HINT
$|x_1| + |x_2| + |x_3| \geq 3 \sqrt[3]{|x_1||x_2||x_3|} = 3$
Hence, we have $|x_1| + |x_2| + |x_3| \geq 3$. Equality holds implies $|x_1| = |x_2| = |x_3| = 1$
We have $x_1 + x_2 + x_3$, $x_1x_2 + x_2x_3 + x_3x_2$ and $x_1 x_2 x_3$ to be real, and further $x=-1$ satisfies the equation.
Hence $f(x) = 2 \left( x+1 \right) \left( x^2-\left(1 + \frac{a}{2} \right)x + 1 \right)$. We have $x_3 = -1$. And $|x_1| = 1$ and $|x_2| = 1$. Hence, $x_1 = e^{i \theta}$ and $x_2 = e^{i \phi}$.
$(x-x_1)(x-x_2) = \left( x^2-\left(1 + \frac{a}{2} \right)x + 1 \right)$
$x_1 x_2 = 1 \implies \phi = -\theta$
$x_1 + x_2 = 2 \cos(\theta) = 1 + \frac{a}{2}$
Hence, $\frac{a}{2} = 2 \cos(\theta) - 1 \implies a = 4 \cos(\theta) - 2$.
Hence, $a = 4 \cos(\theta) - 2$ and the roots are $-1,e^{i \theta},e^{-i \theta}$