1
$\begingroup$

$\int_2^x\frac{\pi(t)}{t^2}dt=\sum_{p\leq x}\frac{1}{p}+o(1)\sim\log\log x.$

I guess Abel's partial summation is needed, but I fail to use it.

1 Answers 1

3

I think this is simple integration by parts in Riemann-Stieltjes integral: $ \pi(t) \frac{\mathrm{d} t}{t^2} = \pi(t) \mathrm{d} \left( - \frac{1}{t} \right) = \mathrm{d} \left( -\frac{\pi(t)}{t} \right) + \frac{1}{t} \mathrm{d} \pi(t) $ Hence $ \int_2^x \pi(t) \frac{\mathrm{d} t}{t^2} = \left. -\frac{\pi(t)}{t} \right|_2^x + \int_2^x \frac{1}{t} \mathrm{d} \pi(t) = -\frac{\pi(x)}{x} + \sum_{p \le x} \frac{1}{p} $