1
$\begingroup$

Can this: $\frac{\cos x}{4 + \sin^2 x}$

Be re-written using the fact that: $\cot(t) = \frac{\cos (t)}{\sin (t)} = \frac{1}{\tan (t)}$

I'm not good with algebra, but I'm getting there. I'm trying to simplify this expression, it's an integration by substitution task. I just don't see how I can separate $\cos x$ and $\sin x$ from the original equation.

  • 0
    Evil ponnies! The 1/a^2+x^2 rule! Thanks. If you put that in a reply I'll give you the creds!2011-04-17

1 Answers 1

1

$\int \frac{\cos x}{4 + \sin^2 x} dx = \int \frac{1}{4 + u^2} du \; .$

Substituting $u=\sin x$.

The result is

$\int \frac{1}{4 + u^2} du = \int \frac{1}{2(1 + (u/2)^2)} d(u/2)=\frac{1}{2}\arctan\left(\frac{u}{2}\right)+c \; .$

Substituting back $u=\sin x$ we get the final result:

$\int \frac{\cos x}{4 + \sin^2 x} dx = \frac{1}{2}\arctan\left(\frac{\sin x}{2}\right)+c \; .$