8
$\begingroup$

Let $G$ be a group, which for my purposes would be abelian. To say that $G$ has the Hopf property is to say that every epimorphism of $G$ is an automorphism. Does anyone happen to recall the context in which Hopf first used this concept, and a reference for this?

  • 1
    @Arturo - Right. I wanted to say epic endomorphism.2011-10-31

3 Answers 3

10

"H. Hopf, in 1932, raised the question as to whether a finitely generated group can be isomorphic to a proper factor of itself. This was answered in the affirmative: by B. H. Neumann, 1950, with a two-generator group with infinitely many defining relators; by G. Higman, 1951c, with a three-generator group with two defining relations; and by Baumslag and Solitar, 1962, with a two-generator group with one defining relator...A group which cannot be isomorphic to a proper factor of itself is called Hopfian."

-"Combinatorial Group Theory", Magnus, Karrass and Solitar (sec. 2.4)

The two-generator one-relator group given by Baumslag and Solitar is the imaginatively named Baumslag-Solitar group $BS(2, 3)=\langle a, b; b^{-1}a^2b=a^3\rangle$.

  • 0
    @ Arturo Magidin: Yes. Yes I do. Thanks! Too late to edit it though...2011-10-31
6

I have access to the first page of the paper by Hopf, but no more. Maybe it will provide enough context.

Here's the first paragraph:

Die Aufgabe, die Klassen der Abbildungen der geschlossenen orientierbaren Fläche $F_p$ vom Geschlecht $p$ auf die geschlossene orientierbare Fläche $F_q$ vom Geschlecht $q$ aufzuzählen, scheint mir sowohl wegen des Zusammenhanges mit funktionentheoretischen Fragen, - da eine über einer Riemannschen Fläche des Geschlechtes $q$ ausgebreitete Riemannsche Fläche des Geschlechtes $p$ eine derartige Abbildung definiert - als auch vom rein topologischen Standpunkt aus großen Interesses wert zu sein. Gelöst ist sie nur für spezielle $p$, $q$. Sieht man von diesen Sonderfällen, auf die wir sogleich zurückkommen werden, ab, so ist, wie man leight zeigt, die gewünschte Aufzählung identisch mit der Angabe aller Homomorphismen der Fundamentalgruppe $\mathfrak{G}_p$ von $F_p$ in die Fundamentalgrupper $\mathfrak{G}_q$ von $F_q$; aber dieses gruppentheoretische Problem dürfte kaum leichter zu erledigen sein als das ursprüngliche geometrische.

Now, running it through Google gives something a bit silly, but reading "between the lines", it seems to go something like this:

The task of enumerating the maps of a closed orientable surface $F_p$ of genus $p$ to a closed orientable surface $F_q$ of genus $q$, seems to me to be interesting because of the connection with function-theoretic issues - because a Riemann surface of genus p that has been extended from a Riemann surface of genus q defines such a map - and also from a purely topological point of view. It is solved only for special $p$ and $q$. Apart from these special case, to which we will come back, the desired list is equivalent to specifying all homomorphisms of the fundamental group $\mathfrak{G}_p$ of $F_p$ to the fundamental group $\mathfrak{G}_q$ of $F_q$; but this group-theoretical problem is unlikely to be easier to handle than the original geometric one.

Maybe someone with actual German speaking skills can fix the translation. I'm making this answer a Community wiki, so that should lower the bar for editing (feel free to do so!).

5

According to the Encyclopedia of Mathematics, the term derives from Heinz Hopf's question (in 1932) of whether there exist finitely generated non-Hopfian groups.