UPDATE: The series have been replaced by limits of sums.
Geometric interpretation. By definition of a double integral of a continuous function over a bounded closed region $R$ of the $xy$-plane, we have
$\iint_R f(x,y)\;\mathrm{d}x\;\mathrm{d}y=\lim_{n\to\infty}\; \sum_{i=1}^{n }f(x_{i},y_{i})\Delta A_{i},$
where $\Delta A_{i}$ is the area of a generic rectangular cell and $n$ the number of cells.
If $f(x,y)=1$, we get the area of $R$
$ \iint_R \mathrm{d}x\;\mathrm{d}y=\lim_{n\to\infty}\; \sum_{i=1}^{n }\Delta A_{i}.$
If we decompose $R$ into cells with a shape of sectors of a circle defined by two radii whose difference is $\Delta r_{i}$ for the generic $i^{th}$ cell and two rays making an angle $\Delta \theta _{i}$ with each other, the area of the cell, using the formula of a circle sector, is
$\frac{1}{2}\left[ \left( r_{i}+\frac{1}{2}\Delta r_{i}\right) ^{2}-\left( r_{i}-\frac{1}{2}\Delta r_{i}\right) ^{2}\right] \Delta \theta _{i}=r_{i}\Delta r_{i}\Delta \theta _{i}\text{,}$
where $r_{i}$ is the radius of the middle point of the cell. The same area $R $ can be expressed as the limit $\lim_{n\to\infty}\;\sum_{i=1}^{n }r_{i}\Delta r_{i}\Delta \theta _{i}$, which by definition of a double integral is equal to $\iint_R r\;\mathrm{d}r\;\mathrm{d}\theta. $

Figure: Generic $i^{th}$-cell in polar co-ordinates with the shape of a circle sector
This transformation is defined rigorously by the absolute value of the Jacobian of the transformation $\left\vert \frac{\partial (x,y)}{\partial (r,\theta )}\right\vert =r$ from the Cartesian to the polar system of co-ordinates ($x=r\cos \theta ,y=r\sin \theta $):
$\iint_R \mathrm{d}x\;\mathrm{d}y=\iint_R \left\vert \frac{\partial (x,y)}{\partial (r,\theta )}\right\vert \;\mathrm{d}r\;\mathrm{d}\theta = \iint_R r\;\mathrm{d}r\;\mathrm{d}\theta.$
Added: Evaluation of the Jacobian determinant: $\begin{eqnarray*} \frac{\partial \left( x,y\right) }{\partial \left( r,\theta \right) } &=&\det \begin{pmatrix} \partial x/\partial r & \partial x/\partial \theta \\ \partial y/\partial r & \partial y/\partial \theta \end{pmatrix} \\ &=&\det \begin{pmatrix} \cos \theta & -r\sin \theta \\ \sin \theta & r\cos \theta \end{pmatrix} \\ &=&r\cos ^{2}\theta +r\sin ^{2}\theta \\ &=&r. \end{eqnarray*}$