How can we show that if $f:\mathbb{N} \rightarrow \mathbb{N}$ with $f(n+1) \geq f(n)>1$ for all $n\ge 1$ and $\sum_{n = 1}^\infty \frac{1}{f(n)} = \infty$, then for all integers $k>1$ we have $\sum_{n = 1}^\infty \frac{1}{f(kn)} = \infty$?
Divergence of subsequences
1
$\begingroup$
sequences-and-series
convergence-divergence
divergent-series
-
0If the sum is finite, then so is $\sum \frac{1}{f(kn+r)}$ where $0\le r \le k-1$. – 2011-11-14
1 Answers
5
$ \frac{k}{f(kn)}\geqslant\frac1{f(kn+1)}+\frac1{f(kn+2)}+\cdots+\frac1{f(kn+k)}. $