Problem: Prove the following identity about the product involving the nth roots of unity:
$ \prod_{k=1}^{N-1}|z^k-1| = N $
where $ z^k $ is the primitive nth root of unity.
Attempt:
$ \begin{align} \prod_{k=1}^{N-1}|z^k-1| &= \prod_{k=1}^{N-1}\left|(\cos(\frac{2\pi k}{N})-1)+i\sin(\frac{2\pi k}{N})\right| \\ &=\prod_{k=1}^{N-1}\sqrt{\cos^2(\frac{2\pi k}{N})-2\cos(\frac{2\pi k}{N})+1+\sin^2(\frac{2\pi k}{N})} \\ &=\prod_{k=1}^{N-1}\sqrt{2-2\cos(\frac{2\pi k}{N})} \\ &=\prod_{k=1}^{N-1}2\sqrt{\frac{1}{2}-\frac{1}{2}\cos(\frac{2\pi k}{N}))} \\ &=2^{N-1}\prod_{k=1}^{N-1}\sin(\frac{k\pi}{N}) \end{align} $
I found on Wikipedia that there is an identity for the last product: $ \prod_{k=1}^{N-1}\sin(\frac{k\pi}{N}) = N/2^{N-1} $. However I do not know how to prove it.
Could someone help me prove the last identity or perhaps suggest a different approach to the problem?