6
$\begingroup$

the question is from Conway's Functions of One Complex Variable, volume I,second edition, chapter VI section 1, exercise 7.

Let $f$ be analytic in the disk $B(0,R)$ and for $0 \leq r \leq R$ define $A(r)=\max\{\operatorname{Re} f(z) : |z|=r\}.$

Show that unless $f$ is constant, $A(r)$ is strictly increasing function of $r$.

Now obviously from the maximum modulus we must have for any $r_1< r_2$ and $|z|=r_1$,$|\zeta|=r_2$, $|f(z)|\geq |f(\zeta)|\geq \operatorname{Re} f(\zeta)$, but don't see how use for the real parts here.

Only hints if you can.

Thanks.

  • 1
    **Hint:** Adapt the proof of the maximum modulus principle from the open mapping theorem.2011-10-13

1 Answers 1

5

Hint: consider $g(z)=e^{f(z)}$.

  • 0
    @UneFemmeDouce $|e^{f(z)}|=e^{\Re f(z)}\le e^{A(r)}$ and maximum modulus principle on $|z|=r$, $|z|=s$, r.2014-08-25