Prove that for every positive integer $x$ of exactly four digits, if the sum of digits is divisible by $3$, then $x$ itself is divisible by 3 (i.e., consider $x = 6132$, the sum of digits of $x$ is $6+1+3+2 = 12$, which is divisible by 3, so $x$ is also divisible by $3$.)
How could I approach this proof? I'm not sure where I would even begin.