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Optimization at a Glance

* Optimization 1s the act of obtaining the best result under given
circumstances.

* Optimization can be defined as the process of finding the conditions that
give the maximum or minimum of a function.

* The optimum seeking methods are also known as mathematical
programming techniques and are generally studied as a part of operations
research.

* Operations research is a branch of mathematics concerned with the
application of scientific methods and techniques to decision making
problems and with establishing the best or optimal solutions.



Combinatorial Problems: Fitness Landscape
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Combinatorial Problems: Fitness Landscape
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Problem Specification/Formulation

* General mathematical optimization (minimization) problem:
minimize f;(x),i =1,2,..,M

subjectto hj(x) =0, j =
1,2,.,] g.(x)<0, k=1,2,..,K
* f.- R? — R: objective/cost fnctn (maps search/design space -> solution/response space)

© x=(x,,......x,)" : design variables - unknowns of the problem, could be mix of discrete
& continuous (contus) values (x is “design vector”)

* h;: R" — R: equality constraints

* g,- R? — R: inequality constraints

* This problem is a constrained optimization problem
 Linear constraints + linear objectives = linear programming problem



Equivalence between Minimum and Maximum

e If a point x* corresponds to the minimum value of the function 1 (x),
the same point also corresponds to the maximum value of the negative
of the function, -f (x).

— This means optimization can be re-interpreted to mean minimization since the maximum
of a function can be found by seeking the minimum of the negative of the same function.
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Figure 1.1 Minimum of f(x) is same as maximum of —f(x).



Optimization:
A Local Search Perspective



Local Search Algorithms

*Optimization Problems

* Path to goal often irrelevant; goal state is the
solution (e.g. n-queens problem, training neural
networks)

* Also good for problems w/ no goal test/path cost
*State space (search space)
* Represented by set of complete state configurations

* Can be discrete or continuous (contus)

Search Goal

* Find configuration satisfying constraints, e.g., n-
queens

*Local Search Algorithms

* Keep a single "current” state (= candidate solution),
Improves it if possible (iterative improvement)



Local Search: lterative improvement

e Start with a complete valid state

* Gradually work to improve to better and better states
* Sometimes, try to achieve an optimum, though not always possible

e Sometimes states are discrete, sometimes continuous



Optimization & State-Space Landscape

 Goal types:

* Objective function -> find global max, find global min (usually not possible, so local)

* Complete = finds optima if it exists, Optimal = finds global optima

-::I:n_j:cti'.'ifun:tinn

shonlder

N

global maxirmim

e

local maximmm

o

"flat" local maximmm

m=stals space
coment

stoe

10



Hill-Climbing Search

* "Like climbing Everest in a thick fog with amnesia”, steepest

ascent
e Termina

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor+— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current +— neighbor
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Example: n-queens

Put n queens on an n X n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

h=2

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n= 1lmillion
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Variations of Hill-Climbing

- Stochastic hill climbing (selection probability depends on steepness of uphill
move)

First-choice hill-climbing = randomly generate successors until one is better
than current

All incomplete!
- Unless use random restart (if at first don’t succeed, try, try again), i.e., random restart hill-

climbing = a # of restarts required proportional to probability of success p (or 1/p)

. Can work on n-million queens problem

NP-hard problems have exponential number of local optima

The Hope: find “good enough” local optima
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Local Search Landscape & Climbing Hills
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*Random-Restart Hill Climbing

* Do series of hill-climbing searches from randomly
chosen initial state
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Why Optimization Again?

* Assume a state (or solution) with many variables

* Assume some function that you want to maximize/minimize value
of

* E.g. a“goodness” function

* Searching entire space is too complicated

 Cannot evaluate every possible combination of variables
* Function might be difficult to evaluate analytically






Types of Minima

weak strong
local local local
f(X) minimum strong  minimum

minimum global
- minimum
i i
1 1
1 1
1 1

strong

feasible region X

* Which of the minima is found depends on the starting point

* Such minima often occur in real applications



Problems!!

local min

local max

saddle point
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Simple Example: The Idealized Climb

* One dimension (typically use more):

function
value




Simple Example: The Idealized Climb

e Start at a valid state, try to maximize

function
value




Simple Example: The Idealized Climb

e Move to better state

function
value




Simple Example: The Idealized Climb

* Try to find maximum

function
value




Classical Hill-Climbing Search

* "Like climbing Everest in thick fog with amnesia”, steepest ascent
* Goal: maximize (but if use heuristic cost, can minimize)

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor+— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current +— neighbor
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Stochastic Hill-Climbing Search

* Steepest ascent, but random selection/generation of neighbor
candidates/positions (variations: first-choice hill climbing, random-
restart hill-climbing)

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem o e e e -

local variables: current, a node | Generate a random sample/set
neighbor, a node of neighbors around current,
I choose highest-valued among

current «+— MAKE-NODE(INITIAL-STATE[problem
loop do
| neighbor+— a highest-valued succ current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current +— neighbor

24



Simple Example

* Random Starting Point

function
value




Simple Example

* Three random steps

function
value




Simple Example

* Choose Best One for new position

function
value




Simple Example

* Repeat
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Simple Example

* Repeat
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Simple Example

* Repeat
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Simple Example

* Repeat

function
value




Simple Example

* No Improvement, so stop.

function
value




Questions?
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