3
$\begingroup$

Sorry, my mathematical english vocabulary is not as vivid as I would like it to be, therefore my topic touches the main problem in searching limit for this function.

$\lim_{x \to 0} {\left (\frac{1+x\cdot2^x}{1+x\cdot3^x}\right)}^\frac{1}{x^2}$

I tried several approaches, although it all ended up to having division by $0$ because of $3^x$ or $2^x$.

*EDIT: Can it be solved without using l'Hôpital's rule?

  • 0
    @Henry, yes it seems like that. Isn't there a specific *trick* in getting this?2011-11-28

2 Answers 2

5

Without using l'Hopital:

Let $t=1/x$, so we want $\lim_{t\to\infty}\left({t+2^{1/t}\over t+3^{1/t}}\right)^{t^2}$ Then write ${t+2^{1/t}\over t+3^{1/t}}=1-{1\over r}{\rm\ where\ }r={t+3^{1/t}\over3^{1/t}-2^{1/t} }$ Then $\lim_{t\to\infty}(1-r^{-1})^r=e^{-1}$ so we're looking at $\lim_{t\to\infty}e^{-t^2/r}$. Now I find it convenient to go back to $x$; we want $\lim_{x\to0}e^{-(3^x-2^x)/((1+x3^x)x)}$ We have $1+x3^x\to1$, and $(3^x-2^x)/x\to\log(3/2)$ (see below), so the whole thing goes to $e^{-\log(3/2)}=2/3$.

Let $f(z)=a^z$. Then we know that f'(0)=\log a, but by the difference-quotient definition, f'(0)=\lim_{x\to0}(a^x-1)/x. This explains $(3^x-2^x)/x\to\log(3/2)$.

3

We compute $\lim_{x\to 0} \left(\frac{1+xe^{ax}}{1+xe^{bx}}\right)^{1/x^2},\qquad\qquad (\ast)$ where $a=\log 2$ and $b=\log 3$, though that is not important. Note that $\log \left(\left(\frac{1+xe^{ax}}{1+xe^{bx}}\right)^{1/x^2}\right)=\frac{1}{x^2}\left(\log(1+xe^{ax})-\log(1+xe^{bx})\right).$ Let $|x|$ be close to $0$. We find series expansions of everything. For the logarithm, we have $\log(1+t)=t-\frac{t^2}{2}+O(t^3).$ Thus $\log(1+xe^{ax})=xe^{ax}-\frac{x^2e^{2ax}}{2}+O(x^3).$ The beginning of the power series for the exponentials gives $\log(1+xe^{ax})=x+ax^2 -\frac{x^2}{2}+O(x^3),$ and similarly
$\log(1+xe^{bx})=x+bx^2 -\frac{x^2}{2}+O(x^3).$ Subtract, and divide by $x^2$. We get
$\frac{1}{x^2}\left(\log(1+xe^{ax})-\log(1+xe^{bx})\right)= a-b +O(x).$ Thus $\lim_{x\to 0}\frac{1}{x^2}\left(\log(1+xe^{ax})-\log(1+xe^{bx})\right)=a-b,$ and therefore the limit $(\ast)$ is $e^{a-b}$, which is $\dfrac{2}{3}$.