So if $X$ is a vector space, and you define a norm, $x \mapsto \| x \|$, on it, then the bounded subset, $V = \{ x \in X: \|x\| < \infty \}$ is automatically a subspace.
This follows from the definition of a norm, so for all $x,y \in V, c \in \mathbb{C}$, $\|x + c y\| \le \|x\| + \|cy\| = \|x\|+ |c| \|y\| < \infty$, so $x+cy \in V$.
Is this the reasoning behind the definition of a norm?