0
$\begingroup$

\begin{eqnarray*} 2xu''_1 + (1+x) u'_1 + u_1 &=& 2 \sum_{n=0}^{\infty} \Big( n + \frac12 \Big) \Big( n-\frac12 \Big) a_n x^{n-\frac12} + \sum_{n=0}^{\infty} \Big( n + \frac12 \Big) a_n x^{n-\frac12} + \\ && + \sum_{n=0}^{\infty} \Big( n + \frac12 \Big) a_n x^{n+\frac12} + \sum_{n=0}^{\infty} a_n x^{n+\frac12} \\ &=& \sum_{n=1}^{\infty} \Big( n + \frac12 \Big) 2n a_n x^{n-\frac12} + \sum_{n=0}^{\infty} \Big( n + \frac32 \Big) a_n x^{n+\frac12} \\ &=& \sum_{n=0}^{\infty} \left( \Big( n + \frac32 \Big) 2(n+1) a_{n+1} + \Big( n + \frac32 \Big) 2n a_n \right) x^{n+\frac12} \\ &=& 0. \end{eqnarray*}

It is part of a Frobenius problem, that I am looking at. Can someone explain what is happening in this? For example, why becomes it $ \Big(n+\frac{1}{2} \Big)2n?$ I have tried to do $\left( \Big(n+\frac{1}{2}\Big)\Big(n-\frac{1}{2}\Big) + \Big(n+\frac{1}{2}\Big)\right)a_{n},$ but i am not getting it right.

2 Answers 2

1

$\begin{align*} &2\sum_{n=0}^\infty\left(n+\frac12\right)\left(n-\frac12\right)a_nx^{n-\frac12}+\sum_{n=0}^\infty\left(n+\frac12\right)a_nx^{n-\frac12}=\\ &\sum_{n=0}^\infty\left(2\left(n^2-\frac14\right)+\left(n+\frac12\right)\right)a_nx^{n-\frac12}=\\ &\sum_{n=0}^\infty(2n^2+n)a_nx^{n-\frac12}=\\ &\sum_{n=0}^\infty2n\left(n+\frac12\right)a_nx^{n-\frac12}=\\ &\sum_{n=1}^\infty\left(n+\frac12\right)2na_nx^{n-\frac12}, \end{align*}$

and

$\begin{align*} \sum_{n=0}^\infty\left(n+\frac12\right)a_nx^{n+\frac12}+\sum_{n=0}^\infty a_nx^{n+\frac12} &= \sum_{n=0}^\infty \left(n+\frac12+1\right)a_nx^{n+\frac12}\\ &=\sum_{n=0}^\infty\left(n+\frac32\right)a_nx^{n+\frac12}; \end{align*}$

this yields the second equality. The third is just an index shift so that the two summations can be combined into one: $\begin{align*} \sum_{n=1}^\infty\left(n+\frac12\right)2na_nx^{n-\frac12}&=\sum_{n=0}^\infty\left((n+1)+\frac12\right)2(n+1)a_{n+1}x^{(n+1)-\frac12}\\ &=\sum_{n=0}^\infty\left(n+\frac32\right)2(n+1)a_{n+1}x^{n+\frac12}\;. \end{align*}$

  • 0
    Thank you, made a silly mistake to forget multiply 2 to get -1/2 :S2011-11-16
0

If you put $u= \sum_{n=0}^\infty a_n x^{n+\frac{1}{2}}$ then u' becomes u'= \sum_{n=0}^\infty a_n (n+\frac{1}{2}) x^{n-\frac{1}{2}} and u'' becomes u''=\sum_{n=0}^\infty a_n (n+\frac{1}{2})(n-\frac{1}{2})x^{n-\frac{3}{2}}. So putting all this into the formula 2xu''+(1+x)u'+u you get the righthand side.

  • 0
    I know, But what happens between line 3 and 4. When (n+1/2)(n-1/2) becomes (n+1/2)2n?2011-11-16