We don't have the uniform convergence on $\mathbb R$. Indeed, let $\phi(x)=e^{-x^2}$. We have that for $N\in\mathbb N$ fixed $a_N:=\sup_{x\in\mathbb R}\left|\sum_{|n|\geq N}e^{-(x+n)^2}\right|=\sup_x\sum_{n\geq N}e^{-(x+n)^2}+\sum_{n\leq -N}e^{-(x+n)^2}\geq\sup_x\sum_{n\geq N}e^{-(x+n)^2}$ hence $a_N\geq\sup_x\sum_{n\geq 0}e^{-(x+N+n)^2}\geq \sup_x\sum_{n\geq 0}e^{-(x+n)^2}\geq \sum_{n\geq 0}e^{-n^2}\geq 1.$ If the convergence were uniform, we would have $\lim_{N\to\infty}A_N=0$, which cannot be the case. Anyway, we have normal convergence on nonempty compact $K$. Indeed, we can find $A\in\mathbb N^*$ such that $K\subset\left[-A,A\right]$, and for all $n>A$, $x\in\left[-A,A\right]$, $(x+n)^2\geq (n-A)^2$ hence $\frac 1{(x+n)^2}\leq \frac 1{(n-A)^2}$. Since $\phi\in\mathcal S(\mathbb R)$, we can find $C>0$ such that for all $x\in\mathbb R$, $|\phi(x+n)|(x+n)^2\leq C$. We get $\sup_{x\in K}|\phi(n+x)|\leq \frac C{(n-A)^2}$. For $n<-A$, we have $x+n\leq A+n<0$ hence $(x+n)^2\geq (A+n)^2$ and $|\phi(x+n)|\leq \frac C{(n+A)^2}$ and we get the normal convergence on $K$. Since $(\tau_n \phi)^{(d)}\tau_n =\phi^{(d)}$ for all $d$ and $\phi^{(d)}\in\mathcal S(\mathbb R)$, a similar argument shows the normal convergence on the compacts of the derivatives.