So, I found the homogenous solution via solving the characteristic quad equation. It's $Ae^{0*x} + Be^{-x}$.
Now, I'm trying to find the particular solution to add onto that. Here's what I was thinking:
- First, the particular solution should have the form $Qx + R$ (Q and R are constants)
- Now, I differentiated this twice, to get y'(x) = Q and y''(x) = 0
- Now I just substituted these back into the original equation to get $0 + Q = 4x$...
- ...wtf?
If anyone can help me out on where I'm messing up, I'd greatly appreciate it! I'll respond quickly!