How do I prove the following formulas?
Let $n \in \mathbb{N}, x \in \mathbb{R}$. Prove that:
$\cos(nx)=\sum_{j=0}^{[n/2]} (-1)^j {n \choose 2j} (\cos x)^{n-2j} (\sin x)^{2j}$
$\sin(nx)=\sum_{j=0}^{[(n-1)/2]} (-1)^j {n \choose 2j+1} (\cos x)^{n-2j-1} (\sin x)^{2j+1}$