2
$\begingroup$

Continuous-time LTI case.
I have a problem getting the state matrix of this trajectory. trajectory

One element of the state matrix is known. $ A = \begin{pmatrix} a & 4 \\c & d \end{pmatrix} $

I know that one Eigenvalue is 0, $s_1 = 0$, and one Eigenvector is $p_1=\begin{pmatrix} 1\\1 \end{pmatrix}$.
With the equation $s_1 - a*p_{11} + s - 4*p_{12} = 0$, i get $a = -4$.
I also found out that $c=-d$.
But I am stuck now. I don't know how to get the other elements.
Is there more information to get from the image?

Help appreciated...

German version:

Für ein freies System 2. Ordnung der Form $\frac{dx}{dt} = A*x$ ist das dazugehörige Trajektorienbild gegeben.
Außerdem ist die zugehörige Systemmatrix A (teilweise) bekannt: $ A = \begin{pmatrix} a & 4 \\c & d \end{pmatrix} $ Bestimmen Sie die fehlenden Elemente der Systemmatrix A . (HINWEIS: Benützen Sie das angegebene Trajektorienbild!)

Translation:

The trajectory image associated with a free system of second order of the form $\frac{dx}{dt} = A*x$ is given. Further, the associated system matrix $A$ is (partially) known: $ A = \begin{pmatrix} a & 4 \\c & d \end{pmatrix} $ Determine the missing elements of the system matrix $A$. (HINT: Use the given trajectory image!)

  • 0
    Yes, it's hard to see for me also. These arrows are going onl$y$ horizontally and are showing to the trajectory.2011-10-04

1 Answers 1

1

If ruhezone is the set of the equilibrium points, then $\dot x=0$ when $x_1(t)=x_2(t)$, and if those are arrows pointing towards the $x=y$ line, the elements of the eq. point set are stable. The question, as far as I understand, wants you to make a qualitative assesment of how this line is the attractor of the trajectories in its neighborhood.

From the first hint, $A_{12} = 4$ we obtain $ \pmatrix{\dot x_1\\\dot x_2} = \pmatrix{-4 &4\\ c&d}\pmatrix{x_1\\ x_2} $ Just test for yourself, whenever $x_1>x_2$, $\dot x_1<0$ and $x_1, $\dot x_1>0$.

Now, this is where I might mistaken: if those arrows are for vector field annotation and horizontal arrow means the vector field has no $x_2$ contribution, that means $\dot x_2$ is zero everywhere no matter what. Hence $c=d=0$.

$ \pmatrix{\dot x_1\\\dot x_2} = \pmatrix{-4 &4\\ 0&0}\pmatrix{x_1\\ x_2} $

Indeed, 0 is an eigenvalue and $\begin{pmatrix} 1\\1 \end{pmatrix}$ is the eigenvector together with -4 and $\begin{pmatrix} 1\\0 \end{pmatrix}$.

  • 0
    Thank you, I think your answer sounds plausible. Those arrows are for vector field annotation.2011-10-04