1
$\begingroup$

Possible Duplicate:
Limits: How to evaluate $\lim_{x\rightarrow \infty}\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x$

Anybody can help me with this limit? I appreciate any idea. Thanks for providing the information on this great site: D $\lim_{x \to \infty } \sqrt[n]{f(x)} - \sqrt[m]{g(x)}$ where $f(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}+x^n$ and $g(x)=b_0+b_1x+b_2x^2+\cdots+b_{m-1}x^{m-1}+x^m$

  • 2
    Rewriting the limit as $\lim(f(x)^{1/n}-x)-\lim(g(x)^{1/m}-x)$ - since both limits exist their difference must equal the original limit - and then using the work of the earlier question linked above we know that the answer is $a_{n-1}/n-b_{m-1}/m$.2011-07-24

0 Answers 0