; R-1-T ;‘

Python and Transforms

Some Tensor Manipulation

Alexander G. Ororbia ll
COGS-621: Foundations of Scientific Computing
9/9/2025

Creating
Different Kinds
of (Initial) Arrays

* Useful ways to create
(instantiate) ndarrays
pre-filled with
particular values

np.eye :
Creates diagonal array
with values on main
diagonal

Function Name

Type of Array

np.

=
=

np.

np.

np.

np.

np.
np.

np.

array

.ZEeTOos
.ones
.diag

.arange

.linspace

logspace

meshgrid

fromfunction

fromfile

genfromtxt,
loadtxt

random.rand

Create an array for which the elements are given by an array-like object, which, for
example, can be a (nested) Python list, a tuple, an iterable sequence, or another
ndarray instance.

Create an array with the specified dimensions and data type that is filled with zeros.
Create an array with the specified dimensions and data type that is filled with ones.
Create a diagonal array with specified values along the diagonal and zeros elsewhere.

Create an array with evenly spaced values between the specified start, end, and
increment values.

Create an array with evenly spaced values between specified start and end values,
using a specified number of elements.

Create an array with values that are logarithmically spaced between the given start
and end values.

Generate coordinate matrices (and higher-dimensional coordinate arrays) from one-
dimensional coordinate vectors.

Create an array and fills it with values specified by a given function, which is evaluated
for each combination of indices for the given array size.

Create an array with the data from a binary (or text) file. NumPy also provides a
corresponding function np.tofile with which NumPy arrays can be stored to disk
and later read back using np.fromfile.

Create an array from data read from a text file, for example, a comma-separated value
(CSV) file. The np.genfromtxt function also supports data files with missing values.

Generate an array with random numbers that are uniformly distributed between 0
and 1. Other types of distributions are also available in the np. random module.

: np.array([1, 2, 3], dtype=int)

: array([1, 2, 3])

: np.array([1, 2, 3], dtype=float)

: array([1., 2., 3.])

: np.array([1, 2, 3], dtype=complex)
: array([1.40.j, 2.40.j, 3.+0.j])

: data = np.array([1, 2, 3], dtype=float)

: data

: array([1., 2., 3.])

: data.dtype

: dtype('float64")

: data = np.array(data, dtype=int)
: data.dtype

: dtype('int64")

: data

: array([1, 2, 3])

: data = np.array([1, 2, 3], dtype=float)

: data

: array([1., 2., 3.])
: data.astype(int)

: array([1, 2, 3])

In
Out
In
Out

[51]:
[51]:
[52]:
[52]:

np.arange(0.0, 11, 1)
1.
np.linspace(0, 10, 11)
1.

array([0.,

array([0.,

§

3

2.

2.

3

3

3.,

3.

4.,

4.,

5.,

5+

6.,

6.,

7.,

7.,

8.,

8.,

9.

9.,

10.])
10.])

Distributions and sampling: np.random

* Distributions over random variables (hnumbers) will be useful
later on

* Some useful (continuous) ones: uniform (U(a, b)), normal (Gaussian; N(u, o)),
laplace (Laplacian; L(loc, scale))

* Usually take in distribution-specific parameters and then a “size” argument
(which is the shape of the tensor you want); if nothing but size is provided, then
you often get samples of the standard distribution

* These routines are useful for sampling basic distributions or
composing others in terms of basic ones

>>> np.random.uniform [}

>>> np.random.normal [J

>>> np.random.laplace [

Slicing and accessing

Table 2-4. Examples of Array Indexing and Slicing Expressions

Expression Description

Select the element at index m, where m is an integer (start counting form 0).

Select the nth element from the end of the list, where m is an integer. The last element in the
list is addressed as -1, the second to last element as -2, and so on.

Select elements with index starting at m and ending at n — 1 (m and n are integers).

Select all elements in the given axis.

Select elements starting with index 0 and going up to index n — 1 (integer).

Select elements starting with index m (integer) and going up to the last element in the array.
Select elements with index m through n (exclusive), with increment p.

