I have a function $F$ holomorphic on some open set, and I have $ F(0) = 1 $ and $ F $ is non-vanishing. I want to show that there is a holomorphic branch of $ \log(F(z)) $.
Now, I'm getting confused. The principal branch of logarithm removes $ (-\infty, 0] $. But if the point 0 is missing from the plane, what happens when we take $ \log{F(0)} = \log{1} + 0 = 0 $? (I'm sure we can take the principal branch, because $ \exp(z) $ satisfies the conditions in question).
Any help would be appreciated. Thanks