

More Linear Algebra

Alexander G. Ororbia II

COGS-621: Foundations of Scientific Computing 9/25/2025

Elementwise composed functions

Can build from simple routines:
 cos(.), sin(.), exp(.), etc. (the "." means argument)

Softmax:
$$\phi(\mathbf{v}) = \frac{\exp(\mathbf{v})}{\sum_{c=1}^{C} \exp(\mathbf{v}_c)}$$

Sigmoid: $\phi(\mathbf{v}) = \sigma(\mathbf{v}) = \frac{1}{1+e^{-\mathbf{v}}}$

Let's write these out to our Python interpreter!

NumPy Function

np.cos, np.sin, np.tan
np.arccos, np.arcsin, np.arctan
np.cosh, np.sinh, np.tanh
np.arccosh, np.arcsinh, np.arctanh
np.sqrt
np.exp
np.log, np.log2, np.log10

NumPy Function

np.add, np.subtract,
np.multiply, np.divide
np.power

np.remainder
np.reciprocal
np.real, np.imag, np.conj

np.sign, np.abs
np.floor, np.ceil, np.rint
np.round

Transposing/manipulation in NumPy

$$(\mathbf{A}^{\mathrm{T}})_{i,j} = A_{j,i}$$

$$\boldsymbol{x} = [x_1, ..., x_n]^{\mathrm{T}}$$

Table 2-12. Summary of NumPy Functions for Array Operations

Function	Description
<pre>np.transpose, np.ndarray.transpose, np.ndarray.T</pre>	Transpose (reverse axes) an array.
np.fliplr/np.flipud	Reverse the elements in each row/column.
np.rot90	Rotate the elements along the first two axes by 90 degrees.
np.sort, np.ndarray.sort	Sort an array's elements along a specified axis (which defaults to the last axis of the array). The np.ndarray method sort performs the sorting in place, modifying the input array.

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

Matrix multiplication

- For product C=AB to be defined, A has to have the same no. of columns as the no. of rows of B
 - If A is of shape mxn and B is of shape nxp then matrix product C is of shape mxp

$$C = AB \Rightarrow C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

- Dot product between two vectors x and y of same dimensionality is the matrix product $x^{\mathrm{T}}y$
- We can think of matrix product C=AB as computing C_{ij} the dot product of row i of A and column j of B

Referred to sometimes as matrix-matrix product or matrix-vector product (or matrix multiply)

Matrix-matrix multiply

- Matrix-Matrix multiply (outer product)
 - Vector-Vector multiply (dot product)
- The usual workhorse of statistical learning
- Vectorizes sums of products (builds on dot product)

0.5	-0.7	*	
-0.69	1.8	••	•

*	0.5	-0.7
^	-0.69	1.8

_	(.5 * .5) + (7 *69)	(.5 *7) + (7 * 1.8)
	(69 * .5) + (1.8 *69)	(69 *7) + (1.8 * 1.8)

Matrix/vector products

- **Inner (dot) product** combine 2 vectors into scalar to measure their alignment/similarity (*reduction*)
- **Outer product** combines 2 vector into matrix to capture pairwise interactions (*expansion*)

Table 2-13. Summary of NumPy Functions for Matrix Operations

NumPy Function	Description
np.dot	Matrix multiplication (dot product) between two given arrays representing vectors, arrays, or tensors
np.inner	Scalar multiplication (inner product) between two arrays representing vectors
np.cross	The cross product between two arrays that represent vectors
np.tensordot	Dot product along specified axes of multidimensional arrays
np.outer	Outer product (tensor product of vectors) between two arrays representing vectors
np.kron	Kronecker product (tensor product of matrices) between arrays representing matrices and higher-dimensional arrays
np.einsum	Evaluates Einstein's summation convention for multidimensional arrays

- You can emulate some behaviors with dot product and transpose
 - $Dot(x, y) = x^T \cdot y$; $Outer(x, y) = x \cdot y^T$
 - Can also use np.matmul (@) to get same effect (lines up with other packages)

Vector form (one unit)

This calculates activation value of single (output) unit that is connected to 3 (input) sensors.

$$h_0$$
: w_0 w_1 w_2 * x_0 = $\phi(w_0 * x_0 + w_1 * x_1 + w_2 * x_2)$ x_1 x_2

Vector form (two units)

This vectorization easily generalizes to multiple (3) sensors feeding into multiple (2) units.

Known as vectorization!

Now let us fully vectorize this!

This vectorization is also important for formulating **mini-batches**. (Good for GPU-based processing.)

 h_0 : h_1 :

$\mathbf{w_0}$	$\mathbf{w_1}$	$\mathbf{w_2}$
\mathbf{w}_3	W ₄	$\mathbf{w_5}$

$\phi(w_0 * x_0 +)$	$\varphi(\mathbf{w_0} * \mathbf{x_3} +)$
$\phi(w_3 * x_0 +)$	$\varphi(\mathbf{w}_3 * \mathbf{x}_3 +)$

Tensors in statistical learning

Vector x is converted into vector y by multiplying x by a matrix w

A linear classifier $y = Wx^T + b$

Questions?

