Building and Training Spiking Neural Networks

William Gebhardt

Image Reconstruction

For this presentation we will be using instantaneous current

Coding up a layer of LIF neurons

- A vector of size N is needed to store the voltage of each neuron in the layer
- Hyperparameters
 - Leak: the rate at which voltage is lost
 - R: Affects the amount of voltage gained from the current input
 - dt: The time step between simulation steps
 - Tau: Affects the overall rate of change of the voltage

Pulling out the spikes and depolarize

- Simple greater than check
- Reset the neurons the spiked to zero
- thr is the adaptive threshold

Sj = tf.cast(tf.math.greater(V, thr),dtype=tf.float32)

V = (V * (1.0 - Sj))

Adapting the threshold

- ODE similar to voltage and current
- Alpha and beta are hyperparameters for adjusting the leak and gain

thr_leak = -thr * alpha thr gain = Sj * beta thr.assign(thr + thr leak + thr gain)

What would happen if we run this?

	1000
	1999 B
	State of the local division of the local div
	1. M

It needs to be trained

- Many methods of training
 - Backpropagation
 - Error Neurons
 - STDP
- Avoid backpropagation
 - Backprop through time
 - Spikes can not be differentiated

- **B** spikes
 - If **C** has spiked within a given window of time, this is a case of postsynaptic spiking and we decrease the weight between **B** and **C**
 - If A has spiked within a given window of time, this is a case of presynaptic spiking and we increase the weight between A and B
- A would only care about postsynaptic spiking whenever it spikes
- **C** would only care about presynaptic spiking whenever it spikes

Problem: Blank Pixels

- Since no pixels other than the one spiked in the input layer no weights from the input layer to the output layer were updated
- Weight decay can combat this problem but this had scaling problems

Postsynaptic Event based STDP

- Based on the method proposed by Amirhossein Tavanaei, Timothée Masquelier, Anthony Maida
 - Representation learning using event-based STDP
- Affects all incoming weights to a postsynaptic neuron when that neuron spikes
- Effectively has weight decay built in

Number Comparison

So how does it work

Are we done?

Other Needed Parts

- Inhibition
- Patching
- More Epochs

Inhibition

- Limit the number of neurons that are spiking together
- When an inhibitory neuron spikes it will remove voltage from all the excitatory neurons

The Weight Setup

 Excitatory neurons are wired 1-to-1 with the identity matrix to inhibitory neurons

Inhibitory neurons are wired
 1-to-others with a hollow matrix
 back to excitatory neurons

Why it's needed

With inhibition

No inhibition

Where it breaks

With inhibition

No inhibition

Patching

- What's more useful
 - The strokes of a three and a seven
 - The whole three and a seven
- Patches can be either overlapping or discrete
 - More general if overlapped, potentially to general

No Patches

With Patches

Seeing more data & diversity

- Seeing more data will always allow for a network to model the provided data better
- STDP tends to overfit to the data provided
- More diverse data slows this overfitting and allows it to generalize more

Where it is used

- Robotic Control
- Edge computing
- Computer Vision

Why it is used

- Lower power
- Naturally built for time dependent data
- Can be built on a hardware level

Questions?