1
$\begingroup$

Wikipedia gives this form of the stereographic Projection from $S^{2} \rightarrow \hat{\mathbb C}$:$ (1) : z=\frac{x_{1}+ix_{2}}{1-x_{3}}$ and for the inverse projections the points are supposedly:$(2): x_{1}=\frac{\overline{z}+z}{z\overline{z}+1}, x_{2}=\frac{z-\overline{z}}{i(z\overline{z}+1)}, x_{3}=\frac{z\overline{z}-1}{z\overline{z}+1}$

How does he go from $(1)$ to $(2)$ ? I tried calculating the inverse matrix and reading the coefficients from it, looking at $\overline{z}, z$ in $(1)$ and solving it for $x_{1},x_{2},x_{3}$ but I don't get anything of this form

(f.e. I get: $\displaystyle x_{1}=\frac{z(1-x_{3})-2ix_{2}}{\overline{z}(1-x_{3})})$

  • 0
    That's where the li$n$e i$n$tersects the sphere, and that's the point you send your point on the plane to.2011-12-15

1 Answers 1

1

If $z=\dfrac{x_{1}+ix_{2}}{1-x_{3}}$, then $|z|^2=z\overline{z}=\frac{x_{1}+ix_{2}}{1-x_{3}}\cdot\frac{x_{1}-ix_{2}}{1-x_{3}}=\frac{x_{1}^2+x_{2}^2}{(1-x_{3})^2}=\frac{1-x_{3}^2}{(1-x_{3})^2}=\frac{1+x_{3}}{1-x_{3}},$ since $x_{1}^2+x_{2}^2+x_{3})^2=1$ for $(x_1,x_2,x_3)\in S^2$. From the above equality, we have $|z|^2(1-x_{3})=1+x_{3}$, or equivalently $(|z|^2+1)x_{3}=|z|^2-1$, which implies $x_{3}=\frac{|z|^2-1}{|z|^2+1}=\frac{z\overline{z}-1}{z\overline{z}+1}.$

From $z=\dfrac{x_{1}+ix_{2}}{1-x_{3}}$ again, we have the real part of $z$ $\Re(z)=\frac{x_1}{1-x_{3}}.$ Since $\Re(z)=(z+\overline{z})/2$, we get $x_1=\frac{z+\overline{z}}{2}\cdot(1-x_{3})=\frac{z+\overline{z}}{2}\cdot(1-\frac{z\overline{z}-1}{z\overline{z}+1})=\frac{\overline{z}+z}{z\overline{z}+1}.$

I will let you figure out the expression for $x_2$. Here is the hint for $x_2$: $\Im(z)=\dfrac{x_{2}}{1-x_{3}}$.