Theorem. Let $T$ be an operator on the finite dimensional complex vector space $\mathbf{W}$. The characteristic polynomial of $T$ equals the minimal polynomial of $T$ if and only if the dimension of each eigenspace of $T$ is $1$.
Proof. Let the characteristic and minimal polynomial be, respectively, $\chi(t)$ and $\mu(t)$, with $\begin{align*} \chi(t) &= (t-\lambda_1)^{a_1}\cdots (t-\lambda_k)^{a_k}\\ \mu(t) &= (t-\lambda_1)^{b_1}\cdots (t-\lambda_k)^{b_k}, \end{align*}$ where $1\leq b_i\leq a_i$ for each $i$. Then $b_i$ is the size of the largest Jordan block associated to $\lambda_i$ in the Jordan canonical form of $T$, and the sum of the sizes of the Jordan blocks associated to $\lambda_i$ is equal to $a_i$. Hence, $b_i=a_i$ if and only if $T$ has a unique Jordan block associated to $\lambda_i$. Since the dimension of $E_{\lambda_i}$ is equal to the number of Jordan blocks associated to $\lambda_i$ in the Jordan canonical form of $T$, it follows that $b_i=a_i$ if and only if $\dim(E_{\lambda_i})=1$. QED
In particular, if the matrix has $n$ distinct eigenvalues, then each eigenvalue has a one-dimensional eigenspace.
Also in particular,
Corollary. Let $T$ be a diagonalizable operator on a finite dimensional vector space $\mathbf{W}$. The characteristic polynomial of $T$ equals the minimal polynomial of $T$ if and only if the number of distinct eigenvalues of $T$ is $\dim(\mathbf{W})$.
Using the Rational Canonical Form instead, we obtain:
Theorem. Let $W$ be a finite dimensional vector space over the field $\mathbf{F}$, and $T$ an operator on $W$. Let $\chi(t)$ be the characteristic polynomial of $T$, and assume that the factorization of $\chi(t)$ into irreducibles over $\mathbf{F}$ is $\chi(t) = \phi_1(t)^{a_1}\cdots \phi_k(t)^{a_k}.$ Then the minimal polynomial of $T$ equals the characteristic polynomial of $T$ if and only if $\dim(\mathrm{ker}(\phi_i(T)) = \deg(\phi_i(t))$ for $i=1,\ldots,k$.
Proof. Proceed as above, using the Rational Canonical forms instead. The exponent $b_i$ of $\phi_i(t)$ in the minimal polynomial gives the largest power of $\phi_i(t)$ that has a companion block in the Rational canonical form, and $\frac{1}{d_i}\dim(\mathrm{ker}(\phi_i(T)))$ (where $d_i=\deg(\phi_i)$) is the number of companion blocks. QED