I have a feeling that the following inequality should be very easy to prove:
$ x^n \geq \prod_{i=1}^n{(x+k_i)},\quad\text{where } \sum_{i=1}^{n}{k_i}=0,\quad \text{and } x+k_i>0\text{ for all } i $
(and the equality only holds when all the $k_i=0$).
It seems intuitively obvious (when $n=2$, a square has a greater area than a rectangle with the same perimeter, when $n=3$, a cube has greater volume than a rectangular prism with the same surface area, etc.) but I can't find an appropriately easy proof.
I think I can show it analytically by finding the local maximum for $f(x_1,\ldots,x_n)=\prod_{i=1}^n{x_i}$ within the box $\max{x_i}=r$ in the upper-right quadrant, but I feel like there should be a neat algebraic/geometric argument, since it's such an intuitive statement.