I found the limit $\lim_{n \to \infty }\sqrt[n]{b^{2^{-n}}-1}$ by first defining $f(x)=\sqrt[x]{b^{2^{-x}}-1}$ above $R$ and then finding the limit of $ln(f)$ (to cancel the nth root). This worked (the result is $1/2$), but I ended up having to find the derivative of rather complex functions when I used L'hopital (twice). My worry is that if I have to solve something like this in a test I'll easily make a technical error. I was wondering if there is a simpler way to find this limit?
I know most basic techniques of finding limits in $R$ and a bit (Stoltz, Cantor's lemma, ...) about finding limits of sequences.
Thank you for your help!