
On Python and Tensors
Initial Considerations

Alexander G. Ororbia II
COGS-621: Foundations of Scientific Computing

9/2/2025

High performance computing
(HPC)
• Use of supercomputers or computer

clusters (grids) to tackle complex
computation problems

• Will have guest lecture on basics of RIT
research computing (RC)
• RIT RC:

https://www.rit.edu/researchcomputing/
• (We will have a guest lecture / walkthrough

on Sept 16 -- Viet -- on using RIT RC)
• Python is the “glue” (part of

multilanguage model of HPC)
• Ecosystem = NumPy, SciPy, and Matplotlib

2

The Oak Ridge Laboratory
Frontier Supercomputer

https://www.rit.edu/researchcomputing/

Your toolset
Some of the tools to engage with scientific computing

3

Python and development environments
• Vi / Vim, Emacs (simpler / bare-bones, classical)
• Atom, Gedit (GNOME Editor)
• Pycharm (an integrated development environment; IDE)

4

A Jetbrains
PyCharm view of

some ngclearn
source code!

(PyCharm
community edition

is free and available
for multiple OS)

Executing Python scripting code
• There are many ways to “run” code (execute Python interpreter)

• Write / dynamically execute code “snippets” w/ Python interpreter directly
• Use IPython interactive environment
• Set up and iteratively build Python (Spyder) notebooks
• Write Bash (terminal-level) scripts to call Python files (Linux-oriented)

• You will want to develop your own “workflow” as well as consider
what your target audience will be
• Notebooks can be useful for tutorials/demo(s), executable via web-browser
• Interacting w/ Python interpreter can be helpful for quick sanity checks and

personal self-study (good to do in this class)
• Bash-scripting is old-fashioned but robust and reliable (it’s what I do my

research, because I’m old)
5

Version control
• Source code management (also known as “revision control”)

• Key software engineering practice of controlling, organizing, & tracking different
versions of your software/scripts

• Backbone: a history of computer files (e.g., Python text, supporting file types
like images, etc.)

• Useful for publicly “releasing” your code (to engender scientific reproducibility)

• Quality (free) tools:
• Bitbucket
• Github

• Good to have, and very useful for team / multi-person projects
• You should sign up for the “student developer pack” (gets you lots

of important features like private repos)

6

Github: One possible simple (work)flow
• 1) Git clone / set up your (local) repository (repo)
• 2) Write your code / folders (do things locally)
• 3) Git add / commit your code (differences) to the repo itself

• git add <source_code_file/folder> // this points to what code is to be added

• git commit –m “<insert message>” // this gets your code ready to upload

• git push // this physically places your code (or changes) onto repo

• git status

7https://docs.github.com/en/get-started/start-your-journey/hello-world

https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world

Developing some of the basics

8

9

Vectorized operations / objects

• Vectors, matrices, tensors (> 2nd order arrays)
• Essential tool for numerical computation
• Useful data representation, especially for operations (ops) that are repeated for

set of values
• Vectorization – eliminates the need for explicit loops (batch operations

applied to data)
• In Python, ops often built on lower-level libraries (BLAS, LAPACK, XLA< etc.)

• Essentially what NumPy, i.e., 𝑛𝑢𝑚𝑝𝑦 (and 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑎𝑙𝑔), is for
• Built on C (for processing/manipulating arrays)
• All elements in a numpy (fixed-size) array are of the same type (homogeneous)
• These arrays have in-built operations to be applied to them (along with

functions/modules that work with these data structures)

Questions?

10

?

	Slide 1: On Python and Tensors Initial Considerations
	Slide 2: High performance computing (HPC)
	Slide 3: Your toolset
	Slide 4: Python and development environments
	Slide 5: Executing Python scripting code
	Slide 6: Version control
	Slide 7: Github: One possible simple (work)flow
	Slide 8: Developing some of the basics
	Slide 9: Vectorized operations / objects
	Slide 10: Questions?

