The left-invariant metric on $SU(2)$ is defined as $ds^2 = -2 \operatorname{Tr}( g^{-1} \mathrm{d} g \cdot g^{-1} \mathrm{d} g )$.
Let us choose the following group element parameterization:
$ g(\theta, \psi, \phi) = \exp( \psi \tau_3 ) \exp( \theta \tau_2 ) \exp( \phi \tau_3 ) $ where $ \tau_1 = \left( \begin{array}{cc} 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ \end{array} \right) \quad\quad \tau_2 = \left( \begin{array}{cc} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \\ \end{array} \right) \quad\quad \tau_3 = \left( \begin{array}{cc} -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} \\ \end{array} \right) $ Matrices $\tau_i$ are realizations of $\mathfrak{su}(2)$ Lie algebra, i.e. $\left[ \tau_1, \tau_2 \right] = \tau_3$ and cyclic variants of that. With this representation
$ g(\theta, \psi, \phi) = \left( \begin{array}{cc} \cos \left(\frac{\theta }{2}\right) e^{-\frac{1}{2} i (\psi +\phi )} & \sin \left(\frac{\theta }{2}\right) \left(-e^{\frac{1}{2} i (\phi -\psi )}\right) \\ \sin \left(\frac{\theta }{2}\right) e^{-\frac{1}{2} i (\phi -\psi )} & \cos \left(\frac{\theta }{2}\right) e^{\frac{1}{2} i (\psi +\phi )} \\ \end{array} \right) $ Here $0 \le \theta 2\pi$, $0 \le \phi, \psi < 4 \pi$. Some algebra leads to
$ \mathrm{d}s^2 = \mathrm{d} \theta^2 + \mathrm{d} \phi^2 + \mathrm{d} \psi^2 + 2 \cos \theta \mathrm{d} \psi \mathrm{d} \psi = h_{i,j} \mathrm{d}x^i \otimes \mathrm{d}x^j $ Then the volume element is $\mathrm{d}V = \sqrt{\det h} \cdot \mathrm{d} \theta \, \mathrm{d}\psi \, \mathrm{d}\psi = \vert \sin\theta \vert \cdot \mathrm{d} \theta \, \mathrm{d}\psi \, \mathrm{d}\psi$. The volume of $SU(2)$ then is
$ \int_0^{2 \pi} \mathrm{d} \theta \int_0^{4 \pi} \mathrm{d} \phi \int_0^{4 \pi} \mathrm{d} \psi \cdot \vert \sin \theta \vert = (4 \pi)^2 $
We can now repeat this same process using $ g^{-4} \cdot \mathrm{d} g^4 = \sum_{k=0}^3 g^{-k} ( g \cdot \mathrm{d} g) g^k $ The algebra gets quite more involved, with
$ \sqrt{ \det \tilde{h} } = 8 \vert \sin \left(\frac{\theta }{2}\right) \cos ^3\left(\frac{\theta }{2}\right) \cos ^2 \left(\frac{\psi +\phi }{2}\right) k(\theta, \phi, \psi) \vert $ where $k(\theta, \phi, \psi) = (\cos (\theta -\psi -\phi )+\cos (\theta +\psi +\phi )+2 \cos (\theta )+2 \cos (\psi +\phi )-2)^2$.
Carrying out the integration
$ \int_0^{2 \pi} \mathrm{d} \theta \int_0^{4 \pi} \mathrm{d} \phi \int_0^{4 \pi} \mathrm{d} \psi \cdot \sqrt{ \det \tilde{h}} = 64 \pi^2 = ( 8 \pi )^2 $
As the consequence, according to your formula, $ \deg S = \frac{(8 \pi)^2}{(4 \pi)^2} = 4 $
So it turned out an heavy lifting exercise which confirm intuition behind Ryan's answer in comments.