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neuron cell body

Biological Inspiration

axon of

- Neurons are the nodes of our neural previous axon
neuron
neuron cell body \

networks

- Axons are the weights connecting them
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Structure

- Unlike a brain it is organized into fully
connected layers

- Atits most basic level many aspects
of the brain are missing

- Note theinput layer are not LIF
neurons




Biological Interpretation of the World

- The human eye only processes information at
60 frames per second

- Processingis not idle in the down time

- Other sensory processing occurs at different
rates (order of milliseconds)

By ROTFLOLEB - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27603178



Mapping Biological Timings

- Inputs are stretched and converted to Poisson
spike trains % | | | | | | | |

singular value per image

- LIF Neurons produce spike trains instead of a




Quick Component Recap

- Poisson spike train
Used to model input

- Leaky Integrate and Fire Neuron (LIF)
Primary neuron type

- Weights/Synapses

The connections between neurons



Poisson Spike Train

Neg—A
- Lambda (A) is a hyper parameter f(/{j )\) —

- kisthe number of events occurring in a fixed . k
time interval

- Note that as the time interval goes to 1 the
problem has the same expected value as a

Bernoulli Trial )\ — E(X) — V(X)



Converting an image

- 0.9 0.8
Let the normalized pixel values be equal to
lambda
Sample a single Bernoulli Trial
Successes are treated as spikes
Repeat for each step in the simulation . ,
no spike no spike

P Success — P
q

spike  spike

P Failure



Leaky Integrate and Fire Neuron

A stateful neuron
Slowly accumulates charge

Fires and depolarized when threshold is passed



WARNING LOTS OF MATH AHEAD!!



LIF Current ODE

- Spikes are represented by current traveling
along awire

- Two forms, instantaneous and continuous
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LIF Current ODE
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LIF Voltage ODE

- Shows the change in voltage potential for a
given time

- Note this looks very similar to the current
equation
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LIF Voltage ODE

Tvagiﬂ = —k,V (tg) + rJ(tg)

Vitg+ At) = V(tg) 1 Azt( koV (tg) + rJ(tg))

Ty




Thresholding & Depolarization

Build a vector of spikes for a layer with a S (t) )
simple threshold of sigma (o) 1

Reset the voltages of every neuron that
produced a spike to zero

Leave the non-spiked neurons alone

V(t);
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Adapting the Threshold

Global Threshold

Goal is to make exactly one neuron fire per
step

N

do
a5 X (Zs(t)z) —1

Individual Threshold

Limits neurons that fire often to fire less

often

ot

Lo —0a; + Bs(t);
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Neuron Dynamics

Image from NGC-Learn Walkthrough 7
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Spike Dynamics

Neuron Index

Image from NGC-Learn Walkthrough 7

Spike Train Raster Plot
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