Let $n$ be a natural number. For $a_i,\omega_i,\varphi_i \in \mathbb{R}$ how can one find solutions $x \in \mathbb{R}$ for the equation:
$\sum_{i=1}^n a_i \cos( \omega_i \cdot (x-\varphi_i)) = 0$
Let $n$ be a natural number. For $a_i,\omega_i,\varphi_i \in \mathbb{R}$ how can one find solutions $x \in \mathbb{R}$ for the equation:
$\sum_{i=1}^n a_i \cos( \omega_i \cdot (x-\varphi_i)) = 0$