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Coding up a layer of LIF neurons

- A vector of size N is needed to store the voltage of each neuron in the layer

- Hyperparameters
- Leak: the rate at which voltage is lost

- R: Affects the amount of voltage gained from the current input

- dt: The time step between simulation steps

- Tau: Affects the overall rate of change of the voltage
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For this presentation we will be using 

instantaneous current

V = (V + (-V * leak + R * (s * W)) * (dt/tau))



Pulling out the spikes and depolarize

- Simple greater than check

- Reset the neurons the spiked to zero

- thr is the adaptive threshold
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Sj = tf.cast(tf.math.greater(V, thr),dtype=tf.float32)

V = (V * (1.0 - Sj))



Adapting the threshold

- ODE similar to voltage and current

- Alpha and beta are hyperparameters for adjusting the leak and gain
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thr_leak = -thr * alpha

thr_gain = Sj * beta

thr.assign(thr + thr_leak + thr_gain)



What would happen if we run this?
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It needs to be trained

- Many methods of training
- Backpropagation

- Error Neurons

- STDP

- Avoid backpropagation
- Backprop through time

- Spikes can not be differentiated
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STDP

- B spikes
- If C has spiked within a given window of time, this is a case of postsynaptic spiking and we decrease the weight 

between B and C

- If A has spiked within a given window of time, this is a case of presynaptic spiking and we increase the weight between 
A and B 

- A would only care about postsynaptic spiking whenever it spikes

- C would only care about presynaptic spiking whenever it spikes
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Problem: Blank Pixels

- Since no pixels other than the one spiked 

in the input layer no weights from the 

input layer to the output layer were 

updated

- Weight decay can combat this problem 

but this had scaling problems
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Postsynaptic Event based STDP

- Based on the method proposed by Amirhossein Tavanaei, Timothée Masquelier, Anthony Maida
- Representation learning using event-based STDP

- Affects all incoming weights to a postsynaptic neuron when that neuron spikes

- Effectively has weight decay built in
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Number Comparison
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So how does it work
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delta = W * (1. + lmbda)

Mi = tf.zeros(W.shape) + tf.transpose(Si)

dW = Mi * (1. - delta) + (1. - Mi) * (-delta)

dW = dW * Sj * a

W.assign(W + dW)

Scale the weights

Extend presynaptic spikes

Calculate Update

Mask update

Assign update



Are we done?
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Other Needed Parts
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- Inhibition

- Patching

- More Epochs



Inhibition

- Limit the number of neurons that are spiking 

together

- When an inhibitory neuron spikes it will 

remove voltage from all the excitatory 

neurons
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The Weight Setup

- Excitatory neurons are wired 

1-to-1 with the identity matrix 

to inhibitory neurons

- Inhibitory neurons are wired 

1-to-others with a hollow matrix 

back to excitatory neurons
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Why it’s needed
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Where it breaks
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Patching

- What's more useful
- The strokes of a three and a seven

- The whole three and a seven

- Patches can be either overlapping or discrete
- More general if overlapped, potentially to general
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No Patches
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With Patches
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Seeing more data & diversity

- Seeing more data will always allow for a network to model the provided data better

- STDP tends to overfit to the data provided

- More diverse data slows this overfitting and allows it to generalize more
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Where it is used

- Robotic Control

- Edge computing

- Computer Vision
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Why it is used

- Lower power

- Naturally built for time dependent data

- Can be built on a hardware level



Questions?
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