If $\{a_i\}$ is a set of positive integers which contains arbitrary long arithmetic progressions, how to show that $\sum\limits_{i=1}^{\infty}\frac{1}{a_i}=\infty$?
Reverse Erdős-Turan
4
$\begingroup$
sequences-and-series
convergence-divergence
divergent-series
1 Answers
14
Your claim is false.
Let $A = \{a_i\} = \bigcup_{k=1}^\infty A_k$, where $ A_k = 4^k+1,\ldots,4^k+2^k. $ On the one hand $A_k$ is an arithmetic progression of length $2^k$, and so $A$ contains arbitrarily long arithmetic progressions. On the other hand $ \sum_{i=1}^\infty \frac{1}{a_i} \leq \sum_{k=1}^\infty \frac{2^k}{4^k} = 1. $