As an exercise I was doing a proof about equicontinuity of a certain function. I noticed that I am always choosing the limits in a way that I finally get:
$\text{Expression} < \epsilon$
However it wouldn't hurt showing that
$\text{Expression} \leq \epsilon$
would it, since $\epsilon$ is getting infinitesimally small? I have been doing this type of $\epsilon$ proofs quite some time now, but never asked myself that question. Am I allowed to write $\text{Expression} \leq \epsilon$? If so, when?