13
$\begingroup$

The Euler-Maclaurin summation formula is \begin{eqnarray} \sum_{k = a}^{b} f(k) = \int_{a}^{b} f(t) \, dt + B_1 (f(a) + f(b)) + \sum_{n = 1}^{N} \frac{B_{2n}}{(2n)!} ( f^{(2n-1)}(b) - f^{(2n-1)}(a) ) + R_{N}, \end{eqnarray} where $B_{n}$ is the $n^{\text{th}}$-Bernoulli number taking $B_{1} = \tfrac{1}{2}$, and the remainder term is bounded by the following \begin{align} |R_{N}| \leq \frac{|B_{2N} |}{(2n)!} \int_{a}^{b} | f^{(2N)}(t) | \, dt. \end{align} for any arbitrary positive integer $N$. Is there a similar formula for nested sums of the form, \begin{eqnarray} \sum_{k_1 = a_1}^{b_1} \cdots \sum_{k_n = a_n}^{b_n} f(k_1, \dots, k_n). \end{eqnarray}

Thanks!

  • 0
    These papers discuss this and related: https://arxiv.org/PS_cache/math/pdf/0608/0608171v1.pdf , https://arxiv.org/PS_cache/math/pdf/0507/0507572v2.pdf2018-07-22

1 Answers 1

12

Yes! There's a whole chapter about it in this book.

  • 0
    I meant Theorem 10.2 there in the book.2017-05-15