1
$\begingroup$

For $1 \le i \lt n$, let $m_i$ be the number of inversions $(i,j), i \lt j \le n,$ in permutation $ \sigma$. Let $ \sigma_i = (i+m_i,i+m_i-1)..(i+1,i)$.

How to prove that $\sigma=\sigma_1...\sigma_{n-1}$?

$\sigma$ is a n-permutation.

Inversions of a permutation are the pairs $(i,j)$ such that $1 \le i \lt j \le n$ and $ \sigma (i) \gt \sigma (j)$

  • 0
    How to prove it? Induct on $n$!2011-11-16

0 Answers 0