Let $f$ be a nonnegative (probably not needed) function on $\mathbb{R}$ such that for all $t$, $xf(x)f(t-x)$ and $f(x)f(t-x)$ are both integrable in $x$.
Is it true that $ \int\nolimits_{-\infty}^\infty x f(x)f(t-x) dx =\frac{t}{2} \int_{-\infty}^\infty f(x)f(t-x) dx $ for all $t$?
I found that this is true if $f(x)=e^{-|x|} $ or $\frac{1}{1+x^2}$.