I am looking for a function $f$ having the following characteristics:
- $f$ defined on $[0,1]$
- $f(0)=0$
- $f(1)=1$
$ \forall x \in ]0,1[, x
$f$ differentiable on $]0,1]$
- f'>0
- f'(1)=1
- \lim\limits_{x\to0} f'(x)=+\infty
Finally, I will also need an analytical expression of the inverse function $f^{-1}$.
Do you know such function?