Chapter 10
Load Balancing

► Part I. Preliminaries
▼ Part II. Tightly Coupled Multicore
 Chapter 6. Parallel Loops
 Chapter 7. Parallel Loop Schedules
 Chapter 8. Parallel Reduction
 Chapter 9. Reduction Variables
 Chapter 10. Load Balancing
 Chapter 11. Overlapping
 Chapter 12. Sequential Dependencies
 Chapter 13. Strong Scaling
 Chapter 14. Weak Scaling
 Chapter 15. Exhaustive Search
 Chapter 16. Heuristic Search
 Chapter 17. Parallel Work Queues
► Part III. Loosely Coupled Cluster
► Part IV. GPU Acceleration
► Part V. Map-Reduce
► Appendices
The Euler totient function of a number n, denoted $\Phi(n)$, is the number of numbers in the range 1 through $n-1$ that are relatively prime to n. Two numbers are said to be relatively prime if they have no factors in common other than 1. The Euler totient function is the foundation upon which the security of the RSA public key cryptosystem rests. An RSA public key consists of a modulus n and an exponent e. The modulus is the product of two large prime numbers. The prime numbers are typically 300 or more digits long, so n is typically 600 or more digits long. If I could compute the Euler totient of an RSA public key modulus, I would be able to decrypt messages encrypted with that key. This would let me hack into the connection between a web browser and a secure web site, steal passwords and credit card numbers, and generally bring Internet commerce to a standstill. So far, however, no one has managed to invent an algorithm that computes the Euler totient of the product of two 300-digit prime numbers in a practical amount of time.

Listing 10.1 is a sequential program to compute $\Phi(n)$. The program simply loops through every number i from 1 through $n-1$, determines whether i and n are relatively prime, and increments a counter if so. The program decides whether i and n are relatively prime by computing a list of the prime factors of each number and comparing the lists to see if they have any entries in common. The program factorizes a number using trial division, similar to the algorithm in the primality testing program in Chapter 6.

For example, suppose I am computing $\Phi(n)$ for $n = 100$. The prime factors of 100 are {2, 2, 5, 5}. Next I compute the prime factors of every number i from 1 to 99. For example, the prime factors of 35 are {5, 7}. Comparing the lists of factors, I see that 35 and 100 have a factor in common, namely 5. Therefore 35 and 100 are not relatively prime. On the other hand, the prime factors of 39 are {3, 13}; 39 and 100 have no factors in common (other than 1); so 39 and 100 are relatively prime. It turns out that the following numbers are relatively prime to 100: 1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 93, 97, and 99. There are 40 of them, so $\Phi(100) = 40$.

This is a horribly inefficient way to compute the Euler totient. I’m not trying to develop the world’s finest Euler totient program; I’m using this example to make a point about parallel programming. Bear with me.

To parallelize this program, note that there are no sequential dependencies in the loop on lines 24–26. The computation for each number i can be done independently of every other number. So I can change the loop to a parallel for loop and use the parallel reduction pattern to add all the per-thread counters together. Listing 10.2 is the result.

Here is what each program printed when told to compute the Euler totient of $n = 20000003$ on a 12-core tardis node. Because this n is prime, every number from 1 through $n-1$ is relatively prime to n, so $\Phi(n) = n - 1$ in this case.
package edu.rit.pj2.example;
import edu.rit.pj2.Task;
import edu.rit.util.LongList;
public class TotientSeq
extends Task
{
long n;
long phi;
LongList nFactors = new LongList();
LongList iFactors = new LongList();

// Main program.
public void main
(String[] args)
throws Exception
{
// Validate command line arguments.
if (args.length != 1) usage();
n = Long.parseLong (args[0]);

// Compute totient.
phi = 0;
factorize (n, nFactors);
for (long i = 2; i < n; ++ i)
 if (relativelyPrime (factorize (i, iFactors), nFactors))
 ++ phi;

// Print totient.
System.out.printf ("%d%n", phi + 1);
}

// Store a list of the prime factors of <I>x</I> in ascending
// order in the given list.
private static LongList factorize
(long x,
LongList list)
{
list.clear();
long p = 2;
long psqr = p*p;
while (psqr <= x)
 {
 if (x % p == 0)
 {
 list.addLast (p);
x /= p;
 }
 else
 {
 p = p == 2 ? 3 : p + 2;
psqr = p*p;
 }
 }
if (x != 1)
 list.addLast (x);
return list;
}

