1
$\begingroup$

How to prove following statement :

Let's define an infinite sequence of positive integers :

$ a_i=\cos(4^{i} \cdot \arccos(4)) ; i=1,2,3......$

then for $n \geq 2 , F_n$ is prime if and only if :

$a_{2^{n-1}-1} \equiv 0 \pmod {F_n}$

For example :

$ a_1 \equiv 0 \pmod {F_2}$

$ a_3 \equiv 0 \pmod {F_3}$

$ a_7 \equiv 0 \pmod {F_4}$

  • 0
    @Graphth,try to compute $\cos(4^1 \cdot \arccos(4))$ for example...2011-12-18

0 Answers 0