I am working on a function that is defined by
$a_1=1, a_2=2, a_3=3, a_n=a_{n-2}+a_{n-3}$
Here are the first few values:
$\{1,1,2,3,3,5,6,8,11,\ldots\}$
I am trying to find a good approximation for $a_n$. Therefore I tried to let Mathematica diagonalize the problem,it seems to have a closed form but mathematica doesn't like it and everytime I simplify it gives:
a_n = Root[-1 - #1 + #1^3 &, 1]^n Root[-5 + 27 #1 - 46 #1^2 + 23 #1^3 &, 1] + Root[-1 - #1 + #1^3 &, 3]^n Root[-5 + 27 #1 - 46 #1^2 + 23 #1^3 &, 2] + Root[-1 - #1 + #1^3 &, 2]^n Root[-5 + 27 #1 - 46 #1^2 + 23 #1^3 &, 3]
I used this to get a numerical approximation of the biggest root: $\text{Root}\left[x^3-x-1,1\right]=\frac{1}{3} \sqrt[3]{\frac{27}{2}-\frac{3 \sqrt{69}}{2}}+\frac{\sqrt[3]{\frac{1}{2} \left(9+\sqrt{69}\right)}}{3^{2/3}}\approx1.325$ Looking at the function I set $g(n)=1.325^n$
and plotted the first 100 values of $\ln(g),\ln(a)$ ($a_n=:a(n)$) in a graph (blue = $a$, red = $g$):
It seems to fit quite nicely, but now my question:
How can I show that $a \in \mathcal{O}(g)$, if possible without using the closed form but just the recursion. If there would be some bound for $f$ thats slightly worse than my $g$ but easier to show to be correct I would be fine with that too.