Here is a much simpler way to immediately obtain the sought answer. Contrast the solution below to the much longer solution in your link, which involves calculations with much larger numbers and performs $4$ inversions vs. the single simple inversion below. Always search for hidden innate structure in a problem before diving head-first into brute-force mechanical calculations!
The key insight is: the congruences split into pairs with obvious constant solutions by CCRT, viz.
$\begin{align}\rm\quad\quad\quad\quad\quad x\equiv \ \ \ 2\ \ \:(mod\ 7),\ \ x\equiv \ \ \ 2\ \ \:(mod\ 11)\ \iff\ x\equiv \ \ \ \color{#0a0}2\ \ (mod\ \color{#0a0}{77})\\[0.3em] \rm\quad\quad\quad\quad\quad x\equiv -1\ \ (mod\ 5),\,\ \ x\equiv\ {-}1\ \ (mod\ 13)\ \iff\ x\equiv \color{#c00}{-1}\ \ (mod\ \color{#c00}{65})\end{align}$
So we reduced the above four original LHS equations to the above two RHS equations, which are easy to solve by CRT = Chinese Remainder Theorem. $ $ Indeed, applying Easy CRT below
$\rm\quad\quad\quad\quad\quad x\equiv\ \color{#0a0}{2 + 77}\ \bigg[\displaystyle\frac{\color{#c00}{-1}-\color{#0a0}2}{\color{#0a0}{77}}\ mod\,\, \color{#c00}{65}\bigg]\,\ \ (mod\ 77\cdot65)$
In the brackets $\,\rm\displaystyle\left[\, mod\ \ 65\!:\ \ \frac{-3}{77} \equiv \frac{-3}{12} \equiv \frac{-1}4 \equiv \frac{64}4 \equiv \color{#d0f}{16}\,\right]\quad $ (see Beware below)
This yields $\rm\ \ x\ \equiv\ \color{#0a0}{2 + 77}\,[\,\color{#d0f}{16}\,] \equiv 1234\,\ \ (mod\ 77\cdot 65)\quad $ QED
Theorem $\:$ (Easy CRT) $\rm\ \ $ If $\rm\ m,\:n\:$ are coprime integers then $\rm\ m^{-1}\ $ exists $\rm\ (mod\ n)\ \ $ and
$\rm\displaystyle\qquad\quad\quad\quad \begin{eqnarray}\rm x&\equiv&\!\rm\ a\ \ (mod\ m) \\ \rm x&\equiv&\!\rm\ b\ \ (mod\ n)\end{eqnarray} \ \iff\ \ x \equiv\, a + m\ \bigg[\frac{b-a}{m}\ mod\ n\,\bigg]\,\ \ (mod\ m\:n)$
Proof $\rm\ (\Leftarrow)\ \ \ mod\ m:\,\ x \equiv a + m\ [\,\cdots\,] \equiv a,\ $ and $\rm\ mod\ n\!\!:\,\ x \equiv a + (b\!-\!a)\ m/m \equiv b$
$\rm (\Rightarrow)\ \ $ The solution is unique $\rm\ (mod\,\ mn)\ $ since if $\rm\ x',\:x\ $ are solutions then $\rm\ x'\equiv x\ $ mod $\rm\:m,n\:$ therefore $\rm\ m,n\ |\ x'-x\ \Rightarrow\ mn\ |\ x'-x\ \ $ since $\rm\ \:m,n\:$ coprime $\rm\:\Rightarrow\ lcm(m,n) = mn\ \ \ $ QED
Note $\ $ Easy CRT is not only easy to apply, but also very easy to remember. Namely note $\rm\ x\equiv a\pmod{\! m}\iff x = a + m\,k,\:$ for some integer $\rm\:k,\,$ This further satisfies the second congruence iff $\rm\ mod\ n\!:\ x = a + m\,k\equiv b$ $\iff$ $\rm k\:\equiv (b-a)/m,\ $ hence the Easy CRT formula. This explains the $(\Leftarrow)$ proof: $ $ fill in the dots in $\rm\:x\equiv a + m\ [\,\cdots\,]\:$ to make $\rm\,x\equiv b\pmod{\! n}$
Beware $\ $ Modular fraction arithmetic is well-defined only for fractions with denominator coprime to the modulus. See here for further discussion.
Below is the solution you linked to on "Math Celebrity" (cached to avoid link rot).
