5
$\begingroup$

I know that : $\mathbf{Q}(\sqrt{2}) = \mathbf{Q}+ \sqrt{2} \mathbf{Q}$ , but then what is $\mathbf{Q}(\sqrt{2},\sqrt{3})$?

1 Answers 1

7

$\mathbf{Q}(\sqrt{2},\sqrt{3})$ means $\mathbf{Q}+\sqrt{2}\mathbf{Q}+\sqrt{3}\mathbf{Q}+\sqrt{6}\mathbf{Q}$, or in other words

$\mathbf{Q}(\sqrt{2},\sqrt{3})=\{a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}\mid a,b,c,d\in\mathbf{Q}\}.$


Be careful though. For example, $\mathbf{Q}(\sqrt{2},\sqrt[4]{2})=\mathbf{Q}(\sqrt[4]{2})=\mathbf{Q}+\sqrt[4]{2}\mathbf{Q}+(\sqrt[4]{2})^2\mathbf{Q}+(\sqrt[4]{2})^3\mathbf{Q}$, because adding in the $\sqrt{2}$ is redundant: we already have $\sqrt{2}=(\sqrt[4]{2})^2$ inside $\mathbf{Q}(\sqrt[4]{2})$.

In general, the field $\mathbf{Q}(a_1,\ldots,a_n)$ is the smallest field containing $\mathbf{Q}$ and the elements $a_1,\ldots,a_n$.

  • 0
    @Zev My point was merely that this case too is worthy of mention.2011-12-25