An alternative way to answer this old question: for all sets A and B,
$ \begin{array}{ll} & \mathcal{P}(A) = \mathcal{P}(B) \\ \equiv & \;\;\;\text{"extensionality"} \\ & \langle \forall V :: V \in \mathcal{P}(A) \equiv V \in \mathcal{P}(B) \rangle \\ \equiv & \;\;\;\text{"definition of $\mathcal{P}$, twice"} \\ & \langle \forall V :: V \subseteq A \equiv V \subseteq B \rangle \\ \Rightarrow & \;\;\;\text{"choose $V:=A$, and choose $V:=B$"} \\ & (A \subseteq A \equiv A \subseteq B) \;\land\; (B \subseteq A \equiv B \subseteq B) \\ \equiv & \;\;\;\text{"$\subseteq$ is reflexive, so $A \subseteq A$ and $B \subseteq B$"} \\ & A \subseteq B \land B \subseteq A \\ \equiv & \;\;\;\text{"definition of set equality"} \\ & A = B \\ \end{array} $
Update: As a comment rightly points out, the above proof is very similar to my answer to another question. In fact, we can directly prove the stronger version of this question's theorem from that one:
$ \begin{array}{ll} & \mathcal{P}(A) = \mathcal{P}(B) \;\equiv\; A = B \\ \equiv & \;\;\;\text{"double inclusion, twice"} \\ & \mathcal{P}(A) \subseteq \mathcal{P}(B) \land \mathcal{P}(B) \subseteq \mathcal{P}(A) \;\equiv\; A \subseteq B \land B \subseteq A \\ \Leftarrow & \;\;\;\text{"logic"} \\ & (\mathcal{P}(A) \subseteq \mathcal{P}(B) \;\equiv\; A \subseteq B) \;\land\; (\mathcal{P}(B) \subseteq \mathcal{P}(A) \;\equiv\; B \subseteq A) \\ \equiv & \;\;\;\text{"the other theorem, twice"} \\ & \text{true} \\ \end{array} $