6
$\begingroup$

How to calculate this difficult integral: $\int\frac{x^2}{\sqrt{1+x^2}}dx$?

The answer is $\frac{x}{2}\sqrt{x^2\pm{a^2}}\mp\frac{a^2}{2}\log(x+\sqrt{x^2\pm{a^2}})$.

And how about $\int\frac{x^3}{\sqrt{1+x^2}}dx$?

  • 0
    but how did you get this recursion?2011-09-14

4 Answers 4

18

Recall the hyperbolic functions $\cosh t= \frac{e^t + e^{-t}}{2} = \cos(it)$ and $\sinh t=\frac{e^t - e^{-t}}{2} = i\sin(-it).$

Note that $\frac{d}{dt}\sinh t = \cosh t$, $\frac{d}{dt}\cosh t = \sinh t$ and also $\cosh^2 t -\sinh^2 t = 1$.

Making the substitution $\sinh t=x $ we see that
$\frac{x^n\, dx}{\sqrt{1+x^2}} = \frac{\sinh^n t\, \cosh t\,dt}{\sqrt{1+\sinh^2t}}= \frac{\sinh^n t\, \cosh t\,dt}{\sqrt{\cosh^2t}}=\sinh^n t\, dt$ which leads us to $\int\frac{x^n\, dx}{\sqrt{1+x^2}} = \int \sinh^n t\, dt.$ To complete the problem, the binomial theorem is useful.

  • 0
    I guess the difference is between $\int\frac{x^6\;\mathrm{d}x}{\sqrt{1+x^2}}=\frac{1}{48}((8x^5-10x^3+15x)\sqrt{1+x^2}-15\log(x+\sqrt{1+x^2}))+C$ and $\int\frac{x^6\;\mathrm{d}x}{\sqrt{1+x^2}}=\frac{1}{32}(\cosh(6\operatorname{asinh}(x))-6\cosh(4\operatorname{asinh}(x))+15\cosh(2\operatorname{asinh}(x)))+C$2011-09-14
6

Here's one way to go about deriving a recursion relation for integrals of the form

$\int\frac{x^n}{\sqrt{1+x^2}}\mathrm dx$

Split the integral like so:

$\int x^{n-1}\frac{x}{\sqrt{1+x^2}}\mathrm dx$

and integrate by parts:

$\int x^{n-1}\frac{x}{\sqrt{1+x^2}}\mathrm dx=x^{n-1}\sqrt{1+x^2}-(n-1)\int\sqrt{1+x^2} x^{n-2}\mathrm dx$

Noting that $1+x^2$ is always positive for real $x$, we then complicate things a little:

$\int \frac{x^n}{\sqrt{1+x^2}}\mathrm dx=x^{n-1}\sqrt{1+x^2}-(n-1)\int(1+x^2)\frac{x^{n-2}}{\sqrt{1+x^2}}\mathrm dx$

Perform another split:

$\int\frac{x^n}{\sqrt{1+x^2}}\mathrm dx=x^{n-1}\sqrt{1+x^2}-(n-1)\left(\int \frac{x^n}{\sqrt{1+x^2}}\mathrm dx+\int\frac{x^{n-2}}{\sqrt{1+x^2}}\mathrm dx\right)$

and we see something we can isolate:

$n\int\frac{x^n}{\sqrt{1+x^2}}\mathrm dx=x^{n-1}\sqrt{1+x^2}-(n-1)\int\frac{x^{n-2}}{\sqrt{1+x^2}}\mathrm dx$

and then we finally divide both sides by $n$:

$\int\frac{x^n}{\sqrt{1+x^2}}\mathrm dx=\frac1{n}\left(x^{n-1}\sqrt{1+x^2}-(n-1)\int\frac{x^{n-2}}{\sqrt{1+x^2}}\mathrm dx\right)$

We can use the starting values $\int\frac{\mathrm dx}{\sqrt{1+x^2}}=\mathrm{arsinh}\,x$ and $\int\frac{x \mathrm dx}{\sqrt{1+x^2}}=\sqrt{1+x^2}$ for the recursion.

(This is a response to Srivatsan's comment, which got too long for the comment box.)

  • 0
    @Sri: No worries; I expend my votes too quickly, too.2011-09-14
5

I would first try the substitution $x=\tan(\theta)$, so that $\sqrt{1+x^2}=\sec(\theta)$. That gives $ \begin{align} \int\frac{x^n}{\sqrt{1+x^2}}\;\mathrm{d}x &=\int \tan^n(\theta)\sec(\theta)\;\mathrm{d}\theta\\ &=\tan^{n-1}(\theta)\sec(\theta)-(n-1)\int\tan^{n-2}(\theta)\;\sec^3(\theta)\;\mathrm{d}\theta\\ &=\tan^{n-1}(\theta)\sec(\theta)-(n-1)\int(\tan^n(\theta)+\tan^{n-2}(\theta))\;\sec(\theta)\;\mathrm{d}\theta\\ &=\frac{1}{n}\tan^{n-1}(\theta)\sec(\theta)-\frac{n-1}{n}\int\tan^{n-2}(\theta)\;\sec(\theta)\;\mathrm{d}\theta \end{align} $ If $n$ is odd, this reduces to $ \int\tan(\theta)\sec(\theta)\;\mathrm{d}\theta=\sec(\theta)+C $ If $n$ is even, this reduces to $ \begin{align} \int\sec(\theta)\;\mathrm{d}\theta&=\int\sec^2(\theta)\;\mathrm{d}\sin(\theta)\\ &=\int\frac{1}{2}\left(\frac{1}{1-\sin(\theta)}+\frac{1}{1+\sin(\theta)}\right)\;\mathrm{d}\sin(\theta)\\ &=\frac{1}{2}\log\left(\frac{1+\sin(\theta)}{1-\sin(\theta)}\right)+C\\ &=\log(\sec(\theta)+\tan(\theta))+C \end{align} $

0

Since $\frac{d}{dt}\sqrt{1+t^2} = \frac{t}{\sqrt{1+t^2}}$, we can integrate by parts to get $ \int \frac{t^2}{\sqrt{1+t^2}}\mathrm dt = \int t\cdot \frac{t}{\sqrt{1+t^2}}\mathrm dt = t\sqrt{1+t^2} - \int \sqrt{1+t^2}\mathrm dt. $ Cheating a little bit by looking at a table of integrals, we get that since $ \frac{d}{dt} \left [ t\sqrt{1+t^2} + \ln(t + \sqrt{1+t^2}) \right ] = t\frac{t}{\sqrt{1+t^2}} + \sqrt{1+t^2} + \frac{1}{t + \sqrt{1+t^2}} \left [ 1 + \frac{t}{\sqrt{1+t^2}} \right ] $ which simplifies to $2\sqrt{1+t^2}$, the integral on the right above is $\frac{1}{2}[t\sqrt{1+t^2} + \ln(t + \sqrt{1+t^2})]$ and thus we have $ \int \frac{t^2}{\sqrt{1+t^2}}\mathrm dt = \frac{1}{2}\left [t\sqrt{1+t^2} - \ln(t + \sqrt{1+t^2})\right ] $ which matches the answer given by Charles Bao if we set $X=x$ and $a=1$ in his original post.