I'm trying to express the integral
$I = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x_1, x_2) \; g(x_1, x_2) \; \mathrm{d}x_1 \mathrm{d}x_2$
of two real valued functions $f(x_1,x_2)$ and $g(x_1,x_2)$ in terms of their Fourier transforms $\tilde{f}(\omega_1, \omega_2)$ and $\tilde{g}(\omega_1, \omega_2)$. However, as $f(x_1,x_2)$ and $g(x_1,x_2)$ are real-valued functions and $I$ is not defined as the the product of $f(x_1,x_2)$ and $g(x_1,x_2)^\ast$ I'm not working with the complex conjugate).
$f(x_1,x_2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{f}(\omega_1, \omega_2) \; e^{2 \pi i ( \;\omega_1 x_1 \;+ \;\omega_2 x_2 \;) } \; \mathrm{d}\omega_1 \mathrm{d}\omega_2$
and
$g(x_1,x_2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{g}(\omega_1, \omega_2) \; e^{2 \pi i ( \;\omega_1 x_1 \;+ \;\omega_2 x_2 \;) } \; \mathrm{d}\omega_1 \mathrm{d}\omega_2$
The integral becomes
$I = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \; \left[ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{f}(\omega_1, \omega_2) \; e^{2 \pi i ( \;\omega_1 x_1 \;+ \;\omega_2 x_2 \;) } \; \mathrm{d}\omega_1 \mathrm{d}\omega_2 \right] \; \left[ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{g}(\omega_1, \omega_2) \; e^{2 \pi i ( \;\omega_1 x_1 \;+ \;\omega_2 x_2 \;) } \; \mathrm{d}\omega_1 \mathrm{d}\omega_2 \right] \mathrm{d}x_1 \mathrm{d}x_2$
This is where it starts to get confusing. I'm not sure if I should write:
$I = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{d}\omega_1 \; \tilde{f}(\omega_1, \omega_2) \; \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{d}\omega_2 \tilde{g}(\omega_1, \omega_2) \; \; \int_{-\infty}^{+\infty} \; e^{2 \pi i x_1 ( \; \omega_1 \;+ \;\omega_2 \;) } \; \mathrm{d}x_1 \; \int_{-\infty}^{+\infty} \; e^{2 \pi i x_2 ( \; \omega_1 \;+ \;\omega_2 \;) } \; \mathrm{d}x_2$
and extract two one-dimensional dirac deltas, or write:
$I = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{d}\omega_1 \; \tilde{f}(\omega_1, \omega_2) \; \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} d\omega_2 \tilde{g}(\omega_1, \omega_2) \; \;\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} e^{2 \pi i x_1 ( \; \omega_1 \;+ \;\omega_2 \;) + x_2 ( \; \omega_1 \;+ \;\omega_2 \;) } \; \mathrm{d}x_1 \; \mathrm{d}x_2$
with the hope of extracting the two-dimensional dirac delta. (I'm not even sure what the inverse Fourier transform of the two dimensional dirac delta is).
I'd appreciate advise on how to proceed. (Thanks.)