Introduction to the Theory of Computation
Non-Regular Languages and the Pumping Lemma

Arthur Nunes-Harwitt

1 Pumping Lemma

Theorem 1. Given an alphabet \(\Sigma \), for any regular language \(L \subseteq \Sigma^* \), there exists a natural number \(n \) such that for any \(x \in L \) if \(|x| \geq n \), then for any \(y \) that is a substring of \(x \), if \(|y| \geq n \), then there exists a decomposition \(y = uvw \) such that the following properties are satisfied:

1. \(|uv| \leq n \), and,
2. \(|v| \geq 1 \), and,
3. \(x(i) \in L \), where \(x(i) \) is the string formed by replacing \(y \) by \(uv^i w \), and \(i \) is any natural number.

Proof

Let \(L \) be an abstract example.
Since \(L \) is a regular language, there exists a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) such that \(M \) recognizes \(L \).
Consider \(n = |Q| \), and observe that the result follows.
Suppose \(x \in L \), \(|x| \geq n \), \(y \) is a substring of \(x \), and \(|y| \geq n \).
Since \(x \in L \), \(M \) accepts \(x \). Let \(q_i \in Q \) be the state that \(M \) is in just before reading the first symbol of \(y \), and let \(q_k \in Q \) be the state that \(M \) is in after reading the last symbol of \(y \).
Notice that when \(y \) has length one, two states are visited; when \(y \) has length two, three states are visited; and, in general, when \(y \) has length \(n \), \(n + 1 \) states are visited. Since \(|y| \geq n \), at least \(n + 1 \) states are visited. However, there are only \(n \) states, and so there must be at least one state that is repeated when going from \(q_i \) to \(q_k \); let \(q_j \in Q \) be the first repeated state.
Let \(u \) be the portion of \(y \) that takes \(M \) from \(q_i \) to the first instance of \(q_j \).
Let \(v \) be the portion of \(y \) that takes \(M \) from the first instance of \(q_j \) to the second instance of \(q_j \).
Let \(w \) be the remaining portion of \(y \).
Observe that because the second instance of \(q_j \) is the first repeated state after \(q_i \), the number of states between and including those two must be less than or equal to \(n + 1 \), therefore \(|uv| \leq n \).
Also observe that at least one symbol must be read to transition from \(q_j \) back to \(q_j \), and so \(|v| \geq 1 \).
Finally observe that, since \(v \) takes \(M \) from \(q_j \) back to \(q_j \), it can be inserted any number of times or deleted.

\(\square \)
1.1 Template for Pumping Lemma Applications

Theorem 2. L is not regular.

Proof

By contradiction.
Suppose L is regular.
Then the pumping lemma applies, and there exists a number n such that any sufficiently long $x \in L$ can be pumped.
Pick $x \in L$ and y a substring of x such that $|y| \geq n$.
Since $|y| \geq n$, it follows that $y = uvw$, $|uw| \leq n$, $|v| \geq 1$, and $x(i) \in L$.
Pick an i_0 (often 0 or 2) such that $x(i_0) \notin L$.
Since $x(i_0) \in L$ and $x(i_0) \notin L$ are contradictory, L is regular cannot be the case.

\[
\]

1.2 Example Applications

1.2.1 Balanced Parentheses-like Language is Not Regular

Theorem 3. $L = \{0^k 1^k \mid k \in \mathbb{N}\}$ is not regular.

Proof

By contradiction.
Suppose L is regular.
Then the pumping lemma applies, and there exists a number n such that any sufficiently long $x \in L$ can be pumped.
Pick $x = 0^n 1^n$ and $y = 0^n$.
Since $|y| \geq n$, it follows that $y = uvw$, $|uw| \leq n$, $|v| \geq 1$, and $x(2) \in L$.
Clearly, v must be a string of 0s. Hence $x(2) = 0^n + |v| 1^n$. However, $|v| \neq 0$ implies $n + |v| \neq n$, and so $x(2) \notin L$.
Since $x(2) \in L$ and $x(2) \notin L$ are contradictory, L is regular cannot be the case.

\[
\]

1.2.2 Using Closure Properties

Theorem 4. $L = \{x \in \{0, 1\}^* \mid x$ has the same number of zeros and ones$\}$ is not regular.

Proof

By contradiction.
Suppose L is regular.
By the closure theorem, $L \cap R$ is regular if R is regular.
Pick $R = L(0^n 1^n)$.
Since R is regular, $L \cap R$ is regular.
However, observe that $L \cap R = \{0^k 1^k \mid k \in \mathbb{N}\}$. Hence $L \cap R$ is not regular.
Since $L \cap R$ is regular and $L \cap R$ is not regular are contradictory, L is regular cannot be the case.

\[
\]
1.2.3 Using Pumping Lemma Property (1)

Theorem 5. $L = \{ 1^{k^2} \mid k \in \mathcal{N} \}$ is not regular.

Proof

By contradiction.
Suppose L is regular.
Then the pumping lemma applies, and there exists a number n such that any sufficiently long $x \in L$ can be pumped.
Pick $x = 1^{n^2}$ and $y = 1^n$.
Since $|y| \geq n$, it follows that $y = uvw, |uw| \leq n, |v| \geq 1$, and $x(2) \in L$.
Clearly, v must be a string of 1s. Hence $x(2) = 1^{n^2+|v|}$.
Note the following.

$$|v| \leq n \implies n^2 + |v| \leq n^2 + n$$

$$\implies n^2 + |v| < n^2 + 2n + 1$$

$$\implies n^2 + |v| < (n + 1)^2$$

But, since $|v| \geq 1, n^2 + |v| > n^2$, and so $n^2 + |v|$ is not a square number. Thus $x(2) \notin L$.
Since $x(2) \in L$ and $x(2) \notin L$ are contradictory, L is regular cannot be the case.

\[\Box \]

1.2.4 Carefully Picking y and Pumping Down

Theorem 6. $L = \{ 0^{k}1^{2k} \mid k \in \mathcal{N} \}$ is not regular.

Proof

By contradiction.
Suppose L is regular.
Then the pumping lemma applies, and there exists a number n such that any sufficiently long $x \in L$ can be pumped.
Pick $x = 0^n1^{2n}$ and $y = 1^{2n}$.
Since $|y| \geq n$, it follows that $y = uvw, |v| \geq 1$, and $x(0) \in L$.
Clearly, v must be a string of 1s. Hence $x(0) = 0^n1^{2n-|v|}$. But, since $2n \neq 2n - |v|, x(0) \notin L$.
Since $x(0) \in L$ and $x(0) \notin L$ are contradictory, L is regular cannot be the case.

\[\Box \]