$f_1,\ldots,f_n$ are positive functions. Set $F_j(x)=\int_0^xf_j(w)dw$ for each $j.$
How can one prove that
$ \int_0^{+\infty}{\left(\frac{F_1(x)F_2(x)\ldots F_n(x)}{x^n}\right)}^{\frac{p}{n}}dx\leq \left(\frac{p}{p-1}\right)^p\int_0^{+\infty} (f_1(x)+f_2(x)+\ldots+f_n(x))^p dx ?$