3
$\begingroup$

Is this true!

Given $a,b>0$, real numbers, then $a+b\leq ab$ If not, when this could be true?

  • 0
    $(a_1+a_2i)+(b_1+b_2i) \leq (a_1+a_2i)(b_1+b_2i)$ $(a_1+b_1)+(a_2+b_2)i \leq (a_1b_1-a_2b_2)+(a_1b_2+a_2b_1)i$ $(a_1+b_1-a_1b_1+a_2b_2)+(a_2+b_2-a_1b_2-a_2b_1)i \leq 0$ But, this inequation just holds if $(a_2+b_2-a_1b_2-a_2b_1)=0$ and we have too $(a_1+b_1-a_1b_1+a_2b_2) \leq 0$2011-10-29

3 Answers 3

12

Rewrite the inequality as $(a-1)(b-1) \ge 1$. Now can you take it from here?

Comment: One could call the idea completing the rectangle. It is a lot less useful than completing the square!

2

You could show the inequality graphically as belowplot

Note: White space correspond to x, y values not satisfying the inequality

0

I assume $a$ and $b$ are both positive real numbers, $a+b\leq ab$.

Suppose $a>1$ then $a-1>0$ from $a+b\leq ab$, $ab-b\geq a$

So, $b(a-1)\geq a$. That is $b\geq a/(a-1)$.

  • 0
    @Monica, check my proof, I have cleared my mistake.2011-10-29