This result follows from Bondy's theorem (in fact, it is equivalent) which states that,
Given $\displaystyle n$ distinct sets $\displaystyle S_1, S_2, \dots, S_n$, each a subset of $\displaystyle \{1,2, \dots, n\}$, there is a set $\displaystyle A \subset \{1,2, \dots, n\}$, with $\displaystyle |A| \leq n-1$ such that the sets $\displaystyle S_i \cap A$ are all distinct.
Pick a $\displaystyle k \notin A$. Then we have that if $\displaystyle S_i \cup \{k\} = S_j \cup \{k\}$, then $\displaystyle (S_i \cup \{k\}) \cap A = (S_j \cup \{k\}) \cap A$. Since $\displaystyle k \notin A$, it follows that $\displaystyle S_i \cap A = S_j \cap A$ contradicting the result of Bondy's theorem.
You can find a short proof and a sketch of an elegant linear algebra proof (originally due to Babai and Frankl) of Bondy's theorem, in the excellent book, Extremal Combinatorics by Stasys Jukna.