Consider...
$B^{-1} = B = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \ \vdots & & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix} \qquad \mathrm{and} \qquad J = \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & & \\ & & \lambda & 1 \\ & & & \lambda \end{bmatrix} $
Then $B^{-1}J^TB = J$. Thus a Jordan block $J$ and its transpose $J^T$ are similar. So using $B_1,\dots B_\ell$ for each Jordan block $J_1,\dots,J_\ell$ and letting $B = \begin{bmatrix} B_1 & & & \\ & B_2 & & \\ & & \ddots & \\ & & & B_\ell \end{bmatrix} \qquad \mathrm{and} \qquad J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_\ell \end{bmatrix}$ Then $B^{-1}J^TB=J$. Therefore, a Jordan form and its transpose are similar.
Finally, put $A$ into its Jordan form: $P^{-1}AP=J$ then $J^T = (P^{-1}AP)^T=P^TA^T(P^T)^{-1}$ so thus $A$ is similar to $J$. $J$ is similar to $J^T$ and $J^T$ is similar to $A^T$. Hence by transitivity $A$ and $A^T$ are similar.