2
$\begingroup$

$\dfrac{(8^3)(-16)^5}{4(-2)^8}$

$\dfrac{8\cdot8\cdot8\cdot-16\cdot-16\cdot-16\cdot-16\cdot-16}{4\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2}$

$\dfrac{8\cdot8\cdot8\cdot-16\cdot-16\cdot-16\cdot-16\cdot-16}{2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2}$

$\dfrac{8\cdot8\cdot8\cdot-16\cdot-16\cdot-16\cdot-16\cdot-16}{2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2}$

is it equal to... ? $ \dfrac{8}{2} \cdot \dfrac{8}{2} \cdot \dfrac{8}{2} \cdot \dfrac{-16}{2} \cdot \dfrac{-16}{2} \cdot \dfrac{-16}{2} \cdot \dfrac{-16}{2} \cdot \dfrac{-16}{2} $

I am bit confused, How can I handle this problem ?

  • 0
    Thanks ! Finally.. I understood. :)2011-09-12

2 Answers 2

4

Hint: Just take everything to powers of 2 using the laws of exponents

$\frac{8^3(-16)^5}{4(-2)^8}=\frac{-(2^3)^3(2^4)^5}{2^2\cdot2^8}=?$

  • 1
    @Michael Hardy: to me it depends upon the problem. For this one, especially without a calculator, all those powers of 2 scream at me and I would like an answer of -(2^n) as I know those (not quite this high). I can do $5\cdot 4+3 \cdot 3-2-8$ in my head.2011-09-12
0

When multiplying fractions, cancel BEFORE multiplying.

$ \dfrac{8}{2} \cdot \dfrac{8}{2} \cdot \dfrac{8}{2} \cdot \dfrac{-16}{2} \cdot \dfrac{-16}{2} \cdot \dfrac{-16}{2} \cdot \dfrac{-16}{2} \cdot \dfrac{-16}{2} $

Wherever you see $\dfrac{8}{2}$, put $4$.

Wherever you see $\dfrac{-16}{2}$, put $-8$.

Then you have $ 4\cdot4\cdot4\cdot(-8)\cdot(-8)\cdot(-8)\cdot(-8)\cdot(-8). $