2
$\begingroup$

How can I prove that this function is continuous? $ f\left( x \right) = \int\limits_0^\pi {\frac{{\sin \left( {xt} \right)}} {t} \mathrm dt} $ Some hint? Don´t consider the zero in the endpoint of the integration zone, just take it as a limit $ f\left( x \right) = \mathop {\lim }\limits_{\varepsilon ^ + \to 0} \int\limits_\varepsilon ^\pi {\frac{{\sin \left( {xt} \right)}} {t} \mathrm dt} $ How can I do it? DX!

  • 2
    Is "DX!" some sort of hint?2011-10-16

1 Answers 1

1

First of all, observe that $ \lim_{t\to0}\frac{\sin(x\,t)}{t}=x\ , $ so that the integral exists as a bona fide Riemann integral. Next, given $x,y\in\mathbb{R}$, $ |f(x)-f(y)|\le\int_0^{\pi}\frac{|\sin(x\,t)-\sin(y\,t)|}{t}\,dt. $ Now use the inequality $|\sin a-\sin b|\le\dots$ to conclude that $f$ is continuous.

  • 0
    Thanks! I did i$t$ , it was easy D:!!2011-10-16