is/are there a closed form for
$\sin{(a)}+\sin{(a+d)}+\cdots+\sin{(a+n\,d)}$
$\cos{(a)}+\cos{(a+d)}+\cdots+\cos{(a+n\,d)}$
$\tan{(a)}+\tan{(a+d)}+\cdots+\tan{(a+n\,d)}$
$\sin{(a)}+\sin{(a^2)}+\cdots+\sin{(a^n)}$
$\sin{(\frac{1}{a})}+\sin{(\frac{1}{a+d})}+\cdots+\sin{(\frac{1}{a+n\,d})}$