Here is the statement: Let $a,b \in \mathbb{Z}$ positive integers such that $a^2=b^4+b^3+b^2+b+1.$ Prove $b=3.$
I've tried is the following: Let $\Sigma=b^4+b^3+b^2+b+1$. If $a\equiv 0\mod 3$, then $a^2\equiv 0 \mod 3$. If $a\equiv 1\mod 3$ or $a\equiv 2\mod 3$, then $a^2\equiv 1\mod 3$. In the other hand, $b\equiv 0\mod 3$ or $b\equiv 2\mod 3$, then $\Sigma\equiv 1\mod 3$ and if $b\equiv 1\mod 3$, $\Sigma\equiv 1\mod 3$. Thus $a=3n$ or $a=3n+2$ for some $n\in\mathbb{Z}$, and $b=3m$ or $b=3m+2$ for some $m\in\mathbb{Z}$. In a similar way, I have prove $a$ cannot be even.
If $a=3n$, for some $n\in \mathbb{Z}$ and $b=3m$, for some $n\in \mathbb{Z}$, we arrive at the following equation (3n-1)(3n+1)=3m(3³m³+3²m²+3m~1). So, $a\equiv 0\mod 3$ or $b\equiv 0\mod 3$ but not both at same time.
I think I should use the Legendre symbol. In this case $(\frac{\Sigma}{3})=0 \text{ or }1$.