14
$\begingroup$

Assume that $X_1,\cdots,X_n$ are independent r.v., not necessarily iid,

Let $S_n=X_1+\cdots+X_n$, suppose that $S_n$ converges in probability, how can we show that $S_n$ converges a.s.?

  • 4
    See Theorem 5.3.4 in Kai Lai Chung,$A$course in probability theory, 3rd ed., Academic Press, 2001.2012-10-31

1 Answers 1

9

We can use Ottaviani's inequality: if we put $M_k:=\max_{1\leqslant i\leqslant k}|S_i|$ and $S_{k,n}:=\sum_{i=k+1}^nX_i$, then for all $\varepsilon >0$ we have $\min_{1\leqslant k\leqslant n}P(|S_{k,n}|\leqslant\varepsilon)P(|M_n|>2\varepsilon)\leqslant P(|S_n|>\varepsilon).$

Put $A_m:=\sup_{k\in\mathbb N^*}|S_{m+k}-S_m|$ and $A:=\inf_{m\in\mathbb N^*}A_m$. We have $\{\{S_n\}\mbox{ doesn't converge}\}=\{A\neq 0\}\subset\bigcup_{\varepsilon\in\mathbb Q^+}\bigcap_{m\in\mathbb N^*}\{A_m>\varepsilon\}$ and $\{A_m>\varepsilon\}=\bigcup_{r\in\mathbb N^*}\left\{\sup_{1\leqslant k\leqslant r}|S_{m+k}-S_m|>\varepsilon\right\}.$ Ottaviani's inequality gives $\min_{1\leqslant k\leqslant r}P(|S_{m+r}-S_{m+k}|\leqslant\varepsilon)P\left(\max_{1\leqslant k\leqslant r}|S_{m+k}-S_m|>2\varepsilon\right)\leqslant P(|S_{r+m}-S_m|>\varepsilon).$ We fix $\delta>0$; we can choose $N=N(\varepsilon,\delta)$ such that for $0\leqslant k\leqslant r$ and $m\geqslant N$, $P(|S_{m+r}-S_{m+k}|>\varepsilon)\leqslant\delta$. We get $P\left(\max_{1\leqslant k\leqslant r}|S_{m+k}-S_{m+r}|>\varepsilon\right)\leqslant\frac{\delta}{1-\delta},$ therefore $P(A_m>\varepsilon)\leqslant\frac{\delta}{1-\delta}$. We have $0\leqslant P\left(\bigcap_{p\in\mathbb N^*}(A_p>\varepsilon)\right)\leqslant P(A_m>\varepsilon)\leqslant\frac{\delta}{1-\delta},$ so for all $\varepsilon\in\mathbb Q^+$, we have $P\left(\bigcap_{p\in\mathbb N^*}(A_p>\varepsilon)\right)=0$, hence $P(A\neq 0)=0$ and we have the almost sure convergence.

  • 0
    great.....I tried without Ottavani.....Ottavani is necessary else we get a bound of N$\delta$ and cant control the probabilities2013-02-17