Is there a primitive function to:
$\int \! \frac{\int \! \frac{\ln(x+1)\, \mathrm{d} x}{x}\, \mathrm{d} x}{x}$
Is there a primitive function to:
$\int \! \frac{\int \! \frac{\ln(x+1)\, \mathrm{d} x}{x}\, \mathrm{d} x}{x}$
Is a polylogarithm a primitive function?
This looks something like $-\operatorname{Li}_3(-x)+k_2+k_1 \ln x$.