If $f:X\rightarrow Y$ is a morphism of schemes and $M$ an $\mathcal{O}_Y$-module, then by definition $f^*M=f^{-1}M\otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$, where $f^{-1}$ denotes the inverse image of sheaves. Is it true that $f_*f^*M\cong f_*f^{-1}M\otimes_{f_*f^{-1}\mathcal{O}_Y} f_* \mathcal{O}_X$ as sheaves? What if $f$ is surjective, or even faithfully flat?
Pushforward of Pullback of Sheaves of Modules
3
$\begingroup$
algebraic-geometry