Evaluate $\displaystyle \int\nolimits^{\pi}_{0} \frac{dx}{5 + 4\cos{x}}$ by using the substitution $t = \tan{\frac{x}{2}}$
For the question above, by changing variables, the integral can be rewritten as $\displaystyle \int \frac{\frac{2dt}{1+t^2}}{5 + 4\cos{x}}$, ignoring the upper and lower limits.
However, after changing variables from $dx$ to $dt$, when $x = 0~$,$~t = \tan{0} = 0~$ but when $ x = \frac{\pi}{2}~$, $~t = \tan{\frac{\pi}{2}}~$, so can the integral technically be written as $\displaystyle \int^{\tan{\frac{\pi}{2}}}_{0} \frac{\frac{2dt}{1+t^2}}{5 + 4\cos{x}}~$, and if so, is it also reasonable to write it as $\displaystyle \int^{\infty}_{0} \frac{\frac{2dt}{1+t^2}}{5 + 4\cos{x}}$
EDIT: In response to confusion, my question is: Is it technically correct to write the above integral in the form with an upper limit of $\tan{\frac{\pi}{2}}$ and furthermore, is it is reasonable to equate $\tan{\frac{\pi}{2}}$ with $\infty$ and substitute it on the upper limit?