The wikipedia article on sheaves says:
It can be shown that to specify a sheaf, it is enough to specify its restriction to the open sets of a basis for the topology of the underlying space. Moreover, it can also be shown that it is enough to verify the sheaf axioms above relative to the open sets of a covering. Thus a sheaf can often be defined by giving its values on the open sets of a basis, and verifying the sheaf axioms relative to the basis.
However, it does not cite a specific reference for this statement. Does there exist a rigorous proof for this statement in the literature?