6
$\begingroup$

I have

$\int \sin(2x) \cos (2x)\,dx = \frac12 \int \sin(4x)\,dx = -\frac18 \cos(4x),$

but I also have

$\int \sin(2x) \cos (2x)\,dx = \frac12 \int \sin 2x \cdot 2 \cos 2x \, dx = \frac14 \sin^2(2x).$

Which one is correct, and why is the other method wrong?

  • 6
    They are both wrong. The constant of integration has been omitted in each case.2011-09-27

3 Answers 3

9

They are differing by an integration constant, because of $\cos(2 y) = \cos^2(y) - \sin^2(y) = 1 - 2 \sin^2(y)$, and hence are the same as indefinite integration produces an anti-derivative up to a constant

2

To illustrate the phenomena in your calculation, I've chosen the number $\pi/8$ as the lower boundary.

\begin{align*} \int_{\frac{\pi}{8}}^{x} \sin(4t) \,\mathrm{d}t &= \int_{\frac{\pi}{8}}^{x} 2 \sin(2t) \cos(2t) \,\mathrm{d}t \\ &= \int_{\frac{\pi}{8}}^{x} \sin(2t) \,\mathrm{d}(\sin(2t)) \\ \left . -\frac{\cos(4t)}{4} \right\rvert_{\frac{\pi}{8}}^{x} &= \left . \frac{\sin^2(2t)}{2} \right\rvert_{\frac{\pi}{8}}^{x} \\ -\frac{\cos(4x)}{4} + \color{red}{\frac{\cos(4\cdot\frac{\pi}{8})}{4}} &= \frac{\sin^2(2x)}{2} - \color{red}{\frac{\sin^2(2\cdot\frac{\pi}{8})}{2}} \\ -\frac{\cos(4x)}{4} + \color{red}{0} &= \frac{\sin^2(2x)}{2} + \color{red}{\frac{1}{4}} \end{align*}

-1

In second method lost step it is not

$\int \sin(2x) \cos (2x)\,dx = \frac12 \int \sin 2x \cdot 2 \cos 2x \, dx = \frac14 \sin^2(2x).$

It has to be (since 2sin(2x). cos(2x)=sin(4x))

$\int \sin(2x) \cos (2x)\,dx = \frac12 \int \sin 2x \cdot 2 \cos 2x \,dx = \frac12 \int \sin(4x) dx=-\frac18\cos(4x)$ (Since $\int \sin(4x)dx=-\frac14 \cos(4x).$)

  • 1
    *"In second method lost step it is not"*, But both methods are correct, for the second method substitute: $u=\sin(2x) \iff du=2\cos(2x)~dx$ Then you obtain a perfectly valid answer: $\frac{1}{2}\int u~du=\frac{1}{4}u^2+C=\frac{1}{4}\sin^2(2x)+C$ Hence, your answer is incorrect.2017-05-27