There was a duplicate posted a while ago. Since I think my answer might be of some interest, here it goes:
By substituting $\sin{x}=t$, we can write it as: \begin{align*} \int_{0}^{\pi/2} \, \log\sin{x}\, dx &= \int_{0}^{1} \, \frac{\log{t}}{\sqrt{1-t^2}}\, dt \tag{1} \end{align*}
Now, consider:
\begin{align*} I(a) &= \int_{0}^{1} \, \frac{t^a}{(1-t^2)^{1/2}}\, dt \\ &= \mathrm{B}\left(\frac{a+1}{2},\; \frac{1}{2}\right) \\ \frac{\partial }{\partial a}I(a) &= \frac{1}{4}\left(\psi\left(\frac{a+1}{2}\right)-\psi\left(\frac{a+2}{2}\right)\right)\mathrm{B}\left(\frac{a+1}{2},\; \frac{1}{2}\right) \\ \implies I'(0) &= \frac{1}{4}\left(\psi\left(\frac{1}{2}\right)-\psi\left(1\right)\right)\mathrm{B}\left(\frac{1}{2},\; \frac{1}{2}\right) \tag{2} \end{align*} Putting the values of digamma and beta functions. \begin{align*} \psi\left(\frac{1}{2}\right) &= -2\log{2}-\gamma \\ \psi\left(1\right) &= -\gamma \\ \mathrm{B}\left(\frac{1}{2}, \frac{1}{2}\right) &= \pi \end{align*}
Hence, from $(1)$ and $(2)$, \begin{align*} \boxed{\displaystyle \int_{0}^{\pi/2} \, \log\sin{x}\, dx = -\frac{\pi}{2}\log{2}} \end{align*}
Using a CAS, we can derive for higher powers of $\ln\sin{x}$, e.g. \begin{align*} \int_{0}^{\pi/2} \, \left(\log\sin{x}\right)^2\, dx &= \frac{1}{24} \, \pi^{3} + \frac{1}{2} \, \pi \log\left(2\right)^{2} \\ \int_{0}^{\pi/2} \, \left(\log\sin{x}\right)^3\, dx &= -\frac{1}{8} \, \pi^{3} \log\left(2\right) - \frac{1}{2} \, \pi \log\left(2\right)^{3} - \frac{3}{4} \, \pi \zeta(3)\\ \int_{0}^{\pi/2} \, \left(\log\sin{x}\right)^4\, dx &= \frac{19}{480} \, \pi^{5} + \frac{1}{4} \, \pi^{3} \log\left(2\right)^{2} + \frac{1}{2} \, \pi \log\left(2\right)^{4} + 3 \, \pi \log\left(2\right) \zeta(3) \end{align*}
We can also observe another interesting thing, for small values of $n$
\begin{align*} \displaystyle \int_{0}^{\pi/2} \, \left(\log\sin{x}\right)^n\, dx \approx \displaystyle (-1)^n\, n! \end{align*}