Transport equation: $ \begin{cases} \frac{d}{dt}u +cu = 0\qquad \mbox{ in } \mathbb{R}^n\times (0,\infty) \\ u(x,0) = 0 \qquad \mbox{ on }\mathbb{R}^n\times \{t=0\} \end{cases} $
b-const
Transport equation: $ \begin{cases} \frac{d}{dt}u +cu = 0\qquad \mbox{ in } \mathbb{R}^n\times (0,\infty) \\ u(x,0) = 0 \qquad \mbox{ on }\mathbb{R}^n\times \{t=0\} \end{cases} $
b-const
hint Consider the integral curve $\gamma: (0,\infty)\to\mathbb{R}^n$ given by $\gamma(s) = (sb_1,sb_2,\ldots, sb_n)$
then
$\frac{d}{ds} u(s,\gamma(s)) = \left(\frac{\partial}{\partial t}u + b\cdot\nabla u\right)(s,\gamma(s))$
and your equation becomes the ordinary differential equation along the curves $\gamma$ given by $\frac{d}{ds} u(s,\gamma(s)) = - cu$.