Listing 10.1. TotientSeq.java (part 1)
\$ \text{java pj2 debug=makespan edu.rit.pj2.example.TotientSeq } \\
20000003 \\
\text{Job 1 makespan 139517 msec} \\
\$ \text{java pj2 debug=makespan edu.rit.pj2.example.TotientSmp } \\
20000003 \\
\text{Job 1 makespan 13439 msec} \\

The speedup was \(\frac{139517}{13439} = 10.382 \). Unlike most of parallel programs we’ve studied, the TotientSmp program’s speedup is not very close to the ideal speedup of 12. Ideally, the TotientSmp program’s running time on the 12-core node should have been \(\frac{139517}{12} = 11626 \) msec. What’s going on?

To find out, I have to look at how much time each parallel team thread spends executing its portion of the parallel loop. I modified the TotientSmp program to measure and print each thread’s running time. Look at the result:

```
Thread rank  | Running time (msec)
-------------|-------------------
0             | 3685
1             | 5899
2             | 7345
3             | 8442
4             | 9293
5             | 10121
6             | 10913
7             | 11581
8             | 12173
9             | 12751
10            | 13358
11            | 13787
```

Ideally, each thread should spend the same amount of time in the parallel loop. But I see they do not; some take more time than others, some take less. Because the parallel loop does not finish until the longest-running thread finishes, the program’s running time ends up being larger and its speedup smaller than they should be.

This situation, where the parallel team threads take different amounts of time to execute, is called an unbalanced load. An unbalanced load is undesirable; it causes the parallel program to take more time than necessary. Rather, we want the program to have a balanced load, where every thread takes about the same amount of time.

But why is the TotientSmp program’s load unbalanced? After all, the parallel for loop is using the default schedule, namely a fixed schedule, which gives each parallel team thread an equal portion of the loop iterations. However, in the TotientSmp program, the code executed in each loop iteration on lines 36–37 takes a different amount of time in each loop iteration. Why? Because as the number \(i \) increases, the \text{factorize()} method takes longer and longer to compute the prime factors of \(i \). Thus, the higher-ranked threads—
private static boolean relativelyPrime
 (LongList xFactors,
 LongList yFactors)
 {
 int xSize = xFactors.size();
 int ySize = yFactors.size();
 int ix = 0;
 int iy = 0;
 long x, y;
 while (ix < xSize && iy < ySize)
 {
 x = xFactors.get (ix);
 y = yFactors.get (iy);
 if (x == y) return false;
 else if (x < y) ++ ix;
 else ++ iy;
 }
 return true;
 }

 private static void usage()
 {
 System.err.println ("Usage: java pj2 " +
 "edu.rit.pj2.example.TotientSeq <n>");
 terminate (1);
 }

 protected static int coresRequired()
 {
 return 1;
 }

Listing 10.1. TotientSeq.java (part 2)

package edu.rit.pj2.example;
import edu.rit.pj2.LongLoop;
import edu.rit.pj2.Task;
import edu.rit.pj2.vbl.LongVbl;
import edu.rit.util.LongList;
public class TotientSmp
 extends Task
 {
 long n;
 LongVbl phi;
 LongList nFactors = new LongList();

 // Main program.
 public void main
 (String[] args)
 throws Exception
 {
 }

Listing 10.2. TotientSmp.java (part 1)
the ones that factorize the larger values of \(i \)—take longer than the lower-ranked threads. This leads to the unbalanced load. In the previous chapters’ parallel programs, each parallel for loop iteration took the same amount of time; so the load was inherently balanced, and using the default fixed schedule or a leapfrog schedule resulted in close-to-ideal speedups.

How can I get a balanced load in the TotientSmp program? I have to use a different parallel for loop schedule. Instead of dividing the parallel for loop iterations into four large chunks (one chunk for each parallel team thread) as the fixed schedule does, I’ll divide the loop iterations into many small chunks with, say, 1000 iterations in each chunk. Then I’ll let the threads execute chunks in a dynamic fashion. Each thread starts by executing one chunk. When a thread finishes its chunk, it executes the next available chunk. When all the chunks have been executed, the parallel for loop finishes. This way, some threads execute fewer longer-running chunks, other threads execute more shorter-running chunks, the threads finish at roughly the same time, and the load is balanced. This is called a dynamic schedule.

