I am looking for examples of a flat but not projective module, and of a projective but not free module.
Flat not projective, projective not free
7
$\begingroup$
commutative-algebra
modules
-
1More generally, torsion-free = flat for modules over a Dedekind domain. – 2011-08-29
1 Answers
12
The rational numbers are a flat but not projective $\mathbb Z$-module.
$\mathbb Z\oplus 0$ is a projective but not free $\mathbb Z\oplus \mathbb Z$-module.