You can also use Euler-Maclaurin summation.
The first-order Euler-Maclaurin formula says \sum_{i=1}^n f(i) = \int_1^n f(x) \, dx + {f(1) + f(n) \over 2} + \int_1^n f'(x) \left(x - \lfloor x \rfloor - \frac{1}{2}\right)\,dx.
Since $|x - \lfloor x \rfloor - \frac{1}{2}| \leq 1$, with $f(x) = \frac{2n}{(n+2x)^2}$ we have $\sum_{i=1}^n \frac{2n}{(n+2i)^2} = \int_1^n \frac{2n \, dx}{(n+2x)^2} + R_n,$ where $|R_n| \leq \left|\frac{3f(n) - f(1)}{2}\right| = \left|\frac{3}{n} - \frac{n}{(n+2)^2}\right|$.
Therefore, $\lim_{n \to \infty} \sum_{i=1}^n \frac{2n}{(n+2i)^2} = \lim_{n \to \infty} \int_1^n \frac{2n \, dx}{(n+2x)^2} = \lim_{n \to \infty} \left[\frac{-n }{n+2x} \right]_1^n = \lim_{n \to \infty} \left(-\frac{1}{3} + \frac{n}{n+2}\right) = \frac{2}{3}.$