Looking at the wikipedia page of differentiation under the integral sign, you set $a(x) = 0$, $b(x) = x$ and $f(x, s) = \sin(x-s) f(s)$.
Alternatively, consider $z(x) = \int_0^x \sin(x-s) f(s) \mathrm{d} s$, and think of $z(x+ \delta x)-z(x)$:
$ \begin{eqnarray} z(x+ \delta x)-z(x) &=& \int_0^{x+\delta x} \sin(x+\delta x-s) f(s) \mathrm{d} s - \int_0^x \sin(x-s) f(s) \mathrm{d} s \\ &=& \int_0^{x+\delta x} \sin(x+\delta x-s) f(s) \mathrm{d} s - \int_0^x \sin(x+\delta x-s) f(s) \mathrm{d} s + \\&& \int_0^x \sin(x+\delta x-s) f(s) \mathrm{d} s - \int_0^x \sin(x-s) f(s) \mathrm{d} s \\ &=& \int_{x}^{x+\delta x} \sin(x+\delta x-s) f(s) \mathrm{d} s + \int_0^x \left( \sin(x+\delta x -s) - \sin(x-s) \right) f(s) \mathrm{d} s \\ &\sim& \delta x \left( \sin(\delta x) f(x) + \int_0^x \cos(x-s) f(s) \right) \end{eqnarray} $ In the limit $\lim_{\delta x \to 0} \frac{z(x+\delta x)-z(x)}{\delta x}$ the first term becomes zero, and you are get the answer: $ z^\prime(x) = \int_0^x \cos(x-s) f(s) \mathrm{d} s $