1
$\begingroup$

I'm trying to calculate the 3D fourier transform of this function:

$\frac{1}{(x^2+y^2+z^2)^{1/2}}$

Any help would be appreciated, thanks.

  • 0
    Have you tried spherical coordinates?2011-10-10

1 Answers 1

1

Inserting the Jacobian $r^2\sin\theta$ and $\sqrt{x^2+y^2+z^2}=r$ in polar coordinates gives

\begin{equation} \int_0^\infty r^2 dr \int_0^{2\pi} d\phi \int_0^\pi \sin\theta d\theta \frac{1}{r} e^{i\mathbf{k}\cdot \mathbf{r}} \end{equation}

\begin{equation} = \int_0^\infty r^2 dr \int_0^{2\pi} d\phi \int_0^\pi \sin\theta d\theta \frac{1}{r} e^{ikr\cos\theta} \end{equation}

and with $z=\cos\theta$, $dz=-\sin\theta d\theta$ \begin{equation} = 2\pi \int_0^\infty r dr \int_0^\pi \sin\theta d\theta e^{ikr\cos\theta} = -2\pi \int_0^\infty r dr \int_{1}^{-1} dz e^{ikrz} = 2\pi \int_0^\infty r dr \int_{-1}^{1} dz e^{ikrz} \end{equation} and with $t=ikrz$, $dz=dt/(ikr)$ \begin{equation} = 2\pi \int_0^\infty r dr \frac{1}{ikr} \int_{-ikr}^{ikr} dt e^t \end{equation} \begin{equation} = 2\pi \int_0^\infty r dr \frac{1}{ikr} [e^{ikr}-e^{-ikr}] = 4\pi \int_0^\infty r dr \frac{1}{kr} \sin(kr) = \frac{4\pi}{k^2} \int_0^\infty kr d(kr) \frac{1}{kr} \sin(kr) \end{equation} \begin{equation} = \frac{4\pi}{k^2} \int_0^\infty d(kr) \sin(kr) = \frac{4\pi}{k^2} \int_0^\infty dz \sin z \end{equation} and this exists only in the theory of distributions.

  • 0
    For some rigorous treatment, one can refer to Proposition 4.1 of [*Lectures on Harmonic Analysis*](http://www.math.ubc.ca/~ilaba/wolff/notes_march2002.pdf) by Thomas H. Wolff.2014-03-26