
1

Continual Learning of Recurrent Neural Networks
by Locally Aligning Distributed Representations

Supplementary Material
Alexander Ororbia*, Ankur Mali, C. Lee Giles, Fellow, IEEE, and Daniel Kifer

TABLE I
COMPLEXITY ANALYSIS OF VARIOUS RNN LEARNING ALGORITHMS (FOR
M LAYERS OF n UNITS) FOR BOTH OFFLINE AND ONLINE SCENARIOS.

Offline Online (per time step)
Algorithm Time Space Time Space
BPTT O(n2LM) O(n2M) O(n2TM) O(n2M)
TBPTT O(n2hM) O(n2M) O(n2hM) O(n2M)
RTRL O(n4M) O(n3M) O(n4M) O(n3M)
UORO O(n2LM) O(n2M) O(n2M) O(n2M)
P-TNCN (LRA) O(n2LM) O(n2M) O(n2M) O(n2M)

APPENDIX

In this appendix, we present a complexity analysis of the P-
TNCN trained via LRA as well as several of the key algorithms
used to train RNNs. In addition, we present a qualitative
exploration of the P-TNCN’s ability to process out-of-domain
inputs, an extra experiment in zero-shot adaptation, and a small
stream experiment to demonstrate how the model works with
discrete-valued nonlinearities.

On Temporal and Spatial Complexity: To appreciate
the value of the P-TNCN and its learning procedure, LRA,
one should consider the temporal and spatial complexities in
both the offline and online stream-driven learning scenarios.
We examine the key algorithms one could use to train an M -
layered RNN (in this case, the analysis is further restricted
to simple Elman-style RNNs), i.e., BPTT, TBPTT, RTRL,
and UORO. Each layer has n units. In the offline setting,
the RNN is to process and adapt sequences of length L.
In the online setting, the RNN is process and adapt to an
infinitely-long sequence (i.e. a data stream), where T marks
the length of the sequence seen up until the current point of
time t. In Table I we present the results of this analysis for the
settings described above (with some complexity results from
[1], which we extend). Note that (for any time-step) the upper
bound calculation for all RNN-based learning approaches is
dominated by the computation of the recurrent weight matrix
update (an n× n weight matrix, as was the case in [1]).

TBPTT reduces its time complexity, compared to BPTT, in
both settings by only unrolling over a history buffer of length
h. In the offline setting, we note that the P-TNCN trained via
LRA operates with the same complexity as BPTT. However,
note that our approach to training circumvents many of the
issues associated with backprop’s unrolling, i.e., vanishing
gradients and restriction to differentiable activations. P-TNCN

Alexander Ororbia, Computer Science, Rochester Institute of
Technology, Rochester, NY 14623 USA e-mail: ago@cs.rit.edu (see
https://www.cs.rit.edu/∼ago/).

Ankur Mali, Daniel Kifer, and C. Lee Giles, Pennsylvania State University.

TABLE II
ONE-SHOT TRAINING PERFORMANCE OF BOUNCING MNIST MODELS ON

BOUNCING NOTMNIST FOLLOWED BY ZERO-SHOT ADAPTIVE
PERFORMANCE TO BOUNCING FASHION MNIST (FMNIST).

MNIST → NotMNIST NotMNIST → FMNIST
Model,1-0-shot CE SE CE SE
LSTM, BPTT 882.71 269.65 689.96 101.892
LSTM, SAB 883.61 272.58 691.28 103.778
LSTM, RTRL 863.12 239.62 640.09 97.018
P-TNCN 842.13 215.01 603.34 82.841

has the same time complexity as UORO (but better accuracy,
as seen in the main paper) and better time/space complexity
than RTRL. When a stream is being processed step by step,
BPTT requires the RNN being trained to be unrolled back
until the start of the sequence at each time step, yielding
a time complexity of O(n2TM). TBPTT reduces this a bit
by only maintaining a fixed buffer of length h, resulting in
a complexity of O(n2hM). The complexities of P-TNCN
(LRA), UORO, and RTRL do not change in the online setting
(again, the advantage of P-TNCN here is in accuracy).