Select all the elements, in reverse order.

Knowing what “views” are

Using a view to your advantage When you do not want to use a view
(using a sub-view to set values): (extract sub-array as a “clone”):
In [85]: B = A[1:5, 1:5
In {35}: B [] In %39}: C = B[1:3, 1:3].copy()
In [90]: C
Out[86]: arra 11, 12, 13, 14),
1561 ﬂ[{n, 22, 23, 24}, Out[90]: array([[o, o],
[31, 32, 33, 34], o, ol o |
[41, 42, 43, 44]]) In [91]: C[:, :] =1 # this does not affect B since C is a copy of the view B[1:3, 1:3]
In [87]: B[:, :] =0 In [92]: C
In [EE]: A Dl.lt[gl]: array{[[l, 1];
out[88]: array([[0, 1, 2, 3, 4, 5], + [1, 11D
[10, o0, o0, 0, o0, 15], In [93]: B
[20, 0, 0, 0, 0, 25], Out[93]: array([[o0, 0, 0, 0],
[31'.]_, o, o0, 0, 0 35], [ﬂl o, 0, ﬂ];
[40, 0, 0, 0, 0, 45], [0, 0, 0, 0],
[50, 51, 52, 53, 54, 55]]) [0, 0, 0, 0]])

Reshaping and
resizing arrays

Table 2-5. Summary of NumPy Functions for Manipulating the Dimensions and the Shape of Arrays

Function/Method

Description

np.reshape,
np.ndarray.reshape

np.ndarray.flatten

np.ravel,
np.ndarray.ravel

np.squeeze

np.expand dims,
np.newaxis

np.transpose,
np.ndarray.transpose,
np.ndarray.T

np.hstack

np.vstack

np.dstack
np.concatenate

np.resize

np.append
np.insert

np.delete

Reshape an N-dimensional array. The total number of elements must remain

the same.

Create a copy of an N-dimensional array and reinterprets it as a one-
dimensional array (i.e., all dimensions are collapsed into one).

Create a view (if possible, otherwise a copy) of an N-dimensional array in
which it is interpreted as a one-dimensional array.

Remove axes with length 1.

Add a new axis (dimension) of length 1 to an array, where np.newaxis is used

with array indexing.

Transpose the array. The transpose operation corresponds to reversing (or,
more generally, permuting) the axes of the array.

Stack a list of arrays horizontally (along axis 1): for example, given a list of
column vectors, it appends the columns to form a matrix.

Stack a list of arrays vertically (along axis 0): for example, given a list of row
vectors, it appends the rows to form a matrix.

Stack arrays depth-wise (along axis 2).
Create a new array by appending arrays after each other along a given axis.

Resize an array. Create a new copy of the original array, with the requested
size. If necessary, the original array is repeated to fill up the new array.

Append an element to an array. Create a new copy of the array.
Insert a new element at a given position. Create a new copy of the array.

Delete an element at a given position. Create a new copy of the array.

Know that reshaping yields views

In [112]:
In [113]:
Out[113]:
In [114]:
Out[114]:

data = np.array([[1, 2], [3, 411)
np.reshape(data, (1, 4))
array([[1, 2, 3, 4]])
data.reshape(4)

In [115]:
In [116]:
Out[116]:

In [117]:
Out[117]:
In [118]:
Out[118]:

data = np.array([[1, 2], [3, 4]])
data
array([[1, 2],

[3, 4]])
data.flatten()

array([1, 2, 3, 4])
data.flatten().shape
(4,)

Questions?

n?o

	Slide 1: Python and Transforms Some Tensor Manipulation
	Slide 2: Creating Different Kinds of (Initial) Arrays
	Slide 3
	Slide 4
	Slide 5: Distributions and sampling: np.random
	Slide 6: Slicing and accessing
	Slide 7: Knowing what “views” are
	Slide 8: Reshaping and resizing arrays
	Slide 9: Know that reshaping yields views
	Slide 10: Questions?

