The problem is:
For a prime number p the set of co-primes less than or equal to it is given by {1,2,3,4,...p-1} . We define f(x,p) 0 < x < p = 1 if and only if all the numbers from 1 to p-1 can be written as a power of x in modulo-p arithmetic . Let n be the largest 12-digit prime number . Find the product of all integers j less than n such that f(j,n)=1, in modulo-n arithmetic
Can anyone give me a better explanation?