This question inquired about the determinant of this matrix: $ \begin{bmatrix} -\lambda &1 &0 &1 &0 &1 \\ 1& -\lambda &1 &0 &1 &0 \\ 0& 1& -\lambda &1 &0 &1 \\ 1& 0& 1& -\lambda &1 &0 \\ 0& 1& 0& 1& -\lambda &1 \\ 1& 0& 1& 0&1 & -\lambda \end{bmatrix} $ and of other matrices in a sequence to which it belongs. In a comment I mentioned that if we permute the indices 1, 2, 3, 4, 5, 6 to put the odd ones first and then the even ones, thus 1, 3, 5, 2, 4, 6, then we get this: $ \begin{bmatrix} -\lambda & 0 & 0 & 1 & 1 & 1 \\ 0 & -\lambda & 0 & 1 & 1 & 1 \\ 0 & 0 & -\lambda & 1 & 1 & 1 \\ 1 & 1 & 1 & -\lambda & 0 & 0 \\ 1 & 1 & 1 & 0 & -\lambda & 0 \\ 1 & 1 & 1 & 0 & 0 & -\lambda \end{bmatrix} $ So this is of the form $ \begin{bmatrix} A & B \\ B & A \end{bmatrix} $ where $A$ and $B$ are symmetric matrices whose characteristic polynomials and eigenvalues are easily found, even if we consider not this one case of $6\times 6$ matrices, but arbitrarily large matrices following the same pattern.
Are there simple formulas for determinants, characteristic polynomials, and eigenvalues for matrices of this latter kind?
I thought of the Haynesworth inertia additivity formula because I only vaguely remembered what it said. But apparently it only counts positive, negative, and zero eigenvalues.