Calculate $17^{14} \pmod{71}$
By Fermat's little theorem:
$17^{70} \equiv 1 \pmod{71}$
$17^{14} \equiv 17^{(70\cdot\frac{14}{70})}\pmod{71}$
And then I don't really know what to do from this point on. In another example, the terms were small enough that I could just simplify down to an answer, but in this example, I have no idea what to do with that $17^{(70\cdot\frac{14}{70})}$
What do I do from here?