Given a generating set of a $\mathbb{Z}$-module $M \subseteq {\mathbb{Z}_k}^n$, is there a known algorithm to compute a generating set of $\{u \in {\mathbb{Z}_k}^n \, : \, \forall v \in M \quad v \cdot u = 0\}$?
Computing a generating set of the kernel of a module
1
$\begingroup$
algorithms
modular-arithmetic
modules
abelian-groups
-
0This question has been cross-posted on MathOverflow: ttp://mathoverflow.net/questions?sort=newest – 2011-09-06