It's been a while since I've studied linear algebra, so I'm hoping to refresh myself on this by going through some problems found here.
I wanted to see a concrete example before attempting those to jog my memory. For instance, suppose you have a linear transformation $T$ over $\mathbb{C}$ with characteristic polynomial $\chi(X)=X^2(X^2+1)^2$. Based on $\chi(X)$, how can you figure out the possible rational canonical forms of $T$?
I tried to read up a little further on this. The eigenvalues of $T$ are $0$ and $\pm 1$ all of multiplicity 2. Does this just mean that the Jordan canonical form of $T$ as a matrix will be the matrices with diagonals of blocks
$\text{diag}\{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},\begin{bmatrix} i & 1 \\ 0 & i\end{bmatrix},\begin{bmatrix} -i & 1 \\ 0 & -i\end{bmatrix}\}$
$\text{diag}\{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},\begin{bmatrix} i & 1 \\ 0 & i\end{bmatrix},\begin{bmatrix} -i \end{bmatrix},\begin{bmatrix} -i\end{bmatrix}\}$
$\text{diag}\{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},\begin{bmatrix} -i & 1 \\ 0 & -i\end{bmatrix},\begin{bmatrix} i \end{bmatrix},\begin{bmatrix} i\end{bmatrix}\}$
$\vdots$
$\text{diag}\{\begin{bmatrix} i \end{bmatrix},\begin{bmatrix} i \end{bmatrix},\begin{bmatrix} -i \end{bmatrix},\begin{bmatrix} -i \end{bmatrix},\begin{bmatrix} 0 \end{bmatrix},\begin{bmatrix} 0 \end{bmatrix}\}$
For a total of $8$ Jordan normal form decompositions. Have I understood this correctly?