Here is one method to evaluate
$\lim_{x\rightarrow\infty}\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x.$
Let $Q(x)=a_{n-1}x^{n-1}+\cdots+a_{0}$ for notational convenience, and notice $\frac{Q(x)}{x^{n-1}}\rightarrow a_{n-1}$ and $\frac{Q(x)}{x^{n}}\rightarrow0$ as $x\rightarrow\infty$. The crux is the factorization $y^{n}-z^{n}=(y-z)\left(y^{n-1}+y^{n-2}z+\cdots+yz^{n-2}+z^{n-1}\right).$
Setting $y=\sqrt[n]{x^{n}+Q(x)}$ and $z=x$ we find
$\left(\sqrt[n]{x^{n}+Q(x)}-x\right)=\frac{Q(x)}{\left(\left(\sqrt[n]{x^{n}+Q(x)}\right)^{n-1}+\left(\sqrt[n]{x^{n}+Q(x)}\right)^{n-2}x+\cdots+x^{n-1}\right)}.$
Dividing both numerator and denominator by $x^{n-1}$ yields
$\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x=\frac{Q(x)/x^{n-1}}{\left(\left(\sqrt[n]{1+\frac{Q(x)}{x^{n}}}\right)^{n-1}+\left(\sqrt[n]{1+\frac{Q(x)}{x^{n}}}\right)^{n-2}+\cdots+1\right)}.$
As $x\rightarrow\infty$, $\frac{Q(x)}{x^{n}}\rightarrow0$ so that each term in the denominator converges to $1$. Since there are $n$ terms we find $\lim_{x\rightarrow\infty}\left(\left(\sqrt[n]{1+\frac{Q(x)}{x^{n}}}\right)^{n-1}+\left(\sqrt[n]{1+\frac{Q(x)}{x^{n}}}\right)^{n-2}+\cdots+1\right)=n$ by the addition formula for limits. As the numerator converges to $a_{n-1}$ we see by the quotient property of limits that $\lim_{x\rightarrow\infty}\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x=\frac{a_{n-1}}{n}$ and the proof is finished.