How would one interpret: $\frac{\mathrm d}{\mathrm dx}\int_0^x (F(y)-F(x))\,\mathrm dy$ I don't think I can use the fundamental theorem of calculus here, can I?
The derivative of an integral
4
$\begingroup$
calculus
-
0@J.M. Thanks for the feedback. I suppose I am a little quick on accepting in general. – 2011-10-08
1 Answers
7
Certainly doable:
$\begin{split}\frac{\mathrm d}{\mathrm dx}\int_0^x (F(y)-F(x))\,\mathrm dy&=\frac{\mathrm d}{\mathrm dx}\left(\int_0^x F(y)\mathrm dy-F(x)\int_0^x \,\mathrm dy\right)\\&=\frac{\mathrm d}{\mathrm dx}\left(\int_0^x F(y)\mathrm dy-x\,F(x)\right)\\&=F(x)-x\,F^\prime(x)-F(x)\\&=-x\,F^\prime (x)\end{split}$
-
0@HenningMakholm under what conditions it is going to hold? I am solving a similar problem, but the bounds of integration are $(-\infty, \infty)$ – 2014-05-05