Out-of-Domain Samples: To explore the P-TNCN’s ability
to process out-of-domain inputs, we generated new sequences
from the Bouncing MNIST and NotMNIST processes as was
done in [2] where each sequence contained either only one
object (digit or character) or three objects that bounced around.
Since our P-TNCNs were only trained on sequences with two
objects bouncing around, they have never been exposed to
sequences with one or three objects. In Figure 1, we show the
predictions generated by a trained P-TNCN and see that it does
a reasonably good job at predicting a single object bouncing
around, which stands in contrast to what was discovered in [2]
(which only investigated the case of Bouncing MNIST), where
the LSTM trained with BPTT was found to “hallucinate” a
second digit over top the first/original one. With respect to
the three-object sequence sample, we also observe that the P-
TNCN is able to maintain its ability to roughly track multiple
objects in space (even if not as easily as it could with two
digits), and does not seem to merge the digits into blobs as
the LSTM of [2] does on MNIST. However, even thought the
P-TNCN appears to do a much better job of predicting the
near future, due to its dynamic error units, incorporating an
iterative attention mechanism could serve to further improve
the P-TNCN’s generative abilities.

Additional Zero-Shot Adaptation Results: This extra
experiment extends the zero-shot adaptation experiment pre-



2

Fig. 1. Out-of-domain test runs. Frame by frame predictions (bottom row) of the P-TNCN compared to ground truth (top row) frames on test sequences of
one and three moving digits. Recall that the P-TNCN was only trained on sequences of two moving digits.

sented in the main paper by adding in an intermediate phases
of one-shot adaptation/learning before evaluating zero-shot
capabilities. This setting could be considered a variation of the
zero-shot setting where some aspect of continual generative
modeling (of test-sets) has been mixed in.

Specifically, we first take a model already trained on Bounc-
ing MNIST, after many epochs (dispensing with the extreme,
one-shot-only constraint of the continual learning experiment)
and dynamically adapt it to the NotMNIST test-set (one-shot
learning). After this one-shot adaptation phase, we evaluate
each model’s zero-shot adaptivity on Fashion MNIST test-set.

During one-shot adaptation to NotMNIST, we update pa-
rameters using stochastic gradient descent with a fixed step
size of 0.01 and report its test-then-train generalization in
Table II. Finally, after one-shot adaptation to NotMNIST,
we report the the zero-shot performance, measured in terms
of squared error, on Fashion MNIST. The results of this
experiment, shown in in Table II, further demonstrate that the
P-TNCN’s zero-shot adaptive abilities do not degrade when
further learning is permitted. Specifically, even when process-
ing the completely orthogonal Fashion MNIST test-set after
one-shot adapting to NotMNIST, the P-TNCN outperforms the
LSTM models trained with BPTT, SAB, and RTRL.

Using Discrete-Valued Activation Functions: One rather
interesting property of the P-TNCN is that it does not
require knowledge of the first derivative of its pointwise
activation functions. This means that one could employ a
much wider variety of nonlinearities than one could not
use in a standard, differentiable RNN that would require
BPTT/SAB/RTRL/UORO-based approaches. As a result, the
P-TNCN is more general and thus uniquely suited for a wider
variety of applications. We demonstrate that one can indeed
train a P-TNCN with nondifferentiable activity, we construct
a simple toy problem as our experiment. We fit a 2-layer
(20 units in each) model composed of the non-differentiable
signum activations to a stream of data generated by the “noisy
cosine function”, or xt = cos(t) + ε where ε ∼ N (0, 0.02)
(we simulate 100K discrete steps, where when k = k + 1,
t = t+∆t, ∆t = 0.05). We obtain a prequential squared error,
or pSE (a test-then-train metric inspired by the online learning

literature [3], [4]), of pSE = 0.0163 whereas the same exact
P-TNCN (but one with differentiable tanh activations) yields a
pSE = 0.0169. The gold standard model (the cosine function)
obtains a pSE = 0.0006 and a random/non-adapted baseline
model yields pSE = 1.1057 (the closer to the gold standard,
the better).


