6
$\begingroup$

I would like to find the exact value of the series

$\begin{align*} \sum_{n=3}^{\infty} \frac{4n-3}{n(n^2-4)} \end{align*}$

which is certainly a telescoping series. Do you have any idea of telescopic cancelling?

  • 0
    @joriki, agreed.2011-10-26

1 Answers 1

5

$\begin{align*} \frac{4n-3}{n(n^2-4)}=\frac{3}{4n}-\frac{11}{8(n+2)}+\frac{5}{8(n-2)} \end{align*}$

$\begin{align*} \frac{4n-3}{n(n^2-4)}=\frac{1}{8}(6(\frac{1}{n}-\frac{1}{n+2})+5(\frac{1}{n-2}-\frac{1}{n+2})) \end{align*}$

$\begin{align*} \sum_{n=3}^{m}\frac{1}{n}-\frac{1}{n+2}=\frac{7}{12}-\frac{1}{m+1}-\frac{1}{m+2}\rightarrow7/12\end{align*}$

$\begin{align*} \sum_{n=3}^{m}\frac{1}{n-2}-\frac{1}{n+2}=\frac{25}{12}-\frac{1}{m-1}-\frac{1}{m}-\frac{1}{m+1}-\frac{1}{m+2}\rightarrow25/12 \end{align*}$

$\begin{align*} \sum_{n=3}^{\infty} \frac{4n-3}{n(n^2-4)}=\frac{1}{8}(6\times7/12+5\times25/12)=\frac{167}{96} \end{align*}$

  • 0
    Please, How was the sum in the LHS of 3rd step calculated to be equal to the RHS-What is m? \begin{align*} \sum_{n=3}^{m}\frac{1}{n}-\frac{1}{n+2}=\frac{7}{12}-\frac{1}{m+1}-\frac{1}{m+2}\rightarrow7/12\end{align*}2011-10-26