How to find the domain of the function $\sqrt{ \log_{\frac{1}{2}} x}$ ?
Domain Problem: $\sqrt{ \log_{\frac{1}{2}} x}$
3
$\begingroup$
algebra-precalculus
logarithms
1 Answers
9
Assuming the result is real, we must have $\log _{\frac{1}{2}}x\geq 0$. Since $\log _{\frac{1}{2}}x\geq 0\Leftrightarrow 0
Added 2: $\log _{\frac{1}{2}}x=\frac{\log x}{\log \frac{1}{2}}=\frac{\log x}{\log 1-\log 2}=\frac{\log x}{0-\log 2}=-\frac{\log x}{\log 2}$
$\log _{\frac{1}{2}}x\geq 0\Leftrightarrow-\frac{\log x}{\log 2}\geq 0\Leftrightarrow\log x\le 0\Leftrightarrow 0
Added: plot of $\log_{\frac{1}{2}}x$ (green) and $\sqrt{\log_{\frac{1}{2}}x}$ (blue).
-
1Thanks, now I understand! @J.M: Proof is like this : $\log _{\frac{1}{2}}x=\frac{\log x}{\log \frac{1}{2}}=\frac{\log x}{\log 1-\log 2}=\frac{\log x}{0-\log 2}=-\frac{\log x}{\log 2} = -\log_2 x $ Actually,I was not considering the square root! – 2010-11-20