1
$\begingroup$

$f(x) = \log x$ for any real number $x > 0$ and

$g(n)=\begin{cases} n& \text{if $n$ is even}\\ \tfrac{1}{n}& \text{if $n$ is odd}.\end{cases}$

for any natural number $n$.

If $x$ is a natural number greater than $1$, then what is the value of

$f(f(x^{g(10)})) – f(f(x^{g(9)})) + f(f(x^{g(8)})) –\cdots – f(f(x^{g(1)}))$

What is the best way to this?

  • 0
    my mistake.thanks for correcting.2011-11-27

2 Answers 2

1
y(n) = f(f(x^g(n)))=f(g(n) * log(x))=log(g(n))+log(log(x))  y(n) = log(n) + log(log(x)) if n is even y(n) = log(1/n) + log(log(x)) = -log(n) + log(log(x)) if n is odd  now, y(10) - y(9) = log(10) + log(log(x)) + log(9) - log(log(x)) = log(10) +log (9) similarly, y(8) - y(7) = log(8) + log(7)  finaly result y = log(10) + log(9) + ... + log(1) = log(10*9*...*1) = log(10!) 
2

$f(f(x^{g(n)}))=f(\log x^{g(n)})=f(g(n)\cdot \log x)=\log(g(n))+\log(\log x)$

So ,

$f(\log x^{g(10)})=\log 10 +\log(\log x)$

$f(\log x^{g(9)})=\log {\frac{1}{9}} +\log(\log x)$ ...etc.

Therefore your expression is equivalent to the :

$\log 10 -\log {\frac{1}{9}}+\cdots+\log 2-\log 1$

  • 0
    @Swapan,It's ok...2011-11-27