For the begining assume that $f\in C^1([0,2\pi])$. Note that $ \int\limits_{[0,2\pi]}f(t)g(nt)d\mu(t)= \frac{1}{n}\int\limits_{[0,2\pi n]}f\left(\frac{\tau}{n}\right)g(\tau)d\mu(\tau)= \frac{1}{n}\sum\limits_{k=0}^{n-1}\int\limits_{[2\pi k,2\pi (k+1)]}f\left(\frac{\tau}{n}\right)g(\tau)d\mu(\tau) $ $ \frac{1}{n}\sum\limits_{k=0}^{n-1}\int\limits_{[0,2\pi]}f\left(\frac{\xi+2\pi k}{n}\right)g(\xi)d\mu(\xi)= \int\limits_{[0,2\pi]}\left(\frac{1}{n}\sum\limits_{k=0}^{n-1}f\left(\frac{\xi+2\pi k}{n}\right)\right)g(\xi)d\mu(\xi) $ Since $f\in C^1([0,2\pi])$ $ \lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=0}^{n-1}f\left(\frac{\xi+2\pi k}{n}\right)=\frac{1}{2\pi}\int\limits_{[0,2\pi]}f(\zeta)d\mu(\zeta)=\hat{f}(0) $ Again, since $f\in C^1([0,2\pi])$ and $g\in L^1([0,2\pi])$ is bounded, dominated convergence theorem gives $ \lim\limits_{n\to\infty}\frac{1}{2\pi}\int\limits_{[0,2\pi]}f(t)g(nt)d\mu(t)= \lim\limits_{n\to\infty}\frac{1}{2\pi}\int\limits_{[0,2\pi]}\left(\frac{1}{n}\sum\limits_{k=0}^{n-1}f\left(\frac{\xi+2\pi k}{n}\right)\right)g(\xi)d\mu(\xi)= $ $ \frac{1}{2\pi}\int\limits_{[0,2\pi]}\lim\limits_{n\to\infty}\left(\frac{1}{n}\sum\limits_{k=0}^{n-1}f\left(\frac{\xi+2\pi k}{n}\right)\right)g(\xi)d\mu(\xi)= \frac{1}{2\pi}\int\limits_{[0,2\pi]}\hat{f}(0)g(\xi)d\mu(\xi)=\hat{f}(0)\hat{g}(0) $ Now consider linear functional $ \varphi: L^1([0,2\pi])\to\mathbb{C}:f\mapsto\lim\limits_{n\to\infty}\frac{1}{2\pi}\int\limits_{[0,2\pi]}f(t)g(nt)d\mu(t) $ The proof given above states that for all $f\in C^1([0,2\pi])$ we have $\varphi(f)=\hat{f}(0)\hat{g}(0)$. Consider $f\in L^1([0,2\pi])$ then $ |\varphi(f)|\leq\frac{\operatorname{ess}\sup|g|}{2\pi}\int\limits_{0,2\pi}|f(t)|d\mu(t)= \frac{\Vert g\Vert_{\infty}}{2\pi}\Vert f\Vert_1 $ Since $f\in L^1([0,2\pi])$ is arbitrary $\varphi\in (L^1([0,2\pi]))^*$. Finally we see that equality $\varphi(f)=\hat{f}(0)\hat{g}(0)$ holds for bounded functional $\varphi$ on the dense subspace $C^1([0,2\pi])$ of $L^1([0,2\pi])$, consequently it holds for any function in $L^1([0,2\pi])$.