71
$\begingroup$

Why is

$\lim_{n \to \infty} \frac{2^n}{n!}=0\text{ ?}$

Can we generalize it to any exponent $x \in \Bbb R$? This is to say, is

$\lim_{n \to \infty} \frac{x^n}{n!}=0\text{ ?}$


This is being repurposed in an effort to cut down on duplicates, see here: Coping with abstract duplicate questions.

and here: List of abstract duplicates.

  • 0
    @J.M. I have used sandwich theorem but you can see it's a little bit different2014-06-28

15 Answers 15

55

First you show that $n!>3^n$ and then use $ \lim\limits_{n}\frac{2^n}{n!}\leq \lim\limits_n\frac{2^n}{3^n} =\lim\limits_n\left(\frac2{3}\right)^n = 0. $

To show that $n!>3^n$ you use induction. For $n = 7$ it holds, you assume that it holds for some $k\geq7$ then $(k+1)! = k\cdot k!>k\cdot 3^k>3^{k+1}$ since $k\geq 7>3$.

  • 15
    @Valerio At this stage, it is conventional to say "It can be trivially verified that the inequality holds for $n=7$." :-)2011-10-31
48

Consider that $\frac{2^n}{n!} = \frac{\overbrace{2\times 2\times\cdots \times 2}^{n\text{ factors}}}{1\times 2 \times \cdots \times n} = \frac{2}{1}\times \frac{2}{2}\times \frac{2}{3}\times\cdots \times\frac{2}{n}.$ Every factor except the first two is smaller than $1$, so at each step you are multiplying by smaller and smaller numbers, with the factors going to $0$.

43

I have deleted my previous approach to the first question because it was substandard. Instead, for $n\ge2$, we have $ \frac{2^n}{n!}=\frac{\overbrace{2\cdot2\cdot2\cdots2}^{\text{$n$ copies}}}{1\cdot2\cdot3\cdots n}\le\frac{2\cdot2}{1\cdot2}\left(\frac23\right)^{n-2}\to0\qquad\text{as }n\to\infty $


Alternate Approach to the Second Question

Inspired by Ilya, I have moved my deleted answer from another question here.

For $n\ge2x$, we have $ \begin{align} \frac{x^n}{n!} &=\frac{x^{\lfloor2x\rfloor}}{\lfloor2x\rfloor!}\frac{x}{\lfloor2x+1\rfloor}\frac{x}{\lfloor2x+2\rfloor}\cdots\frac{x}{n}\\[4pt] &\le\frac{x^{\lfloor2x\rfloor}}{\lfloor2x\rfloor!}\left(\frac12\right)^{n-\lfloor2x\rfloor} \end{align} $ Since $ \lim_{n\to\infty}\left(\frac12\right)^{n-\lfloor2x\rfloor}=0 $ we have $ \lim_{n\to\infty}\frac{x^n}{n!}=0 $

  • 0
    Now I can happily upvote it :)2014-11-28
32

I am surprised that no one mentioned this:

$2 \cdot 2 \cdot 2... \cdot 2 \leq 2 \cdot 3 \cdot 4... \cdot (n-1)$

Thus $2^{n-2} \leq (n-1)!$.

Hence we have

$0 \leq \frac{2^n}{n!} \leq \frac{4(n-1)!}{n!}=\frac{4}{n} \,.$

Generalization

Let $x$ be any real number.

Fix an integer $k$ so that $\left| x \right| .

Then, for all $n> k$ we have:

$\left| x\right| ^{n-k} < k(k+1)(k+2)...(n-1) $

Thus

$0 < \frac{\left|x \right|^n}{n!} \leq \frac{\left|x\right|^kk(k+1)(k+2)...(n-1)}{n!}=\frac{\left|x \right|^k}{(k-1)!}\frac{1}{n}$

Since $k$ is fixed, $\frac{\left|x \right|^k}{(k-1)!}$ is just a constant, thus $\lim_n \frac{\left|x \right|^k}{(k-1)!}\frac{1}{n}=0$.

By Squeeze theorem, we get that

$\lim_n \left| \frac{x ^n}{n!} \right|= \lim_n \frac{\left|x \right|^n}{n!}=0 \,.$

Now, since $\lim_n \left| \frac{x ^n}{n!} \right|=0$, we get

$\lim_n \frac{x ^n}{n!} = 0\,.$

P.S. A more general result applicable in this case is the following:

Lemma If $a_n$ is a sequence so that

$\limsup_n |\frac{a_{n+1}}{a_n}| <1$ then $\lim_n a_n =0$.

