(I assume that $a > b$ in this answer.)
Hans's answer covers the OP's needs, but I'll try out the pedestrian approach here.
First, a trivial simplification:
$\int_0^{2\pi} \frac{\mathrm d\theta}{(a^2 \cos^2\theta +b^2\sin^2\theta)^{3/2}}=\int_0^\pi \frac{\mathrm d\theta}{(a^2 \cos^2\theta +b^2\sin^2\theta)^{3/2}}+\int_\pi^{2\pi} \frac{\mathrm d\theta}{(a^2 \cos^2\theta +b^2\sin^2\theta)^{3/2}}$
$=\int_0^\pi \frac{\mathrm d\theta}{(a^2 \cos^2\theta +b^2\sin^2\theta)^{3/2}}+\int_0^{\pi} \frac{\mathrm d\theta}{(a^2 \cos^2(\theta+\pi)+b^2\sin^2(\theta+\pi))^{3/2}}$
$=2\int_0^\pi \frac{\mathrm d\theta}{(a^2 \cos^2\theta +b^2\sin^2\theta)^{3/2}}$
Another simplification can be done as follows:
$=2\int_{-\pi/2}^{\pi/2} \frac{\mathrm d\theta}{(a^2 \cos^2(\theta+\pi/2)+b^2\sin^2(\theta+\pi/2))^{3/2}}$
$=2\int_{-\pi/2}^{\pi/2} \frac{\mathrm d\theta}{(a^2 \sin^2\theta +b^2\cos^2\theta)^{3/2}}$
or, since the integrand is an even function,
$=4\int_{-\pi/2}^0 \frac{\mathrm d\theta}{(a^2 \sin^2\theta +b^2\cos^2\theta)^{3/2}}$
$=4\int_0^{\pi/2} \frac{\mathrm d\theta}{(a^2 \cos^2\theta +b^2\sin^2\theta)^{3/2}}$
Now, to get the integral into something recognizable, we use the Pythagorean identity and then try to factor out constants, like so:
$=4\int_0^{\pi/2} \frac{\mathrm d\theta}{(a^2(1-\sin^2\theta)+b^2\sin^2\theta)^{3/2}}$
$=4\int_0^{\pi/2} \frac{\mathrm d\theta}{(a^2-(a^2-b^2)\sin^2\theta)^{3/2}}$
$=\frac4{a^3}\int_0^{\pi/2} \frac{\mathrm d\theta}{(1-m\sin^2\theta)^{3/2}}$
where we let $m=1-\frac{b^2}{a^2}$, and then introduce the substitution $\theta=\mathrm{am}(u|m)$, $\mathrm d\theta=\mathrm{dn}(u|m)\mathrm du$ (where $\mathrm{am}(u|m)$ is the Jacobian amplitude and $\mathrm{dn}(u|m)$ is a Jacobian elliptic function):
$=\frac4{a^3}\int_0^{K(m)} \frac{\mathrm{dn}(u|m)\mathrm du}{(1-m\mathrm{sn}^2(u|m))^{3/2}}$
(since $\sin(\mathrm{am}(u|m))=\mathrm{sn}(u|m)$). Using the identity $\mathrm{dn}^2(u|m)+m\mathrm{sn}^2(u|m)=1$, the integral turns into
$=\frac4{a^3}\int_0^{K(m)} \frac{\mathrm du}{\mathrm{dn}^2(u|m)}=\frac4{a^3}\int_0^{K(m)} \mathrm{nd}^2(u|m)\mathrm du$
Using formula 22.16.20 in the DLMF, the integral evaluates to
$\frac4{a^3}\frac{E(m)}{1-m}=\frac4{ab^2}E\left(1-\frac{b^2}{a^2}\right)$
where $E(m)$ is the complete elliptic integral of the second kind, and since $L=4aE\left(1-\frac{b^2}{a^2}\right)$, your supposition is correct.