You can specify the parallel for loop schedule and chunk size on the \texttt{pj2} command line by including the \texttt{schedule} and \texttt{chunk} parameters. These over-ride the default fixed schedule. Here is the same TotientSmp program run on tardis, this time with a dynamic schedule and a chunk size of 1000 iterations:

\[
\texttt{$ \text{java pj2 debug=makespan schedule=dynamic chunk=1000 } \\
\text{edu.rit.pj2.example.TotientSmp 20000003}$}
\]

This time the speedup was \(139517 \div 10291 = 13.557 \). The dynamic schedule has indeed balanced the load, as is evident from the parallel team threads’ individual running times:

\[
\begin{array}{c|c}
\text{Thread rank} & \text{Running time} \\
0 & 10294 \text{ msec} \\
1 & 10293 \text{ msec} \\
2 & 10293 \text{ msec} \\
3 & 10288 \text{ msec} \\
4 & 10295 \text{ msec} \\
5 & 10287 \text{ msec} \\
6 & 10290 \text{ msec} \\
7 & 10290 \text{ msec} \\
8 & 10291 \text{ msec} \\
9 & 10292 \text{ msec} \\
10 & 10289 \text{ msec} \\
11 & 10293 \text{ msec} \\
\end{array}
\]

With a dynamic schedule, there’s a tradeoff. If the chunk size is too large, the load can become unbalanced again, like a fixed schedule. The unbalanced load can result in a longer running time. However, if the chunk size is too
Listing 10.2. TotientSmp.java (part 2)
small, there will be extra overhead in the program, as the parallel loop has to
generate and feed more chunks to the parallel team threads. This extra over-
head can also result in a longer running time. It’s not always apparent what
the best chunk size should be for a dynamic schedule.

As an alternative, you can specify a proportional schedule. Instead of
specifying chunks of a certain size, you specify a certain number of chunks.
The number of chunks is the number of threads times a chunk factor. The set
of loop iterations is partitioned into that many equal-sized chunks, and the
threads execute these chunks in a dynamic fashion. As the number of threads
increases, the number of chunks also increases proportionally, and the chunks
become smaller. Here is the same TotientSmp run on tardis with a propor-
tional schedule:

```
$ java pj2 debug=makespan schedule=proportional \
   edu.rit.pj2.example.TotientSmp 20000003
20000002
Job 1 makespan 10453 msec
```

For the above run on the four-core tardis node, the loop index range was
partitioned into 120 chunks—12 threads times the default chunk factor of 10.
The speedup was 13.347; a bit less than the dynamic schedule.

As another alternative, you can specify a guided schedule. Like a dy-
namic schedule, a guided schedule divides the parallel for loop iterations into
many smaller chunks. However, the chunks are not all the same size. Earlier
chunks have more iterations; later chunks have fewer iterations. This tends to
balance the load automatically without needing to specify the chunk size.
Here is the same TotientSmp program run on tardis with a guided schedule:

```
$ java pj2 debug=makespan schedule=guided \
   edu.rit.pj2.example.TotientSmp 20000003
20000002
Job 1 makespan 9957 msec
```

The speedup was 14.012, even better than the dynamic schedule. For a
guided schedule, the chunk parameter gives the minimum chunk size; if
omitted, the default is 1.

Perhaps you noticed that once I added load balancing, the speedups were
all larger than 12, the number of cores on a tardis node. How is it possible
for the speedups to be greater than the number of cores? I’ll defer answering
this question to Chapter 13, where we will study parallel program perfor-
ance in more depth.

What about the one schedule we haven’t tried, a leapfrog schedule? Like
the default fixed schedule, the leapfrog schedule determines the set of in-
dexes each parallel loop team thread will execute before the loop starts. If
different loop indexes require different execution times, the leapfrog sched-
ule will in general result in an unbalanced load, like the fixed schedule.
For some programs, however, a leapfrog schedule could balance the load. For example, if the loop iteration times increase gradually as the loop index increases, consecutive loop indexes would take about the same amount of time. Because the leapfrog schedule distributes consecutive loop indexes among the team threads in a round robin fashion, each team thread would finish each of its loop iterations at about the same time as all the other team threads, and the load would be balanced.

