5
$\begingroup$

I'd like some help to evaluate this integral :

$I=\int^\infty_0 \frac{x-1}{\ln(x)}\,e^{-x} \,dx$

I tried to use parameter then I've got an integral of gamma function which I don't know how to integrate it .

Any help will be greatly appreciate .

  • 0
    @Lina: I very frequently see people using the word "solve" in this context. It seems to be one of those words that students use whenever they don't know which word to use.2011-09-21

1 Answers 1

7

First let $x = \mathrm{e}^t$, changing variables $\mathrm{d} x = \mathrm{e}^t \mathrm{d} t$

$ I = \int_{-\infty}^\infty \exp( t - \mathrm{e}^t ) \frac{\mathrm{e}^t - 1}{t} \mathrm{d} t $ In order to evaluate the integral, first evaluate

$ \mathcal{I}_s = \int_{-\infty}^\infty \exp( t - \mathrm{e}^t ) \mathrm{e}^{s t} \mathrm{d} t = \int_{-\infty}^\infty \exp( (s+1)t - \mathrm{e}^t ) \mathrm{d} t $ Changing variables back to $x$: $ \mathcal{I}_s = \int_0^\infty x^{s} \mathrm{e}^{-x} \mathrm{d} x = \Gamma(s+1) $ Now use $\int_0^1 \mathrm{e}^{s t} \mathrm{d} s = \frac{\mathrm{e}^t - 1}{t}$ to get $ I = \int_0^1 \mathcal{I}_s \, \mathrm{d}s = \int_0^1 \Gamma(1+s) \, \mathrm{d} s $ The integral $I$, thus, hardly has a closed form. Its approximate numerical value: $ I = 0.9227459506806306051438805 $


Added: Rereading the answer, we can forgo changes of variables, observing $\int_0^1 x^s \mathrm{d} s = \frac{x-1}{\log x}$. Then

$ I = \int_0^\infty \frac{x-1}{\log x} \mathrm{e}^{-x} \mathrm{d} x = \int_0^\infty \int_0^1 x^s \mathrm{e}^{-x} \mathrm{d} s \mathrm{d} x = \int_0^1 \int_0^\infty x^s \mathrm{e}^{-x} \mathrm{d} x \mathrm{d} s = \int_0^1 \Gamma(1+s) \mathrm{d} s $