All polynomials are Power Series but not all Power Series are not polynomials. For a certain Power Series $\displaystyle f(x) = \sum_{k=0}^\infty a_k \left( x-c \right)^k = a_0 + a_1 (x-c)^1 + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots$ to be a Polynomial of degree $n$, then for all $k>n$, $a_k = 0$.
If $ f(x)$ is infinitely differentiable in the interval $[a,b]$, then for every $k \in \mathbb{N}$, $f^{(k)}(x) \in \mathbb{R}$ i.e. exists as a finite number. The Taylor Series of $f(x)$ in the neighbourhood of $c$ is $\sum\limits_{k=0}^\infty \cfrac{f^{(k)}(c)}{k!}(x-c)^k $ and
- If the remainder, $R_N(x) = f(x) - \sum\limits_{k=0}^N \cfrac{f^{(k)}(c)}{k!}(x-c)^k $ for a certain $N \in \mathbb N$, converges to $0$ then $f(x) = \sum\limits_{k=0}^\infty \cfrac{f^{(k)}(c)}{k!}(x-c)^k $
- Taylor's inequality: If $|f^{(N+1)}(x)|≤ B$ for all $x$ in the interval $[a, b]$, then the remainder $R_N(x)$ (for the Taylor polynomial to $f(x)$ at $x = c$) satisfies the inequality $|R_N(x)|≤ \cfrac {B}{(N+ 1)!}|x − c|^{N+1}$ for all $x$ in $[c − d, c + d]$ and if the right hand side of this inequality converges to $0$ then $R_N(x)$ also converges to $0$.
According to your question, supposing that $\sum\limits_{k=0}^\infty \cfrac{f^{(k)}(c)}{k!}(x-c)^k $, $\forall c \in [a,b]$ is a polynomial which translates to $\text{given } c\in[a,b],\ \ \exists n_c\in \mathbb N \ (\text{ $n_c$ depends on c}) \quad|\quad\sum\limits_{k=0}^\infty \cfrac{f^{(k)}(c)}{k!}(x-c)^k=P_{n_c}(x)$ $\quad \quad \quad\quad \quad \quad \quad\quad \quad \quad\quad \quad \quad\quad \quad \quad\quad \quad \text { and} \ \forall k>n_c, \ k\in \mathbb N, \ {f^{(k)}(c)}=0$
This is true because if one looks at the finite sum $N\ge n_c$, $\displaystyle\sum^N_{k=0} a_k(x-c)^k=\sum^N_{k=0}\sum^k_{i=0}a_k\binom ki(-1)^{k-i} c^{k-i}x^{i}=\sum^N_{i=0}x^{i}\sum^N_{k=i}a_k\binom ki(-1)^{k-i} c^{k-i}$ if this is a polynomial $P_{n_c}(x)$ of degree $n_c$, then $\forall i>n_c,\ \ \displaystyle \sum^N_{k=i}a_k\binom ki(-1)^{k-i} c^{k-i}=0$ Solving this system of equations gives that $\forall n_c and
$a_k=\cfrac{f^{(k)}(c)}{k!}=0\implies f^{(k)}(c)=0, \ \ \forall k>n_c$ This holds when $N\rightarrow \infty$
Since $n_c$ depends on each $c\in[a,b]$, it is sufficient to take $\displaystyle n=\max_{c\in[a,b]} (n_c)$ such that for any $c\in [a,b]$ and for any $k>n,\ \ k\in \mathbb N$, we have $f^{(k)}(c)=0$.
Thus, the Taylor series is of $f$ is a polynomial of degree $\displaystyle n=\max_{c\in[a,b]} (n_c)$ because $\displaystyle f(x) = \sum_{k=0}^\infty a_k \left( x-c \right)^k=P_n(x)$.
At this point it is sufficient to prove that $\displaystyle f(x) = \sum_{k=0}^\infty a_k \left( x-c \right)^k=P_n(x)$ using the Taylor Remainder Theorem (#4).
We've already found out that $f^{(k)}(c) = 0,\space \forall k>n$, thus $ f^{(n+1)}(x) = 0$ or simply $ f^{(n+1)}(x) \le 0$ (to work with inequalities) which implies that $B = 0$. At this point it is clear that $|R_N(x)|≤ \cfrac {B}{(N+ 1)!}|x − c|^{N+1} = 0$ and we can conclude that $R_N(x)$ converges to $0$ and that $f(x) = \sum\limits_{k=0}^\infty \cfrac{f^{(k)}(c)}{k!}(x-c)^k = P_n(x)$.
$f$ is a polynomial.