Hypothetically, if we have a population of size $n$ whose mean and std deviation are equal, I think with some work we have a constraint that the ratio, (Sum of squared points)/(Sum of points$)^2$ $= \frac{(2n-1)}{n^2}$, which gets small quickly as $n$ gets large. Are there heuristic considerations that might render such a population plausible as an extension of, say, the binomial distribution (as with the Poisson distribution, although that distribution the mean is equal to the variance)?
Does this property (mean = Sqrt[variance] ) suggest anything about the population generally, if that question is not too vague? I have not encountered a population with this property in any texts, but am fairly sure it has been considered...?