You don’t have to show that $f$ is continuous in order to conclude that $\mathcal{C}$ is uncountable: that follows from the fact that $f$ is surjective, assuming that you know that $[0,1]$ is uncountable. Your argument for surjectivity is correct, though it could be stated a bit better, but for clarity you ought to deal with a point raised by Dan Brumleve. Here’s your argument, slightly restated:
Let $y\in [0,1]$ be arbitrary, and let $(0.y_1y_2\dots)$ be a binary representation of $y$. For each positive integer $i$ let $a_i=2y_i$, and let $x$ be the number whose ternary representation is $(0.a_1a_2\dots)$; then $y=f(x)$, so $f$ is surjective.
Since this looks at first sight as if you were actually constructing a function from $[0,1]$ to $\mathcal{C}$, it would help the reader if you were to point out that this isn’t the case. For example, $y=1/2$ has two binary representations, $0.1\bar{0}$ and $0.0\bar{1}$, where the bar indicates a repeating digit, so it’s both $f(0.2_{\text{three}})=$ $f(\frac23)$ and $f(0.\bar{2})=f(\frac13)$.
As I said, continuity of $f$ isn’t needed if all you want is to prove the uncountability of $\mathcal{C}$, but if for some other reason you have to prove the continuity of $f$, here’s one approach. For $x\in\mathbb{R}$ and $r>0$ let $B(x,r)=\{y\in\mathbb{R}:\vert y-x\vert\le r\}$. Suppose that $0.x_1x_2\dots$ is the $1$-less ternary expansion of some $x\in\mathcal{C}$. For $n\in\mathbb{Z}^+$ let $T_n(x)=$ $\{(0.a_1a_2\dots)\in\mathcal{C}:\forall i\le n [a_i=x_i]\}$. Show that $B(x,3^{-(n+1)})\cap\mathcal{C}\subseteq T_n(x)\subseteq B(x,3^{-n})\cap\mathcal{C}.$ Then show that for each $r>0$ there is an $n(r)\in\mathbb{Z}^+$ such that $T_{n(r)}(x)\subseteq B(f(x),r)$.
Another approach is to show that $f$ preserves convergent sequences, i.e., that if $\langle x_n:n\in\mathbb{N}\rangle$ is a sequence in $\mathcal{C}$ that converges to $x\in\mathcal{C}$, then $\langle f(x_n):n\in\mathbb{N}\rangle \to f(x)$ in $[0,1]$. A good first step would be to show that if $\langle x_n:n\in\mathbb{N}\rangle$ is a sequence in $\mathcal{C}$ that converges to $x\in\mathcal{C}$, then for each $m\in\mathbb{Z}^+$ there is an $n(m)\in\mathbb{N}$ such that $x_n\in T_m(x)$ whenever $n\ge n(m)$: that is, every term of the sequence from $x_{n(m)}$ on agrees with $x$ to at least $m$ ternary places. Then each term of $\langle f(x_n):n\in\mathbb{N}\rangle$ from $f(x_{n(m)})$ on agrees with $f(x)$ to at least $m$ binary places. From this it’s not hard to conclude that $\langle f(x_n):n\in\mathbb{N}\rangle \to f(x)$.