0
$\begingroup$

Given: $ \begin{eqnarray} R & = & \ln(u^2 + v^2 + w^2)\\ u & = & x + 6y\\ v & = & 2x - y\\ w & = & 4xy \end{eqnarray} $

I am trying to determine $\frac{\partial R}{\partial x}$ when $x = y = 2$.

Apparently I am incorrect: (Sorry for the lack of appropriate formatting)

$\frac{\partial R}{\partial x} = \frac{\partial R}{\partial u} \frac{\partial u} {\partial x}+ \frac{\partial R}{\partial v} \frac{\partial v}{\partial x} + \frac{\partial R}{\partial w}\frac{\partial w}{\partial x}$

$= (1 / (u^2 + v^2 + w^2)) ((2u) (1) + (2v) (2) + (2w) (4y))$

$= (1 / (196 + 4 + 256)) (28 + 8 + 256)$

$= 73/114$

  • 0
    @joriki: Thanks! So my comment is no longer valid.2011-04-08

2 Answers 2

1

$ \frac{\partial R}{\partial x}=\frac{\partial R}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial R}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial R}{\partial w}\frac{\partial w}{\partial x} $ so $ \frac{\partial R}{\partial x}=\frac{2u}{u^2 + v^2 + w^2}1+\frac{2v}{u^2 + v^2 + w^2}2+\frac{2w}{u^2 + v^2 + w^2}4y $ at $(x,y)=(2,2)$ we get $u=14, v=2, w=16$ so that $ \frac{\partial R}{\partial x}=\frac{28+8+256}{196+4+256}=\frac{292}{456}=\frac{73}{114} $

so your answer seems correct to me...

0

Your calculation is correct, WolframAlpha gets the same result.