4
$\begingroup$

Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m(\{x:f(x)>t\})=m(\{x:g(x)>t\})$. Nondecreasing rearrangement of a function $f(x)$ is defined as $f^*(\tau)=\inf\{t>0:m(\{x:f(x)>t\}\leq\tau\}.$ Prove that $f^*(\tau)$ and $f(x)$ are equimeasurable.

  • 0
    This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)2016-02-25

1 Answers 1

0

You want to prove that $\{f>t\}^* = \{f^*>t\}\,\,\text{?}$

Fix $t>0$ et $y\in \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}$. One can check that for every, $0 one has $\left\{x \in \mathbb{R}^n: |f(x)| > t \right\}\subset \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}$ this entails that, \begin{equation}\label{eq-inclu t-s}\tag{I} \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}\subset \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}^{*}~~~\textrm{for all $s\in ]0,t[$}. \end{equation} this implies that,$ \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) =1 ~~~s\in (0,t)$

Therefore, from definition of $f^{*}$, if $y\in \{|f|>t\}^*$ then we have $\begin{align*} f^{*}(y) &:= \int_{0}^{+ \infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds\\ &= \int_{0}^{t} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds+ \int_{t}^{+\infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds\\ & = \int_{0}^{t} ds+\int_{t}^{+\infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds \\ &>t. \end{align*}$

Whence, $\left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}\subset \left\{ x \in \mathbb{R}^n:f^{*}(x)> t \right\}.$ On the other hand, if we suppose, $y\notin \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}$ then for all $s>0$ such that $ y\in \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}^{*}$ one has $0.

Indeed, $t>s $ then from \eqref{eq-inclu t-s} $y\in \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}$ which is contradiction since we assumed that the converse is true. this means that,

$\sup\left\{s>0 : y\in \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}^{*}\right\}\leq t. $ We then deduce that, $\begin{align*} f^{*}(y) &:= \int_{0}^{+ \infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds\\ &= \int_{0}^{t} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds+ \underbrace{\int_{t}^{+\infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds}_{=0}\leq=t \end{align*}$ that is $f^*(y)\leq t$ or that $y\notin \left\{x \in \mathbb{R}^n: f^*(x) > t \right\}$. We've just prove that,

\begin{equation}\label{eq}\tag{II} \Bbb R^n\setminus \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}\subset \Bbb R^n\setminus\left\{x \in \mathbb{R}^n: f^*(x) > s \right\}~~~\textrm{for all $s\in ]0,t[$}. \end{equation}

Which end the prove by taking the complementary.