I would like to show that the following trigonometric sum
\frac{1}{\sin(45°)\sin(46°)}+\frac{1}{\sin(47°)\sin(48°)}+\cdots+\frac{1}{\sin(133°)\sin(134°)}
telescopes to \frac{1}{\sin(1°)}
We have: \begin{align} \sin(45°)\sin(46°)&=\frac{1}{2}(\cos(1°)+\sin(1°))\\ \sin(47°)\sin(48°)&=\frac{1}{2}(\cos(1°)+\sin(5°))\\ \sin(49°)\sin(50°)&=\frac{1}{2}(\cos(1°)+\sin(9°))\\ &\ \vdots\\ \sin(133°)\sin(134°)&=\frac{1}{2}(\cos(1°)+\sin(177°)) \end{align}
So the sum is:
\begin{align} \sum_{k=0}^{44} &\frac{2}{\cos(1°)+\sin(1+4k)} =\frac{2}{\cos(1°)+\sin(1°)}+\frac{2}{\cos(1°)+\sin(5°)}+\\ &\kern2.5in +\frac{2}{\cos(1°)+\sin(9°)}+\cdots+\frac{2}{\cos(1°)+\sin(177°)}. \end{align}
Although I don't think this new expression simplifies the problem.