9
$\begingroup$

If $\lambda$ is the largest eigenvalue of a real symmetric $n \times n$ matrix $H$, how can I show that: $\forall v \in \mathbb{R^n}, ||v||=1 \implies v^tHv\leq \lambda$

Thank you.

  • 0
    http://math.stackexchange.com/questions/9302/norm-of-a-symmetric-matrix2011-03-29

3 Answers 3

23

Step 1: All Real Symmetric Matrices can be diagonalized in the form: $ H = Q\Lambda Q^T $ So, $ {\bf v}^TH{\bf v} = {\bf v}^TQ\Lambda Q^T{\bf v} $

Step 2: Define transformed vector: $ {\bf y} = Q^T{\bf v} $.

So, $ {\bf v}^TH{\bf v} = {\bf y}^T\Lambda {\bf y} $

Step 3: Expand

$ {\bf y}^T\Lambda {\bf y} = \lambda_{\max}y_1^2 + \lambda_{2}y_2^2 + \cdots + \lambda_{\min}y_N^2 $

\begin{eqnarray} \lambda_{\max}y_1^2 + \lambda_{2}y_2^2 + \cdots + \lambda_{\min}y_N^2& \le & \lambda_{\max}y_1^2 + \lambda_{\max}y_2^2 + \cdots + \lambda_{\max}y_N^2 \\ & & =\lambda_{\max}(y_1^2 +y_2^2 + \cdots y_N^2) \\ & & =\lambda_{\max} {\bf y}^T{\bf y} \\ \implies {\bf y}^T\Lambda {\bf y} & \le & \lambda_{\max} {\bf y}^T{\bf y} \end{eqnarray}

Step 5: Since $Q^{-1} = Q^T, QQ^T = I $ \begin{eqnarray} {\bf y}^T{\bf y} &= &{\bf v}^TQQ^T{\bf v} = {\bf v}^T{\bf v} \end{eqnarray}

Step 6: Putting it all back together \begin{eqnarray} {\bf y}^T\Lambda {\bf y} & \le & \lambda_{\max} {\bf y}^T{\bf y} \\ {\bf v}^TH{\bf v} & \le & \lambda_{\max}{\bf v}^T{\bf v} \end{eqnarray}

By definition, $ {\bf v}^T{\bf v} = \|{\bf v}\|^2 $ and by definition $\|{\bf v}\| = 1$ \begin{eqnarray} {\bf v}^TH{\bf v} & \le & \lambda_{\max} \end{eqnarray} Boom!

3

Hint:

Real symmetric matrices are diagonalizable.

Hint 2 (added after reading comments on posts):

A matrix is diagonalizable by a suitable choice of coordinates if and only if there is an eigenbasis. (taken from here)

  • 0
    @Rafael: According to Wikipedia, the spectral theorem gives you conditions under which a matrix is diagonalizable, so yes, I think the spectral theorem is related.2011-03-29
2

Another hint along the same lines as Matt's: for which $\vec{v}$ is the LHS of your inequality maximised?

  • 0
    The eigenvalues are real iff $H$ is Hermitian (symmetric in the real case). So the scheme for proving this is to diagonalise $H$ as $U^{T}DU$ where $U$ is unitary (Matt's hint), then use that $\|Ux\|=\|x\|=1$, then do what you did in your comment.2011-03-29