1
$\begingroup$

Is there a continuous and monotone function $1>f(n)>0$, such that $\lim_{n\to +\infty}(f(n)\ln(n+1)-\ln(n))=1\mbox{ and }f(n)>\frac{\ln(n)}{\ln(n+1)}?$

  • 1
    $f(n) \ln (n+1) - \ln n \leq \ln (n+1) - \ln n \to 0$2011-12-07

1 Answers 1

1

If so, then $\ln{(n+1)^{f(n)}\over n}$ would converge to 1. But then, ${(n+1)^{f(n)}\over n}$ would have to converge to $e$. But, since $0, we have ${(n+1)^{f(n)}\over n}<{n+1\over n}\rightarrow1$.