I have difficulties assimilating the notion of cofibration. I seem to get lost in the diagrams and technicalities (e.g. Hatcher/Bredon/Spanier). I'd be grateful if someone helped me out with that.
Please correct me if I'm wrong.
Suppose $i: A \hookrightarrow X$ is a cofibration (for simplicity, let's say it is an inclusion). Now let $Y$ be some topological space and $g: X \rightarrow Y$ any map.
In words, the cofibration seems to tell me that if we have a map $f: A \rightarrow Y$ which homotopy commutes with $g \circ i$ via some homotopy $G$, then there exists another homotopy $F: X \times [0,1] \rightarrow Y$ such that [...]. This is where I'm stuck. I understand the technical definition but I don't "feel" what it really means.
As a consequence, I fail to see how it can be used. Could someone please give me a specific illustration of a cofibration at work and fill in the blank with a non-technical explanation?
Thanks.