2
$\begingroup$

Let $X$ and $Y$ be two independent continuous random variables each uniformly distributed between $[0,1]$ (i.e., $f_x (a)=f_y (a)=1,0\leq a \leq 1$). Please find the density function of the sum of the random variables $X$ and $2Y$, i.e., $f_{X+2Y} (a)$.

Am I doing this right? :[ As you can see, I get a little confused at the bottom, and I'm just kind of stuck.

Any help would be greatly appreciated, thank you.

My work. Cumulative distribution function of $X+ 2Y$: $ \begin{align*} F_{X+2Y} (a) &= P(X+2Y \leq a) \\ &= \iint_{x+ y \leq a} f_X(x) f_Y(y) ~ dy ~dx \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{a - 2y} f_X(x) f_Y(y) ~ dx ~dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{a - 2y} f_X(x) ~ dx\ f_Y(y) ~dy \\ &= \int_{-\infty}^{\infty} F_X(a-2y) f_Y(y) ~dy \end{align*} $

The probability density function: $ \begin{align*} f_{X+2Y}(a) &= \frac{d}{da} \int_{-\infty}^{+\infty} F_X(a-2y) f_Y(y) ~ dy \\ &= \int_{-\infty}^{+\infty} \frac{d}{da} F_X(a-2y) f_Y(y) ~ dy \\ &= \int_{-\infty}^{+\infty} f_X(a-2y) f_Y(y) ~ dy \end{align*} $

For $[0,1]$: $ f_X(a) = f_Y(a) = \begin{cases} 1, & 0 \lt a \lt 1, \\ 0, &\text{otherwise}. \end{cases} $

$ f_{X + 2Y}(a) = \int_{-\infty}^{+\infty} f_X(a-2y) f_Y(y) ~ dy \quad \text{for } 0 \lt a \lt 1. $

$ f_{X + 2Y}(a-2) = \int_0^a dy = a. $

  • 0
    Draw a plane with coordinate axes $x$ and $y$. Draw on the plane the region where $f_{X,Y}$ is nonzero. Draw on the plane $4$ lines: $x+2y \leq -1$, $x+2y \leq 0.5$, $x+2y \leq 1.5$, $x+2y \leq 3$. **THINK** about the fact that a double integral will give you the **volume** between the plane and the $f_{X,Y}$ surface in the region over which you are integrating.2011-11-25

0 Answers 0