Taking $n=1$ and $a= \frac{1}{2}$, wolframalpha gives me $\displaystyle \sum_{m = \text{odd}}^{\infty} \frac{\cos(m \pi x)}{1-m^2} = \frac{1}{4}(\pi(1-2x)\sin(\pi x) - \cos(\pi x))$
Taking $n=3$ and $a= \frac{1}{2}$, wolframalpha gives me $\displaystyle \sum_{m = \text{odd}}^{\infty} \frac{\cos(m \pi x)}{9-m^2} = \frac{1}{36}(3\pi(1-2x)\sin(3\pi x) - \cos(3\pi x))$
Following this my hunch would be for $a= \frac{1}{2}$
$\displaystyle \sum_{m = \text{odd}}^{\infty} \frac{\cos(m \pi x)}{n^2-m^2} = \frac{1}{4n^2}(n\pi(1-2x)\sin(n\pi x) - \cos(n\pi x))$
Playing around a bit more with wolfram alpha, my new guess is
For $x \in [0,a]$,
$\displaystyle \sum_{m\neq n} \frac{1}{n^2 - m^2} \cos \frac{m\pi x}{2a} = \frac{1}{4n^2} \left(n\pi \left(1-\frac{x}{a} \right) \sin \left(\frac{n\pi x}{2a} \right) - \cos \left(\frac{n\pi x}{2a} \right) \right)$
and For $x \in (-a,0]$,
$\displaystyle \sum_{m\neq n} \frac{1}{n^2 - m^2} \cos \frac{m\pi x}{2a} = \frac{1}{4n^2} \left(n\pi \left(-1-\frac{x}{a} \right) \sin \left(\frac{n\pi x}{2a} \right) - \cos \left(\frac{n\pi x}{2a} \right) \right)$