
RIT Research Computing:
Theory and Applications

2025 - 09 - 16
Prepared by: Viet Nguyen

COGS 621

| 2

Objectives

● Code basic bash programs and use Linux naturally

● Use any scheduling system that has SLURM-backend HPC cluster

● Code bash and python scripts to scale job submissions

● Use RIT’s research computing interactive platform

| 3

Agenda
1. (10 mins) Overview of Linux, Bash, and SSH

● Linux and bash
● SSH

2. (15 mins) Distributed Computing Overview
● Concurrency and parallelism
● Distributed systems

3. (25 mins) RIT Research Computing Theory
● The grant
● Filling forms and accessibility
● RIT’s Scheduled Processing On

Research Computing (SPORC)
● SLURM tutorial

● Demo multi-trial job submission script
● Demo sharded data parallel job

submission script

4. (10 mins) Tips and Tricks
● RIT RC’s ondemand and related tools
● How queuing system works
● Conda – the powerful python package

management system
● File transfer using FileZilla and SFTP

| 4

Part 1 – Overview of
Linux, Bash, and SSH

| 5

Overview of Linux, Bash, and SSH
Linux and Bash

● For windows, you might want to test out Linux with Windows Subsystem for Linux (WSL)
● [Demo] Linux file system

○ Use forward slash to separate folder instead of backward slash like in Windows
● [Demo] Instead of using the mouse to click, find, and open them, you type commands into the

terminal to tell the computer what to do:
○ clear: clear the terminal
○ pwd: print work directory
○ ls: list files in current work directory
○ cd: change directory
○ rm: remove
○ ~: home directory
○ /: root directory
○ ./: current directory (in relative path)
○ ../: parent directory (in relative path)
○ Absolute path

| 6

Overview of Linux, Bash, and SSH
Linux and Bash

[Demo] Some other frequently used commands:
● cat <file>: view the file
● mkdir -p <folder_name>: create folder
● rmdir <folder>: remove folder (has to be empty)
● head -n 3 <file>: view the first three lines of the file
● tail -n 3 <file>: view the last three lines of the file
● touch <file>: create file
● cp <source> <destination>: copy a file from source to destination. -r: recursive
● mv <source> <destination>: move a file from source to destination. -r: recursive
● rm <file>: remove a file. rm -rf <file>: force and recursive. DON’T EVER DO rm -rf /
● grep <pattern> <file>: searching the file for a pattern. E.g., grep "*2022-08-19*" dataset1_results.csv.

Pattern uses regular expression
● man <command>: print the command manual
● du -h . --max-depth=1: list all items and size of the current folder, no recursive

| 7

Overview of Linux, Bash, and SSH
Linux and Bash

● [Demo] Using VSCode for convenience
○ Download and setup: https://code.visualstudio.com/download

● [Demo] Writing a bash script
○ Variables and comments
○ Loops and conditionals
○ Operators

https://code.visualstudio.com/download

| 8

Overview of Linux, Bash, and SSH
SSH

● SSH (Secure Shell Scripting):
○ Securely access remote servers using a public key and private key
○ Public key (like a lock): everyone can see
○ Private key (like the key in the holder’s hand): only a holder having the key can unlock
○ First time connecting, the keys are automatically generated
○ Allows us to access the RIT Research Computing cluster server

● Connecting to the server
○ [Demo] VSCode (sporcsubmit.rc.rit.edu)
○ Any other SSH tool: MobaXterm, OpenSSH, etc.

Our computer RIT RC server

SSH Connection

User

Do tasks on

server remotely

http://sporcsubmit.rc.rit.edu

| 9

Part 2 – Distributed
Computing Overview

| 10

Distributed Computing Overview
Concurrency and Parallelism

[Demo] No Concurrency; No Parallelism
● Task 1 -> task 2 -> …
● Pros: simple
● Cons: slow, monotone, not parallelizable

[Demo] Concurrency; No Parallelism
● In waiting for a task, do another task, then

come back
● Pros: faster than no concurrency
● Cons: some tasks is too long, blocking the

execution of other tasks

| 11

Distributed Computing Overview
Concurrency and Parallelism

[Demo] Concurrency; Parallelism
● Multiple CPU/GPU. Each handle a particular task
● Pros: Parallelize tasks that can be done separately

| 12

Distributed Computing Overview
Sharding

[Demo] Sharding
● The process of breaking a task down to multiple

sub-tasks and aggregate them when computations
are done

● Technique for splitting large datasets or
workloads into smaller, more manageable pieces
(“shards”) that can be distributed across
multiple machines or processes. Each shard
holds only a subset of the total data, and together,
all shards represent the complete dataset.

| 13

Distributed Computing Overview
Concurrency and Parallelism

Concurrency; Parallelism; Shared Task(s)
● Each task is splitted into different

subtasks
● Each subtask is solved using a

dedicated device
● Results are then aggregated from all

devices
● Concurrency can be performed within

each device
● Pros: has concurrency, has parallelism,

allow multiple devices to solve multiple
tasks while minimizing idle time

| 14

Distributed Computing Overview
Distributed System

Distributed system:
● Definition: a collection of independent hardware and software called nodes (connected

together in a network system).
○ No shared clock (each node has independent processors)
○ No shared memory (each node has independent memory)
○ Processes are autonomous and executed concurrently

● Purpose: coordinate and communicate to solve a particular problem/task.
● RIT’s SPORC: each node will have from 0-4 GPUs. Most of them has 4 GPUs.

