What is the cardinality of the set of all simple closed curves in $R^2$? Furthermore, what resources are there which present a proof, if any, of said cardinality?
Cardinality of Set of Simple Closed Curves
-
0I misinterpreted the question. My bad. PS- The cardinality of homotopy classes of simple closed curves in $\mathbb{R}^2$ is not $2^\omega$. ;) – 2011-12-07
1 Answers
A simple closed curve in $\mathbb{R}^2$ is the image of $S^1$ under a continuous map. $S^1$ has a countable dense subset $D$ (for instance, the set of points with polar coordinates of the form $\langle 1, q\pi\rangle$, where $q$ is a rational number in the interval $[0,2)$). A continuous function from $S^1$ to $\mathbb{R}^2$ is uniquely determined by its restriction to $D$. That is, if $f,g:S^1\to\mathbb{R}^2$ are continuous functions such that $f(x)=g(x)$ for every $x\in D$, then $f=g$. Thus, there are at most as many embeddings of $S^1$ into $\mathbb{R}^2$ as there are functions from $D$ into $\mathbb{R}^2$. $|\mathbb{R}^2|=2^\omega$, and $|D|=\omega$, so there are $|\mathbb{R}^2|^{|D|}=(2^\omega)^\omega=2^\omega$ functions from $D$ into $\mathbb{R}^2$. This shows that there are at most $2^\omega$ simple closed curves in $\mathbb{R}^2$.
On the other hand, it’s easy to construct $2^\omega$ distinct simple closed curves on $\mathbb{R}^2$: the circles centred at the origin form such a family, for instance. Thus, there are exactly $2^\omega$ simple closed curves in the plane.
-
0@BrianM.Scott Thank you! – 2011-12-07