How to show that $a^2+a+1 \equiv 0 \pmod p$, where $p$ is an odd prime and $ord_p a=3$?
How to show that $a^2+a+1 \equiv 0 \pmod p$?
2
$\begingroup$
elementary-number-theory
1 Answers
7
Hint: $a^3-1=(a-1)(a^2+a+1)$, so if $a^3\equiv 1$, then...