; R-T-T ;‘

Numerical Optimization:
The Gradient

Alexander G. Ororbia ll
COGS-621: Foundations of Scientific Computing
10/16/2025, 10/28/2025

Gradient Descent (or Ascent)

* Simple modification to Hill Climbing
* Generally assumes a continuous state space

* |dea is to take more intelligent steps
* Look at local gradient: the direction of largest change

* Take step in that direction Global Optima

I A\
i .'I| III-I
11

* Step size should be proportional to gradient

* Tends to yield much faster
convergence to optima

fithess

Race of the Optimizers!

7 N — 56D L — SGD
—— N
| = Momentum E = Momentum
== NAG g T -— NAG
E %ﬂ" T
— : i i, a——
Adagrad ,,‘%?;%@ 7 Adagrad
Adadelta Y) Adadelta
4 el A,
Rmsprop | 4 Yy, Rmsprop
e = LAITRTTS
2 s e iy
L W'M, !
' B LGNNI
0 SR
.
-2 = g """'f-,ff"‘"%'

1.0

http://cs231n.github.io/neural-networks-3/#hyper

Gradient

 Essential role of calculus

A\C:’jhg\i 5,

A Recipe for
Optimization

Background

1. Given training data:

{CL’@, Y, ?J',\;l

4. Train with SGD:

(take small steps
opposite the gradient)

B(H‘l) = B(t) — ntVE(fe(fﬂz)a yz)

A Recipe for

Background

1. Given training data
{:‘U?? y? 1—=1

2. Choose each of th

— Decision function

- folm)

— Loss function

l(y,y;,) €R ' NV fo(xi),y;)

Approaches to Differentiation

Finite Difference Method
Pro: Great for testing implementations of backpropagation

Con: Slow for high dimensional inputs / outputs
Required: Ability to call the function f(x) on any input x

- Note: The method you learned in high-school

- Note: Used by Mathematica /| Wolfram Alpha [Maple
- Pro: Yields easily interpretable derivatives

- Con: Leads to exponential computation time if not carefully implemented
— Required: Mathematical expression that defines f(x

Automatic Differentiation - Reverse Mode

Note: Called Backpropagation when applied to Neural Nets
Pro: Computes partial derivatives of one output f(x), with respect to all inputs x; in time proportional

to computation of f(x)
Con: Slow for high dimensional outputs (e.g. vector-valued functions)

- Note: Easy to implement. Uses dual numbers.

- Pro: Computes partial derivatives of all outputs f(x); with respect to one input x: in time proportional
to computation of f(x)

- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)

So...what is a derivative?!

10

The Finite Difference Method

df(z) .. flz+h) - f(z)
The centered finite difference approximation is: B ’}I_I'ﬂ] L
3 N(J(G—l—ﬁdl)—J(G—Ed%))

where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1. R

Notes:

« Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon C L >

€ € 11

Computational Graph (Example)

f(x,y, W) = Z;(p; — y1)*

Objective function

13

Stochastic Hill-Climbing

Negative Alpine Function f(x) = — z(xl Sin(xi) + 0.1 xi)
l

14

Stochastic Gradient Ascent

Negative Alpine Function f(x) = — z(xl Sin(xi) + 0.1 xi)
l

15

Questions?

n?o

	Numerical Optimization: The Gradient
	Gradient Descent (or Ascent)
	Race of the Optimizers!
	Slide Number 5
	Slide Number 7
	Slide Number 8
	Approaches to Differentiation
	So…what is a derivative?!
	The Finite Difference Method
	Computational Graph (Example)
	Stochastic Hill-Climbing
	Stochastic Gradient Ascent
	Questions?

