2
$\begingroup$

Under what circumstances does the existence of the iterated limit $\lim\limits_{x \to \infty} \left(\lim\limits_{y \to \infty}\ a_{x,y} \right)$ imply the existence of the double limit $\lim\limits_{(x,y) \to (\infty,\infty)} a_{x,y}$?

  • 0
    For sequences, see [this previous question](http://math.stackexchange.com/questions/15240/when-can-you-switch-the-order-of-limits). See also the Moore-Osgood Theorem.2011-06-03

0 Answers 0