How I2P Works

- An I2P client is downloaded onto a person's PC
- When the client starts, it picks out flood router information from a given seed URL, using this as the basis for directory services
- Each time a new service connects to I2P, it creates a new set of tunnels
- Tunnels are added to a pool of routes for redundancy and fault-tolerance
- Each connection must first query the netDb to get the address information for the destination user's inbound tunnel
Hypothesis

I hypothesize that as the rate of nodes leaving a Kademlia network (as in used by I2P) increases, node lookup time will increase.
Paper 1: Performance Analysis of Anonymous Communication Channels Provided by Tor

- Overview of what Tor is
 - Onion routing
 - Circuit switched network
- Overview of common usage habits with Tor
 - Users will generally only tolerate up to four seconds of latency
- Tests two Tor clients
 - The original Tor client
 - The OnionCoffee Tor client
 - Experiments on both public and private networks
Experiments on a private network

- Throughput under load on private network:
 - Node tested to see how well circuits are established
 - Steady decline in throughput up to fourteen nodes
 - Differences in OnionCoffee and Tor

- Circuit Establishment
 - Time for a client to establish a full circuit
 - Declined as number of penetrators increased
Experiments on the public network

- Circuit establishment
 - Circuit establishment is slower in general
 - Repeated with variable hop-sizes
- RTT
 - Mean RTT is 1.6s
 - Tor/OnionCoffee use probabilities to select nodes
 - Based on self-reporting of bandwidth
 - Improvement: latency based path selection
Paper 2: Kademlia: A peer-to-peer information system based on the XOR metric

- DHT using an XOR metric to determine the distance between keys in the key-space
 - XOR is used because it is symmetric
 - Information automatically spread throughout network via lookups

Diagram from Maymounkov and Mazieres, pg. 3
Paper 2: Kademlia: A peer-to-peer information system based on the XOR metric

Diagram from Maymounkov and Mazieres, pg. 3
Paper 2: Kademlia: A peer-to-peer information system based on the XOR metric

- Nodes store contact information
 - Tuples of (IP address, UDP port, Node ID)
- $0 \leq i < 160$ k-buckets
 - Bucket stores node information $[2^i, 2^{(i+1)}]$
 - Updated on receipt of any message
 - k is a system-wide parameter
Paper 2: Kademlia: A peer-to-peer information system based on the XOR metric

- Routing table is a binary tree
 - Initially contains one k-bucket
 - Nodes split the k-bucket based on their own node id as the k-buckets fill

Diagram from Maymounkov and Mazieres, pg. 8
Paper 3: I2P Data Communication System

- Peer to peer "garlic" routing protocol for anonymous Internet access
- Utilizes multiple connections in parallel
- Uses one-way tunnels
 - Refreshed at regular intervals
- Use case different from Tor
 - Only users already on I2P can communicate securely
Paper 3: I2P Data Communication System

● **Strengths:**
 ○ Distributed/Decentralized
 ○ Supports many different protocols

● **Weaknesses**
 ○ Susceptible to partitioning attacks
 ■ Malicious nodes can simulate benign ones
 ○ Vulnerable to intersection attacks
 ■ Watches target and number of nodes in the system
References