Might this be the case for the totient program? The answer is no. Here is the TotientSmp program run on tardis with a leapfrog schedule:

```
$ java pj2 debug=makespan schedule=leapfrog \
edu.rit.pj2.example.TotientSmp 20000003
20000002
Job 1 makespan 14173 msec
```

The speedup was 9.8439, even worse than the fixed schedule. The leapfrog schedule yielded an even more unbalanced load than the fixed schedule, as is apparent from the parallel team threads’ individual running times:

```

Listing 10.2. TotientSmp.java (part 3)

For some programs, however, a leapfrog schedule could balance the load. For example, if the loop iteration times increase gradually as the loop index increases, consecutive loop indexes would take about the same amount of time. Because the leapfrog schedule distributes consecutive loop indexes among the team threads in a round robin fashion, each team thread would finish each of its loop iterations at about the same time as all the other team threads, and the load would be balanced.

Might this be the case for the totient program? The answer is no. Here is the TotientSmp program run on tardis with a leapfrog schedule:

```
$ java pj2 debug=makespan schedule=leapfrog \
edu.rit.pj2.example.TotientSmp 20000003
20000002
Job 1 makespan 14173 msec
```

The speedup was 9.8439, even worse than the fixed schedule. The leapfrog schedule yielded an even more unbalanced load than the fixed schedule, as is apparent from the parallel team threads’ individual running times:
When designing a program with a parallel for loop, how should you pick the loop’s schedule? As a starting point, consider these guidelines:

- If every loop iteration will take the same amount of time, so that the load is inherently balanced, use a fixed or leapfrog schedule. Use the default fixed schedule unless the program specifically needs a leapfrog schedule, like the bitcoin mining program in Chapter 7.
- If every loop iteration will take a different amount of time, use a dynamic, proportional, or guided schedule to balance the load.
- In some cases, a leapfrog schedule might be able to balance the load; for example, if the loop iteration times increase gradually as the loop index increases.

When a parallel program does need load balancing, experiment with different parallel for loop schedules, chunk sizes, and chunk factors on typical inputs to determine the schedule that yields the smallest running time. Don’t just pick a schedule; use running time data to make your choice.

If you wish, you can then hard-code the schedule into the program; this overrides the default schedule and any schedule specified on the pj2 command line. To get a dynamic schedule with a chunk size of 1000, write:

```
parallelFor(lb, ub) .schedule(dynamic) .chunk(1000) ...
```

To get a proportional schedule with a chunk factor of 100, write:

```
parallelFor(lb, ub) .schedule(proportional) .chunk(100) ...
```

To get a guided schedule with the default minimum chunk size, write:

```
parallelFor(lb, ub) .schedule(guided) ...
```

**Under the Hood**

Figure 10.1 shows how various schedules partition the iterations of a parallel for loop into chunks. The loop has $N = 100$ iterations and is being executed by a parallel team with $K = 4$ threads.
A fixed schedule partitions the iterations into $K$ chunks, each of size $N/K$, and assigns one chunk to each team thread. If $N$ is not evenly divisible by $K$, the final chunk has fewer iterations than the other chunks. A leapfrog schedule is similar, except each team thread increments the loop index by $K$ on each iteration instead of by 1.

A dynamic schedule partitions the iterations into chunks of a fixed size (5 iterations in this example). The default chunk size is 1. If $N$ is not evenly divisible by the chunk size, the final chunk has fewer iterations than the other chunks. Each chunk is assigned to a team thread at the beginning of the loop and whenever a team thread finishes its previous chunk.

A proportional schedule is similar to a dynamic schedule, except it partitions the iterations into a fixed number of chunks rather than a fixed size of chunks. The number of chunks is equal to a chunk factor times $K$; the default chunk factor is 10. Thus, as $K$ increases, the number of chunks also increases proportionally. The chunk size is $N/(C \cdot K)$, where $C$ is the chunk factor. If $N$ is not evenly divisible by $C \cdot K$, the final chunk has fewer iterations than the other chunks.

A guided schedule is similar to a dynamic schedule, except it determines the size of each chunk on the fly. Each chunk’s size is half the number of remaining iterations divided by $K$. If this is less than the specified minimum chunk size (default one iteration), the chunk size is the minimum chunk size. Earlier chunks have more iterations, later chunks have fewer iterations. With $N = 100$ and $K = 4$, the guided schedule’s chunk sizes are

![Figure 10.1. Chunk sizes for 100 iterations and four threads](image-url)
12, 11, 9, 8, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.

Points to Remember

• If a parallel for loop’s iterations will all take the same amount of time to execute, so that the load is inherently balanced, start with a fixed (or leapfrog) schedule.
• If different iterations of a parallel for loop will take different amounts of time to execute, start with a dynamic, proportional, or guided schedule to balance the load.
• Run the parallel program on typical inputs with various schedules, chunk sizes, and chunk factors to determine the schedule that yields the smallest overall running time.