15
$\begingroup$

Today my lecturer put up on the board that:

If $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}$ exists and $a_n>0$ then

$\displaystyle \limsup\limits_{n\to\infty}\left(a_n^{\frac{1}{n}}\right)=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$

however I am not sure why this is true, can somebody give me a hint or something as to how to go about proving this.

thanks for any help

  • 1
    Further hint: if $a_n/a_N \le \ldots$, then $a_n^{1/n} \le \ldots$. Note that for any c > 0, $c^{1/n} \to c^0 = 1$ as $n \to \infty$.2011-10-28

2 Answers 2

9

In fact, the stronger statement is as follows:

Theorem: Let $\{c_n\}$ be any sequence in $\mathbb{R}^+$. Then, $\displaystyle \underline{\lim}\frac{c_{n+1}}{c_n}\leq \underline{\lim}\sqrt[n]{c_n}$ and $\displaystyle \overline{\lim}\sqrt[n]{c_n}\leq \overline{\lim}\frac{c_{n+1}}{c_n}$.

So, with this, if we assume that $\displaystyle \lim\frac{c_{n+1}}{c_n}$ exists then we have that $\displaystyle \overline{\lim}\sqrt[n]{c_n}\leq\overline{\lim}\frac{c_{n+1}}{c_n}=\underline{\lim}\frac{c_{n+1}}{c_n}\leq \underline{\lim}\sqrt[n]{c_n}$ from where it easily follows that $\overline{\lim}\sqrt[n]{c_n}=\underline{\lim}\sqrt[n]{c_n}$ and so $\lim \sqrt[n]{c_n}$ exists and, in fact, it's also clear it must be equal to $\displaystyle \lim\frac{c_{n+1}}{c_n}$. A proof of this fact can be found on page 68 of Rudin's Principles of Mathematical Analysis. I assume you have access to this (very well-known) book--if not say so and I shall give an outline of the proof.

  • 0
    I presume $\overline\lim$ means $\limsup$?2018-10-03
6

As I mentioned in my comment,

$a_n^{\frac{1}{n}}= e^{\frac{ \ln (a_n)}{n}} $

Now, if the limit

$\lim_{n \to \infty} \frac{\ln (a_{n+1})-\ln (a_n)}{(n+1)-n}= \lim_{n \to \infty} \ln \left( \frac{a_{n+1}}{a_n} \right) $ exists then by Stolz Cezaro the limit $\lim_{n \to \infty} \frac{ \ln (a_n)}{n}$ exists and

$\lim_{n \to \infty}\frac{ \ln (a_n)}{n}= \lim_{n \to \infty} \ln \left(\frac{a_{n+1}}{a_n}\right) $

The Theorem mentioned in the other post also follows from the stronger version of Stolz Cezaro by exactly the same reasoning.

  • 1
    @hmmmm Yep, there is no need for sup limit here. If $\lim \frac{a_{n+1}}{a_n}$ exists then $\lim_n \sqrt[n]{a_n}$ automatically exists and is the same, and this is what I proven... The converse is not true though.....2012-06-02