1
$\begingroup$

Given the integral

$\int_{-\infty}^{\infty} dx \;\psi(1/4+ix/2)\exp(-ax^2)$

How can I evaluate that in the limit $ a\to 0$ and $ a\to \infty$?

Here $\psi(x)$ is the digamma function.

Thanks.

  • 2
    Mathematica calculation suggests that it divesges to $+\infty$ as $a \downarrow 0$. Indeed, I expect that $ \int_{-\infty}^{\infty} \psi \left( \frac{1}{4} + \frac{ix}{2} \right) e^{-a x^2} \; dx \ \sim \ - \frac{1}{2} \sqrt{\frac{\pi}{a}} \, (\gamma + \log (16a))$ as $a \to 0$ and $ \int_{-\infty}^{\infty} \psi \left( \frac{1}{4} + \frac{ix}{2} \right) e^{-a x^2} \; dx \ \sim \ \sqrt{\frac{\pi}{a}} \, \psi \left( \frac{1}{4} \right)$ as $a \to \infty$.2011-11-27

0 Answers 0