Let X be a vector space over $\mathbb{R}$ or $\mathbb{C}$, $\|\cdot\|: X\rightarrow [0,\infty)$ is called a quasi-norm if
i) $\|x\|=0 \Rightarrow x=0$
ii) $\|\lambda x\|=|\lambda|\|x\|, \forall \lambda, x$
iii) $\exists K\ge 1$, s.t. $\|x+y\|\le K(\|x\|+\|y\|), \forall x,y$
My question is:
If $\|x_k-x\|\rightarrow 0$, can we conclude that $\|x_k\|\rightarrow \|x\|$?