We are interested in expansion of the term $\exp(\exp(x)-1)$, now $\exp(x) - 1 = \sum_{n=1}^\infty \frac{x^n}{n!}$ and since $\displaystyle \exp(z) = \sum_{m=0}^\infty \frac{z^m}{m!}$ we should start by considering $\displaystyle \left(\sum_{n=1}^\infty \frac{x^n}{n!}\right)^m$ for $m=2,3,\ldots$, here is a table just for $m=2$, extrapolation will give all other $m$:
$\begin{array}{c|l} \sum_{n=1}^\infty \frac{x^n}{n!} & \frac{x^1}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}+\ldots \\ \times \frac{x^1}{1!} & \frac{x^2}{1!1!}+\frac{x^3}{1!2!}+\frac{x^4}{1!3!}+\frac{x^5}{1!4!}+\frac{x^6}{1!5!}+\ldots \\ \times \frac{x^2}{2!} & \frac{x^3}{1!2!}+\frac{x^4}{2!2!}+\frac{x^5}{2!3!}+\frac{x^6}{2!4!}+\frac{x^7}{2!5!}+\ldots \\ \times \frac{x^3}{3!} & \frac{x^4}{1!3!}+\frac{x^5}{2!3!}+\frac{x^6}{3!3!}+\frac{x^7}{3!4!}+\frac{x^8}{3!5!}+\ldots \\ \vdots & \cdots \end{array}$
and so we find $\exp\left(\sum_{n=1}^\infty \frac{x^n}{n!}\right) = \frac{1}{0!} + \sum_{n=1}^\infty \left(\frac{1}{1!} \sum_{a=n}\frac{x^{a}}{a!} + \frac{1}{2!} \sum_{a+b=n}\frac{x^{a+b}}{a!b!} + \frac{1}{3!} \sum_{a+b+c=n}\frac{x^{a+b+c}}{a!b!c!} + \ldots \right)$
So you can try to see whether this is equal to the strange multinomial coefficient you have written.
Now I will show how to use the above formula to compute Bell numbers,
First the 0th Bell number (coefficient of $x^0$) is just 1/0! = 1. The first Bell number is the coefficient of $x^1$, and the only term which contributes this is 1/1! x^1/1! so B_1 = 1 as well. A more interesting one is B_3:
All contributions to $x^3$ terms come from $\sum_{n=1}^\infty \frac{1}{1!} \sum_{a=n}\frac{x^{a}}{a!} + \frac{1}{2!} \sum_{a+b=n}\frac{x^{a+b}}{a!b!} + \frac{1}{3!} \sum_{a+b+c=n}\frac{x^{a+b+c}}{a!b!c!}$ we could remove the "..." part since a+b+c+d+.. can never be 3 (since all the numbers must be $\ge 1$).
Now consider each sum one at a time,
- {a = 3}
- {a = 2,b = 1}, {a = 1, b = 2}
- {a = 1,b = 1,c = 1}
so we have the $x^3$ coefficient being: $1/1! x^3/3! + 1/2! (x^3/1!2! + x^3/2!1!) + 1/3! x^3/1!1!1! = 5/6 x^3$ so the third bell number is $5$.