  • 2
    @N.S. Great! Now we have two proofs. Maybe someone else can complete the "Gaussian-like" triad =D.2012-04-20
21

Define the sequence $\{ a_n\}$ as $a_n= \dfrac{x^n}{n!}$ for $x\in \mathbb R$ and $n\in \mathbb N$.

  1. If $x=0$, it is trivial that $\lim a_n=0$

  2. If $x>0$, then one has that

    • For $n\in \Bbb N$, $a_n >0$.
    • For $n$ sufficiently large (say $n \geq x$), it will be the case a_{n+1} = \frac{x^{n+1}}{(n+1)!}=\frac{x}{n+1}\frac{x^{n}}{n!} This means that after certain $n$, a_{n+1}.
    • Since a bounded monotonically decreasing sequence of real numbers must have a limit, $a= \lim_{n\to\infty} a_n=\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty}\frac{x}{n+1}\cdot\lim_{n\to\infty} a_n = 0\cdot a$ $\implies a=0.$
  3. If x <0, we introduce a $(-1)^n$ factor. Since we've proven that $a_n$ goes to zero, we use the property that if $\{ b_n \}$ is bounded and $a_n \to 0$, then $\lim\limits_{n\to\infty} a_n\cdot b_n =0$, and we're done.

  • 0
    @PeterT.off: I believe you can remove that last few paragraphs which come after the horizontal line...2012-04-20
9

The Stirling's formula says that:

$ n! \sim \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n, $

inasmuch as

$ \lim_{n \to \infty} \frac{n!}{\sqrt{2 \pi n} \left(\displaystyle\frac{n}{e}\right)^n} = 1, $

thearebfore

$ \begin{aligned} \lim_{n \to \infty} \frac{2^n}{n!} & = \lim_{n \to \infty} \frac{2^n}{\sqrt{2 \pi n} \left(\displaystyle\frac{n}{e}\right)^n} = \lim_{n \to \infty} \Bigg[\frac{1}{\sqrt{2 \pi n}} \cdot \frac{2^n}{\left(\displaystyle\frac{n}{e}\right)^n} \Bigg]\\ &= \lim_{n \to \infty} \frac{1}{\sqrt{2 \pi n}} \cdot \lim_{n \to \infty} \left(\frac{e2}{n}\right)^n = 0 \cdot 0^\infty = 0 \end{aligned} $

Note: You can generalize replacing $2$ by $x$.

Visit: Stirling's approximation.

9

$u_n=\dfrac{x^n}{n!} \implies \dfrac{u_{n+1}}{u_n}=\dfrac{x^{n+1}n!}{x^n(n+1)!}=\dfrac{x}{n+1}$

$\therefore\displaystyle\lim_{n \to \infty}\dfrac{u_{n+1}}{u_n}=0$

$\therefore\displaystyle\lim_{n \to \infty}u_n=0$

Since for a sequence $\{u_n\}$ of positive real numbers such that $\displaystyle\lim_{n \to \infty}\dfrac{u_{n+1}}{u_n}=L\ (<1)$ we must have $\displaystyle\lim_{n \to \infty}u_n=0$.

6

The simplest way would be; let $ \color{fuchsia}{P_n=\frac{x^n}{n!}=} \color{maroon}{\frac x1.\frac x2.\frac x3\cdots\frac x{x-1}.\frac xx.\frac x{x+1}\cdots\frac x{n-1}.\frac xn}$ Then $\color{maroon}{0}\color{red}{<}\color{fuchsia}{P_n}\color{red}{<}\color{maroon}{\frac x1.\frac x2\cdots\frac{x}{x-1}.\frac xx.}\color{green}{\frac x{x+1}.\frac x{x+1}\cdots\frac{x}{x+1}.\frac x{x+1}}$ Or $\color{maroon}{0}\color{red}{<}\color{fuchsia}{P_n}\color{red}{<}\color{maroon}{\frac{x^x}{x!}.}\color{green}{\left(\frac x{x+1}\right)^{n-x}}$ And as $\color{fuchsia}{\lim_{n\to\infty}\color{maroon}{0}=0}\\ \color{fuchsia}{\lim_{n\to\infty}\color{maroon}{\frac{x^x}{x!}.}\color{green}{\left(\frac x{x+1}\right)^{n-x}}=0}$ By using $\color{red}{\text{Sandwich theorem}}$ the result can be obtained; I leave you to read between the lines.

4

This was here before. I'll recreate what I said then.

The basic idea is that $n! > (n/2)^{n/2}$ (by looking at the terms beyond $n/2$).

So x^n/n! < x^n/(n/2)^{n/2} = (x^2)^{n/2}/(n/2)^{n/2} = (2x^2/n)^{n/2}.

So$^2$, if $n > 4x^2$, x^n/n! < 1/2^{n/2} which goes nicely to zero - about as elementary as can be.

