$\frac{1}{\sin(z)} = \cot (z) + \tan (\tfrac{z}{2})$
I did this:
First attempt: $\displaystyle{\frac{1}{\sin (z)} = \frac{\cos (z)}{\sin (z)} + \frac{\sin (\frac{z}{2})}{ \cos (\frac{z}{2})} = \frac{\cos (z) }{\sin (z)} + \frac{2\sin(\frac{z}{4})\cos(\frac{z}{4})}{\cos^{2}(\frac{z}{4})-\sin^{2}(\frac{z}{4})}} = $ $\frac{\cos (z)(\cos^{2}(\frac{z}{4})-\sin^{2}(\frac{z}{4}))+2\sin z \sin(\frac{z}{4})\cos(\frac{z}{4})}{\sin (z)(\cos^{2}(\frac{z}{4})-\sin^{2}(\frac{z}{4}))}$
Stuck.
Second attempt:
$\displaystyle{\frac{1}{\sin z} = \left(\frac{1}{2i}(e^{iz}-e^{-iz})\right)^{-1} = 2i\left(\frac{1}{e^{iz}-e^{-iz}}\right)}$
Stuck.
Does anybody see a way to continue?