Customizable Sponge-Based Authenticated Encryption Using 16-bit S-boxes

Matthew Kelly¹, Alan Kaminsky¹, Michael Kurdziel², Marcin Łukowiak¹, Stanisław Radziszowski¹

¹Rochester Institute of Technology, ²Harris Corporation

October 26, 2015
Agenda

1. Motivation
 Shortcomings of Block Ciphers
 Shortcomings of AES

2. Prior Work
 Duplex Sponge Construction

3. The MK3 Cipher
 Design
 Security Analysis

4. Conclusion
Secure communication requires both encryption and authentication. But a block cipher only does encryption.
Motivation—Shortcomings of Block Ciphers

Block cipher authenticated encryption modes do exist. But they typically require two passes over the plaintext. A faster, single-pass algorithm would be preferable.

CCM mode

- Key
- Plaintext
- AES CTR mode
- AES CBC-MAC mode
- Ciphertext
- Tag
Motivation—Shortcomings of AES

AES is not customizable
- Fixed S-box, permutation, and mixing operations
- Fixed key sizes (128, 192, 256 bits)
- Fixed number of rounds (10, 12, 14 rounds)

One AES round
Motivation—Shortcomings of AES

AES is not customizable, therefore . . .

AES cannot adapt to new attacks
- AES was theoretically broken in 2011 [1]
- The attack breaks AES-128 with $2^{126.1}$ work
- The attack breaks AES-192 with $2^{189.7}$ work
- The attack breaks AES-256 with $2^{254.4}$ work
- If we could do more rounds, we could nullify the attack

AES is less attractive to non-U.S.-government customers
- Each prefers its own customized, yet secure, algorithm
Prior Work—Duplex Sponge Construction

Invented by Bertoni \textit{et al.} in 2011 \cite{2}
Based on the earlier sponge construction \cite{3}
Supports authenticated encryption and other operations
Prior Work—Duplex Sponge Construction

Sponge construction generic security

▶ If the bijective function F is indistinguishable from a random bi-
 jection, then the whole sponge construction is indistinguishable
 from a random bijection [3]

▶ We only need to analyze the security of F

Duplex sponge construction generic security

▶ Security level $= \min (2^{(R+C)/2}, 2^C, 2^K)$, where $K =$ key size
 [4]

▶ We need to have $(R+C)/2 \geq K$ and $C \geq K$ to get a security
 level of 2^K
The MK3 Cipher—Design

Goals

▶ Support authenticated encryption as well as encryption-only
▶ Support 128-bit and 256-bit key sizes
▶ Utilize state-of-the-art cryptographic design
▶ One pass over the plaintext
▶ Customizable
▶ Security analysis applicable to all customized versions
▶ FPGA implementation
The MK3 Cipher—Design

Overall design

- Uses the duplex sponge construction
- State = 512 bits; \(R = 128 \), \(C = 384 \)
- Bijective function \(F \) consists of \(N \) iterated rounds
The MK3 Cipher—Design

Bijective function round design

16 bits

Substitution Layer

Bit Permutation Layer

Mixing Layer

Round Constant Addition Layer
The MK3 Cipher—Design

Substitution Layer design

- Purpose: Nonlinear confusion
- Thirty-two 16×16-bit S-boxes, developed by Wood [5]
- Uses $GF(2^{16})$ inversion plus an affine transformation
- $S(x) = A x^{-1} + b$
- Efficient in hardware; 1,238 XOR gates, 144 AND gates per S-box

Substitution Layer customization requirements

- S-box maximum differential probability $\leq 2^{-14}$
- S-box maximum linear bias $\leq 2^{-8}$
The MK3 Cipher—Design

Bit Permutation Layer design
▶ Purpose: Linear diffusion
▶ Permutes the order of the 512 bits in the state
▶ Input bit position x moves to output bit position $31x + 15 \pmod{512}$
▶ Efficient in hardware; just wires

Bit Permutation Layer customization requirements
▶ For each S-box, each output bit goes to a different mixer
▶ No fixed points in the permutation
▶ No short cycles in the permutation
The MK3 Cipher—Design

Mixing Layer design

- Purpose: Increase branch number, leading to fewer rounds
- Each of sixteen mixers combines two 16-bit inputs A and B, yielding two 16-bit outputs C and D
- Uses matrix multiplication in $\text{GF}(2^{16})$;
 \[\begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 & x \\ x & x + 1 \end{bmatrix} \times \begin{bmatrix} A \\ B \end{bmatrix} \]
- Efficient in hardware; 54 XOR gates per mixer

Mixing Layer customization requirements

- Matrix must be maximum distance separable and invertible
- Consequently, at least three S-boxes will be active in any two consecutive rounds (branch number = 3)
The MK3 Cipher—Design

Round Constant Addition Layer design

- Purpose: Inject asymmetry; prevent slide attacks
- Add a 512-bit round constant to the state
- Different round constant in each round
- Efficient in hardware; 512 XOR gates

Round Constant Addition Layer customization requirements

- Each round constant should be a different randomly-chosen number
The MK3 Cipher—Security Analysis

Number of rounds N needed in the bijective function F [6]

<table>
<thead>
<tr>
<th>Key size</th>
<th>Minimum rounds</th>
<th>Recommended rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>256</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

Minimum rounds = Needed for differential and linear cryptanalysis to require more work than exhaustive key search

Recommended rounds = Minimum + 4 rounds security margin
Conclusion

MK3: Best-practices cryptographic design
- Duplex sponge construction for authenticated encryption
- AES-like bijective function

MK3: Novel contributions
- 16×16-bit S-boxes
- Customizable round function
- Security analysis applicable to all customized versions

Ongoing work
- Further cryptanalysis
- Statistical analysis
- FPGA hardware implementation
References