4

Let $\:\epsilon>0$.

The fact that $x$ is fixed tells you that there exist $M\in \mathbb{N}$ such that $|x|.

With this you have that there exist $N\in\mathbb{N}$ such that $\displaystyle\left(\frac{M^M}{M!}\right)\frac{1}{N}<\epsilon$

Then, if $n\geq MN$

$\displaystyle\left\|\frac{x^n}{n!}-0\right\|\leq\frac{M^n}{n!}\leq\frac{M}{1}\cdots\frac{M}{M}\cdots\frac{M}{MN}\leq\left(\frac{M^M}{M!}\right)\frac{1}{N}<\epsilon$

So $\displaystyle \lim_{n\to\infty}\frac{x^n}{n!}=0$

3

First Answer The series $e^x=\sum_{n=0}^\infty \frac{x^n}{n!}$ converges then $\lim_{n\to\infty}\frac{x^n}{n!}= 0$

OR Second Answer Use the following famous Stirling formula: Given $x>0$ $ \lim_{n\to +\infty} \frac{n!}{\left(\frac{n}{e}\right)^n\sqrt{2n} }=\sqrt{\pi}. $ and $|x^n| =e^{n\ln |x|}$

1

Lemma: Let $u_n>0$ and $v_n>0$ such that ; there exists $N$ st for all $n\geq N$; $\dfrac{u_{n+1}}{u_n}\leq \dfrac{v_{n+1}}{v_n}$. Then the sequence $\dfrac{u_n}{v_n}$ is bounded.

Proof: for all $n\geq N$ we have $\dfrac{u_{n+1}}{v_{n+1}}\leq \dfrac{u_n}{v_n} $ hence the sequence $(\dfrac{u_n}{v_n})_{n\geq N}$ is decreasing in particular it is bounded (it is positive). This show also that the sequence $(\dfrac{u_n}{v_n})$ is bounded.

Application: let $x\in \Bbb R^*$. Let $u_n=(2|x|)^n$ and $v_n=n!$. We have $\dfrac{u_{n+1}}{u_n}=2|x|$ and $\dfrac{v_{n+1}}{v_n}=n+1$. Now for $N=[2x]$ we have: $\forall n\geq N$ ; $\dfrac{u_{n+1}}{u_n}=2|x|\leq N+1\leq n+1=\dfrac{v_{n+1}}{v_n}$. It follos that the sequence $\dfrac{u_n}{v_n}$ is bounded, then there exists $M\in \Bbb R^+$ such that $\dfrac{u_n}{v_n}\leq M $ i.e $0\leq \dfrac{|x|^n}{n!}\leq \dfrac{M}{2^n}$ so $\lim_{n\to +\infty}\dfrac{|x|^n}{n!}=0$ thus $\lim_{n\to +\infty}\dfrac{|x|^n}{n!}=0$.

1

$\dfrac{2}{n!} \leq \dfrac{2^n}{n!} \leq \dfrac{2^n}{3^n}$

By Squeeze Theorem, conclusion follows.

  • 0
    When $n\ge 7$, $n\in\mathbb Z$.2017-09-12
1

Since $\forall \, n \in \mathbb{N}$ we have $\bigg(1+\dfrac{1}{n}\bigg)^{n} by induction it follows that $\bigg(\dfrac{n}{e}\bigg)^n For a fixed $a \in \mathbb{R}, $ by the Archimedean property, there exists $k \in \mathbb{N}$ such that $e(|a|+1) Then for all $n \geq k, $ and by the second inequality we have we have $(|a|+1)<\dfrac{n}{e}<(n!)^{1/n}$ from which it follows that $0< \dfrac{|a|^n}{n!}\leq \dfrac{|a|^n}{(1+|a|)^n}$ which by the squeeze theorem forces $\displaystyle \lim_{n \to\infty}\dfrac{|a|^n}{n!}=0.$

0

Since $\frac{-|x|^n}{n!} \leq \frac{x^n}{n!} \leq \frac{|x|^n}{n!}$

Therefore, enough to show that $\frac{|x|^{n}}{n!} \rightarrow 0$ as $n \rightarrow \infty$

Now $x$ is any real number, we can find $M$ such that $|x| < M$

which means $\frac{|x|}{M} < 1$, $\big(\frac{|x|}{M}\big)^n \rightarrow 0$

Now for all $n > M$ we have $\frac{|x|^n}{n!} = \frac{|x|^n}{1.2.3....M(M+1)...n} $ $\leq \frac{|x|^n}{M!M^{n-M}} $ = $\big(\frac{|x|}{M!}\big)^n \frac{M^M}{M^n} $

which will tend to $0$ as $n \rightarrow \infty$