ellipse described about the circle in which a regular pentagon is constructed mapped on an ellipse
The surface can be calculated from my formula
$A=\frac{a.b.\pi.\alpha}{360}$
Total area will be an ellipse
Area n work will be
$An=\frac{b.\sin\alpha.a \cos\alpha}{2}+\frac{b.\sin\alpha.a(1-\cos\alpha)}{2} $
$An=\frac{a.b}{2}(\sin\alpha\cos\alpha+\sin\alpha-\sin\alpha\cos\alpha) $
$An=\frac{a.b}{2}\sin\alpha=\frac{a.b}{2}\sin(\frac{360}{n}) $
How is this n part of it multiplied by n
$ A=a.b.\pi $
$ \frac{n}{2}\sin(\frac{360}{n})$ look