Suppose that $f$ is $n$ times differentiable on an interval $I$ and there are $n + 1$ points $x_0, x_1, \ldots, x_n \in I, x_0 < x_1 < \cdots < x_n$, such that $f(x_0) = f(x_1) = \cdots = f(x_n) = 0$. Prove that there exists a point $z \in I$ such that $f^{(n)}(z) = 0$.
I am trying to solve this, but other than using then using Rolle's Theorem, I am not sure how to proceed.