13
$\begingroup$

I would like to show that the following trigonometric sum

\frac{1}{\sin(45°)\sin(46°)}+\frac{1}{\sin(47°)\sin(48°)}+\cdots+\frac{1}{\sin(133°)\sin(134°)}

telescopes to \frac{1}{\sin(1°)}

We have: \begin{align} \sin(45°)\sin(46°)&=\frac{1}{2}(\cos(1°)+\sin(1°))\\ \sin(47°)\sin(48°)&=\frac{1}{2}(\cos(1°)+\sin(5°))\\ \sin(49°)\sin(50°)&=\frac{1}{2}(\cos(1°)+\sin(9°))\\ &\ \vdots\\ \sin(133°)\sin(134°)&=\frac{1}{2}(\cos(1°)+\sin(177°)) \end{align}

So the sum is:

\begin{align} \sum_{k=0}^{44} &\frac{2}{\cos(1°)+\sin(1+4k)} =\frac{2}{\cos(1°)+\sin(1°)}+\frac{2}{\cos(1°)+\sin(5°)}+\\ &\kern2.5in +\frac{2}{\cos(1°)+\sin(9°)}+\cdots+\frac{2}{\cos(1°)+\sin(177°)}. \end{align}

Although I don't think this new expression simplifies the problem.

1 Answers 1

18

$\frac{\sin(1^\circ)}{\sin(x^\circ) \sin(x+1)^\circ}=\frac{\sin((x+1)^\circ-x^\circ)}{\sin(x^\circ) \sin(x+1)^\circ}=$ $\frac{\sin((x+1)^\circ) \cos (x^\circ)}{\sin(x^\circ) \sin(x+1)^\circ}-\frac{\sin(x^\circ) \cos(x+1)^\circ}{\sin(x^\circ) \sin(x+1)^\circ}= \cot(x^\circ)-\cot(x+1)^\circ$

Add them and you get your telescopic sum ;)

  • 0
    @N.S. Thanks a lot!2018-06-30