Let $M$ and $N$ be graded $R$-modules (with $R$ a graded ring). $\varphi:M\rightarrow N$ is a homogeneous homomorphism of degree $i$ if $\varphi(M_n)\subset N_{n+i}$. Denote by $\mathrm{Hom}_i(M,N)$ the group of homogeneous homomorphisms of degree $i$. We define $^*\mathrm{Hom}_R(M,N)=\bigoplus_{i\in\mathbb{Z}}\mathrm{Hom}_i(M,N)$. This is a (graded) $R$-submodule of $\mathrm{Hom}_R(M,N)$.
How can I prove that these two modules are equal if $M$ is finite? And do you know a counterexample if $M$ is not finite?