7
$\begingroup$

In school, we recently started with derivations. I looked into a list of simple derivations and tried to prove them, in order to practice. Now, I tried to find the derivative of $\ln x$, but I got stuck. Some web pages suggest to use the identity $e = \lim_{h\to\infty}\left(1+h^{-1}\right)^h$, but I still don't get a solution. I started by the basic approach:

(\ln x)'=\lim_{\Delta\to0}\frac{\ln(x+\Delta)-\ln x}\Delta

But I didn't find a way to get something useful out of this. Please help me.

  • 0
    @Henry: the question is whether knows (has already proven) the inverse function theorem.2011-04-06

4 Answers 4

17

The simplest way to find the derivative of the natural logarithm is to use the Inverse Function Theorem (or the Chain Rule), but since you say you only recently started, you may not know it yet.

So instead, we begin with two ingredients. One is that $\ln(u)$ is continuous. That means that if $\lim\limits_{x\to a}f(x)$ exists, then $\lim_{x\to a}\ln(f(x)) = \ln\left(\lim_{x\to a}f(x)\right).$

The second ingredient (which you may or may not know yet) is that $\lim_{h\to\infty}\left(1 + \frac{a}{h}\right)^h = e^a.$ To see this, note that this is immediate if $a=0$; if $a\gt 0$, then just do a quick rewrite: $\begin{align*} \lim_{h\to\infty}\left(1 + \frac{a}{h}\right)^h &= \lim_{h\to\infty}\left( 1 + \frac{1}{(h/a)}\right)^h\\ &=\lim_{h\to\infty}\left(\left(1 + \frac{1}{(h/a)}\right)^{h/a}\right)^a\\ &= \left(\lim_{h\to\infty}\left(1 + \frac{1}{(h/a)}\right)^{h/a}\right)^a. \end{align*}$ If $a\gt 0$, then $h/a\to\infty$ as $h\to\infty$, so by the definition of $e$ you get that $\lim_{h\to\infty}\left(1+\frac{a}{h}\right)^h = \left(\lim_{(h/a)\to\infty}\left(1 + \frac{1}{(h/a)}\right)^{h/a}\right)^a = (e)^a = e^a.$ If $a\lt 0$, then replacing $a$ with $-a$ we can do the same trick as above after proving that $\lim_{h\to\infty}\left(1 - \frac{1}{h}\right)^h = e^{-1}.$ Indeed, though it takes a bit more algebraic trickery: $\begin{align*} \lim_{h\to\infty}\left(1 - \frac{1}{h}\right)^h &= \lim_{h\to\infty}\left(\frac{h-1}{h}\right)^h = \lim_{h\to\infty}\left(\frac{h}{h-1}\right)^{-h}\\ &= \left(\lim_{h\to\infty}\left(\frac{(h-1)+1}{h-1}\right)^h\right)^{-1}\\ &= \left(\lim_{h\to\infty}\left(1 + \frac{1}{h-1}\right)^h\right)^{-1}\\ &=\left(\lim_{h\to\infty}\left(1 + \frac{1}{h-1}\right)^{h-1}\left(1 + \frac{1}{h-1}\right)^1\right)^{-1}\\ &= \left(\lim_{h\to\infty}\left(1 + \frac{1}{h-1}\right)^{h-1}\lim_{h\to\infty}\left(1 + \frac{1}{h-1}\right)\right)^{-1}\\ &= \Bigl((e)(1)\Bigr)^{-1} = e^{-1}.\end{align*}$

Then, in the previous limit, if $a\lt 0$ then replace it with $-a$ and change the $+$ to a $-$, to get that the limit equals $(e^{-a})^{-1} = e^a$ as well.

And finally, with these ingredients in hand, we are ready. We have: $\begin{align*} \frac{d}{dx}\ln x &= \lim_{\Delta\to 0}\frac{\ln(x+\Delta)-\ln(x)}{\Delta}\\ &= \lim_{\Delta\to 0}\frac{1}{\Delta}\left(\ln(x+\Delta)-\ln(x)\right)\\ &=\lim_{\Delta\to 0}\frac{1}{\Delta}\ln\left(\frac{x+\Delta}{x}\right)\\ &=\lim_{\Delta\to 0}\frac{1}{\Delta}\ln\left(1 +\frac{\Delta}{x}\right)\\ &=\lim_{\Delta\to 0}\ln\left(\left(1 + \frac{\Delta}{x}\right)^{1/\Delta}\right)\\ &= \lim_{\Delta\to 0}\ln\left(\left(1 + \frac{1/x}{1/\Delta}\right)^{1/\Delta}\right). \end{align*}$ If $\Delta\to 0^+$, then $\frac{1}{\Delta}\to\infty$, so letting $h=\frac{1}{\Delta}$ we have: $\lim_{\Delta\to 0^+}\left(1 + \frac{1/x}{1/\Delta}\right)^{1/\Delta} = \lim_{h\to\infty}\left( 1 + \frac{1/x}{h}\right)^h = e^{1/x}.$ If $\Delta\to 0^-$, then $\frac{1}{\Delta}\to-\infty$, so letting $h=-\frac{1}{\Delta}$, we have: $\begin{align*} \lim_{\Delta\to 0^-}\left(1 + \frac{1/x}{1/\Delta}\right)^{1/\Delta} &= \lim_{h\to\infty}\left(1 - \frac{1/x}{h}\right)^{-h}\\ &= \lim_{h\to\infty}\left(\left(1 - \frac{1/x}{h}\right)^{h}\right)^{-1}\\ &= \left(e^{-1/x}\right)^{-1} = e^{1/x}. \end{align*}$ Therefore, we have: \begin{align*} (\ln x)' &= \lim_{\Delta\to 0}\frac{\ln(x+\Delta)-\ln(x)}{\Delta}\\ &= \ln\left(\lim_{\Delta\to 0}\left(1 + \frac{1/x}{1/\Delta}\right)^{1/\Delta}\right)\\ &= \ln\left(e^{1/x}\right) = \frac{1}{x}. \end{align*}

And this is why the Chain Rule or the Inverse Function Theorem are such a better way of proving this...

10

Another definition is that $\log$ is the inverse function of $\exp$. With this definition, you have $\log(\exp(t))=t$. By the chain rule, \log'(\exp(t))\exp'(t)=1 and so \log'(\exp(t))=1/\exp(t). Write $x=\exp(t)$ and get \log'(x)=1/x.

5

It's not difficult $ \lim\limits_{\delta\to 0}\frac{\log(x+\delta) - \log{x}}{\delta} = \lim\log\left(1 - \frac{\delta}{x}\right)^{1/\delta} $

and then just put $h = \frac{1}{\delta}$. Btw, you have a typo (e^x)' - you better write \log'{x}.

  • 0
    @Arturo Magidin: Thank you very much.2011-04-06
4

The definition is $\log(x) = \int_1^x \frac{1}{t} \mathrm{d}t$ and inverting it by the fundamental theorem of calculus gives $\frac{\mathrm{d}}{\mathrm{d}x} \log(x) = \frac{1}{x}.$

  • 1
    "Is it a definition?" - a bit like asking which of the chicken or the egg came first. One can start the theory with either of $\exp$ or$\ln$and derive everything else from there...2011-04-07