If $A\in \mathbb R^{n \times m}$ and $A = A^\top$ and if $\vert \lambda_1 \vert >\vert \lambda_2 \vert >\cdots>\vert \lambda_n \vert >0$ then $\lim\limits_{k\to \infty} Q_k = I$, $\lim\limits_{k\to \infty} R_k = \mathrm{diag}(\lambda_1,\dots,\lambda_n) $ and $(A_{k})_{i,j} = O\left(\left(\dfrac{\vert \lambda_{i} \vert}{\vert \lambda_{j} \vert}\right)^k\right)$ for $i > j$.
Okay. I find it hard to understand the last part:
$(A_{k})_{i,j} = O\left(\left(\dfrac{\vert \lambda_{i} \vert}{\vert \lambda_{j} \vert}\right)^k\right)$ for $i > j$.
Is there someone who can explain what it means?