

Scientific Computing

The Foundations

Alexander G. Ororbia II

COGS-621: Foundations of Scientific Computing 8/26/2025

Course Page & Syllabus

- Syllabus and policy:
 - https://www.cs.rit.edu/~ago/courses/cogs621/index.html
- Prerequisites:
 - COGS-600 and PSYC 640 (or PSYC 717)

Your textbook guide for this class!

Companion Recommendations (good to have on your own shelf)!

What is computing?

- Manifestation of counting or calculating
 - Goal-oriented activity that requires calculation machinery
 - "Computing" can be done on many mediums (philosophically)
 - Rocks + falling water + toilet paper, a group of coordinated humans, a difference engine, a von Neumann architecture, a neuromorphic crossbar
- Study of and experimentation with algorithmic processes and development of software and hardware

The talented, brilliant women of the (early/pre-NASA) Jet Propulsion Laboratory (JPL) were known as human "computers".

The punch(ed) card, for storing digital information via presence / absence of holes in predefined positions

Computation's history

- Difference engine ("calculator")
 - Powered by crank handle
 - Approximated polynomial functions (via tabulating logarithmic / trigonometric functions)
- Analytic(al) engine
 - Incorporated arithmetic logic unit, control flow (conditional branching, loops), integrated memory
 - First general-purpose computer design

The analytical engine (1849, 2002)

Ada Lovelace

Charles Babbage

Analytic machines and digital computing

- ENIAC (Electronic Numerical Integrator and Computer, 1945)
 - Multiple panels/modules (accumulators, 10-digit decimal memory), branching
- A von Neumann design (EDVAC, 1945)

• Processing unit (ALU, processor registers), control unit (instruction register, program counter), memory/external mass storage, input/output

Now, what is science?

- A systematic way to build and organize knowledge
 - About phenomena, the universe
- Construct testable / verifiable hypotheses about the universe around us
 - We make predictions and then test them (refutation or validation)

So, what is scientific computing?

- It is computing to support science (!)
 - Using machinery of counting/calculation to aid in: refuting/validating hypotheses, modeling a natural stochastic data-generating process

- Scientific method (making use of computation):
 - Ask a question (exploratory data analysis)
 - Formulate a hypothesis (use a model)
 - Design an experiment to test hypothesis (simulation)
 - Analyze data (fit a model, perform uncertainty quantification)

What are we going to learn this semester?

- Lots of good things!
 - Linear algebra
 - Optimization / calculus
 - Differential equations
 - Some forms of statistical analysis/modeling & sampling
 - A tiny bit of Bayesianism
 - A bit of (computational) neuroscience along the way
 - Spiking neural networks (Guest lecture! William)
 - Predictive coding (Guest lecture! Faeze)
 - Active inference graphical models (Guest lecture! Viet)

- Our vehicle = the Python programming/scripting language
 - With some Bash "ducktape" as needed
 - With a little bit of the ngc-learn library (for neuroscience things later)

This class's "slant"

- While the concepts / principles we cover will be generally applicable, we will have somewhat of a bias in this particular offering
 - Our slant = computational neuroscience
 - Largely, this is due to the fact that I am such a scientist
 - Will help us examine some examples where these tools/schemes are applied
- Computational neuroscience
 - One dimension of the larger enterprise of cognitive science/neuroscience
 - Requires many of the tools we will cover in COGS-621
 - For example: neuronal dynamics are often expressed through *differential equations*

This class's "slant"

- our slant = comp you know the truth...you

 Largely, this is \$0...now you know the one loony

 Will help us ex pplicable. While the concepts / principles computational neuroscientist this we will have somewhat of
- Computational
 - One dimension d
 - Requires many of
 - For example: neuronal dynamics

Yay! Lucky you!! science/neuroscience

ten expressed through differential equations

applied

Computational neuroscience at a glance

- Study and investigation of brain function using mathematical, computational tools / theories
 - Interdisciplinary study that draws from:
 - · Electrical engineering
 - Computer science
 - Physics
 - Neurobiology
 - Cognitive (neuro)science
 - **Goal**: to model and understand how nervous systems process information
- Focus: descriptions of biologicallyplausible/grounded neurons as well as neuronal systems
 - Attention paid to physiology, constraints, and dynamics

(Ororbia and Kelly, 2021; 2022; 2023)

An example: The leaky integrator

- We can model neuronal cell membrane potential (voltage) via ordinary differential equations (ODEs)
 - Shows change in voltage potential for a given time
 - Popular initial choice: the leaky integrator

$$\tau_m \frac{\partial v_k^{\ell}(t)}{\partial t} = -\gamma_v \left(v_k^{\ell}(t) - v_{rest} \right) + R^{\ell} j_k^{\ell}(t)$$

An example: Spiking neural assemblies

- Synapses (or "efficacies")
 - We can model electrical current injected into k-th neuron in layer ℓ via linear algebra:

$$j_k^{\ell}(t) = \mathbf{w}^{\ell} \cdot \mathbf{s}^{\ell-1}(t)$$

 A dot product (·) in the above case (bold font denotes vector)

Instantaneous point-wise current

We want to craft assemblies (or connected populations) of these neuronal units!

No Class this Thursday, 8/28

 No class this Thursday; I have been called away to participate in a NeuroAI think-tank for NSF

Homework for this/next week:

Read Chapter 1-2 of your textbook Set up a Python environment (see Chapter 1) Create a Github account (free)

Questions?

(Image source: Prof O's office door)

References

- Ororbia, Alexander, and M. Alex Kelly. "A Predictive Processing Implementation of the Common Model of Cognition." *Neuropsychologia* 48.7: 1948-1957.
- Ororbia, Alexander G., and M. Alex Kelly. "Maze learning using a hyperdimensional predictive processing cognitive architecture." International Conference on Artificial General Intelligence. Cham: Springer International Publishing, 2022.
- Ororbia, Alexander, and M. Alex Kelly. "Cogngen: Building the kernel for a hyperdimensional predictive processing cognitive architecture." *Proceedings of the Annual Meeting of the Cognitive Science Society*. Vol. 44. No. 44. 2022.
- Ororbia, Alexander G., and Mary Alexandria Kelly. "A neuro-mimetic realization of the common model of cognition via hebbian learning and free energy minimization." *Proceedings of the AAAI Symposium Series*. Vol. 2. No. 1. 2023.