=\frac{1+y}{1-y},\qquad 1\lt t \lt \infty. $ Then we have $ y=\frac{-1+t}{1+t}, $ $ \mathrm dy=\frac{2}{(1+t)^2}\,\mathrm dt. $ Substituting back we obtain $ \int{\frac{1+y}{2(1-y)\sqrt{1+y^2}\sqrt{y}}}\mathrm dy=\int{\frac{t}{2\sqrt{1+\left(\dfrac{-1+t}{1+t} \right)^2}\sqrt{\dfrac{-1+t}{1+t}}}\frac{2}{(1+t)^2}\,\mathrm dt} $ $ =\frac{1}{\sqrt{2}}\int{\frac{t}{\sqrt{t^4-1}}}\mathrm dt $ $ =\frac{1}{2\sqrt{2}}\ln(t^2+\sqrt{t^4-1})+C. $ Putting back everything we obtain $ \frac{1}{2\sqrt{2}}\ln\left(\frac{(1+x^2)^2+2\sqrt{2}x\sqrt{1+x^4}}{(1-x^2)^2}\right)+C. $

7

What a surprise! Surfing the net, I found an almost same question on "hard integral" $ \displaystyle \int \frac{x^2 - 1}{(x^2 + 1) \sqrt{x^4 + 1}} \, dx $ from June 19, 2008.

  • 0
    Yes, I like to calculate integrals, although at the first step I check them by computer:-) . I also gave an elementary solution to your referred integral.2011-01-10