$\begin{align*} \lim_{x\to 0}\frac{\frac{1}{\sqrt{4+x}}-\frac{1}{2}}{x} &=\lim_{x\to 0}\frac{\frac{2}{2\sqrt{4+x}}-\frac{\sqrt{4+x}}{2\sqrt{4+x}}}{x}\\ &=\lim_{x\to 0}\frac{\frac{2-\sqrt{4+x}}{2\sqrt{4+x}}}{x}\\ &=\lim_{x\to 0}\frac{2-\sqrt{4+x}}{2x\sqrt{4+x}}\\ &=\lim_{x\to 0}\frac{(2-\sqrt{4-x})(2+\sqrt{4-x})}{(2x\sqrt{4+x})(2+\sqrt{4-x})}\\ &=\lim_{x\to 0}\frac{2 \times 2 + 2\sqrt{4-x}-2\sqrt{4-x}-((\sqrt{4-x})(\sqrt{4-x})) }{2 \times 2x\sqrt{4+x} + 2x\sqrt{4+x}\sqrt{4-x}}\\ &=\lim_{x\to 0}\frac{4-4+x}{4x\sqrt{4+x} + 2x\sqrt{4+x}\sqrt{4-x}}\\ &=\lim_{x\to 0}\frac{x}{x(4\sqrt{4+x} + 2\sqrt{4+x}\sqrt{4-x})}\\ &=\lim_{x\to 0}\frac{1}{(4\sqrt{4+x} + 2\sqrt{4+x}\sqrt{4-x})}\\ &=\frac{1}{(4\sqrt{4+0} + 2\sqrt{4+0}\sqrt{4-0})}\\ &=\frac{1}{16} \end{align*}$
wolframalpha says it's negative. What am I doing wrong?