

More Numerical Optimization

Alexander G. Ororbia II

COGS-621: Foundations of Scientific Computing 10/2/2025

Optimization at a Glance

- Optimization is the act of obtaining the best result under given circumstances.
- Optimization can be defined as the process of finding the conditions that give the maximum or minimum of a function.
- The optimum seeking methods are also known as *mathematical programming techniques* and are generally studied as a part of operations research.
- *Operations research* is a branch of mathematics concerned with the application of scientific methods and techniques to decision making problems and with establishing the best or optimal solutions.

Combinatorial Problems: Fitness Landscape

Combinatorial Problems: Fitness Landscape

Problem Specification/Formulation

• General mathematical optimization (minimization) problem:

minimize
$$f_i(x), i = 1, 2, ..., M$$

subject to $h_j(x) = 0, j = 1, 2, ..., J$ $g_k(x) \le 0, k = 1, 2, ..., K$

- $f_i: \mathbb{R}^d \to \mathbb{R}$: objective/cost frctn (maps search/design space -> solution/response space)
- $x=(x_1,...,x_d)^T$: design variables unknowns of the problem, could be mix of discrete & continuous (contus) values (x is "design vector")
- $h_j: \mathbb{R}^d \to \mathbb{R}$: equality constraints
- $g_k: \mathbb{R}^d \to \mathbb{R}$: inequality constraints
- This problem is a constrained optimization problem
 - Linear constraints + linear objectives > linear programming problem

Equivalence between Minimum and Maximum

- If a point x^* corresponds to the minimum value of the function f(x), the same point also corresponds to the maximum value of the negative of the function, -f(x).
 - This means optimization can be re-interpreted to mean minimization since the maximum of a function can be found by seeking the minimum of the negative of the same function.

Figure 1.1 Minimum of f(x) is same as maximum of -f(x).

Optimization: A Local Search Perspective

Local Search Algorithms

- Optimization Problems
 - Path to goal often irrelevant; goal state is the solution (e.g. n-queens problem, training neural networks)
 - Also good for problems w/ no goal test/path cost
- State space (search space)
 - Represented by set of **complete** state configurations
 - Can be discrete or continuous (contus)
- Search Goal
 - Find configuration satisfying constraints, e.g., nqueens
- Local Search Algorithms
 - Keep a single "current" state (= candidate solution), improves it if possible (iterative improvement)

Local Search: Iterative improvement

- Start with a complete valid state
- Gradually work to improve to better and better states
 - Sometimes, try to achieve an optimum, though not always possible
- Sometimes states are discrete, sometimes continuous

Optimization & State-Space Landscape

Goal types:

- Objective function -> find global max, find global min (usually not possible, so local)
- Complete = finds optima if it exists, Optimal = finds global optima

Hill-Climbing Search

• "Like climbing Everest in a thick fog with amnesia", steepest ascent

• Termina

Example: *n*-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves n-queens problems almost instantaneously for very large n, e.g., n=1million

Variations of Hill-Climbing

- Stochastic hill climbing (selection probability depends on steepness of uphill move)
- First-choice hill-climbing = randomly generate successors until one is better than current
- All incomplete!
 - Unless use random restart (*if at first don't succeed, try, try again*), i.e., <u>random restart hill-climbing</u> = a # of restarts required proportional to probability of success p (or 1/p)
- Can work on n-million queens problem
- NP-hard problems have exponential number of local optima
- The Hope: find "good enough" local optima

Local Search Landscape & Climbing Hills

- Random-Restart Hill Climbing
 - Do series of hill-climbing searches from randomly chosen initial state

Why Optimization Again?

- Assume a state (or solution) with many variables
- Assume some function that you want to maximize/minimize value of
 - E.g. a "goodness" function
- Searching entire space is too complicated
 - Cannot evaluate every possible combination of variables
 - Function might be difficult to evaluate analytically

Types of Minima

- Which of the minima is found depends on the starting point
- Such minima often occur in real applications

Problems!!

• One dimension (typically use more):

• Start at a valid state, try to maximize

Move to better state

Try to find maximum

Classical Hill-Climbing Search

- "Like climbing Everest in thick fog with amnesia", steepest ascent
- Goal: maximize (but if use heuristic cost, can minimize)

Stochastic Hill-Climbing Search

• Steepest ascent, but random selection/generation of neighbor candidates/positions (*variations*: first-choice hill climbing, random-restart hill-climbing)

Random Starting Point

• Three random steps

Choose Best One for new position

• No Improvement, so stop.

Questions?

