Dummit and Foote, p. 204
They suppose that $G$ is simple with a subgroup of index $k = p$ or $p+1$ (for a prime $p$), and embed $G$ into $S_k$ by the action on the cosets of the subgroup. Then they say
"Since now Sylow $p$-subgroups of $S_k$ are precisely the groups generated by a $p$-cycle, and distinct Sylow $p$-subgroups intersect in the identity"
Am I correct in assuming that these statements follow because the Sylow $p$-subgroups of $S_k$ must be cyclic of order $p$? They calculate the number of Sylow $p$-subgroups of $S_k$ by counting (number of $p$-cycles)/(number of $p$-cycles in a Sylow $p$-subgroup). They calculate the number of $p$-cycles in a Sylow $p$-subgroup to be $p(p-1)$, which I don't see.