I've been studying the unit circle and inverse trig functions on Khan Academy. One of the questions asked, is, what is the arctan of $-\frac{\sqrt{3}}{3}$.
The solution is $-\frac{1}{6}\pi$, I don't understand why?
If I pull up $-\frac{1}{6}\pi$ on a unit circle tool (in this case on Khan Academy). The $y$ (the sine) value on the same angle $-\frac{1}{6}\pi$ is $-\frac{1}{2}$. I see that the $x$ value (the cosine) on unit circle of $-\frac{1}{6}\pi$ is $\frac{\sqrt{3}}{2}$.
Tan is opposite side / adjacent side, or in the unit circle's case sine/cosine. Which suggests to me that the tan of $-\frac{1}{6}\pi$ is $-(1/2)/(\sqrt{3}/2)$ which equals $-1/\sqrt{3}$ not $-\frac{1}{6}\pi$.
Any insight would be great!