2
$\begingroup$

Trying to solve this tricky one:

$\int {e^{2x}} \sqrt{1 + e^{2x}}dx$

I am pretty sure I need to use integration by parts, so I have come up with this so far:

$u=e^{2x} \Rightarrow du=2e^{2x}$ $dv = \sqrt{1+e^{2x}}$

I am not sure how to integrate to find $v$. Am I on the right track here??

  • 0
    Okay, that seems to make more sense. However If I integrate I end up with something messy: $\int e^{2x} \sqrt{1+e^{2x}}dx = (1+e^{2x}) \frac_{e^{2x},2} - \int \frac_{e^{2x},2}2e^{2x}dx$2011-12-03

1 Answers 1

3

Let $u=1+e^{2x}$, then $du=2e^{2x}dx$, that is $e^{2x}dx=\frac{1}{2}du$. Using this, the integral can be written as $\int {e^{2x}} \sqrt{1 + e^{2x}}dx=\int\sqrt{u}\cdot\frac{1}{2}du=\frac{1}{3}u^\frac{3}{2}+C=\frac{1}{3}(1+e^{2x})^\frac{3}{2}+C.$

  • 0
    Alternatively, let $u=\sqrt{1+e^{2x}}$, so $u^2=1+e^{2x}$, $2u\,du=2e^{2x}\,dx$, $e^{2x}\,dx=u\,du$, etc.2011-12-03