Let $X=Proj(T),\quad Y=Proj(S),\quad T,S$ are graded rings. Suppose $(X,\mathcal{O}_X)\cong (Y,\mathcal{O}_Y)$. Is it always ture $\mathcal{O}_{X}(n)\cong \mathcal{O}_{Y}(n)$?
This problem comes out when I try to justify one step in a proof of Hartshorne:
Let $X$ be a projective scheme over a noetherian ring $A$("projective" here means there is a close immersion $i:X\to \mathbb{P}_{A}^{r}$), and let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module, then $i_{\star}(\mathcal{F}(n))=(i_{\star}\mathcal{F})(n)$.
I try to consider the simplest case where $\mathcal{F}=\mathcal{O}_X$. Although I know there exist a homogenous ideal $I\subset A[x_1 \dots x_r]$, s.t. $X\cong Proj(A[x_1 \dots x_r]/I)$, I know nothing about $\mathcal{O}_{X}(n)$. For one thing, $I$ may not be unique, for another $X$ can isomorphism to a complete different $Proj(S)$. The question thus can also be phrased as: Does it make sense to say twisting operation without knowing the graded ring of a projective scheme.