3
$\begingroup$

Find one binomial coefficient equal to the following expression:

$\binom nk + 3\binom{n}{k-1} + 3\binom{n}{k-2} + \binom{n}{k-3}$

I tried to expand using the definition of $\dbinom{n}{k} = \dfrac{n!}{k!(n-k)!}$, but it was unwieldy. Which identities should I use?

  • 5
    I suppose $ \binom{\binom nk + 3\binom{n}{k-1} + 3\binom{n}{k-2} + \binom{n}{k-3}}{1} $ does not count. =)2011-10-30

1 Answers 1

7

You're looking at: $\binom 30\binom nk + \binom31\binom{n}{k-1} + \binom32\binom{n}{k-2} + \binom33\binom{n}{k-3}$ Apply Vandermonde's identity.