2
$\begingroup$

Let $f:X\longrightarrow S$ be a morphism of schemes. Assume $X$ and $S$ are integral.

Let $\eta$ be the generic point of $S$ and let $X_\eta\longrightarrow \textrm{Spec} \ K(S)$ be the induced morphism, where $K(S)$ denotes the function field of $S$.

Then, if $f$ is dominant, the function field $K(X_\eta)$ embeds canonically in $K(X)$. (Edit: Answered the question.)

  • 0
    Ok. I'll do that.2011-06-24

0 Answers 0